B6 Universitätsgebäude

Dr. Helmut Pitters

Postdoc
University of Mannheim
Mathematical Institute
B 6, 26 – Room B 3.10
68159 Mannheim

Short CV

  • since 2018: Postdoc, University of Mannheim
  • 2017–2018: Postdoc, TU Dresden
  • 2015–2017: Neyman Visiting Assistant Professor, UC Berkeley
  • 2013–2015: PhD in Statistics, Oxford University
  • 2012: Diploma in Mathematics, University of Tübingen

Articles

  • Lévy's second arcsine law via the ballot theorem [arXiv], The American Mathematical Monthly (2025+), accepted
  • Occupation times and areas derived from random sampling [arXiv], with Frank Aurzada and Leif Döring, Ann. Inst. Henri Poincaré Probab. Stat. (2025+), accepted
  • Poisson limit for the number of cycles in a random permutation and the number of segregating sites [arXiv], with Philip Weißmann
  • The number of cycles in a random permutation and the number of segregating sites jointly converge to the Brownian sheet [arXiv], Ann. Inst. Henri Poincaré Probab. Stat. (2025+)
  • Mod-$\varphi$ convergence of Stirling distributions and limit theorems for zeros of their generating functions [arXiv, journal], with Zakhar Kabluchko and Alexandar Marynych, J. Math. Anal. Appl., Vol. 529(1), 2024
  • On the number of segregating sites  [arXiv], 2017
  • Lifting linear preferential attachment trees yields the arcsine coalescent, 2016, arXiv-link
  • Large-scale behaviour and hydrodynamic limit of beta coalescents [arXiv, journal], with Luke Miller, Ann. Appl. Probab. 33(1): 1--27, 2023
  • A spectral decomposition for the Bolthausen-Sznitman coalescent and the Kingman coalescent [arXiv], with Jonas Kukla, Electron. Comm. Probab. 20, paper 87, 1--13, 201
  • Absorption time and tree length of the Kingman coalescent and the Gumbel distribution [arXiv], with Martin Möhle, Markov Process. Related Fields 21, 317--338, 2015
  • A spectral decomposition for the block counting process of the Bolthausen-Sznitman coalescent, with Martin Möhle, Electron. Comm. Probab. 19, paper 47, 1--11, 2014