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Abstract

This lecture course covers Optimization methods applied in the re-

search area of machine learning. In the first part of the lecture,

we will start with a detailed overview of first order gradient meth-

ods. After a brief recap of the basics of unconstrained optimization

problems, we will study (accelerated) gradient descent methods for

various conditions on the corresponding cost function. In the second

part of this lecture course, we will study stochastic variants of gra-

dient descent. We will provide a rigorous introduction of stochastic

gradient estimations and standard convergence results. Due to the

stochastic approximations we discuss the incorporation of variance

reduction methods.
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Introduction

These lecture notes were originally prepared for the course Optimization in Machine Learning

offered during the Spring semester of 2023 at the University of Mannheim. The current version

includes updates and modifications for the Fall 2024 iteration of the same course. Several of the

presented results are taken from books and monographs, and the corresponding references are

provided in place. I would like to thank Marc Schäfer for carefully proofreading this manuscript.

In this course, we will delve into optimization methods applied in the research field of machine

learning. In Chapter 2, we provide a comprehensive introduction to unconstrained optimization,

with a particular emphasis on gradient descent methods. We will present a series of convergence

results for various assumptions regarding the cost function, such as differentiability, (strong) con-

vexity, and smoothness. Moreover, we discuss the non-smooth scenario introducing the notion of

sub-differential. The incorporation of momentum leading to accelerated gradient descent methods

will be discussed in Chapter 3. This discussion will include both Polyak’s heavy ball method and

Nesterov’s acceleration method. In Chapter 4, we study the role of empirical approximations in

the area of expected risk minimization. Building upon this foundation, we will introduce stochastic

variants of gradient descent methods, which play a crucial role in solving empirical and expected

risk minimization problems. We will discuss different types of convergence results and introduce

schemes for variance reduction.

Before we start discussing the important aspects of optimization methods, we will provide a brief

overview of the research field machine learning and position the role of this lecture within this

field. The focus of this course lies in the theoretical analysis and practical implementation of

(stochastic) optimization methods which are typically applied in the training (or learning) task of

machine learning models.

The field of machine learning is often divided into the following three classes:

1. Supervised learning: Given pairs of input and output vectors, the aim in supervised learning

is to learn/ describe connections between the input and output. This includes the task of

classification (discrete output state) and regression (continuous output state).
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2. Unsupervised learning: In this class, the data set is given by input vectors without specified

labels. The aim is for example to separate the data set into cluster (clustering) or to learn

a probability distribution describing the data set (density estimation)

3. Reinforcement learning: In this class, an agent aims to find an optimal strategy of actions

in order to maximize some reward resulting from the action. However, there is no access to

any pre-observed data set, and the optimal strategy needs to be learned via trial and error

of different applied actions.

new input

x

y

new input

?

ϕ(·)

Figure 1.1: Illustration of classification and regression problems.

x

Class A

Class B

p̂(x)

Figure 1.2: Illustration of clustering and density estimation problems.

Strategy

Action

Environment

Reward

Figure 1.3: Illustration of reinforcement learning.

The presented lecture course focuses mainly on optimization methods in the area of supervised

learning. In order to introduce the learning task in supervised learning, we will introduce the

following notation:
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• Input set: Z ⊂ Rdz (e.g. images, observation points, features)

• Output/target set: Y ⊂ Rdy (e.g. label {0, 1} or function evaluation in Rdy

• Training data: S = {(z(1), y(1)), . . . , (z(m), y(m))} with (z(i), y(i)) ∈ Z × Y , i = 1, . . . ,m.

The goal in supervised learning is to approximate the unknown model

φ : Z → Y , z 7→ φ(z) = y

The task of the learner is to construct a prediction or approximation g : Z → Y , which is actually a

task of function approximation. Typically, the learner aims to find a (finite dimensional) parameter

θ ∈ Θ and compute the approximation gθ : Z → Y . Here, we will call both G and Θ the learning

class of possible candidates for g ∈ G or θ ∈ Θ respectively. We assume that the learning class G
is a Hilbert space.

In the following, we fix an underlying probability space (Ω,F ,P). The data model is usually

described by the training data set as a family of random variables. For example, one may assume

that Z(i) ∼ µZ can be generated independently and pushed through the ”true” model φ:

Y (i) := φ(Z(i)) + ξ(i) , i = 1, . . . ,m ,

where (ξ(i))mi=1 denotes possible noise. Hence, we will model the in- and output as jointly vary-

ing random variable (Z, Y ) ∼ µ(Z,Y ) with joint unknown distribution µ(Z,Y ). Later, we will

usually assume that we are able to generate iid. sample of the data {(Z(i), Y (i))}i=1,...,m ,m ∈
N , with (Z(1), Y (1)) ∼ µ(Z,Y ) . In the first step, we want to define a measure of success for the

prediction of the learner. Let f : G ×Z ×Y → R be measurable (wrt. B(G)⊗B(Z)⊗B(Y)/B(R))

and let (Z, Y ) ∼ µ(Z,Y ) with E[|f(g, Z, Y )|] < +∞ for all g ∈ G.

(i) We define the expected risk F : G → R by

F (g) := Eµ(Z,Y )
[f(g, Z, Y )] :=

∫
Z×Y

f(g, z, y)µ(Z,Y )(d(z, y)) .

(ii) Let (Z(1), Y (1)), . . . , (Z(m), Y (m)) be iid. random variables with (Z(1), Y (1)) ∼ µ(Z,Y ). We

define the empirical risk Fm : G → R by

Fm(g) :=
1

m

m∑
i=1

f(g, Z(i), Y (i))

We call f the risk function, and the tasks

min
g∈G

F (g) (min
g∈G

Fm(g))
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the expected (empirical) risk minimization problem.

Example 1.0.1 (Classification problem). Let Y = {0, 1} ⊂ R and assume that the training data

is generated without noise as Y (i) = φ(Z(i)) , i = 1, . . . ,m . In a classification problem one usually

aims to classify between a finite number of classes, here for simplicity between two classes. The

first class corresponds to 0 and the second one to 1. Hence, the true model φ maps to the set {0, 1}
and states whether the input belongs to 0 or 1.

A common choice for a risk function is an indicator function over the predicted classification

through g ∈ G. We receive a penalty 1 if the prediction is wrong, whereas 0 if the prediction is

correct. Mathematically written, the risk function can be defined by

f(g, z, y) := 1{g(z)̸=y} = 1{g(z)̸=φ(z)}

and the corresponding expected risk correspond to the probability of giving a wrong prediction

F (g) = Eµ(Z,Y )
[1{g(Z )̸=Y }] = Pµ(Z,Y )

(g(Z) ̸= Y ) .

When having access to a training data set {(Z(i), Y (i))}mi=1 the empirical risk counts the relative

number of failures in predicting the correct label

Fm(g) =
1

m

m∑
i=1

1{g(Z(i)) ̸=Y (i)} =
|{i ∈ {1, . . . ,m} | g(Z(i)) ̸= Y (i)}|

m
.

Example 1.0.2 (Regression problem). The second classical example of supervised learning tasks

are regression problems. As an example we consider the task to approximate a function φ : Rdz →
Rdy based on the risk function

f(g, z, y) :=
1

2
∥g(z) − y∥2Rdy .

The corresponding expected risk measures the expected squared distance of the prediction g

F (g) = Eµ(Z,Y )
[
1

2
∥g(Z) − Y ∥2Rdy ] ,

and the empirical risk computes the averaged squared distance of the prediction

Fm(g) =
1

m

m∑
i=1

1

2
∥g(Z(i)) − Y (i)∥2Rdy

within a training data set {(Z(i), Y (i))}mi=1.

Based on the learners chosen objective function, three central questions have accumulated signifi-

cant attention in the machine learning research field:



Optimization in ML Simon Weissmann Page 8

1. Approximation (expressive power): In this research area, the concern revolves around the

choice of the function class used to approximate the true model. The question is whether

a suitable function class even exists for approximating the true model and how large one

should choose the class to approximate the true model up to a certain accuracy.

2. Training/ Learning task: Once we have decided on a specific class of functions in which we

aim to approximate the underlying true model, the next step is to find the best possible

representation within this chosen class G or Θ. For example, assuming a parametrized

representation gθ : Rdz → Rdy of the function approximation and given a training data set

{(z(i), y(i))}Ni=1 constructed through the true model, i.e. y(i) = φ(z(i)), i = 1, . . . , N , we aim to

find θ ∈ Θ such that we obtain the best possible approximation y(i) ≈ gθ(z
(i)). As described

above, the task in training/learning of the model is then to solve an optimization problem

of the form

min
θ∈Θ

fN(θ, {(z(i), y(i))}Ni=1),

where fN : Θ ×
(
×N

i=1(Rdz × Rdy)
)
→ R is a suitable cost function. As we have seen in the

example of regression, a typical example of cost function is

fN(θ, {z(i), y(i)}Ni=1) =
1

N

N∑
i=1

∥gθ(z(i)) − y(i)∥2 + R(θ),

where R : Θ → R is a regularization function in order to avoid so-called over fitting.

3. Generalization: Once we learned/trained an optimal parameter θ∗ approximating the true

model, the natural question arises of how good does this approximation generalizes. We seek

to evaluate the quality of the approximation

gθ∗(z) ≈ φ(z) ,

when applied to data points (z, φ(z)) which have not been used in the training task.

For better illustration, we consider the following example:

Example 1.0.3 (Polynomial regression). We assume that the underlying true model is described

through

y = φ(z) := sin(2πz), z ∈ [0, 1].

Given a training data set {(z(i), y(i) = φ(z(i)))}Ni=1 we want to construct a polynomial of M degrees

gθ(z) = θ0 + θ1z + . . . , θMzM ,

in order to approximate φ. The coefficients θ = (θ0, . . . , θM)⊤ ∈ RM+1 are the parameters to be
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learned. Therefore, we firstly minimize the cost function

fM(θ) =
1

N

N∑
i=1

|gθ(z(i)) − y(i)|2,

also known as the data misfit functional. The resulting approximations are shown in Figure 1.4.

Figure 1.4: Polynomial approximation of φ for minimizing the data misfit functional for unper-
turbed data y(i) = φ(z(i)), i = 1, . . . , N .

In the case where the training dataset {(z(i), y(i) = φ(z(i)) + η(i))}Ni=1 is perturbed by some noise

η(i) ∈ R the situation changes. The resulting optimization over the data misfit functional is ill-posed

and regularization is needed. Therefore, we minimize the regularized cost function

fM(θ) =
1

N

N∑
i=1

|gθ(z(i)) − y(i)|2 + Rβ(θ),

where Rβ : RM+1 → R denotes a regularization function with parameter β > 0, in our case we

choose Tikhonov Regularization leading to penalization through R(θ) := β(θ20 + · · · + θ2M+1) and

β = 0.01. The resulting approximation with and without regularization are shown in Figure 1.5.

Figure 1.5: Resulting polynomial approximation of φ for minimizing the data misfit functional
without (left) and with (right) regularization for perturbed data y(i) = φ(z(i)) + η(i), i = 1, . . . , N .
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Unconstrained Optimization methods

In this chapter, we will provide a brief overview of basic concepts in unconstrained optimization.

The concepts presented in this chapter are based on [1, 17, 15]. We will introduce fundamental

definitions and properties around optimality conditions. Building upon this foundation, we will

explore a series of gradient-based optimization methods to iteratively solve the problems. The

convergence analysis of the studied schemes is presented for different classes of cost functions

((non-)convex, (non-)differentiable, (non-)smooth).

Let us consider the following problem formulation, which will be the central focus of this lecture.

Problem 2.0.1. Let f : X → R be a (continuous) function with domain X ⊂ Rd. For which

value(s) x ∈ X is the function evaluation f(x) minimal?

We will refer to Problem 2.0.1 to optimization or minimization problem and will write shortly

min
x∈X

f(x) . (2.1)

The corresponding function f is called cost function or sometimes also objective function.

Remark 2.0.2. • In this lecture our special focus will lie in optimization problems without

constraints, in which we assume X = Rd. For the case X ⊊ Rd we refer to (2.1) as optimiza-

tion problem under the constrain x ∈ X, where we also write

min
x∈Rd

f(x), s.t. x ∈ X,

in order to highlight the constrain. Note that ”s.t.” stands for ”subjected to”.

• For simplicity we will consider Minimization problems, since each Maximization problem can

be equivalently rewritten as Minimization problem:

max
x∈X

f(x) =̂ min
x∈X

−f(x) .

10
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• This lecture focuses on so-called continuous optimization problems, where the feasible set is

infinite (uncountable). In case the feasible set is countable or finite, the optimization problem

is called discrete.

• Typically, the cost function f is nonlinear, such that (2.1) is often called nonlinear program.

In the following, we introduce the notion of local and global solutions for (2.1).

Definition 2.0.3. Let f : X → R for some X ⊂ Rd. The point x∗ ∈ X is called

a) local Minimum of f over X, if there exists ε > 0 such that f(x∗) ≤ f(x) for all x ∈ X

with ∥x − x∗∥ < ε. If it even holds true that f(x∗) < f(x) for all x ∈ X \ {x∗} with

∥x− x∗∥ < ε, we call x∗ strict local Minimum.

b) global Minimum of f over X, if f(x∗) ≤ f(x) for all x ∈ X. If it even holds true that

f(x∗) < f(x) for all x ∈ X \ {x∗}, we call x∗ strict global Minimum.

Remark 2.0.4. A local Minimum x∗ ∈ X minimizes the cost function f only in a local neighbor-

hood Bε(x∗) = {x ∈ Rd | ∥x − x∗∥ < ε}, whereas a global Minimum minimizes the cost function

over the whole domain/ feasible set X. We note that this definition includes constrained opti-

mization problems. Furthermore, every global Minimum is also a local Minimum. The other way

around does not hold.

x

f (x)

strict local minimum { }local minimum strict global minimum

Figure 2.1: Illustration of different types of minima of the cost function f based on Figure 1.1.1
in [1].

2.1 Optimality conditions

We will now discuss necessary as well as sufficient conditions characterizing local and global min-

ima. We start with the necessary optimality conditions of first order, which only needs differen-

tiability of the cost function.
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Theorem 2.1.1. Let f : Rd → R be continuously differentiable over the open set S ⊂ Rd and

suppose x∗ ∈ S is a local minimum of f . Then it holds true that ∇f(x∗) = 0.

Proof. Let x∗ ∈ S be a local minimum of f and consider the corresponding ball Bε(x∗) such that

f(x∗) ≤ f(x) for all x ∈ Bε(x∗). Let z ∈ Rd be arbitrary but fixed, such that for ᾱ > 0 small enough

x∗+αz ∈ Bε(x∗) and hence f(x∗+αz) ≥ f(x∗) for all α ∈ [0, ᾱ). We define α 7→ g(α) = f(x∗+αz),

α > 0 and observe
dg(0)

dα
= lim

α→0

f(x∗ + αz) − f(x∗)

α
≥ 0.

On the other side by chain rule we also have

dg(0)

dα
= z⊤∇f(x∗ + αz).

In particular, this implies 0 ≤ z⊤∇f(x∗). Since z ∈ Rd is arbitrary, with y = −z ∈ Rd we also

obtain 0 ≤ y⊤∇f(x∗) = −z⊤∇f(x∗). Therefore, for all z ∈ Rd we have z⊤∇f(x∗) = 0, which

yields ∇f(x∗) = 0.

Under the additional assumption that f is twice continuously differentiable there is also a necessary

optimality condition of second order.

Theorem 2.1.2. Let f : Rd → R be twice continuously differentiable over the open set S ⊂ Rd

and suppose x∗ ∈ S is a local minimum of f . Then it holds true that ∇2f(x∗) is positive

semi-definite.

Proof. Let again x∗ ∈ S be the local minimum of f with the corresponding ball Bε(x∗) such that

f(x∗) ≤ f(x) for all x ∈ Bε(x∗) and consider an arbitrary z ∈ Rd. With the Taylor expansion it

holds

f(x∗ + αz) − f(x∗) = α∇f(x∗)
⊤︸ ︷︷ ︸

=0

z +
α2

2
z⊤∇2f(x∗)z + o(α2) =

α2

2
z⊤∇2f(x∗)z + o(α2) .

Let ᾱ > 0 be small enough such that f(x∗ + αz) ≥ f(x∗) for all α ∈ [0, ᾱ). With the above

equation we obtain

0 ≤ f(x∗ + αz) − f(x∗)

α2
=

1

2
z⊤∇2f(x∗)z +

o(α2)

α2
→ 1

2
z⊤∇2f(x∗)z

for α → 0. Since z ∈ Rd is chosen arbitrary, this leads to z⊤∇2f(x∗)z ≥ 0 for all z ∈ Rd and the

assertion follows.

Remark 2.1.3. Theorem 2.1.1 and 2.1.2 characterize necessary, but not sufficient, conditions for

optimality. Firstly, consider for example f(x) = −x2 with stationary point x∗ = 0, which is no
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local minimum. Secondly, consider f(x) = x2
1 − x4

2, x = (x1, x2)
⊤ ∈ R2 with stationary point

x∗ = (0, 0)⊤ and positive semi-definite Hessian ∇2f(x∗) =

(
0 0

0 2

)
, which is no local minimum.

In the following theorem, we formulate second order sufficient conditions for optimality.

Theorem 2.1.4. Let f : Rd → R be twice continuously differentiable over the open set S ⊂ Rd.

Let x∗ ∈ S with

1. ∇f(x∗) = 0

2. ∇2f(x∗) (strictly) positive definite.

Then x∗ is a strict local minimum of f and there exist γ > 0, ε > 0 such that

f(x) ≥ f(x∗) +
γ

2
∥x− x∗∥2

for all x ∈ Bε(x∗).

Before proving Theorem 2.1.4, we will need to prove the following auxiliary result.

Lemma 2.1.5. Let A ∈ Rd×d be a symmetric matrix with real valued eigenvalues λ1 ≤ · · · ≤ λd

and corresponding eigenvectors v1, . . . , vd. Then it holds true that:

1. λ1∥z∥2 ≤ z⊤Az ≤ λd∥z∥2 for all z ∈ Rd.

2. The matrix A is (strict) positive definite if and only if all eigenvalues are (strictly)

positive.

Proof. We start with the first assertion. Let z ∈ Rd and write

z =
d∑

i=1

ξivi

with coefficients ξi ∈ R. Then we can write

z⊤Az =
d∑

i=1

ξ2i ⟨vi, Avi︸︷︷︸
=λivi

⟩ =
d∑

i=1

λiξ
2
i ∥vi∥2

≥ λ1

∑d
i=1 ξ

2
i ∥vi∥2 = λi∥z∥2,

≤ λd

∑d
i=1 ξ

2
i ∥vi∥2 = λd∥z∥2.,

which finishes the proof of the first claim. For the second assertion we start with ”⇒”. Let

(λi, vi) be eigenvalue and corresponding eigenvector of the (strictly) positive definite matrix A. By

definition of a positive definite matrix we have

0 ≤ (<)v⊤i Avi = v⊤i (λivi) = λi∥vi∥2.
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Since ∥vi∥2 > 0 for vi ̸= 0, we obtain λi ≥ (>)0 for all i = 1, . . . , d. For the other way around

”⇐”, we assume that 0 ≤ (<)λ1 ≤ · · · ≤ λd are eigenvalues of A with corresponding eigenvectors

v1 . . . , vd. Then it follows with the first assertion

z⊤Az ≥ λ1∥z∥2 ≥ (>)0

for all z ∈ Rd with z ̸= 0.

We are now ready to prove Theorem 2.1.4.

Proof of Theorem 2.1.4. Let λ > 0 be the smallest eigenvalue of the positive definite matrix

∇2f(x∗). By Lemma 2.1.5 it holds true that

z⊤∇2f(x∗)z ≥ λ∥z∥2.

Application of Taylor’s expansion around x∗ together with ∇f(x∗) = 0 yields

f(x∗ + d) − f(x∗) = ∇f(x∗)
⊤d +

1

2
d⊤∇2f(x∗)d + o(∥d∥2)

=
1

2
d⊤∇2f(x∗)d + o(∥d∥2)

≥ λ

2
∥d∥2 + o(∥d∥2)

=

(
λ

2
+

o(∥d∥2)
∥d∥2

)
∥d∥2.

Let ε > 0 be sufficiently small such that it holds o(∥d∥2)
∥d∥2 ∈ (−λ

4
, λ
4
) for ∥d∥2 < ε. For x ∈ Rd with

∥x− x∗∥ < ε it follows

f(x) ≥ f(x∗) +

(
λ

2
+

o(∥x− x∗∥2)
∥x− x∗∥2

)
∥x− x∗∥2 ≥ f(x∗) + (

λ

2
− λ

4
)︸ ︷︷ ︸

=: γ
2

∥x− x∗∥2 > f(x∗).

Under the additional assumption of convex cost function f , we can further characterize sufficient

optimality conditions.

Proposition 2.1.6. Let f : Rd → R be continuously differentiable and convex over the convex

set S ⊂ Rd. Then it holds true that:

1. Every local minimum of f over S is also a global minimum over S.

2. If f is even strictly convex, then there exists at most one global minimum.
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3. Let S be an open set. Then the condition ∇f(x∗) = 0 is a sufficient and necessary

condition for x∗ ∈ S to be a global minimum of f over S.

Exercise 2.1.1. Prove Proposition 2.1.6.

2.2 Optimization methods based on descent directions

Recall that we are interested in solving minx∈Rd f(x). In practical applications, it is often chal-

lenging and, most of the time, even impossible to compute solutions of this problem analytically.

Therefore, we will introduce iterative methods for solving the minimization task numerically. The

focus will lie in so-called descent methods based on descent directions.

Definition 2.2.1. Let f : Rd → R be the cost function. We call a vector d ∈ Rd descent

direction of f in x ∈ Rd, if there exists ᾱ > 0 such that

f(x + αd) < f(x) for all α ∈ (0, ᾱ].

Our aim is to construct an iterative scheme x0, x1, x2, . . . initialized with x0 ∈ Rd, such that

f(xk+1) < f(xk) for k = 0, 1, 2, . . . . The descent direction will be the key to construct this scheme.

{f(x) = c1}

{f(x) = c0}

{f(x) = c2}

{f(x) = c3}

c0 > c1 > c2 > c3

x0

x1

x2

x3

Figure 2.2: Illustration of descent methods based on Figure 1.2.1 in [1].

Lemma 2.2.2. Let f : Rd → R be continuously differentiable in x ∈ Rd. Then the condition

∇f(x)⊤d < 0 (2.2)

is sufficient for d ∈ Rd being a descent direction of f in x.

Proof. We fix x ∈ Rd and d ∈ Rd satisfying (2.2) and define φ(α) = f(x+αd). By Taylor expansion

it follows

φ(α) = φ(0) + αφ′(0) + o(α).
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Note that φ(0) = f(x) and φ′(0) = ∇f(x)⊤d such that

φ(α) − φ(0)

α
= ∇f(x)⊤d︸ ︷︷ ︸

<0

+
o(α)

α︸︷︷︸
→0, α→0

.

This implies that there exists ᾱ > 0 such that

φ(α) − φ(0)

α
< 0

for all α ∈ (0, ᾱ].

Remark 2.2.3. The condition (2.2) is no necessary condition for d ∈ Rd being a descent direction.

See Exercise 2.2.1 for more details.

Exercise 2.2.1. Let x∗ ∈ Rd be a strict local maximum of f : Rd → R. Prove that every

d ∈ Rd is a descent direction of f in x∗.

Example 2.2.4. The following two choices are classical examples of descent directions.

• Given x ∈ Rd, the choice d = −∇f(x) is a descent direction of f in x. This direction is also

called steepest descent direction.

• Given x ∈ Rd and positive definite matrix M ∈ Rd×d, the choice d = −M∇f(x) is a descent

direction of f in x. We also call it preconditioned gradient-based descent direction.

The resulting iterative descent method is formulated in the following algorithm.

Algorithm 1 Descent method
1: Input:

• cost function f : Rd → R
• initial x0 ∈ Rd

2: set k = 0
3: while ”convergence/stopping criterion not met” do
4: find a descent direction dk ∈ Rd of f in xk

5: determine a step size αk > 0 such that f(xk + αkdk) < f(xk)
6: set xk+1 = xk + αkdk, k 7→ k + 1
7: end while

Remark 2.2.5. • The ”convergence/stopping criterion” is of practical relevance. We will

suppress this criterion in our theoretical analysis and study the various types of algorithms

in its long time behavior for number of iterations k → ∞.
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• The values αk > 0 are called step size in iteration k ∈ N. In the research area of machine

learning these step sizes are called learning rate. In the literature of optimization the choice

of the step size/ learning rate is often based on line-search. We will give more details on this

in Section 2.2.2.

2.2.1 Examples of descent directions

We consider a row of examples for descent directions of the unified form

dk = −Dk∇f(xk), (2.3)

where Dk ∈ Rd×d is a positive definite matrix.

Definition 2.2.6. We define iterative schemes of the form

xk+1 = xk − αkDk∇f(xk), x0 ∈ Rd, k ≥ 0, (2.4)

with αk > 0 and Dk ∈ Rd×d positive definite as gradient methods.

Remark 2.2.7. The particular choice dk = −Dk∇f(xk) describes a descent direction due to

∇f(xk)⊤dk = −∇f(xk)⊤Dk∇f(xk) < 0.

We consider the following examples of gradient methods.

a) Method of steepest descent: This scheme is described by the simplified choice Dk = Id, i.e.

xk+1 = xk − αk∇f(xk), (2.5)

and is also known under the name gradient descent method (GD). The name ”steepest de-

scent” can be motivated by the normalized descent direction

dk = − ∇f(xk)

∥∇f(xk)∥
.

More details will follow later.

b) Newton method: We consider the quadratic approximation (second order Taylor approxima-

tion) of the cost function f . Let f : Rd → R be twice continuously differentiable, xk ∈ Rd

be the current iteration and approximate

f(x) ≈ fq(x) := f(xk) + ∇f(xk)⊤(x− xk) +
1

2
(xk − x)⊤∇2f(xk)(x− xk).
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In order to find a stationary point x∗ ∈ Rd of fq we need to solve

∇fq(x) = ∇f(xk) + ∇2f(xk)(x− xk) = 0

which yields

x∗ = xk − (∇2f(xk))−1∇f(xk) (2.6)

assuming that ∇2f(xk) is positive definite. This iteration corresponds to the Newton itera-

tion. The Newton method is a gradient method with the particular choice Dk = (∇2f(xk))−1

provided that ∇2f(xk) is regular, i.e.

xk+1 = xk − αk(∇2f(xk))−1∇f(xk).

The Newton method is a second-order gradient method, since derivatives of the second order

are used to formulate the iterative scheme. However, our focus in this lecture will be on

first-order gradient methods.

c) Quasi-Newton method: In case the Hessian ∇2f(xk) is not invertible or only invertible with

high afford, in practical applications one often applies numerical schemes in order to solves

(2.6). This leads to the class of quasi-Newton methods.

2.2.2 Selection of the step size/ learning rate

After we have considered descent direction we will now take a look into the choice of the step size

/ learning rate αk.

a) Constant step size: The most straightforward choice of step size is the constant step size

αk = s for all k ≥ 0 and some s > 0 sufficiently small. However, convergence to a stationary

point might be slow for too small s. In contrast, for a too large choice of s the resulting

scheme might diverge. We will see examples for which we can derive specific upper bounds

on s in order to ensure convergence of the scheme.

b) Diminishing step size: Another popular choice, in particular for stochastic optimization

schemes, are diminishing step sizes αk → 0 for k → ∞. Again for too large choices of αk

the resulting scheme violates the monotonic descent along the iteration. Furthermore, it can

easily happen that αk degenerates too fast such αk is too small in order to make progress

towards a stationary point, although it might be still far away. A popular condition for

choosing αk is
∞∑
k=1

αk = ∞ and
∞∑
k=1

α2
k < ∞.
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c) Armijo step size rule: In the best possible way we would like to choose αk such that the gain

along the chosen descent direction is maximized, i.e. such that the cost function is minimized.

One corresponding choice would be

αk ∈ arg min
α∈[0,s]

f(xk + αdk)

for some pre-specified s > 0. In most scenarios it is impossible to solve this minimization task

exactly, and algorithmic schemes are applied to solve the line-search. The line-search based

on the Armijo rule is one of the most popular schemes. Here, the step size is successively

decreased until it leads to a decrease in the evaluation of the cost function.The Armijo rule

is given by the condition

f(x + αd) ≤ f(x) + σα∇f(x)⊤d, (2.7)

where x denotes the current iteration, d is the chosen descent direction and σ > 0. Assume

that d ∈ Rd is chosen such that ∇f(x)⊤d < 0 (e.g. d = −∇f(x)), then condition (2.7) leads

to an decrease of the cost function. Furthermore, there exists some α > 0 satisfying condition

(2.7). In order to choose a suitable step size, we can apply a so-called backtracking line search.

Given a certain initial step size α(0) = s0 > 0 we will reduce the step size sequentially until

condition (2.7) is satisfied. The Armijo step size rule is summarized in Algorithm 2.

α

f(x+ αd)

acceptable step sizes unsuccessfull step sizes

f(x) + σα∇f(x)⊤d

α(0)α(1)α(2)
·0.5·0.5

Figure 2.3: Illustration of the Armijo step size rule based on Figure 1.2.7 in [1]. In the green area
condition (2.7) is satisfied such that α is accepted.

We refer interested readers to [1] for more information on alternative step size rules.

Exercise 2.2.2. Let f : Rd → R be continuously differentiable and (xk)k∈N be defined by

xk+1 = xk − αk∇f(xk), x0 ∈ Rd,

with diminishing step size αk > 0 such that
∑∞

k=1 αk = ∞. Suppose that (xk)k∈N converges to
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Algorithm 2 Armijo step size rule
1: Input:

• current iteration xk and descent direction dk

• parameter σ ∈ (0, 1), ρ ∈ (0, 1)

• initial step size s0 > 0

2: set ℓ = 0, α(0) = s0
3: while f(xk + α(ℓ)dk) > f(x) + σα(ℓ)∇f(xk)⊤dk do
4: set α(ℓ+1) = ρ · α(ℓ)

5: set ℓ 7→ ℓ + 1
6: end while
7: set αk = α(ℓ)

some x∗ ∈ Rd. Prove that x∗ is a stationary point of f , i.e. ∇f(x∗) = 0.

2.2.3 Discussion about convergence behavior

Our aim in this course is to analyze the convergence of various optimization algorithms. The

question is which behavior of convergence can we expect? In an optimal scenario we wish that

the optimization scheme should converge from any initial state to a global minimum of the cost

function. Unfortunately, typically this scenario is way too optimistic.

We consider a gradient descent scheme (2.5), where the state in each iteration moves into direction

of steepest descent. This means the iteration always moves downhill independent of the global

structure of the cost function. On the one side the iteration gets attracted from local minimums,

but on the other side gets stuck in any stationary point. Without in the case of convex cost

function we can only hope for convergence to stationary points. In general it is not clear if there

exists an accumulation or even limit point of the sequence (xk)k∈N constructed by the gradient

descent method (2.5).

x xxglobxloc xk xk xloc xglob

Figure 2.4: Illustration of possible terminations of the gradient descent method.
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2.3 Gradient descent method

Before going into more details of the convergence analysis for gradient descent methods, we will

motivate description of the method as steepest descent method. We have seen in Lemma 2.2.2

that ∇f(x)⊤d < 0 characterizes the strength of the descent direction d ∈ Rd (keyword: Taylor

expansion).

Let us consider x ∈ Rd and choose a normalized descent direction d ∈ Rd such that

min
d∈Rd

∇f(x)⊤d, s.t.∥d∥ = 1. (2.8)

We consider normalized descent directions, since it only determines the direction, whereas the

length is scaled by the step size αk after the descent direction has been chosen.

By the Cauchy-Schwarz inequality we firstly observe that for ∥d∥ = 1

0 ≤ |∇f(x)⊤d| ≤ ∥∇f(x)∥∥d∥ = ∥∇f(x)∥.

Then it holds also true that

∇f(x)⊤d ≥ −|∇f(x)⊤d| ≥ −∥∇f(x)∥.

Since the choice d∗ = − ∇f(x)
∥∇f(x)∥ leads to ∇f(x)⊤d = −∥∇f(x)∥, d∗ is a solution of (2.8). This means

that the negative gradient −∇f(x) is the steepest descent direction over all possible directions in

the sense of minimizing the descent condition (2.2).

In order to do characterize limit points of the steepest descent scheme, we will need more assump-

tions on our underlying cost function f . One important property considered in this lecture course

is smoothness. This property guarantees a descent of the objective function along the trajectories

of the gradient descent method as long as the step size is sufficiently small.

Definition 2.3.1. We call a function f : Rd → R L-smooth for L > 0, if f is differentiable

and the corresponding gradient ∇f is L-Lipschitz continuous, i.e.

∥∇f(x) −∇f(y)∥ ≤ L∥x− y∥, for all x, y ∈ Rd

If f is twice continuously differentiable, then a sufficient condition of L-smoothness is given by

supx∈Rd ∥∇2f(x)∥2 ≤ L. Assuming that our cost function f is L-smooth allows us to apply the

following descent Lemma.

Lemma 2.3.2 (Descent lemma). Let f : Rd → R be continuously differentiable and consider
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x, y ∈ Rd with

∥∇f(x + ty) −∇f(x)∥ ≤ L∥ty∥, (2.9)

for some L > 0 and all t ∈ [0, 1]. Then it holds true that

f(x + y) ≤ f(x) + y⊤∇f(x) +
L

2
∥y∥2.

Proof. We define ϕ(t) = f(x + ty) and apply chain rule in order to derive

ϕ′(t) = y⊤∇f(x + ty), t ∈ [0, 1].

By the fundamental theorem of calculus it follows

f(x + y) − f(x) = ϕ(1) − ϕ(0) =

∫ 1

0

ϕ′(t) dt =

∫ 1

0

y⊤∇f(x + ty) dt

=

∫ 1

0

y⊤∇f(x) dt +

∫ 1

0

y⊤(∇f(x + ty) −∇f(x)) dt

≤ y⊤∇f(x) +

∫ 1

0

∥y∥ · ∥∇f(x + ty) −∇f(x)∥ dt

≤ y⊤∇f(x) + ∥y∥
∫ 1

0

Lt · ∥y∥ dt

= y⊤∇f(x) +
L

2
∥y∥2,

where we have applied Cauchy-Schwarz followed by the assumption (2.9).

Following the descent lemma we obtain for L-smooth functions f the upper bound

f(y) ≤ f(x) + ∇f(x)⊤(y − x) +
L

2
∥x− y∥2, for all x, y ∈ Rd. (2.10)

In comparison for µ-strongly convex functions f we have a lower bound

f(y) ≥ f(x) + ∇f(x)⊤(y − x) +
µ

2
∥x− y∥2, for all x, y ∈ Rd. (2.11)

If we put both together we obtain for L-smooth and µ-strongly convex functions the following

characterization

µ

2
∥x− y∥2 ≤ f(y) − f(x) −∇f(x)⊤(y − x) ≤ L

2
∥x− y∥2.

This motivates the definition of the Bregman divergence.
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convexity and smoothness in x=1

Figure 2.5: Illustration of L-smoothness and µ-strong convexity. We consider the function f(x) =
x2 such that f is L-smooth and µ-strongly convex with 1 := µ < f ′′(x) = 2 < L =: 10 for all
x ∈ R. This plot illustrates convexity and smoothness of f in x = 1 using the upper and lower
bound (2.10) and (2.11) on f(y), y ∈ R.

Definition 2.3.3. Let f : Rd → R be continuously differentiable, then the Bregman divergence

D
(B)
f : Rd × Rd → R is defined as

D
(B)
f (y, x) = f(y) − f(x) −∇f(x)⊤(y − x), y, x ∈ Rd.

If we assume L-smoothness and convexity of f (without µ-strong convexity), we are able to obtain

an additional bound on the differences of the gradient evaluation.

Lemma 2.3.4. Let f : Rd → R be convex and L-smooth, then

1

2L
∥∇f(y) −∇f(x)∥2 ≤ D

(B)
f (y, x)

is satisfied for all x, y ∈ Rd.

Remark 2.3.5. In general, for a convex function it only holds true that

D
(B)
f (y, x) = f(y) − f(x) −∇f(x)⊤(y − x) ≥ 0.

With the additional assumption of L-smoothness we obtain the stronger characterization

f(y) ≥ f(x) + ∇f(x)⊤(y − x) +
1

2L
∥∇f(x) −∇f(y)∥2.
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Exercise 2.3.1. Prove Lemma 2.3.4.

In the next subsection, we will begin the convergence analysis of the gradient descent method in

a non-convex setting.

2.3.1 Convergence for non-convex cost function

We start the convergence analysis of gradient descent scheme in the most general setting, where

the cost function is assumed to be continuously differentiable without any other assumption. In

this Subsection we follow very closely to Section 1.2.2. in [1].

As discussed in Section 2.2.3, we do not expect to prove convergence to a unique global minimum in

this scenario. However, assuming that there exists an accumulation point of the sequence generated

by gradient descent, we are able to characterize this point as stationary point.

Theorem 2.3.6 (GD with Armijo rule). Let f : Rd → R be continuously differentiable and

(xk)k∈N be generated by

xk+1 = xk + αkdk, dk = − ∇f(xk)

∥∇f(xk)∥
,

where αk > 0 is chosen by the Armijo step size rule Algorithm 2. Then it holds true that every

accumulation point x̄ ∈ Rd of the sequence (xk)k∈N is a stationary point of f , i.e. ∇f(x̄) = 0.

Proof. We will prove the assertion via contradiction. Firstly, suppose that x̄ ∈ Rd is an accumu-

lating point of the sequence (xk)k∈N satisfying ∇f(x̄) ̸= 0.

We consider the corresponding sub-sequence (xkn)n∈N converging to x̄. Since the cost function f

is continuous, we also have that (f(xkn))n∈N converges to f(x̄).

Moreover, through the Armijo step size rule it follows that the sequence (f(xk))k∈N is monotonically

decreasing, i.e. f(xk+1) < f(xk), and hence, the whole sequence (f(xk))k∈N converges to f(x̄).

In particular, it follows that (f(xk))k∈N is a Cauchy-sequence and therefore

lim
k→∞

(f(xk+1) − f(xk)) = 0.

Due to the Armijo step size rule it holds true that

f(xk) − f(xk+1) ≥ σαk∥∇f(xk)∥

implying that

lim
k→∞

αk∥∇f(xk)∥ = 0.
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Since we have assumed that ∇f(x̄) ̸= 0 it follows by continuity of ∇f that limn→∞ ∥∇f(xkn)∥ ≠ 0.

Hence, it follows that limn→∞ αkn = 0. By construction of the Armijo step size rule, we can write

αkn = ρℓn · s0, where ℓn ∈ N denotes the first iteration such that condition (2.7) is satisfied. Since

limn→∞ αkn = 0, for n ∈ N large enough there exists ℓn > 0 such that f(xkn + ρℓn−1s0dkn) >

f(xkn) + σρℓn−1s0∇f(xkn)⊤dkn , which means that condition (2.7) is at least once not satisfied

during the application of Algorithm 2. Thus, we have

f(xkn + ρℓn−1s0dkn) − f(xkn)

ρℓn−1s0
> σ∇f(xkn)⊤dkn . (2.12)

With the mean-value theorem there exists some rn ∈ [0, ρℓn−1 · s0] such that

f(xkn + ρℓn−1s0dkn) − f(xkn) = ∇f(xkn + rndkn)⊤(xkn + ρℓn−1s0dkn − xkn)

= ρℓn−1s0∇f(xkn + rndkn)⊤dkn ,

and with (2.12) it follows

∇f(xkn + rndkn)⊤dkn > σ∇f(xkn)⊤dkn . (2.13)

Due to continuity of ∇f and the assumption that limn→∞ xkn = x̄, we obtain

lim
n→∞

dkn = lim
n→∞

− ∇f(xkn)

∥∇f(xkn)∥
= − ∇f(x̄)

∥∇f(x̄)∥
,

and since limn→∞ αkn = 0 we obtain

lim
n→∞

rn = ρℓn−1s0 =
ρℓn

ρ
s0 =

1

ρ
αkn = 0.

Both limits together imply that

lim
n→∞

∇f(xkn + rndkn)⊤dkn = −∇f(x̄)⊤∇f(x̄)

∥∇f(x̄)∥
= −∥∇f(x̄)∥.

and similarly,

lim
n→∞

σ∇f(xkn)⊤dkn = −σ∥∇f(x̄)∥.

Finally, taking the limit n → ∞ in equation (2.13) it follows

−∥∇f(x̄)∥ ≥ −σ∥∇f(x̄)∥,

which contradicts the assumption σ ∈ (0, 1) for ∇f(x̄) ̸= 0. Hence, we have proved ∇f(x̄) = 0.

We continue with the convergence analysis of gradient descent for L-smooth cost functions f with-
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out further assumptions such as convexity. The following Theorem then quantifies accumulation

points of gradient descent with fixed but sufficiently small step size.

Theorem 2.3.7 (GD with constant step size). Let f : Rd → R be L-smooth and (xk)k∈N be

generated by

xk+1 = xk − ᾱ∇f(xK),

where ᾱ ∈ [ε, 2−ε
L

] for some ε > 0 with ε ≤ 2
L+1

. Then it holds true that every accumulation

point x̄ ∈ Rd of the sequence (xk)k∈N is a stationary point of f , i.e. ∇f(x̄) = 0.

Proof. Since f is assumed to be L-smooth we can apply the descent Lemma 2.3.2 (with the choice

y ≡ −ᾱ∇f(xk) and x ≡ xk),

f(xk−ᾱ∇f(xk))−f(xk) ≤ (−ᾱ∇f(xk))⊤∇f(xk)+
L

2
∥ᾱ∇f(xk)∥2 = ᾱ∥∇f(xk)∥2( ᾱL

2
−1). (2.14)

Due to our choice of ᾱ ≤ 2−ε
L

we can bound

ᾱL

2
− 1 ≤ −ε

2
< 0.

We reformulate the inequality (2.14) and obtain

f(xk) − f(xk − ᾱ∇f(xk)) ≥ ε

2
ᾱ∥∇f(xk)∥2 ≥ ε2

2
∥∇f(xk)∥2. (2.15)

Similar to the proof of Theorem 2.3.6, we firstly assume that (xkn)n∈N is a sub-sequence with

limit point x̄ ∈ Rd and ∇f(x̄) ̸= 0. With (2.15) we can imply that the sequence (f(xk))k∈N is

monotonically decreasing and therefore, it converges to f(x̄) using continuity of f . In particular,

we have

lim
k→∞

(f(xk+1) − f(xk)) = 0.

However, with (2.15) it then follows that

lim
k→∞

ε2

2
∥∇f(xk)∥2 = 0,

which is in contradiction to ∇f(x̄) ̸= 0.

We can formulate a similar Theorem for gradient descent with diminishing step size choice. In

order to quantify accumulation points as stationary points, we need to force αk to degenerate but

not too fast.
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Theorem 2.3.8 (GD with diminishing step size). Let f : Rd → R be L-smooth and (xk)k∈N

be generated by

xk+1 = xk − αk∇f(xK),

with

lim
k→∞

αk = 0 and
∞∑
k=0

αk = ∞.

Then for the sequence (f(xk))k∈N it holds true that either

lim
k→∞

f(xk) = −∞ or lim
k→∞

∇f(xk) = 0.

Moreover, every accumulation point x̄ ∈ Rd of the sequence (xk)k∈N is a stationary point of f ,

i.e. ∇f(x̄) = 0.

Proof. Similar to the proof of Theorem 2.3.7 we apply Lemma 2.3.2 to derive

f(xk+1) = f(xk − αk∇f(xk)) ≤ f(xk) − (αk −
Lα2

k

2
)∥∇f(xk)∥2 = f(xk) − αk(1 − Lαk

2
)∥∇f(xk)∥2.

Since we have assumed limk→∞ αk = 0, there exists k0 ≥ 0 such that

f(xk+1) ≤ f(xk) − αkc∥∇f(xk)∥2

for some c > 0 and all k ≥ k0. Hence, the sequence (f(xk))k≥k0 is decreasing and it either holds

true that limk→∞ f(xk) = −∞ or limk→∞ f(xk) = M for some M < ∞.

Suppose that we are in the case where limk→∞ f(xk) = M . It follows

K∑
k=k0

αkc∥∇f(xk)∥2 ≤
K∑

k=k0

{f(xk) − f(xk+1)}

for K > k0. Using that the rhs is a telescoping sum, we obtain

K∑
k=k0

{f(xk) − f(xk+1)} = f(xk0) − f(xK)

and for K → ∞ we even imply

c

∞∑
k=k0

αk∥∇f(xk)∥2 ≤ f(xk0) −M < ∞. (2.16)

Since
∑∞

k=k0
αk = ∞, there can not exist any ε > 0 such that ∥∇f(xk)∥2 > ε for all k ≥ k̂ ≥ 0.
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However, this only means that

lim inf
k→∞

∥∇f(xk)∥ = 0.

In order to prove limk→∞ ∥∇f(xk)∥ = 0 we will use (2.16) to prove that lim supk→∞ ∥∇f(xk)∥ = 0.

Suppose that lim supk→∞ ∥∇f(xk)∥ ≥ ε for some ε > 0 and consider two sub-sequences (mj)j∈N,

(nj)j∈N, nj,mj ∈ N, with mj < nj < mj+1 such that

ε

3
< ∥∇f(xk)∥, for mj ≤ k < nj

and

∥∇f(xk)∥ ≤ ε

3
, for nj ≤ k < mj+1.

Moreover, let j̄ ∈ N be sufficiently large such that

∞∑
k=mj̄

αkc∥∇f(xk)∥2 ≤ ε2

9L
.

Using L-smoothness for j ≥ j̄ and mj ≤ m ≤ nj − 1 it holds true that

∥∇f(xnj
) −∇f(xm)∥ ≤

nj−1∑
k=m

∥∇f(xk+1) −∇f(xk)∥ ≤ L

nj−1∑
k=m

∥xk+1 − xk∥

=
3ε

3ε
L

nj−1∑
k=m

αk∥∇f(xk)∥

≤ L
3

ε

nj−1∑
k=m

αk∥∇f(xk)∥2

≤ L
3

ε

ε2

9L
=

ε

3
,

where we have used that ∥∇f(xk)∥ > ε
3

for mj ≤ k ≤ nj − 1. This implies that

∥∇f(xm)∥ ≤ ∥∇f(xnj
)∥ + ∥∇f(xnj

) −∇f(xm)∥ ≤ ∥∇f(xnj
)∥ +

ε

3
≤ 2ε

3

and therefore ∥∇f(xm)∥ ≤ 2ε
3

for all m ≥ mj̄. This is in contradiction to lim supk→∞ ∥∇f(xk)∥ ≥ ε

and we have proved that

lim sup
k→∞

∥∇f(xk)∥ = lim inf
k→∞

∥∇f(xk)∥ = lim
k→∞

∥∇f(xk)∥ = 0.

Finally, let x̄ ∈ Rd be an accumulating point of (xk)k∈N. Since (f(xk))k≥k0 is decreasing, it follows

by continuity that

lim
k→∞

f(xk) = f(x̄) < ∞



Optimization in ML Simon Weissmann Page 29

and then also

∇f(x̄) = lim
k→∞

∇f(xk) = 0.

Remark 2.3.9. Under the conditions of Theorem 2.3.8 there is no guarantee of decrease in the

cost function f(xk) along the initial iterations k ≤ k0, which we have only verified for k0 sufficiently

large. The decrease can be forced under the additional assumption αk ≤ 2−ε
L

for ε < 2
L+1

which

was also used in Theorem 2.3.7 for an upper bound on the constant step size ᾱ.

Although in the previous theorems we have characterized accumulation points of the gradient

descent method, we are not able to characterize the existence of limit points or even the convergence

rate. However, under the additional assumption of lower bounded objective functions and following

the proofs of Theorem 2.3.7 and Theorem 2.3.8, we can quantify the speed of degeneration of the

gradients along the iterations of gradient descent.

Corollary 2.3.10. Let f : Rd → R be L-smooth and (xk)k∈N be generated by

xk+1 = xk − αk∇f(xK), αk > 0.

We define g∗N := mink∈N,0≤k≤N ∥∇f(xk)∥2 and ḡN := 1
N

∑N
k=0 ∥∇f(xk)∥2 for N ∈ N.

• For the choice of a constant step size ᾱ ∈ [ε, 2−ε
L

] with ε < 2
L+1

it holds true that

g∗N , ḡN ∈ O(
1

N
).

• Consider a diminishing step size αk = c√
k+1

, k ≥ 0, for c > 0. Suppose that limk→∞ f(xk) =

M ∈ (−∞,∞), then it holds true that

g∗N , ḡN ∈ O(
1√
N

).

Exercise 2.3.2. Prove Corollary 2.3.10.

We will close this section with the property of gradient descent which guarantees that the itera-

tion gets captured by isolated local minimums. This means, that once the iteration moves into

a sufficiently small neighborhood around an isolated local minimum, it will remain within this

neighborhood and even converge to the corresponding local minimum.
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Theorem 2.3.11 (Capture Theorem). Let f : Rd → R be continuously differentiable and the

sequence (xk)k∈N be generated by gradient descent

xk+1 = xk − αk∇f(xk),

with bounded step size αk ≤ s, s > 0. Moreover, assume that the sequence (f(xk))k∈N is

decreasing and every accumulation point of (xk)k∈N is a stationary point. Let x∗ ∈ Rd be an

isolated local minimum of f , i.e. there exists an open neighborhood U ⊂ Rd of x∗ such that

x∗ is the only stationary point within the set U . Then there exists an open set S ⊂ Rd with

x∗ ∈ S with the following property: If xk̄ ∈ S for some k̄ ∈ N, then xk ∈ S for all k ≥ k̄ and

in particular the sequence (xk)k∈N converges to x∗.

Proof. Since x∗ ∈ Rd is assumed to be an isolated local minimum, we can find some r > 0 such

that within a closed Ball B̄r(x∗) := {x ∈ Rd | ∥x− x∗∥ ≤ r} with radius r around x∗ it holds true

that

f(x∗) < f(x), x ∈ B̄r(x∗)

while there exists no stationary point x′ ∈ B̄r(x∗) \ {x∗}. It directly follows that

min
x∈B̄r(x∗)\Bt(x∗)

f(x) > f(x∗)

for any open ball Bt(x∗) := {x ∈ Rd | ∥x− x∗∥ < t} with radius t ∈ (0, r] and we can the function

Φ(t) = min
x∈B̄r(x∗)\Bt(x∗)

f(x) − f(x∗),

which is decreasing for decreasing t. Since the gradient ∇f is assumed to be continuous and

∇f(x∗) = 0, for a fixed but arbitrary ε > 0 we can find q ∈ (0, ε] such that

∥x− x∗∥ + s∥∇f(x)∥ < ε for all x ∈ Bq(x∗). (2.17)

We will use (2.17) in order to prove that the open set S defined by

S := {x ∈ Rd | ∥x− x∗∥ < ε, f(x) < f(x∗) + Φ(q)}

captures the iteration of gradient descent, i.e. if xk ∈ S then it also holds true that xk+1 ∈ S. Let

us suppose xk ∈ S, then for τ = ∥xk−x∗∥ we have that Φ(τ) ≤ f(xk)−f(x∗) < Φ(q) by definition

of S. Due to decreasing behavior of Φ we obtain ∥xk − x∗∥ = τ < q and therefore xk ∈ Bq(x∗). By

(2.17) we obtain

∥xk − x∗∥ + s∥∇f(xk)∥ < ε.



Optimization in ML Simon Weissmann Page 31

Since the step size satisfies αk ≤ s, applying triangular inequality we can imply that

∥xk+1 − x∗∥ ≤ ∥xk − x∗∥ + αk∥∇f(xk)∥ ≤ ∥xk − x∗∥ + s∥∇f(xk)∥ < ε.

By assumption (f(xk))k∈N is decreasing such that

f(xk+1) − f(x∗) < f(xk) − f(x∗) < Φ(q),

where we have used xk ∈ S, and therefore, we obtain xk+1 ∈ S as well. Once we find k̄ ∈ N such

that xk̄ ∈ S, we can imply xk ∈ S for all k ≥ k̄.

It is left to argue that in this case limk→∞ xk = x∗. Consider the closure S̄ of S which is a compact

set. Then there exists at least one accumulation point x̄ of (xk)k∈N, which by assumption is a

stationary point. By construction S̄ ⊂ Br(x∗) such that x∗ ∈ S̄ is the unique stationary point of

f in S̄ implying that limk→∞ xk = x∗.

2.3.2 Convergence for convex and smooth cost function

In the following, we will study the convergence behavior of gradient descent under the additional

assumption of (strong) convex cost functions. While in the previous section we have quantified

possible accumulation points, we will now consider the description of convergence through some

error function. Let (xk)k∈N be the sequence generated through some optimization scheme for a

cost function f . We consider an error function e : Rd → R with the property e(x) ≥ 0 for all

x ∈ Rd and, e(x∗) = 0 for some x∗ ∈ Rd, e.g. x∗ ∈ arg minx∈R f(x) assuming it exists. Typical

examples include

e(x) = ∥x− x∗∥ or e(x) = |f(x) − f(x∗)|.

We define the following type of convergence behavior.

Definition 2.3.12. We say that the sequence of errors (e(xk))k∈N converges linearly, if there

exists c ∈ (0, 1) such that

e(xk+1) ≤ ce(xk)

for all k ∈ N.

Since the focus of this lecture course lies in first order methods, we do not expect faster convergence

than linear such as super-linear or quadratic convergence. We will now study the convergence of

gradient descent for general convex and L-smooth cost functions. Since for general convex functions

there is no guarantee for existence of a unique global minimum, we do only expect convergence of

the error function e(xk) = f(xk) − f(x∗) for some global minimum x∗ ∈ Rd. The convergence is

slower than linear, sometimes also referred to sub-linear convergence.
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Theorem 2.3.13 (GD for convex and smooth cost function). Let f : Rd → R be convex and

L-smooth, and let (xk)k∈N be generated by

xk+1 = xk − ᾱ∇f(xk)

with ᾱ ≤ 1
L
. Moreover, we assume that the set of all global minimums of f is non-empty. Then

the sequence (xk)k∈N converges in the sense that

e(xk) := f(xk) − f∗ ≤
c

k
, k ≥ 1

for some constant c > 0 and f∗ = minx∈Rd f(x).

Proof. We again apply the descent Lemma 2.3.2 (with t = 1, y = (xk+1−xk) and x = xk) to derive

f(xk+1) ≤ f(xk) + ∇f(x)⊤(xk+1 − xk) +
L

2
∥xk+1 − xk∥2.

With xk+1 − xk = −ᾱ∇f(xk) we obtain

f(xk+1) ≤ f(xk) − ᾱ∥∇f(xk)∥2 +
L

2
ᾱ2∥∇f(xk)∥2

= f(xk) + (
L

2
ᾱ− 1)ᾱ∥∇f(xk)∥2.

Since ᾱ ≤ 1
L

, we have (L
2
ᾱ − 1) ≤ −1

2
< 0 and therefore, the sequence (f(xk))k∈N is decreasing.

Now, let x∗ ∈ Rd be some global minimum of f such that due to convexity it holds true that

f(xk) + (x∗ − xk)⊤∇f(xk) ≤ f(x∗).

We plug this in into the above inequality to imply

f(xk+1) ≤ f(xk) + ᾱ(
L

2
ᾱ− 1)∥∇f(xk)∥2

≤ f(x∗) −
ᾱ

ᾱ
(x∗ − xk)⊤∇f(xk) + ᾱ(

L

2
ᾱ− 1)∥∇f(xk)∥2

= f(x∗) +
1

ᾱ

{
1

2
∥x∗ − xk∥2 +

ᾱ2

2
∥∇f(xk)∥2 − 1

2
∥(x∗ − xk) + ᾱ∇f(xk)∥2

}
+ ᾱ(

L

2
ᾱ− 1)∥∇f(xk)∥2,
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where we have used −a⊤b = 1
2
∥a∥2 + 1

2
∥b∥2 − 1

2
∥a+ b∥2 for a, b ∈ Rd. Rearranging the rhs leads to

f(xk+1) ≤ f(x∗) +
1

2ᾱ

(
∥x∗ − xk∥2 − ∥x∗ − xk+1∥2

)
+ ᾱ(

L

2
ᾱ− 1

2
)∥∇f(xk)∥2

≤ f(x∗) +
1

2ᾱ

(
∥x∗ − xk∥2 − ∥x∗ − xk+1∥2

)
,

where we have used again that ᾱ ≤ 1
L

. Taking the sum over all iterations gives

N∑
k=0

{f(xk+1) − f(x∗)} ≤ 1

2ᾱ

N∑
k=0

{∥x∗ − xk∥2 − ∥x∗ − xk+1∥2} ≤ 1

2ᾱ
{∥x∗ − x0∥2 − ∥x∗ − xN+1∥2},

where we have applied a telescoping sum. With the decrease of (f(xk))k∈N it holds true that

N∑
k=0

f(xk+1) ≥ (N + 1)f(xN+1),

and therefore, the assertion follows with

f(xN+1) − f(x∗) ≤
1

N + 1

1

2ᾱ
∥x∗ − x0∥2 =:

c

N + 1
.

2.3.3 Convergence for strongly convex and smooth cost function

Under the additional assumption that the cost function f is µ-strongly convex for some µ > 0,

we can even prove linear convergence of gradient descent with sufficiently small constant step size.

The convergence holds even for the error function e(xk) = ∥xk − x∗∥, where x∗ ∈ Rd is the unique

global minimum of f .

Theorem 2.3.14 (GD for strongly convex and smooth cost function). Let f : Rd → R be

µ-strongly convex and L-smooth, and let (xk)k∈N be generated by

xk+1 = xk − ᾱ∇f(xk)

with ᾱ ≤ 1
L
. Then the sequence (xk)k∈N converges linearly in the sense that there exists

c ∈ (0, 1) such that

e(xk) := ∥xk − x∗∥ ≤ ck∥x0 − x∗∥, k ∈ N

where x∗ ∈ Rd is the unique global minimum of f with f(x∗) = minx∈Rd f(x).

Proof. Let x∗ ∈ Rd be the unique global minimum of f with ∇f(x∗) = 0. Since f is assumed to
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be µ-strongly convex, by Definition A.1.10 it holds true that

µ

2
∥xk+1 − x∗∥2 = ∇f(x∗)

⊤(xk+1 − x∗) +
µ

2
∥xk+1 − x∗∥2 ≤ f(xk+1) − f(x∗).

On the other side in the previous proof of Theorem 2.3.13 we have derived that

f(xk+1) − f(x∗) ≤
1

2ᾱ
{∥xk − x∗∥2 − ∥xk+1 − x∗∥2}

and together we obtain

(
µ

2
+

1

2ᾱ
)∥xk+1 − x∗∥2 ≤

1

2ᾱ
∥xk − x∗∥2.

The assertion follows via induction using the inequality

∥xk+1 − x∗∥2 ≤
1
ᾱ

µ + 1
ᾱ

∥xk − x∗∥2 =
1

1 + µᾱ
∥xk − x∗∥2 =: c2∥xk − x∗∥2,

where c =
√

1
1+µᾱ

∈ (0, 1).

Remark 2.3.15. For the choice ᾱ = 1
L

the upper bound of gradient descent is given by

∥xk − x∗∥ ≤

(√
L

L + µ

)k

∥x0 − x∗∥.

This means that the speed of convergence is determined through the ratio of smoothness L and

strong convexity µ:

c =

√
1

1 + µ
L

,

which decreases for decreasing L and increasing µ.

The proof of the previous Theorem 2.3.14 for convergence under strong convexity builds directly

up on the proof of Theorem 2.3.13 under convexity. However, we can even improve the rate of

convergence if we do not go the direct way from convex to strongly convex. Therefore, we consider

the following convergence result.

Theorem 2.3.16. Assume that the same conditions as in Theorem 2.3.14 are satisfied, and

assume additionally that ᾱ ≤ min( 2
µ+L

, µ+L
2µL

). Then the sequence (xk)k∈N generated by

xk+1 = xk − ᾱ∇f(xk)
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converges linearly in the sense that there exists c ∈ (0, 1) such that

e(xk) := ∥xk − x∗∥ ≤ ck∥x0 − x∗∥, k ∈ N

where x∗ ∈ Rd is the unique global minimum of f with f(x∗) = minx∈Rd f(x).

Proof. Let x∗ ∈ Rd be the unique global minimizer of f , i.e. ∇f(x∗) = 0.For k ∈ N and xk ∈ Rd

it holds true that

∥xk+1 − x∗∥2 = ∥xk − ᾱ∇f(xk) − x∗∥2 = ∥xk − x∗∥2 − 2⟨xk − x∗, ᾱ∇f(xk)⟩ + ᾱ2∥∇f(xk)∥2.

We will make use of the inequality

⟨∇f(x) −∇f(y), x− y⟩ ≥ µL

µ + L
∥x− y∥2 +

1

µ + L
∥∇f(x) −∇f(y)∥2

for any x, y ∈ Rd, which is left as exercise in Lemma 2.3.17. It then follows that

⟨∇f(xk), xk − x∗⟩ ≥
µL

µ + L
∥xk − x∗∥2 +

1

µ + L
∥∇f(xk)∥2,

since ∇f(x∗) = 0. We obtain the bound

∥xk+1 − xk∥2 ≤ ∥xk − x∗∥2 − 2ᾱ(
µL

µ + L
∥xk − x∗∥2 +

1

µ + L
∥∇f(xk)∥2) + ᾱ2∥∇f(xk)∥2

= (1 − 2ᾱ
µL

µ + L
)∥xk − x∗∥2 + ᾱ(ᾱ− 2

µ + L
)∥∇f(xk)∥2

≤ (1 − 2ᾱ
µL

µ + L
)∥xk − x∗∥2,

where we have used that (ᾱ − 2
µ+L

) ≤ 0. Since we have assumed that ᾱ ≤ µ+L
2µL

, we finally obtain

linear convergence with c =
√

1 − 2ᾱ µL
µ+L

∈ (0, 1) in the sense that

∥xk − x∗∥ ≤ ck∥x0 − x∗∥.

In the previous proof we have used the following bound for smooth and strong convex cost func-

tions.

Lemma 2.3.17. Let f : Rd → R be L-smooth and µ-strongly convex. Then it holds true that

⟨∇f(x) −∇f(y), x− y⟩ ≥ µ∥x− y∥2
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and

⟨∇f(x) −∇f(y), x− y⟩ ≥ µL

µ + L
∥x− y∥2 +

1

µ + L
∥∇f(x) −∇f(y)∥2.

Exercise 2.3.3. Prove Lemma 2.3.17.

Remark 2.3.18. The motivation behind the alternative convergence result for gradient descent

under µ-strong convexity and L-smoothness is the following. The optimal convergence rate is in

the sense of maximizing c2(ᾱ) = (1 − 2ᾱ µL
µ+L

) ∈ (0, 1) is obtained for the choice ᾱ = 2
µ+L

. The

upper bound of the error of gradient descent is then given by

∥xk − x∗∥ ≤ ck∥x0 − x∗∥

with

c =

√
(µ + L)2

(µ + L)2
− 4µL

(µ + L)2
=

L− µ

L + µ
=

κ− 1

κ + 1
,

where κ := L
µ

denotes the ratio between smoothness and strong convexity. We sometimes also refer

to κ as the condition number of f . Usually, we have L ≥ µ, such that κ ∈ (0, 1). Finally, we can

rewrite c through

c =
κ− 1

κ + 1
= 1 − 2

κ + 1
,

which again decreases for decreasing L and increasing µ.

2.3.4 Convergence under PL-condition and smooth cost function

In this section, we will consider additional properties on the cost function f under which gradient

descent converge with given rate. We will assume that the cost function is L-smooth and consider

two settings, where the function evaluation of f satisfies a regularity condition related to its

gradient norm. In [12] the authors consider a linear convergence analysis under the so-called

Polyak- Lojasiewicz (PL) condition.

Theorem 2.3.19. Let f : Rd → R be L-smooth and satisfies the PL condition

∥∇f(x)∥2 ≥ 2r(f(x) − f∗) (2.18)

for some r ∈ (0, L) and all x ∈ Rd with f∗ = minx∈Rd f(x) > −∞. Then the sequence (xk)k∈N

generated by

xk+1 = xk − ᾱ∇f(xk)



Optimization in ML Simon Weissmann Page 37

with ᾱ = 1
L
converges linearly in the sense that there exists c = 1 − r

L
∈ (0, 1) such that

e(xk) := f(xk) − f∗ ≤ ck(f(x0) − f∗).

Exercise 2.3.4. 1. Prove Theorem 2.3.19.

2. Prove that µ-strong convexity and L-smoothness imply the PL condition (2.18).

3. Use a graphing calculator to find r such that f(x) = x2 + 3 sin2(x) satisfies the PL

condition (2.18) (argue why x → ∞ is not a problem) and prove that f is not convex.

We can even assume a slightly weaker condition than PL (2.18) and remain convergence of gradient

descent. However, the weaker condition is not enough to guarantee linear convergence.

Theorem 2.3.20. Let f : Rd → R be L-smooth and satisfies the ”weak” PL condition

∥∇f(x)∥ ≥ 2r(f(x) − f∗) (2.19)

for some r ∈ (0, L) and all x ∈ Rd with f∗ = minx∈Rd f(x) > −∞. Then the sequence (xk)k∈N

generated by

xk+1 = xk − ᾱ∇f(xk)

with ᾱ = 1
L
converges with

e(xk) := f(xk) − f∗ ≤
L

2r2(k + 1)
.

Exercise 2.3.5. Prove Theorem 2.3.20.

2.3.5 Convergence for non-smooth and convex cost function

As last class of cost functions for which we will study the convergence behavior of gradient descent,

we will consider non-differentiable cost functions. We have to reformulate the scheme of gradient

descent in a way such that we are avoiding the computation of the gradient ∇f . In the following

section, we will formulate the so-called sub-gradient descent method. We begin with the definition

of sub-gradients and the corresponding sub-differential.

Definition 2.3.21. We call gx ∈ Rd a sub-gradient of f : Rd → R in x ∈ Rd if for all y ∈ Rd

it holds true that

f(y) ≥ f(x) + g⊤x (y − x). (2.20)
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We call the set of all sub-gradients of f in x sub-differential of f denoted by ∂f(x).

Note that (2.20) is closely related to convexity which can be formulated in case of differentiable

functions as condition

f(y) ≥ f(x) + ∇f(x)⊤(y − x).

This suggests that there is a close connection between sub-gradients and convexity as also stated

in the next proposition.

Proposition 2.3.22. Let C ⊂ Rd be a convex set and f : Rd → R.

1. If ∂f(x) ̸= ∅ for all x ∈ C, then f is convex over C.

2. If f is convex, then ∂f(x) ̸= ∅ for all x in the interior of C.

Proof. We will only prove the first assertion, for the second one we refer to Proposition 2.5 in [15].

Suppose that ∂f(x) ̸= ∅ and let zλ = λx + (1 − λ)y ∈ C for λ ∈ (0, 1) and x, y ∈ C. Moreover,

consider an arbitrary sub-gradient gzλ ∈ ∂f(zλ), then by definition of the sub-gradient it holds

true that

f(y) ≥ f(zλ) + g⊤zλ(y − zλ) = f(λx + (1 − λ)y) + λg⊤zλ(y − x)

and similarly

f(x) ≥ f(zλ) + g⊤zλ(x− zλ) = f(λx + (1 − λ)y) + (1 − λ)g⊤zλ(x− y)−

We combine both inequalities to obtain

(1 − λ)f(y) + λf(x) ≥ (1 − λ)f(λx + (1 − λ)y) + (1 − λ)λg⊤zλ(y − x)

+ λf(λx + (1 − λ)y) + λ(1 − λ)g⊤zλ(x− y)

= f((1 − λ)y + λx)

which proves convexity of f over C.

Example 2.3.23. Let fi : Rd → R be a family of convex and differentiable functions i = 1, . . . , N

for some N ∈ N. We define F (x) = maxi=1,...,N fi(x) and for given x ∈ Rd we consider j ∈
arg maxi=1,...,N fi(x). Then we can compute a sub-gradient of F in x through ∇fj(x), i.e. it holds

true that ∇fj(x) ∈ ∂F (x). To prove this, we observe that by convexity we have

fj(y) ≥ fj(x) + ∇fj(x)⊤(y − x)
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y z

f(y)

f(z)

f

≤ f(z)f(y) +∇f(y)>(z − y)

y z

f(y)
f(z)

f

≤ f(z)f(y) + g>i (z − y)

g1

g2

Figure 2.6: Illustration of sub-gradients for differentiable convex (left) and non-differentiable con-
vex (right) functions. For continuously differentiable and convex f , the sub-gradient is unique,
i.e. ∂f(x) = {∇f(x)}.

for all y ∈ Rd. This implies

F (y) ≥ fj(y) ≥ fj(x) + ∇fj(x)⊤(y − x) = F (x) + ∇fj(x)⊤(y − x),

where we have used that F (x) = fj(x) and F (y) ≥ fj(y) for y ̸= x. This proves that ∇fj(x) ∈
∂F (x).

f1
f2

f

f ′
1(y)

f ′
2(y)

y

Figure 2.7: Illustration of Example 2.3.23. We consider N = 2 and define f(x) = max(f1(x), f2(x))
for two convex and differentiable functions f1, f2. In the above Situation, we find unique sub-
gradients for f1(x) > f2(x) given by ∂f(x) = {f ′

1(x)}, and similarly for f1(x) < f2(x) given
by ∂f(x) = {f ′

2(x)}. In the case of f1(x) = f2(x), the sub-differential is given by ∂f(x) =
[f ′

2(x), f ′
1(x)].

There are similar rules for the computation of sub-gradients, which are left as an exercise:
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Exercise 2.3.6. Let f, f1, f2 : Rd → R be a convex functions. Then the following holds true:

• Prove that ∂f(x) is a convex set for all x ∈ Rd.

• Prove for a > 0 that ∂(af)(x) = a∂f(x).

• Prove that ∂f1(x) + ∂f2(x) ⊂ ∂(f1 + f2)(x) for any x ∈ Rd.

• Let h(x) = f(Ax + b) for A ∈ Rd×d, b ∈ Rd. Prove that A⊤∂f(Ax + b) ⊂ ∂h(x). Prove

equality for invertible A.

In case of continuously differentiable functions, the sub-gradient is unique and corresponds to the

gradient.

Proposition 2.3.24. Let f : Rd → R be continuously differentiable and convex in x ∈ Rd.

Then the sub-differential is a one-point set ∂f(x) = {∇f(x)}.

Proof. Firstly, it is obvious to see that ∇f(x) ∈ ∂f(x), since f is convex and it holds

f(y) ≥ f(x) + ∇f(x)⊤(y − x)

for all y ∈ Rd. Let us consider any gx ∈ ∂f(x). We will prove that it necessarily follows that

gx = ∇f(x). Let y = x + λz for λ > 0, such that

f(x + λz) ≥ f(x) + g⊤x (λz)

or rewritten
f(x + λz) − f(x)

λ
≥ g⊤x z.

Since f is assumed to be continuously differentiable, we obtain taking the limit λ → 0

lim
λ→0

f(x + λz) − f(x)

λ
= ∇f(x)⊤z ≥ g⊤x z,

which implies that

(∇f(x) − gx)⊤z ≥ 0.

Since z ∈ Rd is arbitrary, we can choose z = −(∇f(x) − gx) in order to prove that

−(∇f(x) − gx)⊤(∇f(x) − gx) = −∥∇f(x) − gx∥2 ≥ 0

which proves that ∇f(x) = gx.
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We now formulate an additional optimality condition for non-differentiable but convex cost func-

tions, which can be characterized through the sub-differential.

Proposition 2.3.25. Let f : Rd → R be convex and continuous. Then x∗ ∈ Rd is a global

minimum of f if and only if 0 ∈ ∂f(x∗).

Proof. We start with x∗ ∈ Rd being a global minimum of f , i.e. for all y ∈ Rd we have f(x∗) ≤ f(y).

Therefore, we directly obtain 0 ∈ ∂f(x), since

f(y) ≥ f(x∗) = f(x∗) + 0⊤(y − x∗).

Now let 0 ∈ ∂f(x∗) for some x∗ ∈ Rd, then by definition of the sub-differential we have

f(y) ≥ f(x∗) + 0⊤(y − x∗) = f(x∗)

for all y ∈ Rd and it follows that x∗ is a global minimum of f .

We can apply the previous stated optimality condition for solving the next exercise:

Exercise 2.3.7. Let

f(x) =
1

2
∥x− y∥2 + λ∥x∥1, x ∈ Rd,

be the Lagrangian form of the least squares Lasso method. Note that ∥ ·∥1 denotes the 1-norm

defined as ∥x∥1 =
∑d

i=1 |xi| for x = (x1, . . . , xd)
⊤ ∈ Rd.

1. Compute a sub-gradient of f .

2. Prove that f is a convex function.

3. Apply Proposition 2.3.25 to find a global minimum of f .

We now come to the formulation of the gradient descent ”like” method for non-differentiable cost

functions - also called sub-gradient descent method. Instead of moving into direction of the steepest

descent given as the negative gradient, the iterative scheme moves into direction of some arbitrary

negative sub-gradient, see Algorithm 3. Note that in general the sub-gradient descent method is

not necessarily a descent method as defined in the beginning of this section.

Since we do not assume differentiability of f and in particular, we do not assume L-smoothness of

f , we are not able to directly apply the descent lemma 2.3.2.

Before going into details of the proof of convergence for sub-gradient descent methods, we derive

the following useful property.
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Algorithm 3 Sub-gradient descent method
1: Input:

• cost function f : Rd → R
• initial x0 ∈ Rd

• sequence of step sizes (αk)k∈N, αk > 0

2: set k = 0
3: while ”convergence/stopping criterion not met” do
4: find a sub-gradient gxk

∈ ∂f(xk)
5: set xk+1 = xk − αkgxk

, k 7→ k + 1
6: end while

Lemma 2.3.26. Let f : Rd → R be convex and M -Lipschitz continuous, i.e.

|f(x) − f(y)| ≤ M∥x− y∥

for all x, y ∈ Rd. Then every sub-gradient gx ∈ ∂f(x) for all x ∈ Rd remains uniformly

bounded by

∥gx∥ ≤ M.

Proof. Let gx ∈ ∂f(x) for any x ∈ Rd. Then by definition of the sub-gradient it follows that

f(x + z) ≥ f(x) + g⊤x z

for any z ∈ Rd. We can reformulate the inequality such that

g⊤x z ≤ f(x + z) − f(x) ≤ |f(x + z) − f(x)| ≤ M∥z∥.

Since z ∈ Rd is arbitrary, we set z = gx implying that

g⊤x gx = ∥gx∥2 ≤ M∥gx∥

and therefore ∥gx∥ ≤ M .

We are now ready to formulate the convergence of the sub-gradient descent method.

Theorem 2.3.27 (Convergence sub-gradient descent method). Let f : Rd → R be convex and

M-Lipschitz continuous, i.e.

|f(x) − f(y)| ≤ M∥x− y∥
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for all x, y ∈ Rd. Moreover, let (xk)k∈N be generated by

xk+1 = xk − αkgxk
,

with αk > 0 and arbitrary sub-gradient gxk
∈ ∂f(xk). Then, assuming existence of a global

minimum x∗ ∈ Rd, it holds true that

e(xk) = f(x̄N) − f(x∗) ≤
∥x0 − x∗∥ + M2

∑N
k=0 α

2
k

2
∑N

k=0 αk

,

where x̄N :=
∑N

k=0wkxk is a weighted average over all iterations with weights

wk =
αk∑N
s=0 αs

, k = 1, . . . , N.

Proof. Following the iteration of (xk)k∈N, we have

∥xk+1 − x∗∥2 = ∥xk − αkgxk
− x∗∥2 = ∥xk − x∗∥2 − 2αk⟨gxk

, xk − x∗⟩ + α2
k∥gxk

∥2

≤ ∥xk − x∗∥2 − 2αk(f(xk) − f(x∗)) + α2
kM

2,

where we have used that gxk
is a sub-gradient of f and ∥gxk

∥2 ≤ M2 by Lemma 2.3.26. We

reformulate the abover inequality and proceed with summing over all iterations to obtain

2
N∑
k=0

αk(f(xk) − f(x∗)) ≤
N∑
k=0

(
∥xk − x∗∥2 − ∥xk+1 − x∗∥2 + α2

kM
2
)

= ∥x0 − x∗∥2 − ∥xN+1 − x∗∥2 + M2

N∑
k=0

α2
k

≤ ∥x0 − x∗∥2 + M2

N∑
k=0

α2
k,

where we have used that the first two terms are a telescoping sum. We apply Jensen’s inequality,

Proposition A.1.6, to imply

f(x̄N) − f(x∗) ≤
N∑
k=0

wk (f(xk) − f(x∗)) ≤
∥x0 − x∗∥2 + M2

∑N
k=0 α

2
k

2
∑N

k=0 αk

,

with wk = αk∑N
s=0 αk

∈ (0, 1) and
∑N

k=0wk = 1.

Remark 2.3.28. Assuming that limN→∞
∑N

k=0 α
2
k < ∞ and limN→∞

∑N
k=0 αk = ∞ implies con-

vergence of the sub-gradient descent method through the upper bound in Theorem 2.3.27. It is

left as an exercise to quantify the speed of convergence for different choices of step sizes (αk)k∈N.



3

Accelerated gradient descent methods

(Momentum)

We consider a class of first order optimization schemes devoted to accelerate the convergence

behavior of gradient descent methods. The idea is to incorporate information of the previous

iterations - the so-called momentum - into the iterative update scheme instead of just moving into

direction of the current steepest descent direction. We will motivate the effects of momentum

through the example of minimizing a quadratic cost function presented in [19]. As we have seen in

Section 2.3.3, in particular in Theorem 2.3.16, the convergence rate for the error e(xk) = ∥xk−x∗∥
of gradient descent, given by

c =
κ− 1

κ + 1
= 1 − 2

κ + 1
,

scales poorly when the condition number κ = L/µ is large, where L denotes the smoothness

parameter and µ the strong convexity parameter. In case of quadratic cost functions of the form

f(x) = 1
2
x⊤Qx with positive definite matrix Q ∈ Rd×d, the ratio κ corresponds to the condition

number of Q. We make this more precise in the following example.

Example 3.0.1 (Quadratic cost function). Let Q ∈ Rd×d be a positive definite matrix with eigen-

values λmax = λ1 ≥ · · · ≥ λd = λmin > 0. We aim to solve

min
x∈Rd

f(x), f(x) =
1

2
x⊤Qx

using the gradient descent method. Let us consider an eigendecomposition of Q such that Q =

UDU⊤ where U ∈ Rd×d is an orthogonal matrix and D = diag(λ1, . . . , λd) ∈ Rd×d a diagonal

matrix with the eigenvalues along the diagonal. The inner product scaled by Q can be rewritten as

1

2
x⊤Qx =

1

2
x⊤(UDU⊤)x =

1

2
(U⊤x)⊤D(U⊤x) =

1

2
z⊤Dz

with z = U⊤x. We can then consider the equivalent optimization problem (since all eigenvalues

44
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are positive) of the form

min
x∈Rd

f(x), f(x) =
1

2
x⊤Dx.

The gradient and Hessian compute as

∇f(x) = Dx and ∇2f(x) = D

and the unique global minimum is given by x∗ = 0 ∈ Rd. Let x0 ∈ Rd, x0 ̸= 0 be the initialization

and αk = α ∈ (0, 2
λmax

) (smoothness parameter L = λmax) a fixed step size. Recall that the gradient

descent method is written as

xk+1 = xk − α∇f(xk) = xk − αDxk.

The distance to the global minimum is given by

∥xk+1 − x∗∥ = ∥xk+1∥ = ∥xk − αDxk∥ = ∥(I − αD)xk∥ ≤ max(|1 − αλmin|, |1 − αλmax|)∥xk∥.

We can now compute the step size such that the derived upper bound is minimized in the sense that

min
α∈(0, 2

λmax
)

max(|1 − αλmin|, |1 − αλmax|).

It is an exercise to prove that the resulting optimal step size is given by α∗ = 2
λmin+λmax

(note

that this step size coincides with the one derived for general µ-strongly convex and L-smooth cost

functions in Remark 2.3.18). Let κ = λmax

λmin
be the condition number of Q and D respectively. Then

we have

max(|1 − α∗λmin|, |1 − α∗λmax|) = |1 − α∗λmin| = |1 − α∗λmax|

=

∣∣∣∣1 − 2λmax

λmin + λmax

∣∣∣∣ =
κ− 1

κ + 1
= 1 − 2

κ + 1
.

Therefore, the gradient descent method with fixed step size α∗ converges linearly with

∥xk − x∗∥ ≤
(
κ− 1

κ + 1

)k

∥x0 − x∗∥.

In order to achieve an error of tolerance ε > 0, we need to iterate a certain amount of steps:(
κ− 1

κ + 1

)k

< ε ⇔ log

(
1

ε

)
< k log

(
κ + 1

κ− 1

)
⇔ k > log

(
1

ε

)
log

(
1 +

2

κ− 1

)−1

,
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which increases with increasing condition number κ. Hence, gradient descent may perform poorly

for quadratic functions with high condition number κ.

Figure 3.1: Contour lines of a quadratic function for increasing condition number κ.

3.1 Polyak’s heavy ball method

The idea of incorporating momentum into iterative optimization schemes goes back to Polyak’s

so-called ”heavy-ball” method (1964) [18]. As the name suggest the motivation behind the method

is a heavy ball rolling down the hill into direction of a valley.

While a ”light” ball is significantly influenced by tight curvatures, such as in a ravine, and loses

in velocity through high oscillation, a heavy ball is accelerated due to low influence through cur-

vatures. From a mathematical point of view, the momentum is incorporated as form of damping

of the descent direction.

We formulate Polyak’s heavy ball method (HBM) in the following algorithm:

Algorithm 4 Heavy ball method
1: Input:

• cost function f : Rd → R
• initial x0 ∈ Rd

• sequence of step sizes (αk)k∈N, αk > 0, and sequence of momentum parameters (βk)k∈N,
βk ≥ 0.

2: set x1 = x0 − α0∇f(x0), and k = 1
3: while ”convergence/stopping criterion not met” do
4: set xk+1 = xk − αk∇f(xk) + βk(xk − xk−1), k 7→ k + 1
5: end while

Let us take a closer look into the iterative update of HBM:

xk+1 = xk − αk∇f(xk)︸ ︷︷ ︸
gradient descent

+ βk(xk − xk−1)︸ ︷︷ ︸
Heavy ball momentum

.
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Figure 3.2: Illustration of the damping effect through momentum.

This means, we incorporate the update from the previous iteration through

xk − xk−1 = −αk−1∇f(xk−1) + βk−1(xk−1 − xk−2)

into the next iteration. For example, in the second iteration, the HBM update is given by

x2 = x1 − α1∇f(x1) − β1α0∇f(x0).

The hyperparameter βk ≥ 0 controls the strength of the influence of momentum and can be seen

as damping parameter. Moreover, we can choose βk = 0 to recover the gradient descent method

(without momentum). Of course, the performance of the HBM method highly depends on a good

choice the parameter βk.

Remark 3.1.1. In general HBM is no descent method and therefore, we do not expect a monotonic

decrease of the cost function along the iterations.

We will continue with Example 3.0.1 and derive an optimal choice of step size αk and momentum

parameter βk for quadratic cost function.

Example 3.1.2 (Continuation of Example 3.0.1). Let us come back to minimizing our quadratic

cost function f(x) = 1
2
x⊤Dx. We consider HBM with fixed step size αk = α > 0 and fixed
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momentum parameter βk = β > 0. The iterative scheme is given by

xk+1 = xk − αDxk + β(xk − xk−1).

In this case, we consider the joint update of the vector(
xk+1 − x∗

xk − x∗

)
=

(
xk+1

xk

)
∈ R2d.

The iteration can be written as(
xk+1

xk

)
=

(
xk − αDxk + β(xk − xk−1)

xk

)

=

(
(1 + β)Ixk − αDxk − βIxk−1

Ixk

)

=

(
(1 + β)I − αD −βI

I 0

)(
xk

xk−1

)
=: T

(
xk

xk−1

)
.

Since the matrix T ∈ R2d×2d is independent of the iteration k ∈ N, we obtain(
xk+1

xk

)
= T k

(
x1

x0

)
,

and therefore, the error can be written as∥∥∥∥∥
(
xk+1 − x∗

xk − x∗

)∥∥∥∥∥ =

∥∥∥∥∥T k

(
x1 − x∗

x0 − x∗

)∥∥∥∥∥ ≤ ∥T k∥

∥∥∥∥∥
(
x1 − x∗

x0 − x∗

)∥∥∥∥∥ ,
for some matrix norm which is consistent with the euclidean 2-norm. Let ρ(T ) = maxi=1,...,2d |λi(T )|
be the largest eigenvalue λi(T ) (in absolute value) of T , also called the spectral radius of T . We

will make use of the Gelfand formula which states that ρ(T ) = limk→∞ ∥Ak∥1/k for any matrix

norm, and in particular there exists a sequence (εk)k∈N converging to 0, such that

∥T k∥ ≤ (ρ(T ) + εk)k.

Before going into details, we transform T to a block diagonal matrix without changing the corre-

sponding eigenvalues (note that the eigenvectors change). From Exercise 3.1.1 we observe that T
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is self-similar to a block diagonal matrix

T̂ =


T1

. . .

Td


with blocks

Ti =

(
1 + β − αλi −β

1 0

)
∈ R2×2.

Let µi be an eigenvalue of T̂ with corresponding eigenvector vi ∈ R2d, then we can compute

T̂ vi = µivi = S−1TSvi ⇔ µiSvi = TSvi,

which means that µi is also an eigenvalue of T with corresponding eigenvector Svi. Without loss

of generality we will compute the eigenvalues of T̂ instead of T . Due to the block structure, we can

deduce the computation of the eigenvalues from the computation of the eigenvalues of each block

Ti ∈ R2×2. To do so, we aim to find µi ∈ C satisfying

det(Ti − µiI) = det

((
1 + β − αλi − µi −β

1 −µi

))
= µ2

i − µi(1 + β − αλi) + β
!

= 0.

For each block we obtain two eigenvalues given as

µ
(1)
i =

1 + β − αλi

2
−

√(
1 + β − αλi

2

)2

− β

µ
(2)
i =

1 + β − αλi

2
+

√(
1 + β − αλi

2

)2

− β.

We restrict our self to β > 0 such that
(
1+β−αλi

2

)2 − β ≤ 0 and therefore, the eigenvalues are

complex-valued. It then holds true that the absolute value is given by

|µ(1)
i | = |µ(2)

i | =
1

2

√
(1 − αλi + β)2 + | (1 − αλi + β)2 − 4β︸ ︷︷ ︸

≤0

|

=
1

2

√
(1 − αλi + β)2 − (1 − αλi + β)2 + 4β =

√
β.

Motivated by this observation, we aim to satisfy
(
1+β−αλi

2

)2−β ≤ 0 for all i, such that the spectral
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radius is given by ρ(T ) =
√
β. Let us consider

∆(β) :=

(
1 + β − αλi

2

)2

− β =
1

4
(β2 − 2(1 + αλi)β + (1 − αλi)

2).

The mapping β 7→ ∆(β), β ∈ R, describes a parabola, such that ∆(β) < 0 between two points

β(1), β(2) satisfying ∆(β(1)) = ∆(β(2)) = 0 (if two exist). Therefore, we solve ∆(β)
!

= 0. We focus

on the cases where β < 1 and α < 4
λmax

such that it holds

|1 −
√

αλmin|, |1 −
√

αλmax| ∈ (0, 1).

Moreover, we observe that

(1 −
√

αλi)
2 ≤ max

(
(1 −

√
αλmin)2, (1 −

√
αλmax)

2
)

such that it is sufficient to choose

1 > β ≥ max
(

(1 −
√

αλmin)2, (1 −
√

αλmax)
2
)
.

in order to force ρ(T ) =
√
β. With the specific choice

α =
4

(
√
λmin +

√
λmax)2

and β = max
(

(1 −
√
αλmin)2, (1 −

√
αλmax)

2
)

we deduce that

β = (1 −
√

αλmax)
2 = (1 −

√
αλmin)2 =

(√
λmax −

√
λmin√

λmax +
√
λmin

)2

=

(√
κ− 1√
κ + 1

)2

and therefore, ρ(T ) =
√
κ−1√
κ+1

. Finally, using the Gelfand formula we obtain an improved upper

bound (for sufficiently large k) on the error compared to gradient descent method∥∥∥∥∥
(
xk+1 − x∗

xk − x∗

)∥∥∥∥∥ ≤
(√

κ− 1√
κ + 1

+ εk

)k
∥∥∥∥∥
(
x1 − x∗

x0 − x∗

)∥∥∥∥∥ .

Similarly as before, in order to achieve an error of tolerance ε > 0, we need to iterate a certain

amount of steps: (√
κ− 1√
κ + 1

)k

< ε ⇔ k > log

(
1

ε

)
log

(
1 +

2√
κ− 1

)−1

,

where log
(

1 + 2√
κ−1

)−1

≤ log
(
1 + 2

κ−1

)−1
, since κ ≥ 1 and therefore

√
κ ≤ κ.
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Exercise 3.1.1. Let T ∈ R2d×2d be defined as

T =

(
(1 + β)I − αD −βI

I 0

)
,

with diagonal matrix D = diag(λ1, . . . , λd), α, β > 0. Prove that there exists a regular matrix

S ∈ R2d×2d such that

S−1TS = T̂ =


T1

. . .

Td

 ,

where T̂ is a block diagonal matrix with

Ti =

(
1 + β − αλi −β

1 0

)
∈ R2×2.

We observed that in the case of quadratic cost function we are able to improve the rate of con-

vergence compared to gradient descent. This suggests that the convergence behavior of gradient

descent, as derived in Section 2.3.2 and Section 2.3.3, might be sub-optimal.

3.2 Discussion about optimality of the convergence behav-

ior

For quadratic cost functions we have seen that the rate of convergence of the gradient descent

method can be improved through the incorporation of momentum in form of HBM. This raises the

question about optimality of gradient descent as a first order method. Or the other way around,

what is the best possible convergence behavior we can expect using only first order information.

We consider the following class of first order iterative methods.

Assumption 3.2.1. The sequence (xk)k∈N (generated by some iterative scheme) satisfies the

condition

xk ∈ x0 + span{∇f(x0), . . . ,∇f(xk−1)}

for all k ≥ 1.

Assumption 3.2.1 means that each iteration xk can be expressed as a linear combination of the

initialization x0 and all previous gradients ∇f(x0), . . . ,∇f(xk−1). Both gradient descent and HBM

are examples satisfying Assumption 3.2.1.



Optimization in ML Simon Weissmann Page 52

We recall, that for cost functions which are µ-strongly convex and L-smooth, we obtain linear

convergence of gradient descent with fixed step size ᾱ = 2
µ+L

of the form

∥xk − x∗∥2 ≤
(
κ− 1

κ + 1

)2k

∥x0 − x∗∥2,

see Section 2.3.3. For the specific case of quadratic cost function, the upper bound can be improved

through HBM to

∥xk − x∗∥2 ≤
(√

κ− 1√
κ + 1

)2k

∥x0 − x∗∥2.

The following lower bound from Nesterov, see e.g. [17], shows that we can not expect more than

this improvement as long as we do not include more than first order information, i.e. as long as our

iterative scheme satisfies Assumption 3.2.1. However, the lower bound is derived for a specifically

constructed function with high- or even infinite-dimensional domain, to be more precise, for a

function f : ℓ2(R) → R, where

ℓ2(R) := {(zi)i∈N | zi ∈ R,
∞∑
i=1

|zi|2 < ∞}.

Note that ℓ2(R) can be equipped with a norm as well as an inner product, such that it forms a

Banach and even a Hilbert space.

Theorem 3.2.2 (Lower bound strong convex and smooth, Theorem 2.1.13 in[17]). For each

x0 ∈ ℓ2(R), µ, L > 0 with κ = L
µ
> 1, there exists a µ-strongly convex and L-smooth function

f : ℓ2(R) → R such that every iterative scheme (xk)k∈N satisfying Assumption 3.2.1 satisfies a

lower bound on the error given by

e(xk) := ∥xk − x∗∥2 ≥
(√

κ− 1√
κ + 1

)2k

∥x0 − x∗∥2,

where x∗ ∈ ℓ2(R) denotes the unique global minimum of f .

Remark 3.2.3. The proof of Theorem 3.2.2 in [17] is constructive, i.e. one can construct a certain

µ-strongly convex and L-smooth function f : ℓ2(R) → R satisfying the lower bound. We will take

a close look on this as part of the exercises.

Remark 3.2.4. We note that the lower bound in Theorem 3.2.2 covers a more general setting than

the one consider in this lecture course so far. Up to now, we have only considered cost functions

f : Rd → R with finite dimensional domain Rd. Strictly speaking, we would need to go back to the

beginning of this course in order to move from finite dimensional to infinite dimensional domains.

One needs to re-define derivatives and consider more general optimality conditions. This would
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lead to the so-called Fréchet derivative, which are needed to formulate gradient descent methods

in Hilbert spaces. However, this is beyond the scope of this lecture course.

We now return to the setting of Section 2.3.2, where we have assumed general convex and L-smooth

functions (without a strong convexity assumption). Under these properties, gradient descent with

a fixed step size ᾱ ≤ 1
L

converges with upper bound of the form

f(xk) − f∗ ≤
c

k + 1
, k ∈ N, c > 0,

where f∗ = minx∈Rd f(x). Indeed, also in this scenario, it is possible to derive a lower bound

on iterative schemes satisfying Assumption 3.2.1, which suggest a gap between upper and lower

bound.

Theorem 3.2.5 (Lower bound convex and smooth, Theorem 2.1.7 in[17]). For every k ∈ N
with 1 ≤ k ≤ 1

2
(d − 1), L > 0 and every x0 ∈ Rd (d denotes the dimension of the domain),

there exists a convex and L-smooth function f : Rd → R such that every iterative scheme

(xk)k∈N satisfying Assumption 3.2.1 satisfies a lower bound on the error given by

e(xk) := f(xk) − f∗ ≥
3L∥x0 − x∗∥2

32(k + 1)2
,

where f∗ = minx∈Rd f(x) > −∞ exists.

Remark 3.2.6. The considered lower bound in Theorem 3.2.5 is only satisfied for k ≤ 1
2
(d − 1),

which again, particularly for high dimensional (d ≫ 1) optimization tasks, suggests a gap between

lower and upper bound. The proof in [17] is again via construction, and will be considered in more

detail as part of the exercises.

We ask our self if we can improve the upper bounds derived for gradient descent methods (both

for convex and strong-convex setting) through momentum methods. This will be part of the next

section.

3.3 Nesterov’s acceleration method

Recall that the iteration of HBM is given by

xk+1 = xk − αk∇f(xk) + βk(xk − xk−1).
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We have seen that we can obtain linear convergence for quadratic cost function f(x) = 1
2
x⊤Qx

with rate c =
√
κ−1√
κ+1

. To do so, we have derived

αk = ᾱ =
4

(
√
L +

√
µ)2

and βk = β̄ =

(√
κ− 1√
κ + 1

)2

, (3.1)

where L > 0 denotes the largest eigenvalue and µ > 0 the smallest eigenvalue of Q, and κ = L
µ

is the condition number. We wonder if it is possible to extend this result to general L-smooth

and µ-strongly convex functions. If we similarly set α, β fixed as in (3.1), do we still obtain linear

convergence with rate c =
√
κ−1√
κ+1

? Unfortunately, this is not true. We consider the following counter

example presented in [16], where it turns out that one can construct a one-dimensional L-smooth

and µ-strongly convex function, for which HBM runs into a circle and does not converge. This

example is formulated as exercise:

Exercise 3.3.1. 1. Find a continuous function f : R → R such that

f ′(x) =


25x, x ≤ 1

x + 24, 1 < x < 2

25x− 24, 2 ≤ x

.

Prove that f is µ-strongly convex with µ = 1, L-smooth with L = 25 and has a unique

global minimum in x∗ = 0.

2. Implement HBM with the optimal step size α and momentum parameter β following

(3.1).

3. Prove that the application of HBM on f with the parameters in (3.1) result in the

recursion

xk+1 =
13

9
xk −

4

9
xk−1 −

1

9
∇f(xk).

4. Find a cycle of points p → q → r → p, such that for x0 = p we have

x3k = p, x3k+1 = q, x3k+2 = r

for all k ∈ N. To do so, assume p, q < 1 and r > 2, apply the heavy ball recursion to

create a linear equation for p, q, r and solve it. What does it mean for the convergence

behavior?

Motivation: We will try to motivate a different approach of incorporating momentum - Nesterov’s

acceleration method (NAM). Recall that the iteration of HBM firstly computes the gradient at the
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current location ∇f(xk) and then moves into direction of a weighted sum of all previous gradients

dk = −αk∇f(xk) + βk(xk − xk−1) = −αk∇f(xk) − βkαk−1∇f(xk−1) + βkβk−1(xk−1 − xk−2) = . . . .

In NAM this step is split into two sub-steps, where we firstly move into direction of the iterated

previous gradients and then compute the next gradient correcting the first move. We can describe

this method through a coupled system of two vectors [pk, qk] ∈ Rd × Rd:

1. Assume that we are in location pk ∈ Rd, such that we can obtain information from the

previous iterations through the computation

qk = pk + β(pk − pk−1),

for some momentum parameter β > 0.

2. In location qk we compute the next gradient information in order to correct the previously

gained information

pk+1 = qk − α∇f(qk),

where α > 0 denotes a step size/ learning rate.

3. Compute the iterated weighted information for the next iteration

qk+1 = pk+1 + β(pk+1 − pk).

We summarize NAM in Algorithm 5.

Algorithm 5 Nesterov’s accelerated gradient descent method
1: Input:

• cost function f : Rd → R
• initial q0, p0 ∈ Rd

• sequence of step sizes (αk)k∈N, αk > 0, and sequence of momentum parameters (βk)k∈N,
βk ≥ 0.

2: set p1 = q0 − α0∇f(q0)
3: set q1 = p1 + β0(p1 − p0)
4: set k = 1
5: while ”convergence/stopping criterion not met” do
6: set pk+1 = qk − αk∇f(qk)
7: set qk+1 = pk+1 + βk(pk+1 − pk)
8: set k 7→ k + 1
9: end while
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3.3.1 Convergence for convex and smooth functions

We will start the convergence analysis of NAM with the assumption of convex and L-smooth

cost functions. In order to analyze NAM, we will consider a slightly more general way of writing

the iterative scheme described through three variable (xk, yk, zk)k∈N. The convergence analysis is

based on Lyapunov methods for optimization schemes as it has been analyzed in [25] for NAM.

The analysis presented in [25] covers a wide range of acceleration algorithms in continuous and

discrete time setting. In terms of the scope of this lecture course, we will focus on a very simplified

setting, where we write NAM as system of the form

xk = τkzk + (1 − τk)yk,

yk+1 = xk − αk∇f(xk),

zk+1 = zk − γk∇f(xk),

(3.2)

with parameters αk, γk > 0 and τk ∈ (0, 1). The variable yk represents the current gradient step,

whereas zk iterates momentum in form of memorizing all the previous gradient steps. The variable

xk then combines both steps. Consider the following example to see that this system can be seen

as NAM.

Example 3.3.1. We ask ourselves if we can transform the system (3.2) back to the form of

Algorithm 5. Indeed, one can choose the parameters γk, τk > 0 such that the system reduces into

the form of Algorithm 5. Therefore, we rewrite the update

zk+1 = zk +
1

τk
(xk − xk) − γk∇f(xk) = yk +

1

τk
(xk − yk) − γk∇f(xk)

= yk +
1

τk
(xk − γkτk∇f(xk) − yk)

= yk +
1

τk
(yk+1 − yk),

where we have chosen (αk, γk, τk) such that γkτk = αk. We can plug this into the update of xk+1

in order to eliminate zk+1 from (3.2):

xk+1 = τk+1zk+1 + (1 − τk+1)yk+1 = yk+1 +
τk+1(1 − τk)

τk
(yk+1 − yk).

Finally, we have written the system (3.2) as update of two variables (xk, yk)k∈N described through

yk+1 = xk − αk∇f(xk),

xk+1 = yk+1 + βk(yk+1 − yk),

where βk := τk+1(1−τk)

τk
> 0.
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As mentioned earlier, we will consider a simplified analysis based on Lyapunov methods as pre-

sented in [25]. There are many different ways of applying Lyapunov methods for analyzing opti-

mization methods. See also Appendix A.2 for a brief motivation of Lyapunov methods in opti-

mization. We will follow a specific strategy for proving convergence of an iterative scheme (xk)k∈N

based on Lyapunov theory:

1. We firstly choose an error function e : Rd → R+ for which we want to prove convergence

towards 0, i.e. limk→∞ e(xk) = 0.

2. Construct a Lyapunov function of the form

Ek := E(xk) = r(xk) + Ake(xk),

where r : Rd → R+ is some auxiliary function, and (Ak)k∈N is a monotonically increasing

sequence with A0 ≥ 0 devoted to describe the speed of convergence.

3. We aim to bound the increments of the sequence (Ek)k∈N by

Ek+1 − Ek ≤ εk+1,

where (εk)k∈N is a real-valued sequence with lim supk→∞ εk < +∞. In our specific case, we

aim to prove that εk+1 ≤ 0 for all k ∈ N such that (Ek)k∈N is non-increasing and particularly

bounded by Ek ≤ E0. It then follows, that

Ake(xk) ≤ r(xk) + Ake(xk) = Ek ≤ E0

and therefore, we obtain

e(xk) ≤ E0

Ak

which illustrates why (Ak)k∈N describes the speed of convergence.

Motivated by [25], in order to analyze the convergence of the system (3.2), we will construct the

Lyapunov function of the form

Ek =
1

2
∥zk − x∗∥2 + Ak(f(yk) − f∗), (3.3)

where f is assumed to satisfy f∗ = minx∈Rd > −∞, x∗ ∈ Rd is some global minimum of f and

(Ak)k∈N is a monotonically increasing sequence with A0 > 0. We will firstly derive the following

upper bound on the increments of (Ek)k∈N.
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Lemma 3.3.2. Let f : Rd → R be L-smooth and convex with minx∈Rd f > −∞, and assume

there exists at least one global minimum x∗ ∈ Rd of f . Moreover, let (xk, yk, zk)k∈N be generated

by (3.2) with parameters αk = 1
L
, γk = Ak+1 − Ak and τk = γk

Ak+1
= Ak+1−Ak

Ak+1
∈ (0, 1). i.e.

xk = yk +
Ak+1 − Ak

Ak+1

(zk − yk),

yk+1 = xk −
1

L
∇f(xk),

zk+1 = zk − (Ak+1 − Ak)∇f(xk),

initialized with (y0, z0) ∈ Rd × Rd. Then the increments of the sequence (Ek)k∈N defined in

(3.3) satisfy

Ek+1 − Ek ≤ εk+1 :=
1

2
(Ak+1 − Ak)2∥∇f(xk)∥2 + Ak+1(f(yk+1) − f(xk))

for all k ∈ N.

Remark 3.3.3. In order to show monotonic behavior of the error (Ek)k∈N, i.e. εk+1 ≤ 0, we will

later apply convexity and L-smoothness of f to derive

f(yk+1) − f(xk) ∝ −∥∇f(xk)∥2.

It will turn out, that the choice of (Ak)k∈N is the key to prove convergence of the error ek =

f(yk) − f∗.

Proof of Lemma 3.3.2. Firstly, we write down the increments of (Ek)k∈N

Ek+1 − Ek =
1

2
∥zk+1 − x∗∥2 −

1

2
∥zk − x∗∥2 + Ak+1(f(yk+1) − f∗) − Ak(f(yk) − f∗)

and observe that

1

2
∥zk+1 − x∗∥2 −

1

2
∥zk − x∗∥2 =

1

2
∥zk+1 − x∗∥2 −

1

2
∥(zk − zk+1) + (zk+1 − x∗)∥2

=
1

2
∥zk+1 − x∗∥2 −

1

2
∥zk − zk+1∥2

− ⟨zk − zk+1, zk+1 − x∗⟩ −
1

2
∥zk+1 − x∗∥2

= −1

2
∥zk − zk+1∥2 − ⟨zk − zk+1, zk+1 − x∗⟩

= −1

2
∥zk − zk+1∥2 + ⟨x∗ − zk+1, (Ak+1 − Ak)∇f(xk)⟩.
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This leads to

Ek+1 − Ek = ⟨x∗ − zk+1, (Ak+1 − Ak)∇f(xk)⟩ − 1

2
∥zk − zk+1∥2

+ Ak+1(f(yk+1) − f∗) − Ak(f(yk) − f∗)

= ⟨x∗ − zk, (Ak+1 − Ak)∇f(xk)⟩ + ⟨zk − zk+1, (Ak+1 − Ak)∇f(xk)⟩ − 1

2
∥zk − zk+1∥2

+ Ak+1(f(yk+1) − f∗) − Ak(f(yk) − f∗).

Since 0 ≤ 1
2
∥a−b∥2 = 1

2
∥a∥2−⟨a, b⟩+1

2
∥b∥2 for a, b ∈ Rd, we can apply the inequality ⟨a, b⟩−1

2
∥a∥2 ≤

1
2
∥b∥2 to derive

⟨zk − zk+1, (Ak+1 − Ak)∇f(xk)⟩ − 1

2
∥zk − zk+1∥2 ≤

1

2
∥(Ak+1 − Ak)∇f(xk)∥2

such that

Ek+1 − Ek =
1

2
(Ak+1 − Ak)2∥∇f(xk)∥2 + ⟨x∗ − zk, (Ak+1 − Ak)∇f(xk)⟩

+ Ak+1(f(yk+1) − f∗) − Ak(f(yk) − f∗).

Moreover, we observe that

Ak+1(f(yk+1) − f∗) − Ak(f(yk) − f∗) = (Ak+1 − Ak)(f(xk) − f∗) + Ak(f(xk) − f(yk))

+ Ak+1(f(yk+1 − f(xk)).

With εk+1 := 1
2
(Ak+1 − Ak)2∥∇f(xk)∥2 + Ak+1(f(yk+1) − f(xk)) it follows that

Ek+1 − Ek ≤ εk+1 + ⟨x∗ − zk, (Ak+1 − Ak)∇f(xk)⟩

+ (Ak+1 − Ak)(f(xk) − f∗) + Ak(f(xk) − f(yk)),

and it is left to prove that

R = ⟨x∗ − zk, (Ak+1 − Ak)∇f(xk)⟩ + (Ak+1 − Ak)(f(xk) − f∗) + Ak(f(xk) − f(yk)) ≤ 0.

We add −yk + yk = 0 to derive

R = ⟨x∗ − yk, (Ak+1 − Ak)∇f(xk)⟩ + ⟨yk − zk, (Ak+1 − Ak)∇f(xk)⟩

+ (Ak+1 − Ak)(f(xk) − f∗) + Ak(f(xk) − f(yk)),
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where we now aim to apply convexity of f in form of

f(z) − f(y) + ⟨y − z,∇f(z)⟩ ≤ 0.

Therefore, using yk − zk = Ak+1

Ak+1−Ak
(yk − xk) we again rewrite R in form of

R = ⟨x∗ − yk, (Ak+1 − Ak)∇f(xk)⟩ + Ak+1⟨yk − xk,∇f(xk)⟩

+ (Ak+1 − Ak)(f(xk) − f∗) + Ak(f(xk) − f(yk))

= ⟨x∗ − yk, (Ak+1 − Ak)∇f(xk)⟩ + Ak+1⟨yk − xk,∇f(xk)⟩

− Ak⟨xk,∇f(xk)⟩ + Ak⟨xk,∇f(xk)⟩

+ (Ak+1 − Ak)(f(xk) − f∗) + Ak(f(xk) − f(yk))

= (Ak+1 − Ak)⟨x∗ − xk,∇f(xk)⟩ + Ak⟨yk − xk,∇f(xk)⟩

+ (Ak+1 − Ak)(f(xk) − f∗) + Ak(f(xk) − f(yk))

= (Ak+1 − Ak) {f(xk) − f(x∗) + ⟨x∗ − xk,∇f(xk)⟩}

+ Ak {f(xk) − f(yk) + ⟨yk − xk,∇f(xk)⟩}

≤ 0

by convexity of f . Finally, we have proved that Ek+1 − Ek ≤ εk+1.

The previous Lemma proved an upper bound on the increments of the form

Ek+1 − Ek ≤
1

2
(Ak+1 − Ak)2∥∇f(xk)∥2 + Ak+1(f(yk+1) − f(xk)).

Next, we want to apply L-smoothness in order to derive

f(yk+1) − f(xk) ∝ −∥∇f(xk)∥2

and therefore, to imply the decrease of (Ek)k∈N. In particular, we will then obtain convergence

of the error ek = f(yk) − f∗ of the order O( 1
(k+1)k

). Note that for gradient descent under similar

assumptions on f we did only prove convergence of order O( 1
k+1

).

Theorem 3.3.4 (NAM for convex and smooth cost function). Let f : Rd → R be L-smooth and

convex with minx∈Rd f > −∞, and assume there exists at least one global minimum x∗ ∈ Rd of

f . Moreover, let (xk, yk, zk)k∈N be generated by (3.2) with parameters αk = 1
L
, γk = Ak+1 −Ak
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and τk = γk
Ak+1

= Ak+1−Ak

Ak+1
∈ (0, 1). i.e.

xk = yk +
Ak+1 − Ak

Ak+1

(zk − yk),

yk+1 = xk −
1

L
∇f(xk),

zk+1 = zk − (Ak+1 − Ak)∇f(xk),

initialized with (y0, z0) ∈ Rd × Rd. Then the increments of the sequence (Ek)k∈N defined in

(3.3) satisfy

Ek+1 − Ek ≤
(

1

2
(Ak+1 − Ak)2 − 1

2L
Ak+1

)
∥∇f(xk)∥2

for all k ∈ N. For the particular choice Ak = 1
4L

(k + 1)k, k ≥ 1, and A0 = A1, we obtain

ek = f(yk) − f∗ ≤
4LE0

(k + 1)k
, k ≥ 1.

Proof. We define GL(xk) = xk − 1
L
∇f(xk) and apply L-smoothness of f to deduce

f(GL(xk)) ≤ f(xk) + ⟨∇f(xk), GL(xk) − xk⟩ +
L

2
∥GL(xk) − xk∥2

= f(xk) − 1

2L
∥∇f(xk)∥2,

implying that

f(yk+1) − f(xk) ≤ − 1

2L
∥∇f(xk)∥2.

With the previous Lemma 3.3.2 we obtain

Ek+1 − Ek ≤
(

1

2
(Ak+1 − Ak)2 − 1

2L
Ak+1

)
∥∇f(xk)∥2.

With Ak = 1
4L

(k + 1)k it follows that

1

2
(Ak+1 − Ak)2 − 1

2L
Ak+1 ≤ 0,

since
(Ak+1 − Ak)2

Ak+1

=
1

L

(k + 1)2

(k + 2)(k + 1)
≤ 1

L
.

It follows that Ek+1 − Ek ≤ 0 and therefore, we have

1

2
∥zk − x∗∥2 + Ak(f(yk) − f∗) ≤ E0
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which implies convergence

f(yk) − f∗ ≤
4LE0

(k + 1)k
, k ≥ 1.

Remark 3.3.5. To draw the connection to Algorithm 5 we have to choose

βk =
τk+1(1 − τk)

τk
,

where

τk =
Ak+1 − Ak

Ak+1

=
2k + 2

(k + 1)(k + 2)
=

2

k + 2

and hence,

βk =
2

k+3
(1 − 2

k+2
)

2
k+2

=
k

k + 3
.

Note that

γkτk =
(Ak+1 − Ak)2

Ak+1

=
1

4L

(2k + 2)2

(k + 1)(k + 2)
→ 1

L
,

which is in minor contrast to the choice γkτk = αk = 1
L

in Example 3.3.1.

3.3.2 Convergence for strongly convex and smooth function

We have seen that NAM leads to an improvement of the convergence for convex and smooth

functions. We now want to consider the strongly convex and smooth setting, where we again

show improvement compared to the optimal convergence behavior of the gradient descent method

discussed in Remark 2.3.18. Let f : Rd → R be a µ-strongly convex and L-smooth cost func-

tion. Motivated from [25] we again consider a slightly different system for NAM of three variable

(xk, yk, zk)k∈N generated by

xk =
τ

1 + τ
zk +

1

1 + τ
yk

yk+1 = xk −
1

L
∇f(xk)

zk+1 = zk + τ(xk − zk) − τ

µ
∇f(xk)

(3.4)

with τ > 0. Similarly as before, the authors in [25] consider a more general family of acceler-

ated gradient methods, but due to the scope of this lecture course we again consider only the

simplified formulation. In the following example, we make the connection to NAM formulated in

Algorithm 5. We show that the system (3.4) with fixed choice τ =
√

µ
L

can be viewed as special

case of Algorithm 5 with fixed α = 1
L

and β =
√
L−√

µ√
L+

√
µ
.
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Example 3.3.6. We formulate system (3.4) as update of two variables (xk, yk)k∈N written as

yk+1 = xk − αk∇f(xk)

xk+1 = yk+1 + βk(yk+1 − yk)
.

Firstly, we observe that

(1 − τ)zk = (1 − τ)

(
1 + τ

τ
xk −

1

τ
yk

)
=

(
1

τ
− τ

)
xk +

τ − 1

τ
yk,

such that we can write the update of zk+1 through

zk+1 = zk + τ(xk − zk) − τ

µ
∇f(xk)

= (1 − τ)zk + τxk −
τ

µ
∇f(xk)

=

(
1

τ
xk − τ + τ

)
xk +

(
1 − 1

τ

)
yk −

τ

τ

τ

µ
∇f(xk).

We set τ =
√

µ
L
such that τ2

µ
= 1

L
and therefore,

zk+1 =
1

τ
xk −

1

τ

1

L
∇f(xk) +

(
1 − 1

τ

)
yk = yk +

1

τ

(
xk −

1

L
∇f(xk) − yk

)
= yk +

1

τ
(yk+1 − yk).

We plug this into the update of xk+1 to obtain

xk+1 =
τ

τ + 1
zk+1 +

1

τ + 1
yk+1 =

τ

τ + 1

(
yk +

1

τ
(yk+1 − yk)

)
+

1

τ + 1
yk+1

= yk+1 +
τ − 1

τ + 1
yk +

1 − τ

1 + τ

= yk+1 +
1 − τ

1 + τ
(yk+1 − yk).

Finally, with the choice τ =
√

µ
L
we can write the iterative update scheme as

yk+1 = xk −
1

L
∇f(xk)

xk+1 = yk+1 +

√
L−√

µ
√
L +

√
µ

(yk+1 − yk),

such that we recover Algorithm 5 with fixed αk = α = 1
L
and βk = β =

√
L−√

µ√
L+

√
µ
.

We are now ready to prove linear convergence of Algorithm 5 through system (3.4) in the strongly
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convex and smooth setting.

Theorem 3.3.7 (NAM for strongly convex and smooth cost function). Let f : Rd → R be

µ-strongly convex and L-smooth with L > µ, and let x∗ ∈ Rd be the corresponding unique global

minimum of f . Moreover, let (xk, yk, zk)k∈N be generated by (3.4) with τ =
√

µ
L
∈ (0, 1) and

initialized by (y0, z0) ∈ Rd × Rd. Then NAM converges linearly in the sense that

ek := f(yk) − f(x∗) +
µ

2
∥zk − x∗∥2 ≤

(
1 −

√
µ

L

)k (
f(y0) − f(x∗) +

µ

2
∥z0 − x∗∥2

)
.

Proof. We define ek := f(yk) − f(x∗) + µ
2
∥zk − x∗∥2 and aim to prove

ek+1 ≤ (1 − τ)ek.

Firstly, applying L-smoothness of f gives

f(yk+1) ≤ f(xk) + ⟨∇f(xx), yk+1 − xk⟩ +
L

2
∥xk − yk+1∥2 = f(xk) − 1

2L
∥∇f(xk)∥2. (3.5)

Next, we consider the update of e
(1)
k = ∥zk − x∗∥2:

e
(1)
k+1 = ∥zk + τ(xk − zk) − τ

µ
∇f(xk) − x∗∥2

= ∥zk − x∗∥2 + 2⟨τ(xk − zk) − τ

µ
∇f(xk), zk − x∗⟩ + ∥ τ(xk − zk) − τ

µ
∇f(xk)︸ ︷︷ ︸

=zk+1−zk

∥2

= e
(1)
k + 2τ⟨xk − zk, zk − x∗︸ ︷︷ ︸

=zk−xk+xk−x∗

⟩ − 2
τ

µ
⟨∇f(xk), zk − x∗︸ ︷︷ ︸

=zk−xk+xk−x∗

⟩ + ∥zk+1 − zk∥2

= e
(1)
k + ∥zk+1 − zk∥2 + 2τ⟨xk − zk, zk − xk⟩ − 2

τ

µ
⟨∇f(xk), zk − xk⟩

+ 2τ⟨xk − zk, xk − x∗⟩ − 2
τ

µ
⟨∇f(xk), xk − x∗⟩

Recall that by strong convexity it holds true that

f(x∗) − f(xk) ≥ ⟨x∗ − xk,∇f(xk)⟩ +
µ

2
∥xk − x∗∥2,

such that

e
(1)
k+1 ≤ e

(1)
k + ∥zk+1 − zk∥2 + 2τ⟨xk − zk, zk − xk⟩ − 2

τ

µ
⟨∇f(xk), zk − xk⟩

+ 2
τ

µ
(f(x∗) − f(xk) − µ

2
∥xk − x∗∥2) + 2τ⟨xk − zk, xk − x∗⟩.
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We observe that

τ(xk − zk) = τxk − ((1 + τ)xk − yk) = yk − xk

and obtain

e
(1)
k+1 ≤ e

(1)
k + ∥zk+1 − zk∥2 − 2

τ

µ
(f(xk) − f(x∗)) +

2

µ
⟨∇f(xk), yk − xk⟩

+ 2τ⟨xk − zk, xk − x∗⟩ − 2τ∥xk − zk∥2 − τ∥xk − x∗∥2.

Note that

2τ⟨xk − zk, xk − x∗⟩ − 2τ∥xk − zk∥2 − τ∥xk − x∗∥2 = −τ∥xk − x∗ − (xk − zk)∥2 − τ∥xk − zk∥2

= −τe
(1)
k − τ∥xk − zk∥2,

which yields

e
(1)
k+1 ≤ (1 − τ)e

(1)
k + ∥zk+1 − zk∥2 − 2

τ

µ
(f(xk) − f(x∗)) +

2

µ
⟨∇f(xk), yk − xk⟩ − τ∥xk − zk∥2.

Finally, with e
(2)
k = f(yk) − f(x∗) we consider the evolution of ek through

ek+1 =
µ

2
e
(1)
k+1 + e

(2)
k+1 ≤ (1 − τ)

µ

2
e
(1)
k +

µ

2
∥zk+1 − zk∥2 − τ(f(xk) − f(x∗)) + ⟨∇f(xk), yk − xk⟩

− τ
µ

2
∥xk − zk∥2 + f(yk+1) − f(x∗)

≤ (1 − τ)
µ

2
e
(1)
k +

µ

2
∥zk+1 − zk∥2 − τ(f(xk) − f(x∗)) + ⟨∇f(xk), yk − xk⟩

− τ
µ

2
∥xk − zk∥2 + f(xk) − f(x∗) −

1

2L
∥∇f(xk)∥2 + {(1 − τ)e

(2)
k − (1 − τ)e

(2)
k }}

= (1 − τ)ek − (1 − τ)(f(yk) − f(x∗)) − τ(f(xk) − f(x∗)) + f(xk) − f(x∗) −
1

2L
∥∇f(xk)∥2

+
µ

2
∥zk+1 − zk∥2 − τ

µ

2
∥xk − zk∥2 + ⟨∇f(xk), yk − xk⟩

=: (1 − τ)ek + R,

where we have used (3.5) in the first inequality and added a zero (1 − τ)(f(yk) − f(x∗)) − (1 −
τ)(f(yk) − f(x∗)) = 0. It is left to prove that R ≤ 0. First note, that R simplifies to

R = (1−τ)(f(xk)−f(yk))− 1

2L
∥∇f(xk)∥2+µ

2
∥zk+1−zk∥2−τ

µ

2
∥xk−zk∥2+(1−τ+τ)⟨∇f(xk), yk−xk⟩.

We apply strong convexity in form of

⟨∇f(xk), yk − xk⟩ ≤ f(yk) − f(xk) − µ

2
∥yk − xk∥2
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such that

R ≤ (1 − τ)(f(xk) − f(yk)) + (1 − τ)(f(yk) − f(xk)) − µ

2
∥yk − zk∥2

− 1

2L
∥∇f(xk)∥2 +

µ

2
∥zk+1 − zk∥2 − τ

µ

2
∥xk − zk∥2 + τ⟨∇f(xk), yk − xk⟩

= τ⟨∇f(xk), yk − xk⟩ − (1 − τ)
µ

2
∥yk − xk∥2 −

1

2L
∥∇f(xk)∥2

+
µ

2
∥zk+1 − zk∥2 − τ

µ

2
∥xk − zk∥2.

Recall that we have used zk+1 − zk = τ(xk − zk)− τ
µ
∇f(xk), which with τ(xk − zk) = yk − xk gives

µ

2
∥zk+1 − zk∥2 =

µ

2
∥yk − xk∥2 − τ⟨∇f(xk), yk − xk⟩ +

τ 2

2µ
∥∇f(xk)∥2,

and therefore, we obtain

R ≤ −(1 − τ)
µ

2
∥yk − xk∥2 +

µ

2
∥yk − xk∥2 + τ⟨∇f(xk), yk − xk⟩ − τ⟨∇f(xk), yk − xk⟩

+
τ 2

2µ
∥∇f(xk)∥2 − 1

2L
∥∇f(xk)∥2 − τ

µ

2

τ

τ
∥xk − zk∥2

= τ
µ

2
∥yk − xk∥2 −

µ

2τ
∥τ(xk − zk)∥2 +

(
τ 2

2µ
− 1

2L

)
∥∇f(xk)∥2

=
(τµ

2
− µ

2τ

)
∥yk − xk∥2 +

(
τ 2

2µ
− 1

2L

)
∥∇f(xk)∥2,

where we have used again that τ(xk − zk) = yk − xk. With the choice τ =
√

µ
L
∈ (0, 1) we observe

that
τ 2

2µ
− 1

2L
=

1

2L
− 1

2L
= 0

and
τµ

2
− µ

2τ
=

µ

2
(τ − 1

τ
) ≤ 0.

This proves that R ≤ 0 and the assertion follows:

ek+1 ≤ (1 − τ)ek =

(
1 −

√
µ

L

)
ek.

Remark 3.3.8. We can rewrite the error bound for NAM of the previous theorem through

ek =
µ

2
∥zk − x∗∥2 + f(yk) − f(x∗) ≤ (1 − τ)ke0 =

(
1 − 1√

κ

)k

e0 =

(√
κ− 1√
κ

)k

e0.
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The corresponding optimal convergence rate of the simple gradient descent scheme was given by

eGD
k := ∥xk − x∗∥2 ≤

(
κ− 1

κ + 1

)2k

eGD
0 .

In Figure 3.3 we compare both rates of convergence for increasing condition number κ = L
µ

illus-

trating the improvement through NAM.
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Figure 3.3: Illustration of the linear convergence rate depending on the condition number κ = µ
L

for

GD and NAM. The left plot shows the convergence rate cGD(κ) =
(
κ−1
κ+1

)2
and cNAM(κ) =

(√
κ−1√
κ

)
,

whereas the right plot shows the difference to 1, i.e. 1 − c(κ), in logarithmic scale.



4

Stochastic approximation in Optimization

We will start with a motivating example to introduce the problem of minimizing expected and

empirical risk. This will motivate the consideration of stochastic variants of gradient descent

methods.

Example 4.0.1. We revisit the regression problem discussed in Chapter 1, which arises in super-

vised learning. Recall that we aim to approximate an unknown model

z 7→ φ(z) = y, φ : Rdz → Rdy

through a parametrized family of functions gθ : Rdz → Rdy , θ ∈ Θ. Given a training data set

{(z(i), y(i))}Ni=1, we have described the training task as optimization problem

min
θ∈Θ

fN(θ, {(z(i), y(i))}Ni=1),

where fN : Θ × (×N
i=1(Rdz × Rdy) → R denotes the to cost function. In the example of regression,

we have considered

fN(θ, {(z(i), y(i))}Ni=1) =
1

N

N∑
i=1

∥gθ(z(i)) − y(i)∥2 + R(θ), (4.1)

where R : Θ → R is some regularization function. We aim to incorporate a probabilistic framework

in order to introduce (empirical) risk minimization. Let (Ω,A,P) be our underlying probability

space. We model the input and output variable as jointly distributed random variables (Z, Y ) on

(Ω,A,P) with state space (Rdz × Rdy ,B(Rdz) ⊗ B(Rdy)). The goal is to find θ ∈ Θ such that gθ

represents the stochastic model

Y = φ(Z)[+ξ], Z ∼ µZ ,

where ξ denotes possible noise.

Challenge: We assume that distribution µZ of Z and the joint distribution µ(Z,Y ) respectively

are unknown. Instead, we assume that we are able to generate (arbitrarily many) i.i.d. sample

68
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(Z(i), Y (i)) ∼ µ(Z,Y ).

We are now interested in how to choose an optimal approximation gθ. The natural extension of

the cost function (4.1) to the probabilistic setting is the task of minimizing the cost function

F (θ) = E(Z,Y )∼µ(Z,Y )
[∥gθ(Z) − Y ∥2] + R(θ),

where E(Z,Y )∼µ(Z,Y )
denotes the expectation w.r.t. (Z, Y ). Given a training data set of i.i.d. random

variables {(Z(i), Y (i))}Ni=1 distributed according to (Z(1), Y (1)) ∼ µ(Z,Y ), we can apply a Monte Carlo

approximation of the above expectation

E(Z,Y )∼µ(Z,Y )
[∥gθ(Z) − Y ∥2] ≈ 1

N

N∑
i=1

∥gθ(Z(i)) − Y (i)∥2

to construct the empirical cost function

FN(θ) =
1

N

N∑
i=1

∥gθ(Z(i)) − Y (i)∥2 + R(θ),

which coincides with (4.1).

Motivated by this example we introduce the definition of (empirical) risk minimization problems.

Definition 4.0.2. Let f : Rd ×Rp → R be B(Rd) ⊗B(Rp)/B(R) measurable and Z : Ω → Rp

a random variable with distribution µ such that E[|f(x, Z)|] < ∞ for all x ∈ Rd.

1. We define the expected risk F : Rd → R as

F (x) = EZ∼µ[f(x, Z)] =:

∫
Rp

f(x, z)µ(dz), x ∈ Rd.

We call the minimization problem

min
x∈Rd

F (x), F (x) = EZ∼µ[f(x, Z)]

risk minimization problem.

2. Let Z1, . . . , ZN be i.i.d. random variables with Z1 ∼ µ. We define the empirical risk

FN : Rd → R by

FN(x) =
1

N

N∑
i=1

f(x, Z(i)).

The empirical risk is sometimes also called population risk. We call the minimization
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problem

min
x∈Rd

FN(x), FN(x) =
1

N

N∑
i=1

f(x, Z(i))

empirical risk minimization problem.

This chapter will focus on analyzing stochastic optimization methods for solving (empirical and

expected) risk minimization problems. It’s important to note that this discussion only addresses

a subset of the typical challenges that arise in machine/supervised learning.

Remark 4.0.3 (Statistical learning perspective). For example, in the area of statistical learning

among other questions one is interested in the consistency of solutions of the empirical risk mini-

mization problem. Let X̂N be the minimizer of the empirical risk and x∗ be the minimizer of the

corresponding expected risk (provided both exist), then we can decompose the error

F (X̂N)−F (x∗) = F (X̂N)−FN(X̂N)+FN(X̂N)−FN(x∗)+FN(x∗)−F (x∗) ≤ 2 sup
x∈Rd

|FN(x)−F (x)|.

We emphasize that FN as function depends on the random variables Z(1), . . . , Z(N) and is therefore

random. Hence, the minimizer X̂N itself is a random variable. In statistical learning theory one

concerns about questions such as the consistency of X̂N for number of data points N approaching

infinity.

Remark 4.0.4 (Inverse problem perspective). For a fixed number of data points N ∈ N the em-

pirical risk minimization problem is typically ill-posed and it is necessary to include regularization.

This is the topic of the lecture course inverse problems. As motivation, we will treat the training

task of supervised learning as an inverse problem. Recall, that we are interested to approximate

a model φ : Rdz → Rdy by a parametrized family of functions gθ : Rdz → Rdy , θ ∈ Θ. Given a

training data set {(Z(i), Y (i))} we want to minimize the empirical risk

min
θ∈Θ

1

N
∥gθ(Z(i)) − Y (i)∥2.

An alternative persepective/interpretation is the following. Define a forward map H : Θ → RN ·dy ,

H(θ) := (gθ(Z
(1), . . . , gθ(Z

(N)))⊤ ∈ RN ·dy .

With observations Ŷ = (Y (1), . . . , Y (N))⊤ ∈ RN ·dy , we aim to solve the inverse problem of recovering

the parameter θ ∈ Θ such that

Ŷ = H(θ). (4.2)

This problem is typically ill-posed (in the sense of a well-posed problem following Hadamard [8]),

due to the following reasons:
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1. There might not exist any θ ∈ Θ solving (4.2).

2. The solution of (4.2) is not necessarily unique, i.e. there might be θ1, θ2 ∈ Θ with H(θ1) =

H(θ2) = Ŷ .

3. The solution of (4.2) might be instable w.r.t. changes in Ŷ (e.g. due to measurement noise).

Therefore, it is not the best idea to simply solve minθ∈Θ ∥H(θ)− Ŷ ∥2. We illustrate the resulting

issues in Figure 4.1–4.3. In inverse problems a large focus lies in the study of regularization meth-

ods, which can, for example, be incorporated as a penalty function. Instead of simply minimizing

the data misfit functional, one considers solving the regularized optimization problem

min
θ∈Θ

∥H(θ) − Ŷ ∥2 + R(θ),

where R : Θ → R is a regularization function.

Θ R(H)

H

y†

θ†

Ŷ

ξ

Figure 4.1: Illustration of ill-posedness through observational noise. The occurrence of noise might
shift the observed data outside of the range of the forward map H.

Θ R(H)

H

Ŷ

θ1

θ2
H

Figure 4.2: Illustration of ill-posedness through multiple solutions. Two different parameters
θ1, θ2 ∈ Θ might map onto the observed data Ŷ .

In the following chapter we are going to study optimization methods for solving the expected and

empirical risk minimization problem. We do not consider questions around generalization and

regularization, which are beyond the scope of this lecture course.
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Θ R(H)

H
y†

θ†

Ŷ

ξ

H−1

Figure 4.3: Illustration of ill-posedness through discontinuity. Even if H is invertible, the instability
may occur in the solution of the inverse problem resulting from possible discontinuity of the inverse
operator.

4.1 Stochastic gradient descent method (SGD)

We want to introduce and analyze a stochastic variant of the gradient descent method for solving

the expected and empirical risk minimization problem. For a comprehensive overview of stochastic

gradient methods, the interested reader may refer to [4, 7, 22].

In the following, let (Ω,A,P) be the underlying probability space, Z : Ω → Rp be a random

variable on (Ω,A,P) with distribution µZ . We are interested in solving the optimization problem

min
x∈Rd

F (x),

where the cost function F : Rd → R is defined as the expectation function in form

F (x) = EZ∼µZ
[f(x, Z)] =

∫
Rp

f(x, z)µZ(dz), x ∈ Rd,

for a function f : Rd×Rp → R. Throughout this lecture course we make the following assumption:

Assumption 4.1.1. 1. The function f : Rd×Rp → R is B(Rd)⊗B(Rp)/B(R)-measurable.

2. For every z ∈ Rp the function x 7→ f(x, z) is continuously differentiable.

3. For every x ∈ Rd we have

E[|f(x, Z)| + ∥∇xf(x, Z)∥] < ∞

and

E[∥∇xf(x, Z) − E[∇xf(x, Z)]∥q ≤ b(1 + ∥x∥q)

for some q ≥ 1 and b > 0.

In order to apply the gradient methods introduced in the previous sections, we run into the
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question: How do we compute the derivative of F? More fundamentally, we can ask under which

conditions F is differentiable?

The following result from [9] addresses the question about differentiability of F and illustrates

that we can use the random variable Z to construct an unbiased estimator of ∇xF (x) for every

fixed x ∈ Rd. The result provides confirmation that under Assumption 4.1.1 we are allowed to

interchange derivative and expectation for the computation of ∇xF (x).

Lemma 4.1.2 (Lemma 4.8 in [9]). Suppose Assumption 4.1.1 is satisfied, then it holds true

that

1. the function F (x) = E[f(x, Z)] is continuously differentiable,

2. ∇xf(x, Z) is an unbiased estimator of ∇xF (x) for every x ∈ Rd, i.e. it holds true that

∇xF (x) = E[∇xf(x, Z)].

The stochastic gradient descent (SGD) method serves as an approximation to the gradient de-

scent method, where each update guides the current iteration in the direction of a (stochastic)

approximation of the negative gradient. Since we observed that ∇xf(x, Z) can be viewed as un-

biased estimator of ∇xF (x), we expect that the scheme will perform well in average. As part of

this lecture course we will verify this expectation. The algorithm is formulated in Algorithm 6.

Throughout this chapter, we assume the following scenario.

Assumption 4.1.3. We assume that we can generate arbitrarily many i.i.d. samples according

to µZ . This is, we assume that we have access to a sequence of i.i.d. random variables (Zk)k∈N,

where Z1 ∼ µZ .

Remark 4.1.4. In Algorithm 6, for each k ∈ N, the random variable Zk+1 is independent of Xm,

0 ≤ m ≤ k. In the definition of Gk we have used the index k + 1 for Zk+1 such that Xk remains

measurable w.r.t. σ(Zm,m ≤ k) for all k ≥ 1. Indeed, we can then consider the natural filtration

FX
k = σ(Xm, 0 ≤ m ≤ k) = σ(X0, Zm,m ≤ k).

Remark 4.1.5. We note that Algorithm 6 in practice is often used to minimize cost functions in

form of empirical risks,

Fn(x) =
1

N

N∑
i=1

f(x, z(i)) = EZ∼µ̂N
[f(x, Z)],

where µ̂N = 1
N

∑N
i=1 δz(i) denotes the empirical measure over the fixed data set {z(i), i = 1, . . . , N}.

For the application of SGD in each iteration a random index ik ∼ U({1, . . . , N}) (or even a random
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Algorithm 6 Stochastic gradient descent method (SGD)

1: Input:

• cost function f : Rd × Rp → R
• initial random variable X0 : Ω → Rd

• sequence of step sizes (αk)k∈N, αk > 0 (deterministic or F -adapted)

• sequence of i.i.d. random variables (Zk)k∈N with Z1 ∼ µZ .

2: set k = 0
3: while ”convergence/stopping criterion not met” do
4: approximate the gradient ∇xF (Xk) through

Gk = ∇xf(Xk, Zk+1)

5: set Xk+1 = Xk − αkGk, k 7→ k + 1
6: end while

index set Ik ⊂ {1, . . . , N}) is generated independently, and ∇xF (x) is approximated by

Gk = ∇xf(x, z(ik)).

We describe this scheme in Algorithm 7.

Algorithm 7 SGD with finite data
1: Input:

• cost function f : Rd × Rp → R
• initial random variable X0 : Ω → Rd

• sequence of step sizes (αk)k∈N, αk > 0 (deterministic or F -adapted)

• fixed realization of fixed deterministic data set {z(i)}Ni=1 with z(i) ∈ Rp.

2: set k = 0
3: while ”convergence/stopping criterion not met” do
4: generate independently ik+1 ∼ U({1, . . . , N})
5: approximate the gradient ∇xFN(Xk) through

Gk = ∇xf(Xk, z
ik+1)

6: set Xk+1 = Xk − αkGk, k 7→ k + 1
7: end while

While Algorithm 6 generates a new independent realization of Z in each iteration, Algorithm 7

first fixes the number of realized independent samples of Z and then randomly iterates through

this data set during SGD. The randomness in Algorithm 7 occurs through the realization of the

random indices (ik)k∈N. For both algorithms, the resulting iteration (Xk)k∈N is a stochastic process,
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which is path-wise constructed via (Zk)k∈N (Algorithm 6) and (ik)k∈N (Algorithm 7) respectively.

In both cases, we can view the stochastic process as an adapted process with respect to the natural

filtration

FX
k = σ(Xm,m ≤ k) = σ(X0, Zm,m ≤ k)

and

FX
k = σ(Xm,m ≤ k) = σ(X0, im,m ≤ k).

This filtration will be relevant when analyzing the convergence behavior of SGD, where we take

the expectation conditioned on the information from the past.

We will first discuss SGD from an stochastic approximation perspective motivated by the Robbins

& Monro algorithm [21].

Outlook 1. (Robbins & Monro Algorithm) We consider a brief outlook to the original stochas-

tic approximation method introduced in [21] aiming to root-finding. The authors considered

the following question: Given a family of real-valued random variables (Yx)x∈R one can define

the expectation function (in x)

M(x) = E[Yx] =

∫
R

y µ(dy;x)

where µ(·;x) denotes the distribution of Yx. Given z ∈ R, the aim is construct an algorithm

to find the (unique) solution of the equation

M(x) = z.

The challenging aspect in this question is the unknown expectation function M . However,

the authors assume that one is able to sample independently from (Yx)x∈R (or from µ(·;x)

respectively). The Robbins & Monro algorithm in its original from iterates through

Xk+1 = Xk + αk(z − Yk),

where Yk, k ∈ N are independent random variables with distribution µ(·;Xk) and (αk)k∈N is a

sequence of step sizes αk > 0. Robbins & Monro proved convergence of (Xk)k∈N in L2 towards

z under certain assumptions on M and (µ(·;x))x∈R. Slightly later Blum [3] (1954) proved

almost sure convergence under additional condition on the sequence of step sizes

∞∑
k=0

αk = ∞ and
∞∑
k=0

α2
k < ∞.

We will apply the Robbins & Siegmund Theorem based on Doob’s supermartingale convergence

theorem in order to derive an almost sure convergence result for SGD. However, this theorem
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only leads to an asymptotic convergence result. In principle, we can view the approximation Gk

in Algorithm 6 and 7 as a form of Monte Carlo approximation, which quantifies an error to the

(exact/full) gradient descent method. A smaller variance of the estimator Gk suggests a better

convergence behavior of SGD. Therefore, we will later consider a variance reduced version of the

SGD method.

In order to analyze SGD, we rewrite the iterative scheme as follows

Xk+1 = Xk − αk∇xf(Xk, Zk+1) = Xk − αk∇xF (Xk) + αk (∇xF (Xk) −∇xf(Xk, Zk+1))

=: Xk − αk∇xF (Xk) + αkMk+1.

Recall, that we consider (Xk)k∈N as an adapted process with respect to its natural filtration Fk =

σ(X0, Zm,m ≤ k). In the next section, it will turn out, that the process (Mk)k∈N satisfies

E[Mk+1 | Fk] = E[∇xF (Xk) −∇xf(Xk, Zk+1) | Fk] = 0, (4.3)

since we always assume that we are able to apply Lemma 4.1.2 to derive ∇xF (x) = E[∇xf(x, Z)].

Note that this property holds for fixed x ∈ Rd and we will extend this behavior to the conditional

expectation E[· | F ], where it will be particularly relevant that (Xk)k∈N is F -adapted and Zk+1 is

independent of Fk.

4.1.1 Technical detail: Factorization of conditional expectation

In this section, we will discuss one important property which is needed for the verification of

∇xf(Xk, Zk+1) as an unbiased estimator of ∇xF (Xk) conditioned on the iterations of SGD rep-

resented through the natural filtration (Fk)k∈N. In the literature of SGD it is often claimed that

E[∇xF (Xk) − E[∇xf(Xk, Zk+1) | Fk] = 0, since it is assumed that ∇xf(x, Zk+1) is an unbiased

estimator of ∇xF (x) for every x ∈ Rd. However, in general this implication is non-trivial and we

will need to investigate some more work. It turns out that the verification will require technical

tools from measure theory such as the monotone class theorem in order to derive some form of

factorization of the conditional expectation.

We will prove the following Lemma which can be found in [5, Proposition 1.12] and [9, Corol-

lary 2.9].

Lemma 4.1.6. Let

• (Ω,A,P) be a probability space, F ⊂ A be some sub-σ-algebra of A on Ω,

• (X,X ) and (Y,Y) be measurable spaces, X : Ω → X be A/X -measurable and indepen-

dent of F , and Y : Ω → Y be F/Y-measurable.
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• Φ : X×Y → R be (X ⊗Y)/B(R)-measurable with E[|Φ(X, Y )|] < ∞, and E[|Φ(X, y)|] <
∞ for all y ∈ Y.

With φ : Y → R defined by φ(y) = E[Φ(X, y)], y ∈ Y we have

1. φ is Y/B(R)-measurable,

2. for all A ∈ F it holds true that

E[Φ(X, Y )1A] = E[φ(Y )1A].

Remark 4.1.7. We consider Lemma 4.1.6 as a generalization of the following rule for conditional

expectation. Let X, Y be real-valued random variables on (Ω,A,P), F ⊂ A be some sub-σ-algebra

and X be independent of F . Then we can compute the conditional expectation

E[X · Y | F ] = E[X] · E[Y | F ].

For Y being F -measurable, we deduce the assertion of Lemma 4.1.6 with Φ(x, y) = x · y.

Caution: We have some minor conflict of notation. When applying Lemma 4.1.6 to SGD, the

random variables Zk will take the role of X and the random variables Xk will take the role of Y .

Proof of Lemma 4.1.6. Firstly, note that it follows from Fubini’s theorem that φ is Y/B(R)-

measurable. Let us start with a brief outline of the proof for the second assertion:

Step 1 We prove that the assertion holds for Φ(x, y) = 1B(x, y) with arbitrary B ∈ X ⊗ Y .

Step 2 We use step 1 in order to prove the assertion for step functions ΦN(x, y) =
∑N

k=1 dk1Dk
(x, y)

for dk ≥ 0 and Dk ∈ X ⊗ Y .

Step 3 We prove the assertion for positive functions Φ, which can be expressed as limit of monoton-

ically increasing step functions.

Step 4 We finish the proof by splitting Φ into positive and negative part.

We go through all of the steps.

Step 1: Let B ∈ X⊗Y be arbitrary and consider Φ(x, y) = 1B(x, y) as well as φ(y) = E[1B(X, y)].

We will apply the strategy discussed in Remark A.3.6 in order to verify that the property

E[1B(X, Y )1A] = E[φ(Y )1A], for all A ∈ F

is satisfied for any B ∈ X ⊗ Y . We define the set

M = {D ∈ X ⊗ Y | E[1D(X, Y )1A] = E[(E[1D(X, y)]) |y=Y 1A], for all A ∈ F},
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which will be the candidate for the Dynkin system. Moreover, we consider the ∩-stable generator

E = {S ∈ X ⊗ Y | S = E1 × E2, E1 ∈ X , E2 ∈ Y}

with σ(E) = X ⊗ Y . We need to prove that M is a Dynkin system, and E ⊂ M. We begin with

the latter property. Let E1 ∈ X and E2 ∈ Y , then we have for all A ∈ F that

E[1E1×E2(X, Y )1A] = P({X ∈ E1} ∩ {Y ∈ E2} ∩ A)

X indep. F
= P({X ∈ E1})P({Y ∈ E2} ∩ A)

= E[E[1E1(X)]1E2(Y )1A]

= E[(E[1E1(X)1E2(y)]) |y=Y 1A]

= E[(E[1E1×E2(X, y)]) |y=Y 1A],

which proves that E1×E2 ∈ M, i.e. E ⊂ M. Next, it is easy to verify, that M is a Dynkin system

(we will skip the details here). Therefore, using Theorem A.3.5, we imply that

X ⊗ Y = σ(E)
E ∩−stable

= d(E)
E⊂M
⊂ d(M)

M Dynkin system
= M ⊂ X ⊗Y ,

which means that for all B ∈ X ⊗ Y we have

E[1B(X, Y )1A] = E[φ(Y )1A], for all A ∈ F ,

which finishes step 1.

Step 2: Let Φ(x, y) =
∑N

k=1 dk1Dk
(x, y) for dk ≥ 0 and Dk ∈ X ⊗ Y . We apply linearity of the

expectation and step 1 to obtain

E[Φ(X, Y )1A] =
N∑
k=1

dkE[1Dk
(X, Y )1A]

step 1
=

N∑
k=1

dkE[(E[1Dk
(X, y)) |y=Y 1A]

= E[

(
E[

N∑
k=1

dk1Dk
(X, y)

)
|y=Y 1A] = E[(E[Φ(X, y)]) |y=Y 1A] = E[φ(Y )1A].

Step 3: Let Φ : X×Y → [0,∞) be (X⊗Y)/B([0,∞))-measurable, then we can find a monotonically

increasing sequence of step functions (Φn)n∈N,

Φn(x, y) =
Nn∑
k=1

d
(n)
k 1

D
(n)
k

(x, y),
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such that limn→∞ Φn(x, y) = Φ(x, y) point-wise. Monotonicity is to understand in the sense of

Φn(x, y) ≤ Φn+1(x, y) for all (x, y) ∈ X × Y and all n ∈ N. We apply monotone convergence and

the findings of step 2 to imply

E[Φ(X, Y )1A]E[ lim
n→∞

Φn(X, Y )1A] = lim
n→∞

E[Φn(X, Y )1A]

= lim
n→∞

E[(E[Φn(X, y)]) |y=Y 1A]

= E[(E[Φ(X, y)]) |y=Y 1A] = E[φ(Y )1A],

for all A ∈ F .

Step 4: Let Φ : X× Y → R be (X ⊗ Y)/B(R)-measurable and consider the decomposition

Φ(x, y) = Φ+(x, y) − Φ−(x, y)

for positive and (X ⊗ Y)/B(R)-measurable functions Φ+,Φ−. Moreover, we define

φ+(y) = E[Φ+(X, y)] ≤ E[|Φ(X, y)|] < ∞, φ−(y) = E[Φ−(X, y)] ≤ E[|Φ(X, y)|] < ∞

where we can write

φ(y) = E[Φ(X, y)] = E[Φ+(X, y) − Φ−(X, y)] = φ+(y) − φ−(y).

We apply linearity of the expectation and the findings of step 3 to deduce

E[Φ(X, Y )1A] = E[Φ+(X, Y )1A] − E[Φ−(X, Y )1A] = E[φ+(Y )1A] − E[φ−(Y )1A] = E[φ(Y )1A].

Remark 4.1.8. We can apply Lemma 4.1.2 and Lemma 4.1.6 to verify (4.3).

4.1.2 Almost sure convergence for non-convex cost function

In the following section, we will analyze the almost sure convergence behavior of SGD. We will make

use of an almost sure convergence theorem of Robbins & Siegmund [20] which is based on Doob’s

supermartingale convergence theorem. We refer to Appendix A.4 for a brief summary/recall on

martingales.

Theorem 4.1.9 (Robbins & Siegmund). Let (Ω,A,F ,P) be a filtered probability space, (Zk)k∈N,
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(Ak)k∈N, (Bk)k∈N and (Ck)k∈N be non-negative and F-adapted stochastic processes, such that

∞∑
k=0

Ak < ∞ and
∞∑
k=0

Bk < ∞

almost surely. Moreover, suppose

E[Zk+1 | Fk] ≤ Zk(1 + Ak) + Bk − Ck.

Then

1. there exists an almost surely finite random variable Z∞ such that Zk → Z∞ almost surely

for k → ∞,

2. it holds true that
∑∞

k=0Ck < ∞ almost surely.

Proof. We want to apply Doob’s martingale convergence theorem, Theorem A.4.2, in order to

prove the assertion. Therefore, we are going to construct a supermartingale based on the stated

stochastic processes.

Step 1 (construction of a supermartingale): We define the auxiliary random variables

Ẑk =
Zk∏k−1

i=0 (1 + Ai)
, B̂k =

Bk∏k
i=0(1 + Ai)

, Ĉk =
Ck∏k

i=0(1 + Ai)

and observe that

E[Ẑk+1 | Fk] =

(
k∏

i=0

(1 + Ai)
−1

)
E[Zk+1 | Fk] ≤

(
k∏

i=0

(1 + Ai)
−1

)
(Zk(1 + Ak) + Bk − Ck)

= Ẑk + B̂k − Ĉk.

(4.4)

Our candidate for the supermartingale is

Mk = Ẑk −
k−1∑
i=0

(B̂i − Ĉi),

for which we observe

E[Mk+1 | Fk] = E[Ẑk+1 | Fk] −
k∑

i=0

(
E[B̂i | Fk] − E[Ĉi | Fk]

)
≤ Ẑk + B̂k − Ĉk −

k∑
i=0

(B̂i − Ĉi)

= Ẑk −
k−1∑
i=0

(B̂i − Ĉi) = Mk,

where we have used (4.4) and that B̂i, Ĉi are Fk-measurable for i ≤ k. In order to apply Doob’s
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martingale convergence theorem, we need to verify supk∈N E[M−
k ] < ∞. Since in general, it is not

obvious that this property will hold, we introduce a localization

Step 2 (localization): We define the stopping time τε = inf{k ≥ 1 :
∑k

i=0 B̂i > ε} for ε > 0.

Since (Bk)k∈N is F -adapted, τε is a stopping time with respect to F . Moreover, (Mk∧τε)k∈N is still

a supermartingale, and additionally satisfies

Mk∧τε = Ẑk∧τε −
(k∧τε)−1∑

i=0

B̂i +

(k∧τε)−1∑
i=0

Ĉi ≥ −
(k∧τε)−1∑

i=0

B̂i ≥ −ε,

since
∑(k∧τε)−1

i=0 B̂i ≤ ε by construction of the stopping time τε. Since (Mk∧τε)k∈N is uniformly

bounded from below (and due to the monotonic decrease of the expectation for supermartingales)

we obtain

sup
k∈N

E[|Mk∧τε|] < ∞.

We are now ready to apply Theorem A.4.2 to find a integrable random variable M ε
∞ with limk→∞Mk∧τε =

M ε
∞ almost surely. Next, we have to remove the stopping time.

Step 3 (remove localization): Let (εn)n∈N be an increasing sequence with limn→∞ εn = ∞.

First note, that for each n ∈ N we have

lim
k→∞

Mk∧τεn (ω) = M εn
∞ (ω)

for almost all ω ∈ Ω. We observe that for each ω ∈ Ω with
∑∞

i=0 B̂i(ω) < ∞ there exists N ∈ N
such that ω ∈ {τεN = ∞}, i.e. for this ω it holds

Mk∧τεN (ω) = Mk(ω)

for all k ∈ N, but similarly

lim
k→∞

Mk(ω) = lim
k→∞

Mk∧τεN (ω) = M τN
∞ (ω) < ∞,

where the last inequality < ∞ holds since E[|M τN
∞ |] < ∞.

Step 4 (conclusion): Finally, we move back to the assertion regarding (Zk)k∈N and (Ck)k∈N.

Observe that

−∞ < −
∞∑
i=0

B̂i(ω) ≤ lim
k→∞

Mk(ω) = lim
k→∞

Ẑk(ω) −
k−1∑
i=0

(B̂i(ω) − Ĉi(ω)) < ∞,
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where Ẑk(ω), B̂i(ω), Ĉi(ω) ≥ 0 implying that

lim
k→∞

Ẑk(ω) < ∞ and
∞∑
i=0

Ĉi(ω) < ∞

for almost all ω ∈ Ω. Moreover, it holds true that

Zk(ω) = Ẑk(ω)
k−1∏
i=0

(1 + Ai(ω)),

where both Ẑk(ω) and
∏k−1

i=0 (1 + Ai(ω)) converge for almost all ω ∈ Ω. The latter one follows by

monotonicity and

0 ≤
k−1∏
i=0

(1 + Ai(ω)) ≤ exp(
k−1∑
i=0

Ai(ω)),

where the upper bound converges by assumption. Therefore, limk→∞ Zk(ω) = Z∞(ω) exists for

almost all ω ∈ Ω. Similarly, we have

k∑
i=0

Ci(ω) =
k∑

i=0

Ĉi(ω)
i∏

j=0

(1 + Aj(ω)) ≤

(
∞∏
j=0

(1 + Aj(ω))

)
k∑

i=0

Ĉi(ω)

which implies
∞∑
i=0

Ci(ω) < ∞

for almost all ω ∈ Ω.

The following corollary is an easy, but very useful, extension of Theorem 4.1.9.

Corollary 4.1.10. Let (Ω,A,F ,P) be a filtered probability space, (Zk)k∈N, (Ak)k∈N, (Bk)k∈N

and (Dk)k∈N be non-negative and F -adapted stochastic processes, such that

∞∑
k=0

Ak < ∞,

∞∑
k=0

Bk < ∞ and
∞∑
k=0

Dk = ∞

almost surely. Moreover, suppose

E[Zk+1 | Fk] ≤ Zk(1 + Ak −Dk) + Bk.

Then Zk converges almost surely to 0 for k → ∞.
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Exercise 4.1.1. Prove Corollary 4.1.10.

We are now ready to prove convergence of SGD in the non-convex setting. We will assume that

the cost function F is L-smooth and lower bounded, i.e. infx∈Rd F (x) > −∞. Similar to the case

of gradient descent, we do not expect more than convergence to stationary points. In particular,

we are able to extend Theorem 2.3.8 to the stochastic version.

Theorem 4.1.11 (SGD almost sure convergence). Let F : Rd → R be L-smooth and bounded

from below by F∗ = infx∈Rd F (x) > −∞, let (αk)k∈N (deterministic or F-adapted) satisfy

αk > 0,
∞∑
k=0

αk = ∞ and
∞∑
k=0

α2
k < ∞

(almost surely). We assume that the Assumptions of Lemma 4.1.2 are satisfied, and

E[∥∇xf(x, Z) − E[∇xf(x, Z)]∥2] ≤ c(1 + (F (x) − F∗))

for some constant c > 0 and all x ∈ Rd. Moreover, let X0 be a random variable such that

E[F (X0)] < ∞ and (Xk)k∈N be the sequence of random variables generated by Algorithm 6.

Then it holds true that the sequence of random variables (F (Xk))k∈N converges almost surely

to some random variable F∞, almost surely finite, and

lim
k→∞

∥∇xF (Xk)∥2 = 0

almost surely.

Proof. We define the natural filtration F = (Fk)k∈N through Fk = σ(Xm,m ≤ k) = σ(X0, Zm,m ≤
k) and note that (αk)k∈N is F -adapted per construction. Using the L-smoothness of F we obtain

(path-wise) that

F (Xk+1) = F (Xk − αk∇xf(Xk, Zk+1))

≤ F (Xk) − αk⟨∇xF (Xk),∇xf(Xk, Zk+1)⟩ + α2
k

L

2
∥∇xf(Xk, Zk+1)∥2

= F (Xk) − αk∥∇xF (Xk)∥2 + αk⟨∇xF (Xk),Mk+1⟩

+ α2
k

L

2
(∥∇xF (Xk)∥2 − 2⟨∇xF (Xk),Mk+1⟩ + ∥Mk+1∥2,

where Mk+1 := ∇xF (Xk) −∇xf(Xk, Zk+1). By Lemma 4.1.2 and Lemma 4.1.6 we obtain

E[Mk+1 | Fk] = 0
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and

E[∥Mk+1∥2 | Fk] ≤ c(1 + (F (Xk) − F∗)).

This yields

E[F (Xk+1) − F∗ | Fk] ≤ (F (Xk) − F∗) +
L

2
(α2

k − αk)∥∇xF (Xk)∥2 +
L

2
α2
kc(1 + (F (Xk) − F∗))

= (1 + c
L

2
α2
k)(F (Xk) − F∗) + c

L

2
α2
k − αk(1 − L

2
αk)∥∇xF (Xk)∥2.

W.l.o.g. we assume that αk ≤ (1 − ε) 2
L

for some ε ∈ (0, 1) (else let k be sufficiently large), such

that (1− L
2
αk) ≥ ε > 0. We can now apply Theorem 4.1.9 to imply that limk→∞ F (Xk)−F∗ exists

almost surely and is finite, as well as

ε

∞∑
k=0

αk∥∇xF (Xk)∥2 ≤
∞∑
k=0

αk(1 − L

2
αk)∥∇xF (Xk)∥2 < ∞

almost surely. Since we have assumed
∑∞

k=0 αk = ∞ almost surely, using the same argument as in

the proof of Theorem 2.3.8 path-wise we obtain

lim
k→∞

∥∇xF (Xk)∥2 = 0

almost surely.

Remark 4.1.12. We note that the condition

E[∥∇xf(x, Z) − E[∇xf(x, Z)]∥2] ≤ c(1 + (F (x) − F∗))

in Theorem 4.1.11 can also be replaced by

E[∥∇xf(x, Z) − E[∇xf(x, Z)]∥2] ≤ c(1 + ∥∇xF (x)∥2),

see for example [2]. Both conditions are relaxations of an uniform (in x ∈ Rd) variance bound

E[∥∇xf(x, Z) − E[∇xf(x, Z)]∥2] ≤ c.

Before delving into the derivation of convergence rates for SGD, we formulate the following Corol-

lary which states almost sure convergence under same assumptions of Theorem 4.1.11, but with

the additional property of strong convexity of F .

Corollary 4.1.13. Suppose that the assumptions of Theorem 4.1.11 are satisfied and addi-

tionally, assume that F is µ-strongly convex. Then the sequence of random variables (Xk)k∈N
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converges almost surely to the unique global minimum x∗ ∈ Rd of F .

Exercise 4.1.2. Prove Corollary 4.1.13.

Similar as in the setting of the deterministic gradient descent scheme, the previous result states

convergence to a stationary point without explicit rate of convergence, but under rather mild

assumptions on the cost function F . In order to obtain a speed of convergence, additional properties

such as convexity must be assumed for F . We will observe that the convergence behavior is worse

than in the setting of deterministic gradient descent methods. However, in order to make a fair

comparison between deterministic and stochastic gradient descent schemes, one must consider the

complexity of both algorithms, including the computational cost of implementation.

4.1.3 Convergence for convex and smooth cost function

In the following, we will prove convergence of SGD under the assumption that the cost function is

convex. Compared to the convergence result for gradient descent schemes, we will prove a slower

convergence behavior. The following Theorem presents the resulting error bound in expectation.

Theorem 4.1.14 (SGD for convex and smooth cost function). Let F : Rd → R be convex and

L-smooth, and assume that the set of global minima of F is non-empty. We assume that the

assumptions of Lemma 4.1.2 are satisfied and that there exists c > 0 such that

E[∥∇xf(x, Z) − E[∇xf(x, Z)]∥2] ≤ c

for all x ∈ Rd. Let X0 be a random variable such that E[|F (X0)| + ∥X0 − x∗∥2] < ∞ for some

x∗ ∈ arg minx∈Rd F (x). Moreover, let (Xk)k∈N be generated by Algorithm 6 with deterministic

and decreasing sequence of step sizes (αk)k∈N such that αk ∈ (0, 1
L

]. Then for

X̄N :=
N−1∑
k=0

wN
k Xk+1, wN

k :=
αk∑N−1
j=0 αj

, N ≥ 2,

it holds true that

E[F (X̄N) − F (x∗)] ≤
E[∥X0 − x∗∥2]

2
∑N−1

j=0 αj

+
c(1 + α0L)

∑N−1
k=0 α2

k

2
∑N−1

j=0 αj

.

Proof. Let x∗ ∈ arg minx∈Rd F (x) and Fk = σ(Xm,m ≤ k) be the natural filtration. Similar as in

the proof of Theorem 4.1.11 we have

E[F (Xk+1)] = E[E[F (Xk+1) | Fk]] ≤ E[F (Xk)] − αk(1 − Lαk

2
)E[∥∇xF (Xk)∥2] + c

L

2
α2
k.
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We can also derive the following,

∥Xk+1 − x∗∥2 = ∥Xk − x∗∥2 − 2αk⟨∇xf(Xk, Zk+1), Xk − x∗⟩ + α2
k∥∇xf(Xk, Zk+1)∥2

= ∥Xk − x∗∥2 − 2αk⟨∇xF (Xk), Xk − x∗⟩ + α2
k∥∇xF (Xk)∥2

+ 2αk⟨Mk+1, Xk − x∗⟩ + α2
k∥Mk+1∥2 + 2α2

k⟨Mk+1,∇xF (Xk)⟩,

where again Mk+1 = ∇xF (Xk) − ∇xf(Xk, Zk+1). Taking the conditional expectation wrt. Fk

results in the bound

E[∥Xk+1 − x∗∥2 | Fk] = ∥Xk − x∗∥2 − 2αk⟨∇xF (Xk), Xk − x∗⟩ + α2
k∥∇xF (Xk)∥2 + α2

kE[∥Mk+1∥2 | Fk]

≤ ∥Xk − x∗∥2 − 2αk⟨∇xF (Xk), Xk − x∗⟩ + α2
k∥∇xF (Xk)∥2 + α2

kc .

We take again expectation and rewrite the derived inequality in form

2αkE[⟨∇xF (Xk), Xk − x∗⟩] ≤ E[∥Xk − x∗∥2] − E[∥Xk+1 − x∗∥2] + α2
kE[∥∇xF (Xk)∥2] + α2

kc .

By convexity of F we have almost surely that

F (Xk) ≤ F (x∗) + ⟨Xk − x∗,∇xF (Xk)⟩,

such that

E[F (Xk+1)] ≤ F (x∗) + E[⟨Xk − x∗,∇xF (Xk)⟩] − αk(1 − Lαk

2
)E[∥∇xF (Xk)∥2] + c

L

2
α2
k

≤ F (x∗) +
1

2αk

(
E[∥Xk − x∗∥2] − E[∥Xk+1 − x∗∥2]

)
− αk

(
1

2
− Lαk

2

)
E[∥∇xF (Xk)∥2] + (

αk

2
+

Lα2
k

2
)c

≤ F (x∗) +
1

2αk

(
E[∥Xk − x∗∥2] − E[∥Xk+1 − x∗∥2]

)
+

(
αk

2
+

Lα2
k

2

)
c,

where we have used that (1
2
− Lαk

2
) ≥ 0. Note that

∑N−1
k=0 wN

k = 1, such that by Jensen’s inequality
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it follows that

E[F (X̄N) − F (x∗)] ≤
1∑N−1

j=0 αj

N−1∑
k=0

αkE[F (Xk+1) − F (x∗)]

≤ 1

2
∑N−1

j=0 αj

N−1∑
k=0

(
E[∥Xk − x∗∥2] − E[∥Xk+1 − x∗∥2]

)
+

1∑N−1
j=0 αj

N−1∑
k=0

(
α2
k

2
+

α3
kL

2

)
c

≤ E[∥X0 − x∗∥2]
2
∑N−1

j=0 αj

+
c(1 + α0L)

∑N−1
k=0 α2

k

2
∑N−1

j=0 αj

,

where we have used that αk is decreasing and therefore, αk ≤ α0.

From the derived upper bound we obtain convergence under the sufficient condition that

∞∑
k=0

αj = ∞ and
∞∑
k=0

α2
k < ∞.

In order to quantify the speed of convergence, we provide a specific choice of the step sizes. Note

that in the case below, we have
∑∞

k=0 α
2
k = ∞ but∑N

k=0 α
2
k∑N

k=0 αk

→ 0 .

Corollary 4.1.15. Suppose that the same conditions of Theorem 4.1.14 are satisfied. More-

over, let αk := 1
L
√
k+1

. Then it holds true that

E[F (X̄N) − F (x∗)] ∈ O
(

log(N)√
N

)
.

Proof. Firstly, we observe that

N−1∑
j=0

αj =
1

L

N−1∑
j=0

1√
j + 1

≥ 1

L

∫ N−1

1

1√
t + 1

dt =
2

L
(
√
N −

√
2) ≥ 1

L

√
N,

for sufficiently large N (N ≥ 8). On the other side, we have

N−1∑
j=0

α2
j =

1

L2

N−1∑
j=0

1

j + 1
≤ 1

L2

(
1 +

∫ N−1

0

1

t + 1
dt

)
=

1

L2
(1 + log(N)).
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By the upper bound derived in Theorem 4.1.14, we obtain

E[F (X̄N) − F (x∗)] ≤
LE[∥X0 − x∗∥2] + c

2L
(1 + α0L)

√
N

+
c

2L
(1 + α0L)

log(N)√
N

∈ O
(

log(N)√
N

)
.

4.1.4 Convergence for strongly convex and smooth cost function

If we additionally assume strong convexity, we can further improve the derived upper bound.

Moreover, we can even prove convergence to a unique global minimum of F , as we also did for

the deterministic gradient descent scheme. However, due to the stochastic approximation of the

gradient, we lose the behavior of linear convergence.

Theorem 4.1.16 (SGD for strong convex and smooth cost function). Let F : Rd → R be µ-

strongly convex and L-smooth. We assume that the assumptions of Lemma 4.1.2 are satisfied

and that there exists c > 0 such that

E[∥∇xf(x, Z) − E[∇xf(x, Z)]∥2] ≤ c

for all x ∈ Rd. Let X0 be a random variable such that E[|F (X0)| + ∥X0 − x∗∥2] < ∞, where

x∗ ∈ Rd is the unique global minimum of F . Moreover, let (Xk)k∈N be generated by Algorithm 6

with deterministic and decreasing sequence of step sizes (αk)k∈N such that αk ∈ (0, 1
L

]. Then it

holds true that

E[∥Xk+1 − x∗∥2] ≤ (1 − αkµ)E[∥Xk − x∗∥2] + cα2
k

for all k ≥ 0.

Proof. Let Fk = σ(Xm,m ≤ k) be again the natural filtration and recall that we have derived in

the proof of Theorem 4.1.14 that

E[∥Xk+1 − x∗∥2] ≤ E[∥Xk − x∗∥2] − 2αkE[⟨∇xF (Xk), Xk − x∗⟩] + α2
kE[∥∇xF (Xk)∥2] + α2

kc.

By µ-strong convexity we have that

F (x∗) − F (Xk) ≥ ⟨x∗ −Xk,∇xF (Xk)⟩ +
µ

2
∥Xk − x∗∥2,

which can be rewritten as

−⟨Xk − x∗,∇xF (Xk)⟩ ≤ − (F (Xk) − F (x∗)) −
µ

2
∥Xk − x∗∥2 almost surely .
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Combining both inequalities, we obtain that

E[∥Xk+1 − x∗∥2] ≤ (1 − αkµ)E[∥Xk − x∗∥2] − 2αkE[F (Xk) − F (x∗)] + α2
kE[∥∇xF (Xk)∥2] + α2

kc .

The assumption of L-smoothness implies that

−(F (Xk) − F (x∗)) ≤ − 1

2L
∥∇xF (Xk)∥2 almost surely,

such that

E[∥Xk+1 − x∗∥2] ≤ (1 − αkµ)E[∥Xk − x∗∥2] + αk(αk −
1

L
)E[∥∇xF (Xk)∥2] + α2

kc

≤ (1 − αkµ)E[∥Xk − x∗∥2] + α2
kc,

where we have used that αk ≤ 1
L

.

From the above derived error bound we observe that the iterated error decomposes into the error

arising due to the optimization error from the exact gradient descent scheme applied to strongly

convex and smooth cost functions, and into an error arising from the variance of the stochastic

approximation of the gradients. In order to obtain a convergence rate along the iterations, we

need to balance both errors by either decreasing the step size αk sufficiently or by decreasing the

variance term. The latter one will be the topic of Section 4.2, where we consider methods of

variance reduction. In the following, we will present the former approach of decreasing the step

size to 0.

Corollary 4.1.17. Suppose that the same conditions as in Theorem 4.1.16 are satisfied. More-

over, let αk = τ
µ(k+s)

for some τ ≥ 2 and s ≥ κτ = L
µ
τ . Then it holds true that α0 ≤ 1

L
and

there exists γ ≥ (s + 1)2 max(E[∥X0 − x∗∥2], τ2c
sµ2 ) such that

E[∥Xk − x∗∥2] ≤
γ

k + s

for all k ≥ 1.

Proof. Firstly, we observe that by definition it holds true that

α0 =
τ

µ · s
≤ τµ

µLτ
=

1

L
,

such that αk ≤ 1
L

for all k ≥ 0. We define ∆k = E[∥Xk − x∗∥2] and prove the second claim via
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induction. For k = 1 it holds true that

∆1 ≤ (1 − α0µ)∆0 + α2
0c ≤ (1 − 1

κ
)∆0 +

τ 2c

µ2s

≤
(s + 1)2 max(∆0,

τ2c
µ2s

)

s + 1
≤ γ

s + 1
.

Now, suppose that the upper bound ∆k ≤ γ
k+s

is satisfied for some k ≥ 1, then it follows that

∆k+1 ≤ (1 − αkµ)∆k + α2
kc ≤

(
1 − τ

k + s

)
γ

k + s
+

τ 2c

µ2

1

(k + s)2

=
γ

k + 1 + s
+

γ

(k + s)(k + 1 + s)
− γτ

(k + s)2
+

τ 2c

µ2

1

(k + s)2

≤ γ

k + 1 + s
+

γ − τγ + τ2c
µ2

(k + s)2

≤ γ

k + 1 + s
,

where we have used that γ(1 − τ) ≤ −γ and γ ≥ (s + 1) max(∆0,
τ2c
µ2 ) ≥ τ2c

µ2 .

4.1.5 Convergence under PL-condition and smooth cost function

Similar to the deterministic gradient descent method, we are able to prove convergence under the

PL-condition. We obtain the same type of convergence behavior as in the strong convex setting,

with the main difference being the error discrepancy in the cost function evaluation.

Theorem 4.1.18 (SGD under PL-condition). Let F : Rd → R be L-smooth and assume that

F satisfies the PL-condition

∥∇xF (x)∥2 ≥ 2r(F (x) − F∗)

for some r ∈ (0, L) and all x ∈ Rd, where F∗ = infx∈Rd F (x) > −∞. We assume that the

assumptions of Lemma 4.1.2 are satisfied and that there exists c > 0 such that

E[∥∇xf(x, Z) − E[∇xf(x, Z)]∥2] ≤ c

for all x ∈ Rd. Let X0 be a random variable such that E[|F (X0)| + ∥X0∥2] < ∞, and let

(Xk)k∈N be generated by Algorithm 6 with deterministic and decreasing sequence of step sizes
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(αk)k∈N such that αk ∈ (0, 1
L

]. Then it holds true that

E[F (Xk) − F∗] ≤ (1 − αkr)E[F (Xk) − F∗] + c
L

2
α2
k .

Proof. We have already seen that under L-smoothness we obtain the following bound

E[F (Xk+1) − F∗] ≤ E[F (Xk) − F∗] − αk(1 − L

2
αk)E[∥∇xF (Xk)∥2] + c

L

2
α2
k .

Under the PL-condition and the fact that 1 − L
2
αk ≥ 1

2
> 0, we improve the upper bound to

E[F (Xk+1) − F∗] ≤ E[F (Xk) − F∗] − αk(1 − L

2
αk)2rE[F (Xk) − F∗] + c

L

2
α2
k

= (1 − αk(1 − L

2
αk)2r)E[F (Xk) − F∗] + c

L

2
α2
k

≤ (1 − αkr)E[F (Xk) − F∗] + c
L

2
α2
k .

We can apply the same step size strategy as in the strongly convex setting to derive convergence.

Corollary 4.1.19. Suppose that the same conditions as in Theorem 4.1.18 are satisfied. More-

over, let αk = τ
r(k+s)

for some τ ≥ 2 and s = L
r
τ . Then it holds true that α0 ≤ 1

L
and there

exists γ ≥ (s + 1)2 max(E[F (X0) − F∗],
τ2c
r2

) such that

E[F (Xk) − F∗] ≤
γ

k + s

for all k ≥ 1.

Proof. The proof proceeds line by line as the proof of Corollary 4.1.17.

4.1.6 Discussion about the complexity of SGD

In the previous sections, we derived convergence rates of SGD under convexity, strong convexity

and the PL-condition. We obtained similar results for the deterministic GD scheme. Comparing

both GD and SGD, we observe that the derived results for SGD are significantly worse.

convex strongly convex PL

GD O
(

1
k+1

)
O(ρk), ρ ∈ (0, 1) O(ρk), ρ ∈ (0, 1)

SGD O
(

log(k)√
k+1

)
O( 1

k+1
) O( 1

k+1
)

However, the implementation of GD might be expensive (e.g. for large data sets in empirical risk

minimization) or even impossible. In this case, it is infeasible to implement GD and there is no

other choice to work with SGD.
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The comparison of GD and SGD gets more involved in cases where we are able to compute the

exact gradient. Let us consider the empirical risk minimization problem

min
x∈Rd

FN(x), Fn(x) =
1

N

N∑
i=1

f(x, z(i)), z(i) ∈ Rp, i = 1, . . . , N,

where we assume that x 7→ f(x, z(i)) are µ-strongly convex and L-smooth for all i. We have seen

that GD with a fixed step size ᾱ ≤ 1
L

converges linearly with rate ρ ∈ (0, 1) such that

∥xGD
k,N − xN∥2 ≤ ρk∥x0 − xN∥2,

where (xGD
k,N)k∈N denotes the iteration generated by GD and xN = arg minx∈Rd FN(x). In compar-

ison, SGD (with decreasing step size) converges sub-linear with

E[∥XSGD
k,N − xN∥2] ≤

γ

k + s
.

In order to achieve an error of a certain tolerance ε > 0 we need to iterate

(i) kGD ≥ O(log(ε−1)), such that ∥xGD
k,N − xN∥2 ≤ ε,

(ii) kSGD ≥ O(ε−1), such that E[∥XSGD
k,N − xN∥2] ≤ ε.

The first guess is, that as long we are able to compute the full gradient, there is no reason to

implement SGD over GD. However, this train of thought is too naive. The reason is, that up

to now we have ignored the empirical error which occurs through solving xN = arg min FN(x).

Indeed, xN should be treated as random variable XN , which depends on Z(1), . . . , Z(N). We want

to quantify the error of both GD and SGD to x∗ = arg minx∈Rd F (x), where F (x) = E[f(x, Z)]

is the expected risk. For SGD, implemented through Algorithm 6, we again obtain convergence

(with decreasing step size) in form of

E[∥XSGD
k,N − x∗∥2] ≤

γ

k + s
.

However, the situation changes for GD. Assuming that we are not able to compute the exact

gradient of F , we firstly have to approximate F through FN and then apply GD to find XN =

arg minx∈Rd FN(x). The final error decomposes to

1

2
E[∥XGD

k,N − x∗∥2] ≤ E[∥XGD
k,N −XN∥2] + E[∥XN − x∗∥2] ≤ ρkE[∥XGD

0,N −XN∥2] + E[∥XN − x∗∥2],

where XN denotes the random minimum of FN given Z(1), . . . , Z(N). In the following, we study the

error E[∥XN − x∗∥2] for strongly convex cost functions depending on the number of data points.
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Theorem 4.1.20. Let F : Rd → R be µ-strongly convex and let f : Rd × Rp → R such that

x 7→ f(x, z) is µ-strongly convex for all z ∈ Rp. Moreover, let x∗ = arg minx∈Rd F (x), and

assume that E[∇xf(x∗, Z)] = ∇xF (x∗) and

E[∥∇xf(x∗, Z) − E[∇xf(x∗, Z)]∥2] ≤ B

for some B > 0. Let Z(1), . . . , Z(N) be a family of iid. random variables with distribution µZ,

then it holds true that

E[∥Xn − x∗∥2] ≤
B

µ2

1

N
,

where XN = arg minx∈Rd FN(x).

Proof. Let

x∗ = arg min
x∈Rd

F (x), F (x) = E[f(x, Z)]

XN = arg min
x∈Rd

FN(x), FN(x) =
1

N

N∑
i=1

f(x, Z(i)),

which means that ∇xF (x∗) = 0 and ∇xFN(XN) = 0 almost surely. By strong convexity we can

apply Lemma 2.3.17 to imply

∥XN − x∗∥2 ≤
1

µ
⟨Xn − x∗,∇xFN(XN) −∇xFN(x∗)⟩ =

1

µ
⟨Xn − x∗,∇xF (x∗) −∇xFN(x∗)⟩

≤ 1

µ
∥XN − x∗∥∥∇xF (x∗) −∇xFN(x∗)∥,

almost surely, where we have used Cauchy-Schwarz inequality in the last line. Reordering the

above inequality leads to

∥XN − x∗∥ ≤ 1

µ
∥∇xF (x∗) −∇xFN(x∗)∥ (4.5)

almost surely. Note that

E[∇xFN(x∗)] = E[
1

N

N∑
i=1

∇xf(x∗, Z
(i))] = ∇xF (x∗)
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such that we obtain

E[∥∇xFN(x∗) −∇xF (x∗)∥2] = E[∥ 1

N

N∑
i=1

(
∇xf(x∗, Z

(i)) − E[∇xf(x∗, Z
(i))]
)
∥2]

=
1

N2

N∑
i,j=1

E[⟨∇xf(x∗, Z
(i)) − E[∇xf(x∗, Z

(i))],

∇xf(x∗, Z
(j)) − E[∇xf(x∗, Z

(j))]⟩]

=
1

N2

N∑
i=1

E[∥∇xf(x∗, Z
(i)) − E[∇xf(x∗, Z

(i))]∥2] ≤ B

N
,

where we have used that the Z(1), . . . , Z(N) are iid. random variables. Together with inequality (4.5)

we close the proof with

E[∥XN − x∗∥2] ≤
B

µ2

1

N
.

The overall error of GD is then given by

1

2
E[∥XGD

k,N − x∗∥2] ≤ c(
1

N
+ ρk)

for some constant c > 0. Therefore, it is sufficient to choose N ≥ O(ε−1) and k ≥ O(log(ε−1),

such that the computational cost of GD are given by

costGD(ε) = N · k ≃ ε−1 log(ε−1),

whereas the computational cost of SGD are given by

costSGD(ε) = 1 · k ≃ ε−1.

4.1.7 Lower bound of SGD

In the following, we will observe that we do not expect to improve the derived upper bound on

SGD in the strongly convex setting. Therefore, we consider the example of a simple quadratic

function. The example to be considered has been studied in detail in [10].

Example 4.1.21 (SGD lower error bound). Let (Zk)k∈N be a sequence of iid. random variables in

Rd with distribution µZ and E[∥Z1∥2] < ∞. We define

f(x, z) =
1

2
∥x− z∥2, x, z ∈ Rd
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and the corresponding expectation function

F (x) = E[f(x, Z)], x ∈ Rd, Z ∼ µZ .

Firstly, observe that this expectation computes as

F (x) =
1

2
E[∥x− Z∥2] =

1

2
E[∥x− E[Z]∥2] +

1

2
E[∥Z − E[Z|∥2]

such that we identify x∗ = E[Z] ∈ Rd as the global minimum of F . In this formulation we are also

able to compute exact derivatives of F and obtain

E[∥∇xf(x, Z) −∇xF (x)∥2] = E[∥(x− Z) − (x− E[Z])∥2] = E[∥Z − E[Z]∥2] =: σ2 .

Next, consider the iteration generated by SGD with sequence of step sizes αk = τ
kν
, k ∈ N for some

ν > 0 and τ > 0, which can be written as

Xk+1 = Xk −
τ

kν
(Xk − Zk+1) = (1 − τ

kν
)Xk +

τ

kν
Zk+1 .

In this specific example, we are then able to compute the iterated error analytically given by

E[∥Xk+1 − x∗∥2] = E[∥Xk+1 − E[Z]∥2]

=
(

1 − τ

kν

)2
E[∥Xk − E[Z]∥2] + 2

(
1 − τ

kν

) τ

kν
E[⟨Xk − E[Z], Zk+1 − E[Z]⟩]

+
( τ

kν

)2
E[∥Zk+1 − E[Z]∥2]

=
(

1 − τ

kν

)2
E[∥Xk − E[Z]∥2] +

( τ

kν

)2
σ2 .

It follows that

E[∥Xk − E[Z]∥2] =
k−1∏
j=0

(
1 − τ

jν

)2

E[∥X0 − E[Z]∥2] + σ2

k−1∑
j=0

( τ

kν

)2 k−1∏
i=j+1

(
1 − τ

iν

)2
≥ σ2

k−1∑
j=0

( τ

kν

)2 k−1∏
i=j+1

(
1 − τ

iν

)2
,

where the lower bound behaves as Ck−ν for sufficiently large k ∈ N, see [10] for more details. In

particular, for the choice ν = 1 the lower bound matches our derived upper bound in Section 4.1.4.
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4.2 Variance reduction

In the derived convergence results for SGD we have always assumed that ∇xf(x, Z) is an unbiased

estimator of ∇xF (x) with uniformly bounded variance

E[∥∇xf(x, Z) −∇xF (x)∥2] ≤ var .

This upper bound var > 0 occurs in all derived error bounds in a similar way:

Assumption error bound

convex C1√
k

+ var · log(k)√
k

strong convex (1 − αkµ)ek + var · α2
k

PL-condition (1 − αkr)ek + var · α2
k

In order to push the total error towards zero, we had to choose αk → 0. In the specific cases

of strong convexity or under PL-condition, we lose the behavior of linear convergence which we

obtained for the exact (deterministic) gradient descent scheme. In the deterministic setting, we

were able to choose αk = ᾱ > 0 such that

ek+1 ≤ ρ(ᾱ)ek, ρ(ᾱ) ∈ (0, 1)

By controlling the variance error term through αk → 0, we obtain an error bound for SGD of the

form

ek+1 ≤ ρkek + vark,

where ρk → 1 for k → ∞. This behavior makes the analysis challenging and in particular, we have

seen that SGD does not converge linearly.

In the following section, we consider different types of variance reduction methods, which control

the variance error term in a different way. We are no longer forced to consider αk → 0 and will

choose a fixed step size αk = ᾱ > 0 for all k ∈ N.

4.2.1 Dynamic Sampling

Our first method to be considered is called Dynamical Sampling, where we control the variance

error term through a dynamical batch-sampling strategy. The unbiased estimator of the descent di-

rection ∇xF (Xk) is estimated through a batch of samples (Z
(m)
k )k∈N, m=1,...,Bk−1

, where the random

variables are assumed to be independent in k and in m with an identical distribution µZ .

In the following, we will analyze SGD with dynamical batch-sampling. The focus will be placed

on the strongly convex setting and the method will be compared to a fixed batch-size B̄ > 0 across

all iterations. For both schemes, we will consider a fixed step size ᾱ > 0.
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Algorithm 8 SGD with dynamical sampling
1: Input:

• cost function f : Rd × Rp → R
• initial random variable X0 : Ω → Rd

• sequence of step sizes (αk)k∈N, αk > 0 (deterministic or F -adapted)

• sequence of batch sizes (Bk)k∈N

• sequence of i.i.d. random variables (Z
(m)
k )k∈N, m=1,...,Bk−1

with Z
(1)
1 ∼ µZ .

2: set k = 0
3: while ”convergence/stopping criterion not met” do
4: approximate the gradient ∇xF (Xk) through

Gk =
1

Bk

Bk∑
m=1

∇xf(Xk, Z
(m)
k+1)

5: set Xk+1 = Xk − αkGk, k 7→ k + 1
6: end while

Firstly, we discuss how the assumed uniform upper bound on the variance is effected through the

incorporation of batch-sampling.

Lemma 4.2.1. Let the assumptions of Lemma 4.1.2 be satisfied and assume that

E[∥∇xf(x, Z) −∇xF (x)∥2] ≤ c

for some c > 0 and all x ∈ Rd. Moreover, let Z(1), . . . , Z(B) be iid. random variables with

distribution µZ . Then for G := 1
B

∑B
m=1 ∇xf(x, Z(m)) it holds true that

E[∥G−∇xF (x)∥2 ≤ c

B

for all x ∈ Rd.

Proof. By E[∇xf(x, Z(1))] = ∇xF (x) and the independence of Z(1), . . . , Z(m) we have

E[∥G−∇xF (x)∥2] =
1

B2

B∑
m,n=1

E[⟨∇xf(x, Z(m)) −∇xF (x),∇xf(x, Z(m)) −∇xF (x)⟩]

=
1

B2

B∑
m=1

E[∥∇xf(x, Z(m)) −∇xF (x)∥2] ≤ c

B
.

With the previous observations we are now able to extend Theorem 4.1.16 to dynamical batch-
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sampling.

Theorem 4.2.2 (SGD with dynamical sampling). Let F : Rd → R be µ-strongly convex and

L-smooth. We assume that the assumptions of Lemma 4.1.2 are satisfied and that there exists

c > 0 such that

E[∥∇xf(x, Z) − E[∇xf(x, Z)]∥2] ≤ c

for all x ∈ Rd. Let X0 be a random variable such that E[|F (X0)| + ∥X0 − x∗∥2] < ∞, where

x∗ ∈ Rd is the unique global minimum of F . Moreover, let (Xk)k∈N be generated by Algorithm 8

with sequence of batch-sizes (Bk)k∈N, Bk ≥ 1 and deterministic, decreasing sequence of step

sizes (αk)k∈N such that αk ∈ (0, 1
L

]. Then for the error ek := E[∥Xk − x∗∥2] it holds true that

ek+1 ≤ (1 − αkµ)ek +
cα2

k

Bk

for all k ≥ 0. Furthermore, for a fixed step size αk = ᾱ = τ
µ
with τ ≤ 1

κ
= µ

L
, it holds true that

ek+1 ≤ ρek +
cᾱ2

Bk

(4.6)

where ρ = (1 − τ) ∈ (0, 1).

Proof. The proof follows by Theorem 4.1.16 combined with Lemma 4.2.1.

In the following, we will keep the step size ᾱ = τ
µ

≤ 1
L

fixed and aim to derive an optimal

sequence of batch-sizes. Firstly, we need to formulate what we mean by an optimal batch-size.

Therefore, we will assume that the computation of each iteration of SGD occurs with cost which

are determined through the generation of the samples (Z
(m)
k )m=1,...,Bk−1

. We will assume that these

cost are normalized.

Assumption 4.2.3. The generation of the state Xk by Algorithm 8 with sequence of batch-

sizes (Bk)k∈N occurs with computational cost

cost(Xk) =
k−1∑
j=0

Bj .

We want to choose the batch-sizes such that we minimize the computational cost under the con-

straint that the final error bound is below a specified tolerance level ε > 0, i.e. we want to solve

the constrained minimization problem

min
B0,...,BK−1

K−1∑
j=0

Bj s.t. eK ≤ ε .
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We refer the interested reader to [24], where this approach has been considered in a more general

framework. The total error after iteration K ≥ 1 can be upper bounded by iterating the error

bound (4.6):

eK ≤ ρKe0 + cᾱ2

K−1∑
j=0

ρK−1−j 1

Bj

.

For simplicity, we assume that K ≥ ⌈log(ρ−1) log( ε
2
e−1
0 )⌉ such that

eK ≤ ε

2
.

For this given K we want to determine B0, . . . , BK−1 under the constrain

cᾱ2

K−1∑
j=0

ρK−1−j 1

Bj

≤ ε

2
.

We start with the following auxiliary result:

Lemma 4.2.4. Let ε > 0, γ > 0 and aj > 0, j ∈ {0, . . . , K − 1}. Then the choice

Bj = C(ε,K) · a
1

1+γ

j , C(ε,K) = ε−
1
γ

(
K−1∑
s=0

a
1

1+γ
s

) 1
γ

solves the constrained optimization problem

min
B0,...,BK−1

K−1∑
j=0

Bj, s.t.
K−1∑
j=0

ajB
−γ
j ≤ ε .

Proof. We only derive a stationary point of the considered constrained optimization problem. The

Lagrange function is given by

L(B0, . . . , BK−1, λ) =
K−1∑
j=0

Bj + λ

(
K−1∑
j=0

ajB
−γ
j − ε

)

and the corresponding optimality conditions are

(I) 1 − λ− λγajB
−(1+γ)
j = 0, j = 0, . . . , K − 1,

(II)
K−1∑
j=0

ajB
−γ
j − ε = 0 .

We solve (I) to derive

Bj = (λγ)
1

1+γ a
1

1+γ

j ,
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which together with (II) gives

(λγ)−
γ

1+γ

K−1∑
j=0

aj · a
− γ

γ+1

j = (λγ)−
γ

1+γ

K−1∑
j=0

a
1

γ+1

j = ε

and therefore,

λγ = ε−
1+γ
γ

(
K−1∑
j=0

a
1

1+γ

j

) 1+γ
γ

.

This results in

Bj = C(ε,K) · a
1

1+γ

j , C(ε,K) = ε−
1
γ

(
K−1∑
s=0

a
1

1+γ
s

) 1
γ

.

We are now ready to choose the optimal batch-size for Algorithm 8 under strong convexity as-

sumption:

min
B0,...,BK−1

K−1∑
j=0

Bj, s.t.
K−1∑
j=0

cᾱ2ρK−1−jB−1
j ≤ ε/2 ,

which by Lemma 4.2.4 leads to

C(ε,K) = 2ε−1
√
cᾱ

K−1∑
j=0

ρ
K−1−j

2 = 2ε−1
√
cᾱ

K−1∑
j=0

ρ
j
2 = 2ε−1

√
cᾱ

(
1 − ρ

K
2

1 − ρ
1
2

)

and therefore, to an optimal dynamical batch-size

Bj = 2ε−1cᾱ2

(
1 − ρ

K
2

1 − ρ
1
2

)
ρ

K−1−j
2 . (4.7)

The corresponding computational cost are given by

K−1∑
j=0

Bj = 2ε−1cᾱ2

(
1 − ρ

K
2

1 − ρ
1
2

)
K−1∑
j=0

ρ
K−1−j

2 = 2ε−1cᾱ2

(
1 − ρ

K
2

1 − ρ
1
2

)2

≃ ε−1,

where

(
1−ρ

K
2

1−ρ
1
2

)2

∈
(

1,
(

1
1−√

ρ

)2)
, independent of K. We compare the derived dynamical batch-

sampling strategy to a fixed batch size B̄ ≥ 1 for all k = 0, . . . , K − 1. This fixed batch-size has

again to be chosen such that eK ≤ ε. For simplicity, let again K ≥ ⌈log(ρ−1) log( ε
2
e−1
0 )⌉ such that

ρKe0 ≤ ε
2

and therefore,

eK ≤ ε

2
+ cᾱ2 1

B̄

K−1∑
j=0

ρK−1−j =
ε

2
+ cᾱ21 − ρK

1 − ρ

1

B̄
,
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where 1−ρK

1−ρ
≤ 1

1−ρ
. The fixed batch-size B̄ needs to be chosen such that

B̄ ≥ 2ε−1cᾱ2(1 − ρ)−1 ≃ ε−1 (4.8)

and the corresponding computational cost are given by

K−1∑
j=0

Bj = K · B̄ ≃ | log(ε−1)|ε−1 .

We summarize the derived batch-sampling strategies in the following theorem.

Theorem 4.2.5. Suppose that the conditions of Theorem 4.2.2 are satisfied and define e0 =

E[∥X0 − x∗∥2]. For ε > 0 and K ≥ ⌈log(ρ−1) log( ε
2
e−1
0 )⌉, let (XDS

k )k=0,...,K be generated by

Algorithm 8 with (Bk)k=0,...,K−1 defined in (4.7). Moreover let (XFB
k )k=0,...,K be generated by

Algorithm 8 with fixed batch-size Bk = B̄ given in (4.8) for k = 0, . . . , K − 1. Then it holds

true that

eDS
K := E[∥XDS

K − x∗∥2] ≤ ε

eFBK := E[∥XFB
K − x∗∥2] ≤ ε

while the computational cost are given by

costDS := cost(XDS
K ) =

K−1∑
j=0

Bj ≃ ε−1,

costFB := cost(XFB
K ) = K · B̄ ≃ | log(ε−1)|ε−1 .

4.2.2 Stochastic average gradient method (SAG)

In the following three sections, we consider different variance reduction methods for solving the

empirical risk minimization problem. We fix the realization of the data set {z(1), . . . , z(N)} and

ignore the error of the empirical approximation. For the next three algorithms, let FN : Rd → R
be a cost function of finite sum form

FN(x) =
1

N

N∑
i=1

f(x, z(i)) =:
1

N

N∑
i=1

fi(x), x ∈ Rd,

for fixed z(1), . . . , z(N) ∈ Rp and fi(x) := f(x, z(i)).

Assuming that FN is µ-strongly convex and L-smooth, the deterministic gradient descent method

applied to FN converges linearly to the global optimum of FN . However, in each iteration of the
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algorithm we need to evaluate the gradients

∇xfi(xk), i = 1, . . . , N .

across the entire data set. In comparison, when applying SGD with finite data, Algorithm 7, in

each iteration, we need to evaluate only one gradient ∇xfik+1
(Xk). However, in this case, we lose

the property of linear convergence to the global minimum.

We consider a class of algorithms, which apply variance reduction techniques, in order to obtain

linear convergence for modified algorithms of SGD. In each iteration, the goal is to evaluate only

one new gradient across the family of functions {fi}i=1,...,N such as it is the case in Algorithm 7.

Note that all of these algorithms essentially assume that the cost function is in form of a finite

sum FN .

In the following it is clear out of context, that the gradient ∇xfi(·) is computed wrt. x, such that

from now on we will omit the dependence on x and simply write ∇fi(·).

Motivation: Suppose that we want to estimate an unknown parameter θ ∈ R and G be an

unbiased estimator of θ, i.e. E[G] = θ. Moreover, let ξ be a random variable with mean close

to zero, E[ξ] ≈ 0, such that the modified random variable Gξ := G − ξ is nearly unbiased,

i.e. E[Gξ] = E[G] − E[ξ] ≈ θ. (In case E[ξ] = 0, Gξ even remains unbiased). The modification

becomes interesting when considering the resulting variance:

V(Gξ) = V(G− ξ) = V(G) + V(ξ) − 2Cov(G, ξ) .

So in case we find a high (positive) correlation between G and ξ, we hope for a significant reduction

of the variance without introducing a large bias. This concept can be viewed as motivation for the

following three algorithms to be considered.

We consider the first algorithm which forms the basis for introducing variance reduction in SGD.

In [23] the authors propose the stochastic average gradient (SAG) method, which achieves linear

convergence for strongly convex cost functions while having same complexity characteristics as

SGD. The idea is to reuse the gradient information obtained from the past.

The algorithm stores all gradient approximations across the entire data set i = 1, . . . , N , and in

each iteration it updates the approximation of the gradient fi for only one randomly picked index

i. Similarly to SGD in form of Algorithm 7, only one new gradient needs to be evaluated per

iteration. However, one needs to have capacity for storing the gradient approximation for each

index i = 1, . . . , N , which can be seen as the main disadvantage of SAG. As mentioned above, the

algorithm achieves linear convergence toward the global optimum of FN as shown in [23].
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Algorithm 9 Stochastic average gradient method (SAG)

1: Input:

• cost function FN : Rd → R, FN(x) = 1
N

∑N
i=1 fi(x)

• initial random variable X0 : Ω → Rd

• sequence of step sizes (αk)k∈N, αk > 0 (deterministic or F -adapted)

2: set k = 0, initialize G
(i)
0 = 0, i = 1, . . . , N

3: compute Ḡ0 = 1
N

∑N
i=1G

(i)
0

4: while ”convergence/stopping criterion not met” do
5: generate independently ik+1 ∼ U({1, . . . , N})

6: set G
(i)
k =

{
∇fi(Xk), i = ik+1

G
(i)
k−1, i ̸= ik+1

7: approximate the gradient ∇FN(Xk) through

Ḡk =
1

N

N∑
i=1

G
(i)
k = Ḡk−1 −

1

N
G

(ik+1)
k−1 +

1

N
∇fik+1

(Xk)

8: set Xk+1 = Xk − αkḠk, k 7→ k + 1
9: end while

Theorem 4.2.6 (Theorem 1 in [23]). Let FN , fi : Rd → R, i = 1, . . . , N , be µ-strongly

convex and L-smooth. Moreover, let (Xk)k∈N be generated by Algorithm 9 with fixed step size

αk = ᾱ = 1
16L

. Then it holds true that

µ

2
E[∥Xk − x∗∥2] ≤ E[FN(Xk) − FN(x∗)] ≤

(
1 − min

{
µ

16L
,

1

8N

})k

C0,

where C0 = E[FN(X0) − FN(x∗)] + 4L
N
E[∥X0 − x∗∥2] + σ2

16L
with σ2 = 1

N

∑N
i=1 ∥∇fi(x∗)∥2.

Remark 4.2.7. Ignoring the cost of storing {G(i)
k }i=1,...,N we can run N iterations of Algorithm 9

to achieve a similar complexity as the deterministic full gradient descent scheme. To compare both

SAG and deterministic GD we can view SAG as linearly converging scheme with rate

ρSAG =

(
1 − min

{
µ

16L
,

1

8N

})N

.

For small N (N ≤ 2L
µ

) the rate is dominated by

ρSAG =
(

1 − µ

16L

)N
which corresponds to N steps of GD with step size ᾱ = 1

16L
. In comparison, for large N (N ≥
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2L
µ

= 2κ) the rate is dominated by

ρSAG =

(
1 − 1

8N

)N

≤ exp(−1

8
) ,

such that the rate can be uniformly controlled in N .

4.2.3 SAGA

The convergence analysis of SAG is challenging due to the biased estimation of the gradients

∇FN(Xk) in each iteration:

E[Ḡk+1 | Fk] = E[Ḡk −
1

N
G

(ik+1)
k ]︸ ︷︷ ︸

̸=0

+
1

N
∇FN(Xk) = (1 − 1

N
)Ḡk−1 +

1

N
∇FN(Xk) .

This problem can be solved by replacing the approximation of ∇FN(Xk) through an unbiased

estimator of form

Ḡk =
1

N

N∑
i=1

G
(i)
k−1 −G

(i)
k−1 + ∇fik+1

(Xk) .

This estimator is unbiased since

E[
1

N

N∑
i=1

G
(i)
k−1 −G

(i)
k−1 | Fk] = 0 and E[∇fik+1

(Xk) | Fk] = ∇FN(Xk) .

Note that Ḡk does not correspond to the mean over all stored gradients Ḡk ̸= 1
N

∑N
i=1G

(i)
k anymore.

This observation led to a modified algorithm called SAGA which has been introduced in [6].

We follow the proof of linear convergence under strong convexity for Algorithm 10 presented in [6].

Let us assume that FN , fi, i = 1, . . . , N are µ-strongly convex and L-smooth. For X0(ω) = x0 ∈ Rd

we define point-wise

ϕ
(i)
0 (ω) = x0, ϕ

(i)
k+1(ω) =

ϕ
(i)
k (ω), i ̸= ik+1(ω)

Xk(ω), i = ik+1(ω)

and consider the error function of form

Ek = c∥Xk − x∗∥2︸ ︷︷ ︸
=:E

(2)
k

+
1

N

N∑
i=1

(
fi(ϕ

(i)
k ) − fi(x∗) − ⟨∇fi(x∗), ϕ

(i)
k − x∗⟩

)
︸ ︷︷ ︸

=:E
(1)
k

≥ c∥Xk − x∗∥2,
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Algorithm 10 SAGA
1: Input:

• cost function FN : Rd → R, FN(x) = 1
N

∑N
i=1 fi(x)

• initial random variable X0 : Ω → Rd

• sequence of step sizes (αk)k∈N, αk > 0 (deterministic or F -adapted)

2: set k = 0, initialize G
(i)
0 = 0, i = 1, . . . , N

3: compute Ḡ0 = 1
N

∑N
i=1G

(i)
0

4: while ”convergence/stopping criterion not met” do
5: generate independently ik+1 ∼ U({1, . . . , N})

6: set G
(i)
k =

{
∇fi(Xk), i = ik+1

G
(i)
k−1, i ̸= ik+1

7: approximate the gradient ∇FN(Xk) through

Ḡk = Ḡk−1 −G
(ik+1)
k−1 + ∇fik+1

(Xk) =
1

N

N∑
i=1

G
(i)
k

8: set Xk+1 = Xk − αkḠk, k 7→ k + 1
9: end while

where x∗ = arg minx∈Rd FN(x). Note that E
(1)
k ≥ 0 by convexity of fi. We observe that

∥Xk+1 − x∗∥2 = ∥Xk − x∗∥2 − 2ᾱ⟨Xk − x∗, Ḡk⟩ + ᾱ2∥Ḡk∥2

and with Fk := σ(X0, im,m ≤ k) and E[Ḡk | Fk] = ∇FN(Xk) we have that

E[∥Xk+1 − x∗∥2 | Fk] = ∥Xk − x∗∥2 − 2ᾱ⟨Xk − x∗,∇FN(Xk)⟩ + ᾱ2E[∥Ḡk∥2 | Fk] .

In order to obtain an improved convergence result compared to SGD, we need to control E[∥Ḡk∥2 |
Fk] sufficiently well.

Lemma 4.2.8. Let FN , fi : Rd → R, i = 1, . . . , N , be µ-strongly convex and L-smooth. Then

for any β > 0 it holds true that

E[∥Ḡk∥2 | Fk] ≤ (1 + β−1)
1

N

N∑
i=1

∥∇fi(ϕ
(i)
k ) −∇fi(x∗)∥2

+ (1 + β)
1

N

N∑
i=1

∥∇fi(Xk) −∇fi(x∗)∥2 − β∥∇FN(Xk)∥2 ,

where x∗ = arg minx∈Rd FN(x).
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Proof. We will apply multiple times the following equality

E[∥Q− E[Q]∥2] = E[∥Q∥2] − ∥E[Q]∥2 (4.9)

for any random vector Q with E[∥Q∥2] < ∞. By construction of Ḡk we can write

E[∥Ḡk∥2 | Fk] = E[∥ 1

N

N∑
i=1

∇fi(ϕ
(i)
k ) −∇fik+1

(ϕ
(ik+1)
k ) + ∇fik+1

(Xk)∥2 | Fk]

=: E[∥Q∥2 | Fk] = E[∥Q− E[Q | Fk]∥2 | Fk] + ∥E[Q | Fk]∥2

= E[∥ 1

N

N∑
i=1

∇fi(ϕ
(i)
k ) −∇fik+1

(ϕ
(ik+1)
k ) + ∇fik+1

(Xk) −∇FN(Xk)∥2 | Fk]

+ ∥∇FN(XK)∥2

Let us consider the first term

E[∥ 1

N

N∑
i=1

∇fi(ϕ
(i)
k ) −∇fik+1

(ϕ
(ik+1)
k ) + ∇fik+1

(Xk) −∇FN(Xk)∥2 | Fk]

= E[∥

{
∇fik+1

(ϕ
(ik+1)
k ) −∇fik+1

(x∗) −
1

N

N∑
i=1

∇fi(ϕ
(i)
k )

}
−
{
∇fik+1

(Xk) −∇fik+1
(x∗) −∇FN(Xk)

}
∥2 | Fk]

≤ (1 + β−1)E[∥∇fik+1
(ϕ

(ik+1)
k ) −∇fik+1

(x∗) −
1

N

N∑
i=1

∇fi(ϕ
(i)
k )∥2 | Fk]

+ (1 + β)E[∥∇fik+1
(Xk) −∇fik+1

(x∗) −∇FN(Xk)∥2 | Fk] ,

where we have used that ∥x + y∥2 ≤ (1 + β−1)∥x∥2 + (1 + β)∥y∥2 for any β > 0. We define

Q1 = ∇fik+1
(ϕ

(ik+1)
k ) −∇fik+1

(x∗) with

E[Q1 | Fk] =
1

N

N∑
i=1

∇fi(ϕ
(i)
k ) −∇FN(x∗) =

1

N

N∑
i=1

∇fi(ϕ
(i)
k ) ,

and similarly

Q2 = ∇fik+1
(Xk) −∇fik+1

(x∗) with E[Q2 | Fk] = ∇FN(Xk) .
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Finally, we obtain

(1 + β−1)E[∥∇fik+1
(ϕ

(ik+1)
k ) −∇fik+1

(x∗) −
1

N

N∑
i=1

∇fi(ϕ
(i)
k )∥2 | Fk]

+ (1 + β)E[∥∇fik+1
(Xk) −∇fik+1

(x∗) −∇FN(Xk)∥2 | Fk]

≤ (1 + β−1)

{
E[∥∇fik+1

(ϕ
(ik+1)
k ) −∇fik+1

(x∗)∥2 | Fk] − ∥ 1

N

N∑
i=1

∇fi(ϕ
(i)
k )∥2

}
+ (1 + β)

{
E[∥∇fik+1

(Xk) −∇fik+1
(x∗)∥2 | Fk] − ∥∇FN(Xk)∥2

}
and all together

E[∥Ḡk∥2 | Fk] ≤ (1 + β−1)
1

N

N∑
i=1

∥∇fi(ϕ
(i)
k ) −∇fi(x∗)∥2

+ (1 + β)
1

N

N∑
i=1

∥∇fi(Xk) −∇fi(x∗)∥2 − β∥∇FN(Xk)∥2 .

Applying the upper bound in Lemma 4.2.8 results in

E[∥Xk+1 − x∗∥2 | Fk] ≤ ∥Xk − x∗∥2 − 2ᾱ⟨Xk − x∗,∇FN(Xk)⟩ − ᾱ2β∥∇FN(Xk)∥2

+ ᾱ2(1 + β−1)
1

N

N∑
i=1

∥∇fi(ϕ
(i)
k ) −∇fi(x∗)∥2

+ ᾱ2(1 + β)
1

N

N∑
i=1

∥∇fi(Xk) −∇fi(x∗)∥2 .

(4.10)

With the following Lemma, we are able to control 1
N

∑N
i=1 ∥∇fi(Xk) −∇fi(x∗)∥2 by setting it in

relation to −⟨Xk − x∗,∇FN(Xk)⟩.

Lemma 4.2.9. Let FN , fi : Rd → R, i = 1, . . . , N , be µ-strongly convex and L-smooth. Then

for all x ∈ Rd it holds true that

⟨∇FN(x), x∗ − x⟩ ≤ −L− µ

L
(FN(x) − FN(x∗)) −

µ

2
∥x− x∗∥2

− 1

2L

1

N

N∑
i=1

∥∇fi(x) −∇fi(x∗)∥2 ,

where x∗ = arg minx∈Rd FN(x).

The proof of Lemma 4.2.9 is left as an exercise for the interested reader. We can now combine the
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upper bound in Lemma 4.2.9 with (4.10) to obtain

E[∥Xk+1 − x∗∥2 | Fk] ≤ (1 − ᾱµ)∥Xk − x∗∥2 − 2ᾱ
L− µ

L
(FN(Xk) − FN(x∗)) − ᾱ2β∥∇FN(Xk)∥2

+ (ᾱ2(1 + β) − ᾱ

L
)

1

N

N∑
i=1

∥∇fi(Xk) −∇fi(x∗)∥2

+ ᾱ2(1 + β−1)
1

N

N∑
i=1

∥∇fi(ϕ
(i)
k ) −∇fi(x∗)∥2

It remains to control
1

N

N∑
i=1

∥∇fi(ϕ
(i)
k ) −∇fi(x∗)∥2 .

Since all fi, i = 1, . . . , N , are assumed to be L-smooth with the same L > 0, we have that

∥∇fi(ϕ
(i)
k ) −∇fi(x∗)∥2 ≤ 2L(fi(ϕ

(i)
k ) − fi(x∗) − ⟨∇fi(x∗), ϕ

(i)
k − x∗⟩)

(see also Lemma 4.2.14 below) implying that

1

N

N∑
i=1

∥∇fi(ϕ
(i)
k ) −∇fi(x∗)∥2 ≤

1

N

N∑
i=1

fi(ϕ
(i)
k ) − FN(x∗) −

1

N

N∑
i=1

⟨∇fi(x∗), ϕ
(i)
k − x∗⟩ = E

(1)
k ,

which also explains the origin of the error function Ek = E
(2)
k + E

(1)
k . We are now ready to prove

the linear convergence of SAGA.

Theorem 4.2.10 (Theorem 1 in [6]). Let FN , fi : Rd → R, i = 1, . . . , N , be µ-strongly

convex and L-smooth, and let X0 be a random variable such that E[E0] = cE[∥X0 − x∗∥2] +

E[FN(X0)−FN(x∗)] < ∞. Moreover, let (Xk)k∈N be generated by Algorithm 10 with fixed step

size αk = ᾱ = 1
2(µN+L)

. Then for c = 1
2ᾱ(1−ᾱµ)N

it holds true that

E[Ek+1] ≤ (1 − ᾱµ)E[Ek] .

Proof. Firstly, we observe that each ϕ
(i)
k+1 given Fk is distributed according to

ϕ
(i)
k+1 | Fk ∼

1

N
δXk

+ (1 − 1

N
)δ

ϕ
(i)
k
,
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such that

E[
1

N

N∑
i=1

fi(ϕ
(i)
k+1) | Fk] =

1

N

N∑
i=1

E[fi(ϕ
(i)
k+1) | Fk] =

1

N

N∑
i=1

(
1

N
fi(Xk) + (1 − 1

N
)fi(ϕ

(i)
k )

)

=
1

N
FN(Xk) + (1 − 1

N
)

1

N

N∑
i=1

fi(ϕ
(i)
k ) .

With a similar computation we also obtain

E[− 1

N

N∑
i=1

⟨∇fi(x∗), ϕ
(i)
k+1 − x∗⟩] = − 1

N
⟨∇FN(x∗), Xk − x∗⟩ − (1 − 1

N
)

N∑
i=1

⟨∇fi(x∗), ϕ
(i)
k − x∗⟩

= −(1 − 1

N
)

N∑
i=1

⟨∇fi(x∗), ϕ
(i)
k − x∗⟩ .

Finally, we obtain the iterative error bound

E[Ek+1 | Fk] ≤
(

1

N
− c2ᾱ

L− µ

L

)
(FN(Xk) − FN(x∗)) − cᾱ2β∥∇FN(XK)∥2

+ (1 − ᾱµ) c∥Xk − x∗∥2

+

(
1 − 1

N
+ 2c(1 + β−1)ᾱ2L− ᾱµ + ᾱµ

)
E

(1)
k

+

(
cᾱ(ᾱ(1 + β) − 1

L

)
1

N

N∑
i=1

∥∇fi(Xk) −∇fi(x∗)∥2

≤ (1 − ᾱµ)Ek

+

(
1

N
− 2cᾱ

L− µ

L
− 2µᾱ2βc

)
· (FN(Xk) − FN(x∗))

+

(
ᾱµ− 1

N
+ 2c(1 + β−1)ᾱ2L

)
E

(1)
k

+ cᾱ(ᾱ(1 + β) − 1

L
)

1

N

N∑
i=1

∥∇fi(Xk) −∇fi(x∗)∥2 ,

where we have used −∥∇FN(XK)∥2 ≤ −2µ(FN(Xk)−FN(x∗)) by µ-strong convexity of FN . With

the choice ᾱ = 1
2(µN+L)

, β = 2µN+L
L

and c = 1
2ᾱ(1−ᾱµ)N

one can verify that

• ᾱ(1 + β) − 1
L

= 0,

• ᾱµ− 1
N

+ 2c(1 + β−1)ᾱ2L ≤ 0,

• 1
N
− 2cᾱL−µ

L
− 2µᾱ2βc = 0,
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such that we conclude the proof with

E[Ek+1] = E[E[Ek+1 | Fk]] ≤ (1 − ᾱµ)E[Ek] .

We observe that cE[∥Xk − x∗∥2] ≤ Ek such that we obtain the following corollary:

Corollary 4.2.11 (Corollary 1 in [6]). Under the same assumptions as in Theorem 4.2.10 it

holds true that

E[∥Xk − x∗∥2] ≤
(

1 − µ

2(µN + L)

)k (
E[∥X0 − x∗∥2 +

N

µN + L
E[FN(Xk) − FN(x∗)]

)
,

where x∗ = arg minx∈Rd FN(x).

Remark 4.2.12. We emphasize again, that for both SAG and SAGA it is necessary to store

{G(i)
k }i=1,...,N which may occur with additional cost.

In the following, we take a look at Table 1 of [23] (extended by the values for SAGA), where the

theoretically derived rates of convergence of SAG (and SAGA) are compared to various determin-

istic first order methods, which in each iteration need to evaluate the gradients across the entire

data set i = 1, . . . , N . We observe a significant improvement through SAG and SAGA.

Algorithm ᾱ rate µ = 0.01 µ = 0.0001

GD 1
L

(1 − µ
L

)2 ∼ 0.9998 ∼ 1

GD 2
µ+L

(1 − 2µ
L+µ

)2 ∼ 0.9996 ∼ 1

NAM 1
L

(1 −
√

µ
L

) ∼ 0.99 ∼ 0.999

lower bound – (1 − 2
√
µ√

L+
√
µ
)2 ∼ 0.9608 ∼ 0.996

SAG 1
16L

(1 − min{ µ
16L

, 1
8N

})N ∼ 0.8825 ∼ 0.9938

SAGA 1
2(µN+L)

(1 − µ
2(µN+L)

)N ∼ 0.635 ∼ 0.956

Table 4.1: For both scenarios we assume that L = 100 and N = 105.
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4.2.4 Stochastic variance reduced gradient (SVRG)

In the following, we consider a variance reduction method for SGD that avoids storing gradients

across the entire dataset. The stochastic variance reduced gradient (SVRG) method has been

introduced in [11]. The algorithm operates cyclic by a loop of SGD followed by an exact gradient

update. Every M iterations, the scheme updates the gradient information across the entire data

set. For each cycle of SGD followed by the exact gradient iteration, we need to evaluate 2M + N

gradients. In order to compare the algorithm to GD, SAG and SAGA, we will need to pay attention

to this observation and rescale the effective rate of convergence accordingly.

Algorithm 11 Stochastic variance reduced gradient method (SVRG)

1: Input:

• cost function FN : Rd → R, FN(x) = 1
N

∑N
i=1 fi(x)

• initial random variable X0 : Ω → Rd

• length of cycle M ≥ 1

• sequence of step sizes (α
(m)
k )k∈N, m=0,...,M−1, α

(m)
k > 0 (deterministic or F -adapted)

2: set k = 0
3: set X̃0 = X

(0)
0 , G̃0 = ∇FN(X̃0)

4: set X
(0)
0 = X0 Ḡ

(0)
0 = G̃0

5: while ”convergence/stopping criterion not met” do
6: for m = 0, . . . ,M − 1 do
7: generate independently i

(m+1)
k+1 ∼ U({1, . . . , N})

8: approximate the gradient ∇FN(X
(m)
k ) through

Ḡ
(m)
k = ∇f

i
(m+1)
k+1

(X
(m)
k ) −∇f

i
(m+1)
k+1

(X̃k) + G̃k

9: set X
(m+1)
k = X

(m)
k − α

(m)
k Ḡ

(m)
k ,

10: end for
11: generate independently mk+1 ∼ U({0, . . . ,M − 1}),

12: set X̃k+1 = X
(mk+1)
k ,

13: set G̃k+1 = ∇FN(X̃k+1) = 1
N

∑N
i=1∇fi(X̃k+1)

14: set X
(0)
k+1 = X̃k+1, Ḡ

(0)
k+1 = G̃k+1

15: set k 7→ k + 1
16: end while

Remark 4.2.13. As mentioned above, the advantage of SVRG compared to SAG and SAGA is

the avoidance of storing all gradients for i = 1, . . . , N .

We will follow the proof of linear convergence of SVRG presented in [11]. Let us start with the

following auxiliary bound on the gradients ∇fi, i = 1, . . . , N . Note that this result can be viewed



Optimization in ML Simon Weissmann Page 112

as an extension of the inequality

1

2L
∥∇FN(x) −∇FN(x∗)∥2 ≤ FN(x) − FN(x∗),

which we have derived under L-smoothness and convexity of FN .

Lemma 4.2.14. Let FN , fi : Rd → R, i = 1, . . . , N , be convex and L-smooth. Then for all

x ∈ Rd it holds true that

1

N

N∑
i=1

∥∇fi(x) −∇fi(x∗)∥2 ≤ 2L (FN(x) − FN(x∗)) ,

where x∗ = arg minx∈Rd FN(x).

Proof. For each i = 1, . . . , N , define the function

φi(x) = fi(x) − fi(x∗) − ⟨∇fi(x∗), x− x∗⟩ ≥ 0

such that ∇φi(x) = ∇fi(x) − ∇fi(x∗) and ∇φi(x∗) = 0. Since φi(x∗) = 0 and φi(x) ≥ 0 by

convexity of fi, we observe that φi(x∗) = minx∈Rd φi(x). For any x ∈ Rd it holds that

0 = φi(x∗) ≤ min
α≥0

φi(x− α∇fi(x)) ≤ min
α≥0

(
φi(x) − α(1 − L

2
α)∥∇φi(x)∥2

)
= φi(x) − 1

2L
∥∇φi(x)∥2,

where we have used that φi is L-smooth (since ∇φi(x) = ∇fi(x) − ∇fi(x∗) remains L-Lipschitz

continuous) and that maxα α(1 − L
2
α) = 1

2L
. Hence, it follows that

∥∇φi(x)∥2 = ∥∇fi(x) −∇fi(x∗)∥2 ≤ 2Lφi(x) = 2L (fi(x) − fi(x∗) − ⟨∇fi(x∗), x− x∗⟩) .

Taking the average over all i = 1, . . . , N , finishes the proof

1

N

N∑
i=1

∥∇fi(x) −∇fi(x∗)∥2 ≤ 2L

(
1

N

N∑
i=1

fi(x) − 1

N

N∑
i=1

fi(x∗) − ⟨ 1

N

N∑
i=1

∇fi(x∗), x− x∗⟩

)
= 2L (FN(x) − FN(x∗)) .

Let (X
(m)
k )k∈N, m=0,...,M be generated by Algorithm 11 with fixed step size ᾱ > 0 and consider the



Optimization in ML Simon Weissmann Page 113

following natural filtration

F (m)
k =

σ({X0}, {i(s)ℓ , ℓ ≤ k, s ≤ M}, {i(s)k , s ≤ m}, {mℓ, ℓ ≤ k}), k ≥ 1

σ({X0}, {i(s)0 , s ≤ m}), k = 0
.

Similarly as in the case of SAGA, we have that

E[∥X(m+1)
k − x∗∥2 | F (m)

k ] = ∥X(m)
k − x∗∥2 − 2ᾱ⟨X(m)

k − x∗,∇F (X
(m)
k )⟩ + ᾱ2E[∥Ḡ(m)

k ∥2 | F (m)
k ],

since Ḡ
(m)
k is an unbiased estimator of ∇FN(X

(m)
k ):

E[Ḡ
(m)
k | F (m)

k ] = E[∇f
i
(m+1)
k+1

(X
(m)
k ) | F (m)

k ] − E[∇f
i
(m+1)
k+1

(X̃k) − G̃k | F (m)
k ]︸ ︷︷ ︸

=0

= ∇FN(X
(m)
k ) .

We again aim to control E[∥Ḡ(m)
k ∥2 | F (m)

k ] in order to achieve significant variance reduction.

Lemma 4.2.15. Let FN , fi : Rd → R, i = 1, . . . , N , be µ-strongly convex and L-smooth,

and let X0 be a random variable such that E[∥X0∥2] + E[|FN(X0)|] < ∞. Moreover, let

(X
(m)
k )k∈N,m=0,...,M be generated by Algorithm 11 with fixed step size α

(m)
k = ᾱ > 0. Then for

all k ≥ 0 and m ≥ 1 it holds true that

E[∥Ḡ(m)
k ∥2 | F (m)

k ] ≤ 4L
(
FN(X

(m)
k ) − FN(x∗) + FN(X̃k) − FN(x∗)

)
,

where x∗ = arg minx∈Rd FN(x).

Proof. The proof follows by similar argumentation as the proof of Lemma 4.2.8. We again apply

(4.9) together with ∥x + y∥2 ≤ 2∥x∥2 + 2∥y∥2:

E[∥Ḡ(m)
k ∥2 | F (m)

k ] ≤ 2E[∥∇f
i
(m+1)
k+1

(X
(m)
k ) −∇f

i
(m+1)
k+1

(x∗)∥2 | F (m)
k ]

+ 2E[∥∇f
i
(m+1)
k+1

(X̃k) −∇f
i
(m+1)
k+1

(x∗) −∇FN(X̃k)∥2 | F (m)
k ]

= 2E[∥∇f
i
(m+1)
k+1

(X
(m)
k ) −∇f

i
(m+1)
k+1

(x∗)∥2 | F (m)
k ]

+ 2E[∥{∇f
i
(m+1)
k+1

(X̃k) −∇f
i
(m+1)
k+1

(x∗)} − {∇FN(X̃k) −∇FN(x∗)}∥2 | F (m)
k ]

≤ 2E[∥∇f
i
(m+1)
k+1

(X
(m)
k ) −∇f

i
(m+1)
k+1

(x∗)∥2 | F (m)
k ]

+ 2E[∥∇f
i
(m+1)
k+1

(X̃k) −∇f
i
(m+1)
k+1

(x∗)∥2 | F (m)
k ]

=
2

N

N∑
i=1

(
∥∇fi(X

(m)
k ) −∇fi(x∗)∥2 + ∥∇fi(X̃k) −∇fi(x∗)∥2

)
.

The assertion follows by application of Lemma 4.2.14.
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We are now ready to prove linear convergence of SVRG under strong convexity.

Theorem 4.2.16 (Theorem 1 in [11]). Let FN , fi : Rd → R, i = 1, . . . , N , be µ-strongly

convex and L-smooth, and let X0 be a random variable such that E[∥X0∥2]+E[|FN(X0)|] < ∞.

Moreover, let (X
(m)
k )k∈N, m=0,...,M be generated by Algorithm 11 with fixed step size α

(m)
k = ᾱ > 0

and M ≥ 1 such that

0 < ρ :=
1

µ(1 − 2ᾱL)ᾱM
+

2ᾱL

1 − 2ᾱL
< 1 .

Then it holds true that

E[FN(X̃k) − FN(x∗)] ≤ ρkE[FN(X0) − FN(x∗)] .

Proof. By convexity of FN we have

E[∥X(m+1)
k − x∗∥2 | F (m)

k ] ≤ ∥X(m)
k − x∗∥2 − 2ᾱ

(
FN(X

(m)
k ) − FN(x∗)

)
+ ᾱ2E[∥Ḡ(m)

k ∥2 | F (m)
k ]

≤ ∥X(m)
k − x∗∥2 − 2ᾱ

(
FN(X

(m)
k ) − FN(x∗)

)
+ 4Lᾱ2

(
FN(X

(m)
k ) − FN(x∗)

)
+ 4Lᾱ2

(
FN(X̃k) − FN(x∗)

)
= ∥X(m)

k − x∗∥2 − 2ᾱ(1 − 2Lᾱ)
(
FN(X

(m)
k ) − FN(x∗)

)
+ 4Lᾱ2

(
FN(X̃k) − FN(x∗)

)
where we have applied Lemma 4.2.15. By construction of the Algorithm 11 we have

E[FN(X̃k+1) − FN(x∗) | F (M)
k ] =

1

M

M−1∑
m=0

(
FN(X

(m)
k ) − FN(x∗)

)
,

such that

E[∥X(M)
k − x∗∥2] + 2ᾱ(1 − 2Lᾱ)ME[FN(X̃k+1) − FN(x∗)]

≤ E[∥X(0)
k − x∗∥2] − 2ᾱ(1 − 2Lᾱ)

M−1∑
m=0

E[FN(X
(m)
k ) − FN(x∗)]

+ 2ᾱ(1 − 2Lᾱ)M
1

M

M−1∑
m=0

E[FN(X
(m)
k ) − FN(x∗)]

+ 4Lᾱ2ME[FN(X̃k) − FN(x∗)]

≤ 2

µ
E[FN(X

(0)
k ) − FN(x∗)] + 4Lᾱ2ME[FN(X̃k) − FN(x∗)]

= 2(
1

µ
+ 2Lᾱ2M)E[FN(X̃k) − FN(x∗)] ,

where we have used that µ
2
∥x − x∗∥2 ≤ FN(x) − FN(x∗) by strong convexity of FN . Finally, we
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have

E[FN(X̃k+1) − FN(x∗)] ≤
(

1

µ(1 − 2ᾱL)ᾱM
+

2ᾱL

1 − 2ᾱL

)
E[FN(X̃k) − FN(x∗)] .

Remark 4.2.17. Returning to the setting of Table 4.1. For L = 100, µ = 0.01 and N = 105 = 10κ,

we want to choose ᾱ = τ
L

, τ ≤ 1
2

such that ρ defined in Theorem 4.2.16 is gieven by

ρ =
1

1 − 2τ

( κ

τM
+ 2τ

)
=

1

1 − 2τ

(
N

10τM
+ 2τ

)
.

We set τ = 1
10

, M = 4N such that ρ = 9
16

. The number of gradient evaluations of one cycle in

SVRG is 2M + N , such that the effective rate of convergence compared to full GD is

ρSVRG = ρ
N

2M+N =

(
9

16

) 1
9

≈ 0.94,

which still achieves a better convergence rate than GD. Note that the above choice of step size

has been selected by trial and might be improved significantly. Moreover, we emphasize again

that there are no additional storage cost when applying Algorithm 11, such as it was the case for

Algorithm 9 and Algorithm 10.
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A

Appendix

A.1 Convex sets and functions

We will give a brief overview of convex sets and functions. We start with the following definition.

Definition A.1.1 (convex set). A subset C ⊂ Rd is called convex, if

λx + (1 − λ)y ∈ C

for all x, y ∈ C and λ ∈ [0, 1].

”convex sets”

”non-convex sets”

Figure A.1: Examples of convex and non-convex sets.

Similarly, we can define convex functions.

Definition A.1.2 (convex function). Let C ⊂ Rd be a convex set. A function f : C → R is

called convex, if

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y)

for all x, y ∈ C and λ ∈ [0, 1]. A function f is called concave, if −f is convex. Moreover, a

119
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function f is called strictly convex, if

f(λx + (1 − λ)y) < λf(x) + (1 − λ)f(y)

for all x, y ∈ C, x ̸= y and λ ∈ (0, 1).

Example A.1.3. Let’s consider the following examples.

1. Let {Ci, i ∈ I} be a family of convex sets. Then ∩i∈ICi is a convex set.

2. Let C1, C2 ⊂ Rd be two convex sets, then the set

C = {x ∈ Rd | x = x1 + x2, x1 ∈ C1, x2 ∈ C2}

is a convex set.

3. The image of a convex set under linear transformation is again a convex set.

4. Let C ⊂ Rd be a convex set and let f : C → R be a convex function. Then the level sets

Aα = {x ∈ C | f(x) ≤ α} and Bα = {x ∈ C | f(x) < α}

are convex sets for all α ∈ R.

Definition A.1.4. Let f : C → R be a function and C ⊂ Rd be a convex set. We define the

epigraph of f as

E(f) := {(x,w) ∈ C × R | f(x) ≤ w},

the set of all points above the graph of f defined as

G(f) := {(x,w) ∈ C × R | f(x) = w}.

We can characterize convex functions via convexity of its epigraph.

Proposition A.1.5 (Fact). Let f : C → R be a function and C ⊂ Rd be a convex set. The

f is convex if and only if its epigraph E(f) is a convex set.

Next, we describe an inequality for convex functions which will be used often times in this lecture.

Proposition A.1.6 (Jensen’s inequality). Let f : C → R be a convex function, C ⊂ Rd be a
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C

G(f )

f (x)

x

E(f )

Figure A.2: Illustration of the connection between the graph G(f), the epigraph E(f) and the
convexity of f .

convex set and λ1, . . . , λn ∈ (0, 1) with
∑n

i=1 λi = 1. Then it holds true that

f(
n∑

i=1

λixi) ≤
n∑

i=1

λif(xi).

Exercise A.1.1. Prove Proposition A.1.6.

One typical example for the application of Jensen’s inequality is(
1

n

n∑
i=1

xi

)2

≤ 1

n

n∑
i=1

x2
i .

Example A.1.7. In the following we present a row of useful properties in the context of convex

functions.

1. Every linear function is convex.

2. Every norm in Rd is convex.

3. Let f1, . . . , fn be convex functions and c1, . . . , cn ≥ 0.

a) Then x 7→
∑n

i=1 fi(x) is a convex function.

b) Then x 7→ supi=1,...,n fi(x) is a convex function.

Exercise A.1.2. Prove the properties presented in Example A.1.7.
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Proposition A.1.8. Let C ⊂ Rd be a convex set and let f : C → R be differentiable over C.

Then the following holds true:

1. The function f is convex over C if and only if

f(z) ≥ f(x) + (z − x)⊤∇f(x),

for all x, z ∈ C.

2. If

f(z) > f(x) + (z − x)⊤∇f(x), x ̸= z,

for all x, z ∈ C, then f is strictly convex.

Proof. We only prove the first assertion, the second one follows by similar argumentation. Firstly,

assume that f is convex and let x, z ∈ C. Since C is a convex set, x+a(z−x) ∈ C for all a ∈ (0, 1).

The convexity of f implies that

f(x + a(z − x)) ≤ af(z) + (1 − a)f(x),

which we can rewrite to
f(x + a(z − x)) − f(x)

a
≤ f(z) − f(x).

On the other side, since f is differentiable, we have

(z − a)⊤∇f(x) = lim
a↽0

f(x + a(z − x)) − f(x)

a
≤ f(z) − f(x).

This proves the first direction ” ⇒ ”. Secondly, for the direction ” ⇐ ” suppose that

f(z) ≥ f(x) + (z − x)⊤∇f(x) (A.1)

for all x, z ∈ C. We fix arbitrary x, y ∈ C and λ ∈ (0, 1), and define z := λx + (1 − λ)y. Then by

(A.1) we have both

f(x) ≥ f(z) + (x− z)⊤∇f(z)

f(y) ≥ f(z) + (y − z)⊤∇f(z).
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Combining both inequalities yields

λf(x) + (1 − λ)f(y) ≥ λf(z) + λ(x− z)⊤∇f(z) + (1 − λ)f(z) + (1 − λ)(y − z)⊤∇f(z)

= f(z) + (λx + (1 − λ)y − z)∇f(z)

= f(z) = f(λx + (1 − λ)y).

Since x, y ∈ C are arbitrary, we have proven convexity of f .

Proposition A.1.9. Let C ⊂ Rd be a convex set, f : Rd → R twice continuous differentiable

over C and let Q ∈ Rd×d be a symmetric matrix.

1. If ∇2f(x) is positive semi-definite for all x ∈ C, then f is convex over C.

2. If ∇2f(x) is positive definite for all x ∈ C, then f is strictly convex over C.

3. If C = Rd and f is convex, then ∇2f(x) is positive semi-definite for all x ∈ C.

4. The quadratic function x 7→ f(x) = x⊤Qx is convex if and only if Q is positive semi-

definite. Moreover, f is strictly convex if and only if Q is positive definite.

Proof. 1. Let x, y ∈ C, then by the mean-value theorem there exists α ∈ [0, 1] such that

f(y) = f(x) + (y − x)⊤∇f(x) +
1

2
(y − x)⊤∇2f(x + α(y − x))(y − x)

≥ f(x) + (y − x)⊤f(x),

where we have used that ∇2f(x+α(y− x)) is positive semi-definite, since x+α(y− x) ∈ C.

Then f is convex by Proposition A.1.8.

2. Follows similarly as the proof of the first claim.

3. Let f be convex and suppose that there exists x ∈ Rd such that z⊤∇2f(x)z < 0 for some

z ∈ Rd. By assumption we have that x 7→ ∇2f(x) is continuous, such that for ᾱ > 0 small

enough it holds true that

z⊤∇2f(x)z < 0, for α ∈ [0, ᾱ).

For an arbitrary α̃ ∈ [0, ᾱ) we set z̃ = α̃z. By the mean-value theorem there exists β ∈ [0, 1]
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such that

f(x + z̃) = f(x) + z̃⊤∇f(x) +
1

2
z̃⊤∇2f(x + βz̃)z̃

= f(x) + z̃⊤∇f(x) +
1

2
α̃2z⊤∇f(x + βα̃︸︷︷︸

<ᾱ

z)z

< f(x) + z̃⊤∇f(x),

which is in contradiction to the convexity of f (see Proposition A.1.8).

4. The hessian of f is given by ∇2f(x) = 2Q for all x ∈ Rd. With 1. and 3. it follows that f

is convex if and only if Q is positive semi-definite. If Q is positive definite, then convexity

of f follows by the 3. assertion. It is left to prove that strict convexity of f implies that Q

is positive definite. Assume that f is strictly convex, then by 3. we know that Q is positive

semi-definite. If a matrix A ∈ Rd×d is positive semi-definite but not positive definite, then

there exists at least one x ∈ Rd, x ̸= 0 such that x⊤Ax = 0, i.e. Ax = 0 = 0 · x. Hence,

to prove that Q is positive definite we will show that λ = 0 is no eigenvalue of Q. Suppose

λ = 0 is an eigenvalue of Q, then there exists x ̸= 0 such that Qx = λx = 0. This implies

that
1

2
f(x) +

1

2
f(−x) =

1

2
(x⊤Qx + (−x)⊤Q(−x) = x⊤Qx = 0 = f(

1

2
x− 1

2
x),

which is in contradiction to strict convexity of f . Hence, Q is positive definite.

We will often consider the class of strong convex functions.

Definition A.1.10 (strongly convex function). Let C ⊂ Rd be a convex set. A function

f : C → R is called µ-strongly convex over C, if

f(y) ≥ f(x) + (y − x)⊤∇f(x) +
µ

2
∥y − x∥2

for all x, y ∈ C.

Proposition A.1.11. 1. Every µ-strongly convex function f is also strictly convex.

2. A function f : C → R is µ-strongly convex if and only if its hessian ∇2f(x) is uniformly

positive definite with

z⊤∇2f(x)z ≥ µ∥z∥2

for all x ∈ C and all z ∈ Rd.
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Exercise A.1.3. Prove Proposition A.1.11.

A.2 Lyapunov methods for optimization

We will motivate the application of Lyapunov theory to optimization methods based on stability

analysis of ordinary differential equations (ODEs). Lyapunov theory can be applied to analyze the

behavior of dynamical systems without solving them analytically. Let

dz(t)

dt
= g(z(t)), z(0) = z0 ∈ Rd (A.2)

be a continuous-time dynamical system described as ODE with g : Rd → Rd locally Lipschitz-

continuous.

Definition A.2.1. We call a point z̄ ∈ Rd equilibrium point of (A.2) if g(z̄) = 0.

Lyapunov methods can be applied to describe stability of equilibrium points of (A.2). Without

loss of generality we assume that z̄ = 0 ∈ Rd is an equilibrium point of (A.2).

Definition A.2.2. The equilibrium point z̄ = 0 is called

1. stable, if for all ε > 0 there exists a δ = δ(ε) > 0 such that:

∥z(0)∥ < δ =⇒ ∥z(t)∥ < ε for all t ≥ 0.

2. unstable, if z̄ is not stable.

3. locally asymptotically stable, if z̄ is stable and δ > 0 can be chosen such that:

∥z(0)∥ < δ =⇒ lim
t→∞

z(t) = 0.

4. globally stable, if z̄ is stable and limε→∞ δ(ε) = ∞.

5. globally asymptotically stable, if limt→∞ z(t) = 0 for all z0 ∈ Rd.

We consider a continuously differentiable function V : Rd → R - in the following called candidate

of a Lyapunov function - which will be used to be described along the trajectories. With the help

of chain rule, we can describe the dynamical behavior of V along the trajectory of z(t):

dV (z(t))

dt
= ⟨∇zV (z(t)),

dz(t)

dt
⟩ = ⟨∇zV (z(t)), g(z(t))⟩.
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Under specific assumptions on the function V one can verify global stability of z̄.

Theorem A.2.3 (Theorem 3.2 in [13]). Let z̄ = 0 be an equilibrium point of (A.2). Moreover,

let V : Rd → R be continuously differentiable with

1. V (z̄) = 0 and V (z) > 0 for all z ∈ Rd \ {z̄},

2. V (z) → ∞ for ∥z∥ → ∞,

3. dV (z(t))
dt

= ⟨∇zV (z(t)), g(z(t))⟩ ≤ −W (z(t)), for some continuous function W : Rd → R.

If W (z) ≥ 0 for all z ∈ Rd, then z̄ is globally stable. Moreover, if W (z) > 0 for all z ∈ Rd\{z̄},
then z̄ is even globally asymptotically stable.

A function satisfying the above conditions is sometimes also referred to a Lyapunov function.

We want to apply Lyapunov theory as tool for analyzing convergence of optimization methods.

Let us start with an motivating example in continuous-time.

Example A.2.4. The gradient descent method with fixed step size ᾱ > 0 is written as

xk+1 = xk − ᾱ∇f(xk),

which for ᾱ → 0 can be interpreted as Euler-scheme of the ODE

dx(t)

dt
= −∇f(x(t)). (A.3)

In general, optimization schemes are often described and/or analysed through its continuous-time

formulation. The system is sometimes also called gradient flow and intuitively speaking, it describes

gradient descent with degenerated step size. It can be used as indicator of how gradient descent

may perform with sufficiently small step size ᾱ > 0. We have analysed gradient descent methods

under various settings such as (strong) convexity and smoothness. The convergence analysis of

the gradient flow (A.3) can be done in a very similar way using Lyapunov theory. We want to

construct a function describing the convergence behavior of the dynamical system (A.3) without

solving it explicitly. The most straightforward analysis can be done for the error function V (x(t)) =

E(x(t)) = f(x(t)) − f∗, where f∗ = minx∈Rd f(x) > −∞. Similar as before, we can describe the

dynamical behavior of V through the ODE

dV (x(t))

dt
= ⟨∇xV (x(t)),

dx(t)

dt
⟩ = −⟨∇f(x(t)),∇f(x(t))⟩ = −∥∇f(x(t))∥2.

Under suitable conditions on f one can now apply Theorem A.2.3 in order to quantify stability of

a (unique) stationary point x∗ ∈ Rd of f as equilibrium point of the gradient flow (A.3).
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Let us consider a optimization scheme in continuous-time of the form

dx(t)

dt
= g(x(t)), (A.4)

and a corresponding error function E : Rd → R to be analyzed. We aim to quantify the convergence

of (A.4) through the error function along the trajectory

dE(x(t))

dt
= ⟨∇xE(x(t)), g(x(t))⟩

≤ 0

< 0
.

This can be used to obtain results such as monotonically decreasing error (≤ 0) or even convergence

of the error (< 0). However, these properties are not sufficient to describe the speed of convergence.

In order to say something about the convergence speed, we can define a time-dependent error

function Ê : [0,∞) × Rd → R of the form

Ê(t, x) = γ(t)E(x),

where γ : [0,∞) → R+ (smooth and continuously differentiable) is devoted to describe the speed

of convergence. Let us illustrate the strategy of proving convergence with the help of this error

function throught the following example.

Example A.2.5. We want to minimize f using (A.4) and prove convergence of the error function

E(x) = f(x) − f∗. One possible strategy is to construct the time dependent error function

Ê(t, x(t)) = γ(t)E(x(t)) + r(x(t)),

where γ : [0,∞) with dγ(t)
dt

> 0 describes our guess of convergence rate and r : Rd → R is an

auxiliary function with r(x) ≥ 0. Suppose we are able to prove monotonicity of the error in form

of

dÊ(t, x(t))

dt
≤ 0

(using again chain rule), we can directly imply by definition of Ê that

Ê(t, x(t)) = γ(t)(f(x(t)) − f∗) + r(x(t)) ≤ Ê(0, x(0)),

and therefore, we can imply convergence of the error E in form of

E(x(t)) = f(x(t)) − f∗ ≤
Ê(0, x(0))

γ(t)
.

A similar strategy for discrete-time optimization schemes is described in Section 3.3.1.
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A.3 Measure theoretical background

In the following section, we will briefly recall the definition of Dynkin systems and σ-algebras, and

a useful tool which allows to prove measure theoretical properties on a ∩-stable generator of a

σ-algebra. For example, if we want to prove that two measures µ1 and µ2 on the same measurable

space (Ω,A) are equal, it is sufficient to verify the equality on an ∩-stable generator E of A
(i.e. σ(E) = A). For more details we refer to [14, Section 1].

Definition A.3.1. Let A ⊂ P(Ω) be a non-empty family of subsets of Ω. We call A a

σ-algebra if

1. Ω ∈ A,

2. A ∈ A =⇒ A∁ ∈ A,

3. A1, A2, · · · ∈ A =⇒
∞⋃
i=1

Ai ∈ A

Definition A.3.2. Let D ⊂ P(Ω) be a non-empty family of subsets of Ω. We call D a Dynkin

system if

1. Ω ∈ D,

2. A ∈ D =⇒ A∁ ∈ D,

3. A1, A2, · · · ∈ D pairwise disjoint (i.e. Ai ∩ Aj = ∅, i ̸= j) =⇒
∞⊎
i=1

Ai ∈ D

Proposition A.3.3. Let D be a Dynkin system, then the following is equivalent:

• D is a σ-algebra,

• D is ∩-stable, i.e. for A,B ∈ D it follows A ∩B ∈ D.

Definition A.3.4. Let E ⊂ P(Ω) be a non-empty family of subsets of Ω. Then we define

σ(E) =
⋂

E⊂B, B σ−algebra

B
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as the σ-Algebra generated by E . Similarly we define

d(E) =
⋂

E⊂B, B Dynkin system

B

as the Dynkin system generated by E .

Theorem A.3.5. Let E ⊂ P(Ω) be a non-empty family of subsets of Ω which is ∩-stable, then
d(E) = σ(E).

Remark A.3.6. In order to prove that some condition ⊕ is satisfied for all A ∈ A, where A is a

σ-algebra over Ω, we can follow a certain strategy:

1. define the set M = {A ∈ A | condition ⊕ is satisfied for A} ⊂ A,

2. prove that M is a Dynkin system,

3. find a ∩-stable generator E of A such that E ⊂ M,

4. imply that

A = σ(E) = d(E)
E⊂M
⊂ d(M)

M Dynkin system
= M ⊂ A,

which yields that M = A, i.e. condition ⊕ is satisfied for all A ∈ A.

A.4 Martingales

In this section, we briefly recall Doob’s martingale convergence theorem, in particular for super-

martingales. We refer to [14, Section 9–11] for more details.

Definition A.4.1. Let (Ω,A,F ,P) be a filtered probability space. We call stochastic process

X = (Xk)k∈N martingale with respect to the filtration F , if

1. X is F -adapted,

2. E[|Xk|] < ∞ for all k ∈ N,

3. E[Xk | Fl] = Xl for all k, l ∈ N with l ≤ k.

If 3. holds with ≤ (≥), then we call X a supermartingale (submartingale).
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Theorem A.4.2 (Doob’s supermartingale convergence). Let X = (Xk)k∈N be a supermartin-

gale or submartingale with

sup
k∈N

E[|Xk|] < ∞,

then (Xk)k∈N converges almost surely to an F∞-measurable and integrable random variable

X∞.

Remark A.4.3. For a martingale we have the property of constant expectation E[Xk] = E[X0]

for all k ∈ N. For a supermartingale in contrast, we have decreasing expectation E[Xk] ≤ E[Xl] ≤
E[X0] for k ≥ l. Therefore, it is sufficient to replace the condition supk∈N E[|Xk|] < ∞ of

Theorem A.4.2 with the expectation of the negative part X−
k = max(0,−Xk), since we have

E[|Xk|] = E[X+
k + X−

k ] = E[X+
k −X−

k + X−
k + X−

k ] = E[Xk] + 2E[X−
k ] ≤ E[X0] + 2E[X−

k ].

In case that Xk is bounded from below it follows that E[X−
k ] < ∞. This means it is sufficient to

prove a uniform lower bound on (Xk)k∈N in order to apply Theorem A.4.2.
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