Credit: Emilie Orgler
- Knopf, M., Peña Hoepner, R. and Schmidt, M. U. (2025). Solutions of the Sinh-Gordon Equation of Spectral Genus Two and Constrained Willmore Tori I. The Journal of Geometric Analysis, 35, 1–28.
- Hauswirth, L., Kilian, M. and Schmidt, M. U. (2020). Properly embedded minimal annuli in S2×R. Journal of Integrable Systems, 5, xyaa005, 1–37.
- Kolb, O., Döring, L., Klinger, M., Schlather, M. and Schmidt, M. U. (2017). Individualisierte Tutorien im Mathematikstudium. Neues Handbuch Hochschullehre, 82, 77–88.
- Carberry, E. and Schmidt, M. U. (2016). The closure of spectral data for constant mean curvature tori in S^3. Journal für die reine und angewandte Mathematik, 2016, 149–166.
- Carberry, E. and Schmidt, M. U. (2016). The prevalence of tori amongst constant mean curvature planes in R³. Journal of Geometry and Physics, 106, 352–366.
- Hauswirth, L., Kilian, M. and Schmidt, M. U. (2016). Mean-convex Alexandrov embedded constant mean curvature tori in the 3-sphere. Proceedings of the London Mathematical Society, 112, 588–622.
- Hauswirth, L., Kilian, M. and Schmidt, M. U. (2015). On mean-convex Alexandrov embedded surfaces in the 3-sphere. Mathematische Zeitschrift, 281, 483–499.
- Kilian, M., Schmidt, M. U. and Schmitt, N. (2015). Flows of constant mean curvature tori in the 3-sphere: The equivariant case. Journal für die reine und angewandte Mathematik, 2015, 46–86.
- Kilian, M., Schmidt, M. U. and Schmitt, N. (2014). On stability of equivariant minimal tori in the 3-sphere. Journal of Geometry and Physics, 85, 171–176.
- Hauswirth, L., Kilian, M. and Schmidt, M. U. (2013). Finite type minimal annuli in S^2×R. Illinois Journal of Mathematics, 57, 697–741.
- Klauer, A. and Schmidt, M. U. (2013). Erratum Bloch varieties of higher-dimensional, periodic Schrödinger operators [J. Appl. Anal. 15 (2009), 33–46]. Journal of Applied Analysis : JAA, 19, 305–306.
- Klauer, A. and Schmidt, M. U. (2009). Bloch Varieties of higher-dimensional periodic Schrödinger Operators. Journal of Applied Analysis : JAA, 15, 33–46.
- Armknecht, F., Elsner, C. and Schmidt, M. U. (2010). Using the inhomogeneous simultaneous approximation problem for cryptographic design.
Cryptology ePrint Archive, Report 2010/
302. Santa Barbara, CA: IACR, International Association for Cryptologic Research.