Lectures
University of Mannheim | |
HWS 2023 | Mathematical Finance (BSc) |
FSS 2023 | Optimization in Machine Learning (BSc/MSc) |
Seminars
University of Mannheim | |
HWS 2023 | Advanced Seminar on Mathematical methods in Artificial Intelligence (BSc/MSc) |
Heidelberg University | |
WiSe 2021 | Simulation of Stochastic Systems (BSc/MSc) |
Preprints and submitted manuscripts
2022 | Adaptive multilevel subset simulation with selective refinement D. Elfverson, R. Scheichl, S. Weissmann and F. A. DiazDelaO Preprint: arXiv:2208.05392 |
2021 | One-shot learning of surrogates in PDE-constrained Optimization under Uncertainty P. Guth, C. Schillings and S. Weissmann Preprint: arXiv:2112.11126 |
Articles in journals and refereed proceedings volumes
2022 | Continuous time limit of the stochastic ensemble Kalman inversion: Strong convergence analysis D. Blömker, C. Schillings, P. Wacker and S. Weissmann SIAM Journal on Numerical Analysis, Volume 60, Issue 6, doi: 10.1137/21M1437561 Gradient flow structure and convergence analysis of the ensemble Kalman inversion for nonlinear forward models S. Weissmann Inverse Problems, Volume 38, Number 10, doi: 10.1088/1361-6420/ac8bed Multilevel optimization for inverse problems S. Weissmann, A. Wilson and J. Zech Proceedings of Thirty Fifth Conference on Learning Theory (COLT 2022), PMLR 178:5489-5524 Adaptive Tikhonov regularization for stochastic ensemble Kalman inversion S. Weissmann, N. Chada, C. Schillings and X. Tong Inverse Problems, Volume 38, Number 4, doi: 10.1088/1361-6420/ac5729 Consistency analysis of bilevel data-driven regularization in inverse problems N. Chada, C. Schillings, X. Tong and S. Weissmann Communications in Mathematical Sciences, Volume 20, Number 1, doi: 10.4310/CMS.2022.v20.n1.a4 |
2021 | Ensemble Kalman filter for neural network based one-shot inversion P. Guth, C. Schillings and S. Weissmann In: Optimization and Control for Partial Differential Equations, De Gruyter, doi: 10.1515/9783110695984-014 Fokker–Planck particle systems for Bayesian inference: computational approaches S. Reich and S. Weissmann SIAM/ Well posedness and convergence analysis of the ensemble Kalman Inversion D. Blömker, C. Schillings, P. Wacker and S. Weissmann Inverse Problems, Volume 35, Number 8, doi: 10.1088/1361-6420/ab149c On the incorporation of box-constraints for ensemble Kalman Inversion N. Chada, C. Schillings and S. Weissmann Foundations of Data Science, Volume 1, Issue 4, doi: 10.3934/fods.2019018 |
Theses
2020 | Particle based sampling and optimization methods for inverse problems S. Weissmann Dissertation, University of Mannheim, link |
2017 | Perpetual Integrals for stochastic processes S. Weissmann Master Thesis, University of Mannheim |
2015 | Renewal processes – Alternation, excesslife and agedistribution S. Weissmann Bachelor Thesis, University of Mannheim |