FSS 2015
Partielle Differentialgleichungen II
Fourieranalysis
Spektraltheorie der sinh-Gordon-Gleichung II
In der Vorlesung werden einfach-periodische Lösungen der sinh-Gordon-Gleichung in zwei Dimensionen untersucht. Um den Raum derartiger Lösungen zu verstehen, werden für jede Lösung sogenannte Spektraldaten konstruiert; dabei handelt es sich um ein Paar aus einer komplexen Kurve (möglicherweise mit Singularitäten) und einem Divisor auf dieser Kurve. Durch diese Daten wird die Lösung charakterisiert.
Es wird eine asymptotische Charakterisierung für den Raum der Spektraldaten gegeben. Mit ihrer Hilfe wird gezeigt, dass die Lösungen von “endlichem Typ” dicht im Raum aller Lösungen liegen. Schließlich wird das sogenannte “inverse Problem” gelöst, d.h. es wird gezeigt, wie die Lösung der sinh-Gordon-Gleichung aus ihren Spektraldaten rekonstruiert werden kann.
Seminar Dynamische Systeme
- Einführung in die Variationsrechnung
- Die Euler-Lagrange Gleichungen
- Holonome Zwangsbedingungen
- Nichtholonome Zwangsbedingungen
- Die Transversalitätsbedingung
- Dynamische Systeme, Flüsse und Vektorfelder
- Hyperbolische lineare Flüsse
- Flussäquivalenzen
- Der Hartmannsche Linearisierungssatz
- Der Satz von Grobman und Hartman
Seminar Geometrische Analysis
In dem Seminar werden neben Vorträgen über Forschungsarbeiten am Lehrstuhl einige Arbeiten zu integrablen Systemen und deren Zusammenhang mit Riemannschen Flächen dargestellt.