
Algorithmics
Spring Semester 2020

Prof. Dr. Matthias Krause
2020/05/25, 17:50

University of Mannheim

Prerequisites

Classification into the Overall Context of Business Informatics

• Process Management in Business and Society: Identifying problems to be solved for
improving the overall system.

• Formulating these problems in a formal manner as Computational problems
• Determine the Complexity of these problems

• Do we know efficient algorithms or do we have to handle computationally hard problems?
• If the problem is hard, do we know efficient heuristics?

• Make a decision concerning the solution algorithms
• Solve the Problem by implementing the algorithms

1

What should you learn in this Course?

• Modelling informally specified problems as formal computational problem
• Determine appropriate data structures for inputs and outputs (solutions)
• Define the computational problem as input-output relation

• A list of basic computational problems, especially network optimization problems,
which occur in many practical situations

• A selection of important efficient algorithms for some of these problems
• Techniques for showing that certain problems are hard in the sense that efficient

algorithms do not exist for them

2

Prerequisites and Literature for Algorithmics

Prerequisites

• Programming
• Algorithms and Data Structures
• Probability Theory and Statistics
• Linear Algebra
• Calculus

Literature

• Introduction to Algorithms (Cormen Leiserson Rivest Stein) third edition, MIT Press
2009

• Handbook in Operations Research and Management Science, Vol. 7 ”Network
Models”, edited by Ball, Magnanti, Monma, Nemhauser

• ...

3

Introduction

Computational Problems

Computational problems (for short: Problems) Π are relations Π ⊆ X× Y, X set of valid
inputs, Y a set of valid outputs, (x, y) ∈ Π means: y is solution of x w.r.t. Π.

Examples:

• Sorting: Inputs are sequences a⃗ = (a1, · · · ,an) of elements from an ordered set
(M,≤), outputs are permutation π ∈ Sn, π solution for a⃗ if aπ(1) ≤ aπ(2) ≤ · · · ≤ aπ(n).

• Connectivity: Input G = (V,E) undirected Graph, outputs are 0 (false, G is not
connected) or 1 (true, G is connected).

4

Inputs and Input length

Inputs x ∈ X are associated with a parameter |x| ∈ N, the input length. This yields a
partition

X =
∪
n∈N

Xn,

Xn = {x ∈ X, |x| = n} set of inputs of length n.

Examples:

• Inputs x ∈ N, |x| = ⌊log2(x)⌋+ 1 bit length of x,
• Inputs m× n matrices M over {0,1}, |M| = m · n
• Inputs undirected graphs G = (V,E), |G| = |V| or |G| = |V|+ |E| oder |G| = |E|

(context dependent).

5

Algorithms

• We consider algorithms for sequential computational devices.
• Computational devices work clockwise over a given set of elementary operations

including a STOP command.
• They can read and store data, execute elementary operations on stored data (ideally

one operation per clock cycle), and can output data.
• Algorithms A are instructions for a device to execute a well defined sequence of

computational steps in dependence of the stored input data x (one elementary
operation per step).

• This sequence is called computation of A on x and can be finite or infinite.
• As the result of a finite computation, an output A(x) will be produced.

6

Solving Problems with Algorithms

An algorithm A solves (or computes) a given problem Π ⊆ X× Y, if

• A refers to a well defined rule how inputs x ∈ X are stored (input data structure).
• A refers to a well defined rule how outputs y ∈ Y are produced (output behaviour).
• For each input x ∈ X, the computation of A on x is finite and for the output

y = A(x) ∈ Y it holds (x, y) ∈ Π.

7

Cost Measures for Computations

Given an algorithm A, which refers to inputs x ∈ X.

• The time consumption timeA(x) of the computation of A on x equals the sum of the
time costs of the computational steps of the computation.

• Assignment of time costs to the computational steps depends from the context
(milliseconds, processor clock cycles etc.).

• A usual approach is simplification: The execution of one elementary operation costs
one time unit.

• The space consumption spaceA(x) equals the number of storage units used during
the computation of A on x.

8

Time Behaviour of Algorithms

Let A be an algorithm processing inputs from X =
∪

n∈N Xn, Xn = {x ∈ X, |x| = n}.

• Worst Case Running Time timeA : N −→ N,

timeA(n) = max{timeA(x), x ∈ Xn}.

• Best Case Running Time timeA : N −→ N,

timeA(n) = min{timeA(x), x ∈ Xn}.

• Average Case Running Time timeA : N −→ N,

timeA(n) = Ex∈Pn Xn timeA(x),

where Pn probability distribution Xn.

9

Design and Analysis of Algorithms

Designing and analyzing algorithms means

• Design an algorithm A for a given problem Π ⊆ X× Y, X =
∪

n∈N Xn,
Xn = {x ∈ X, |x| = n}.

• Proof of Correctness: Show that for all x ∈ X algorithm A stops on x, and that A(x) is
solution of x w.r.t. Π (i.e. (x,A(x)) ∈ Π).

• Analysis of the Running Time: Determine the asymptotic growth order of timeA,
i.e., determine timeA up to multiplicative constants (because this is platform
independent).

10

Asymptotic Growth Order of Functions

Let f,g,h : N −→ R+ be monotone increasing functions. We write

Definition 1

• f(n) = O(g(n)) (more exactly, f ∈ O(g)), if there is a constant C ∈ R+ and n0 ∈ N such
that f(n) ≤ C · g(n) for all n ≥ n0, Interpretation: f grows asymptotically not faster than
g.

• f(n) = Ω(g(n)), if there is a constant c ∈ R+ and n0 ∈ N such that f(n) ≥ c · g(n) for all
n ≥ n0. Interpretation: f grows asymptotically not slower than g.

• f(n) = o(g(n)), if for all constants c ∈ R+ there is n0 ∈ N such that f(n) < c · g(n) for all
n ≥ n0. Interpretation: f grows asymptotically strictly slower than g.

11

Asymptotic Growth of Functions II

Definition 2

• f(n) = ω(g(n)), if for all constants C ∈ R+ there is n0 ∈ N such that f(n) > C · g(n) for
all n ≥ n0. Interpretation: f grows asymptotically strictly faster than g.

• f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)), i.e., f and g have the same
asymptotic order of growth.

Observation: The asymptotic growth order notation of functions allows to neglect
multiplicativ constants and additive low order terms, for example 5n2 + 3n + 7 = Θ(n2).

12

Typical Growth Orders

• Θ(n) linear growth
• Θ(n2) quadratic growth
• Θ(n3) cubic growth
• O(1) constant growth
• Θ(log(n)) logarithmic growth
• nO(1) =

∪
k∈N O(nk) polynomially bounded growth.

• exp(Ω(n)) = 2Ω(n), exponential growth

13

Facts which one should know

• Higher degree polynomials grow strictly faster, nk+1 = ω(nk).
• Sublinear is strictly faster than polylogarithmic, nc = ω((log(n))k) for all c > 0.
• Weak exponential is strictly faster than polynomial, 2nc

= ω(nk) for all c > 0 and k ∈ N.
• Sequential Algorithms for nondegenerate problems have usually running time in Ω(n),

as they have to read the complete input at least.

14

Efficiently solvable problems

Definition 3
A problem Π is considered to be efficiently solvable (w.r.t. to a given reasonable model of
computation), if there is an polynomial time algorithm A for Π (i.e., timeA = nO(1))

Alonzo Church (1903-1995, US-mathematician and pioneer of computer science): The
set of efficiently solvable problems is for all reasonable models of computation the same.

Definition 4
PTIME denotes the set of all problems having a polynomial time algorithm (in one
reasonable model of computation, i.e. in all reasonable models of computation)

15

Exponential time is not efficient in practice

Consider exhaustive key search in {0,1}n w.r.t. to a cryptographic algorithm of key-length
n (Advanced Encryption Standard (AES) has key-length n = 128).

Consider a special purpose TerraHertz processor P which tests 1012 ≈ 240 keys in a
second.

• A year has 31.566 · 103 ≈ 225 seconds.
• The expected lifetime of the earth is 4 · 109 ≈ 232 years.
• Consequently, P can test ≈ 297 keys in the expected lifetime of the earth.

16

Shortest Path Problems

1. Single Pair Shortest Path
• Input: A directed edge-weighted graphs G = (V,E,w), a pair (u, v) of nodes from V
• Output:

• ∞, if v is not reachable from u,
• −∞, if there is a walk from u to v containing a negative cycle,
• a shortest path from u to v, otherwise

2. Single Source Shortest Path
• Input: A directed edge-weighted graphs G = (V,E,w), a source s ∈ V.
• Output: The output of Single Pair Shortest Path for all pairs (s, v), v ∈ V

3. All Pairs Shortest Path
• Input: A directed edge-weighted graphs G = (V,E,w)

• Output: The output of Single Pair Shortest Path for all pairs (u, v), u, v ∈ V

17

Walks, Paths, Cycles

• Inputs: Directed weighted graphs G = (V,E,w) with edge weight function
w : E −→ R.

• Weight of edge sets E′ ⊆ E: w(E′) =
∑

e∈E′ w(e).
• Walks: A sequence of consecutive edges

p = ((v0, v1), (v1, v2), · · · , (vk−2, vk−1), (vk−1, vk)) from E is called walk in G from v0 to
vk of length k.

• Paths: The walk p is called path if vi ̸= vj for all 1 ≤ i < j ≤ k.
• Cycles: the path p is called cycle if v0 = vk.
• Shortest Paths: A path p from a node u to a node v is called shortest path from u

to v if for all paths p′ from u to v it holds w(p′) ≥ w(p).

18

Distances in Weighted Graphs

The Distance δG(u, v) from node u to node v is defined to be

• δG(u, v) =∞ if v is not reachable from u in G (i.e., there is no walk from u to v).
• δG(u, v) = −∞ if there is a walk from u to v containing a cycle K of negative weight

(i.e., there are arbitrarily short walks from u to v obtained by going through K
correspondingly often).

• δG(u, v) = w(p) if v is reachable from u in G and no walk from u to v contains a
negative cycle, and if p denotes a shortest path from u to v.

19

Properties of Shortest Paths

Lemma 5
Let G = (V,E,w) be a weighted graph, and let s,u, v ∈ V.

1. Length of Shortest Paths: If −∞ < δG(u, v) <∞ then there is a shortest walk p from
u to v which is a path with at most |V| − 1 edges.

2. Monotonicity: If p is a shortest path from u to v passing two nodes w and z in this
order. Then the subpath of p from w to z is also a shortest path.

3. Triangle Inequality: If (u, v) ∈ E then it holds that δG(s, v) ≤ δG(s,u) + w(u, v).

20

Proof of Lemma 5

Proof of 1: As no negative cycles exist, each cycle in a shortest walk has to have
nonnegative weight and can be cancelled.

Proof of 2: If there were a shorter path from w to z we could construct a shorter path from
u to v.

Proof of 3: It holds that either

• u not reachable from s, i.e., u.d =∞, or
• u is reachable from s, but there is no shortest path from s to v going through u, i.e.,
δG(s, v) < δG(s,u) + w(u, v), or

• u is reachable from s and there is a shortest path from s to v going through u, i.e.,
δG(s, v) = δG(s,u) + w(u, v).

21

Single Source Shortest Path: Data Structures

Many interesting algorithm for Single Source Shortest Path refer to the following data
structure

• All the nodes v of input graph G = (V,E,w) have components v.d ∈ R and v.π ∈ V.
• Input:

• s.d = 0
• v.d = ∞ for all v ̸= s ∈ V,
• v.π = NIL for all v ∈ V

• Output: (if no negative cycles are reachable from s)
• The subgraph Gπ = (Vπ,Eπ) forms a Shortest Path Tree with source s containing all

nodes reachable from s, where
• Vπ = {v ∈ V, v.d < ∞},
• Eπ = {(v.π, v); v ∈ Vπ , v.π ̸= NIL}

• v.d = δG(s, v) for all v ∈ V,
• v.π denotes the predecessor of v along a shortest path from s to v, for all

v ∈ Vπ, v.π ̸= NIL.

22

Basic Operations Initialize and Relax

Initialize(G, s)
1 For all v ∈ V
2 do v.d←∞
3 v.π ← NIL
4 s.d← 0

Running time O(|V|).

Relax(u, v,w)

1 If v.d > u.d + w(u, v)
2 // Relax edge (u, v)
3 then v.d← u.d + w(u, v)
4 v.π ← u

Running time O(1).

23

Main Observation

Apply Initialize(G, s), followed by a finite sequence of RELAX-operations, to G = (V,E,w),
a weighted graph with source s ∈ V.

Then one gets a subgraph Gπ = (Vπ,Eπ), where

• Vπ = {v ∈ V, v.d <∞}
• Eπ = {(v.π, v), v.π ̸= NIL}

Lemma 6

Suppose that no negative cycle is reachable from s. Then Gπ is always a tree with root s,
and for each v ∈ Vπ it holds that

v.d = δGπ
(s, v) ≥ δG(s, v),

i.e., v.d denotes the length of the path from s to v in the tree Gπ.

24

Proof of Lemma 6,I

We assume Eπ ̸= ∅. Otherwise Vπ = {s}, which makes the Lemma trivially true.

Remember that a directed graph is a tree with root s if and only if for each node v there is
exactly one path from s to v.

We know that node s has indegree 0 and that all other nodes in Gπ have indegree 1.

This implies that Gπ is a disjoint union of one tree with root s and some cycles.

Consequently, we have to show that if there do not exist negative cycles in G, which are
reachable from s, then Gπ is acyclic.

We show that any cycle K = (v1, · · · , vk, v1) in Gπ defines a cycle in G with negative
weight, which is reachable from s.

25

Proof of Lemma 6, II

W.l.o.g. let (vk, v1) be the last edge in K, which is relaxed and consider the situation
directly before relaxing (vk, v1).

• The edges (v1, v2), · · · , (vk−1, vk) are already relaxed which implies

vk.d = vk−1.d + w(vk−1, vk) = · · · = v1.d +
k∑

i=2
w(vi−1, vi).

• However, as (vk, v1) is going to be relaxed, v1.d > vk.d + w(vk, v1), which implies

v1.d > v1.d +
k∑

i=2
w(vi−1, vi) + w(vk, v1) = v1.d + w(K).

Consequently w(K) < 0. □

26

The Bellman-Ford Algorithm

BellmanFord(G,w, s)

1 Initialize(G, s)
2 For i← 1 to |V| − 1
3 do for all (u, v) ∈ E
4 do Relax(u, v,w)

5 For all (u, v) ∈ E
6 do if v.d > u.d + w(u, v)
7 then return false , STOP
8 return true

Running time O(|V||E|)

27

Correctness of the Bellman-Ford Algorithm, I

Theorem 7
BellmanFord(G,w, s) outputs true if and only if no negative cycle is reachable from s. In
this case, the output Gπ is a shortest path tree with root s which contains all nodes v
which are reachable from s.

Proof: If no negative cycle is reachable from s, for each node v, which is reachable from s,
there is a shortest path from s to v with at most |V| − 1 edges.

Let v ∈ V be reachable from s and P = (e1, · · · ,ek) be a shortest path from s to v,
k ≤ |V| − 1, where for all i, 1 ≤ i ≤ k, ei = (vi−1, vi) and v0 = s and vk = v.

We show by induction over i that for all i, 1 ≤ i ≤ k, after round it holds (vj).d = δG(s, vj) for
all j = 1, · · · , i.

Consequently, v.d = δG(s, v) after round k.

28

Correctness of the Bellman-Ford Algorithm, II

Case i=1: In round 1, the edge e1 is relaxed. As (v0).d = 0, (v1).d gets value w(e1) which
equals δG(v1), as p is a shortest path.

Case i>1: By the induction hypothesis, (vj).d = δG(vj) for all j = 1, · · · , i− 1. In round i,
edge ei is relaxed. As (vi−1).d = δG(vi−1), (vi).d gets value δG(vi−1) + w(ei) which equals
δG(vi), as p is a shortest path.

Consequently, v.d = δG(s, v) after round k. Thus, Gπ is a shortest path tree in G with root s.

As v.d = δG(s, v) for all v ∈ V, we obtain by the Triangel Inequality from Lemma 5 that
v.d ≤ u.d + w(u, v) for all edges (u, v) ∈ E.

29

Correctness of the Bellman-Ford Algorithm, III

We still have to show that the Bellman-Ford Algorithm returns false if and only if G
contains a negative cycle reachable from s.

We showed already one direction, if G does not contain a negative cycle reachable from s,
then Gπ is the shortest path tree with root s, and, due to the Triangle Equation (see
Lemma 5), the output is true.

It remains to show that output true implies that G does not contain a negative cycle
reachable from s.

This follows from the following lemma.

Lemma 8
Suppose there is a function f : V −→ R ∪ {∞} fulfilling f(v) ≤ f(u) + w(u, v) for all edges
(u, v) ∈ E, where f(v) ̸=∞ for all nodes v reachable from s. Then all cycles
K = (v1, · · · , vk, v1) which are reachable from s have positive weight.

30

Correctness of the Bellman-Ford Algorithm, IV

Proof of Lemma 8: Let K = (v1, · · · , vk, v1) be a cycle reachable from s. By assumption:

f(vi) ≤ f(vi−1) + w(vi−1, vi)

for all i = 2, · · · , k, and
f(v1) ≤ f(vk) + w(vk, v1).

Summing up these k inequalities yields
k∑

i=2
f(vi) + f(v1) ≤

k−1∑
i=1

f(vi) + f(vk) +
k−1∑
i=2

w(vi−1, vi) + w(vk, v1).

Consequently,
k∑

i=1
f(vi) ≤

k∑
i=1

f(vi) + w(K)

which implies w(K) ≥ 0. □

31

Optimization problems

Input instances for many optimization problems can be formulated as instances
I = (n, c,R1, · · · ,Rp,goal) for an M-optimization problem, M ⊆ R, consisting of

• A set of n variables x1, · · · , xn taking values of M
• A target function c = c(x1, · · · , xn) : Mn −→ R.
• A number of restriction R1, · · · ,Rp : Mn −→ {false, true}.
• A goal (min or max).

Most frequent cases M = R or M = Z or M = {0,1}.

Set of valid solutions of I:

X(I) = {x ∈ Mn,R1(x) = · · · = Rp(x) = true}.

Solving I means finding x∗ ∈ X(I) with

c(x∗) = goal{c(x), x ∈ X(I)}.

32

Example: A Political Problem

Politician Jack tries to win his district consisting of 100,000 urban, 200,000 suburban, and
50,000 rural registered voters.

Jacks primary issues are

1 building more roads (−2,5,3)
2 more gun control (8,2,−5)
3 more farm subsidies (0,0,10)
4 more gasoline tax (10,0,−2)

The numbers show the effect of investing $1000 for advertisement for each of these issues
(in thousand voters).

Determine the minimal amount of money necessary for gaining 50,000 urban and 100,000
suburban and 25,000 rural votes.

33

Formal Specification

• Variables are x1, x2, x3, x4 corresponding to the investments in advertisement for the
four issues.

• The target cost function is c(x1, x2, x3, x4) = x1 + x2 + x3 + x4.

• Three restrictions corresponding to the gain of urban, suburban, and rural votes, i.e.
• R1: −2x1 + 8x2 + 10x4 ≥ 50
• R2: 5x1 + 2x2 ≥ 100
• R3: 3x1 − 5x2 + 10x3 − 2x4 ≥ 25

• The additional restrictions xj ≥ 0 for j = 1,2,3,4.

34

Linear Optimization

Definition 9

• A restriction is called to be a linear restriction if it has the form L(x) = b or L(x) ≤ b,
or L(x) ≥ b, where L : Rn −→ R denotes a linear function L(x1, · · · , xn) =

∑n
j=1 ajxj for

real coefficients a1, · · · ,an.
• An Opt-Instance I = (n, c,R1, · · · ,Rp,goal) is called to be Linear Programming

Instance (LP-instance) if the target function c(x) =
∑n

j=1 cjxj − z is affine and all
restrictions are linear.

Many important practical problems correspond to LP-instances (see our example), and
many important optimization problems can be formulated as LP-problems (e.g. Shortest
Path).

35

Formulating Shortest Path as LP-problem

... given a weighted graph G = (V,E,w) and s ∈ V. We suppose that all v ∈ V are
reachable from s. (Otherwise apply BFS(G, s) for computing all nodes reachable from s in
time O(|V|+ |E|)).

Formulation as LP-instance I(G) over real variables {v.d, v ∈ V}:

• Target function c(d) =
∑

v∈V v.d.
• Restrictions Re for all e = (u, v) ∈ E:

v.d ≤ u.d + w(u, v).

• Additional restriction s.d = 0.
• Goal is maximize

36

Proof of Correctness, I

We know from the Bellman-Ford algorithm that

• If G contains a negative cycle then each assignment d to the variables falsifies at least
one restriction (see Lemma 8).

• v.d← δG(s, v) defines a valid solution if G does not contain a negative cycle.

The correctness of our LP-formulation follows from

Lemma 10

Let G does not contain a negative cycle. Then for all valid solutions d = (v.d)v∈V it holds
v.d ≤ δG(s, v) for all v ∈ V (i.e., v.d← δG(s, v) defines the optimal solution).

37

Proof of Correctness, II

Proof of Lemma 10:

Show by induction on i that the claim is true for all v ∈ Vi, i = 0, · · · , |V| − 1, where Vi
denotes the set of all v ∈ V for which the minimal number of edges of a shortest path from
s to v is i.

The claim is trivially true for i = 0 (it holds V0 = {s}).

Suppose that it is true for j = 0, · · · , i− 1 and fix some v ∈ Vi.

Fix further u ∈ Vi−1 being the predecessor of v on a shortest path from s to v. Then

v.d ≤ u.d + w(u, v) ≤ δG(s,u) + w(u, v) = δG(s, v). □

38

Solving Linear Programs

Convex Sets

Definition 11
For x, y ∈ Rn let Line(x, y) = {x + λ(y− x), λ ∈ [0,1]} denote the line connecting x and y.

Definition 12
A subset X ⊆ Rn is called convex if for all x, y ∈ X it holds that Line(x, y) ⊆ X.

Definition 13
Let X ⊆ Rn be convex. A point x ∈ X is called inner point if there are points y, z ∈ X
which are distinct from x and for which x ∈ Line(y, z). The point x ∈ X is called extremal
point if it is not inner point.

Definition 14

For points x, y ∈ Rn let |x− y| =
√∑n

i=1(xi − yi)2 denote the Euclidian distance of x, y.

For x ∈ Rn and ϵ > 0 let Ball(x, ϵ) = {y, |x− y| ≤ ϵ} denote the ϵ-environment of x.

39

Optimal points

Definition 15
Let c : Rn −→ R be a function and X ⊆ Rn.

• A point x ∈ X is called a global minimum (resp. global maximum) of X w.r.t. c if
c(x) ≤ c(y) (resp. c(x) ≥ c(y)) for all y ∈ X.

• It is called a local minimum (resp. local maximum) of X w.r.t. c if there is some
ϵ > 0 such that x is global minimum (resp. global maximum) of X ∩ Ball(x, ϵ) w.r.t. c.

Theorem 16
Let X ⊆ Rn be a convex set and let c : Rn −→ R be a linear target function.

(1) Each local minimum (resp. local maximum) of X w.r.t. c is a global minimum (resp.
local maximum) of X w.r.t. c.

(2) If X has a maximum (resp. minimum) w.r.t c then it is taken in an extremal point of X.

40

Proof of Theorem 16, Part (1)

Suppose that x ∈ X is a local maximum w.r.t. c and fix some ϵ > 0 such that x is global
maximum of X ∩ Ball(x, ϵ) w.r.t. c.

Assume that there is some y ∈ X with c(y) > c(x) and fix some δ > 0 such that
z = x + δ(y− x) = (1− δ)x + δy ∈ Ball(x, ϵ).

As Line(x, y) ⊆ X it holds z ∈ X ∩ Ball(x, ϵ), but

c(z) = c((1− δ)x + δy) = (1− δ)c(x) + δc(y) > c(x),

contradiction to x being the maximum in X ∩ Ball(x, ϵ). □
Theorem 17
Let I = (n, c,R1, · · · ,Rp,goal) be an LP-instance. Then X(I) ⊆ Rn is convex.

Proof: This follows from the easy provable fact that if a linear restriction Ri is true for
x ̸= y ∈ Rn then it is also true for (1− λ)x + λy for all λ, 0 ≤ λ ≤ 1. □

41

Characterizing Extremal Points of Linear Programs

Let I = (n, c,R1, · · · ,Rp,goal) be an LP-instance, where all restrictions Ri, 1 ≤ i ≤ p, have
the form Li(x) ≤ bi or Li(x) ≥ bi or Li(x) = bi, where Li(x1, · · · , xn) =

∑n
j=1 ai,jxj.

Definition 18

A subset of restrictions {Ri, i ∈ S}, where S ⊆ {1, · · · ,p}, is called to be linearly
independent, if the set of corresponding coefficient vectors {(ai,1, · · · ,ai,n), i ∈ S} ⊆ Rn

is linearly independent, i.e., the rank of the matrix A[S], formed by the rows
{(ai,1, · · · ,ai,n), i ∈ S}, equals |S|.

Theorem 19

A point x ∈ X(I) is an extremal point in X(I) if and only if x satisfies a subset of n linearly
independent restrictions with equality.

42

Proof of Theorem 19, I

Proof: Let w.l.o.g. x∗ ∈ X(I) fulfill exactly relations R1, · · · ,Rk with equality, denote by X∗

the affine subspace of all points x fulfilling R1, · · · ,Rk with equality, and let r ≤ n denote the
rank of the set of coefficient vectors {(ai,1, · · · ,ai,n),1 ≤ i ≤ k}.

We show first that x∗ is not extremal if r < n.

As r < n, the dimension of X∗ is n− r > 0, which implies that X∗ contains a line L∗ with x∗
as inner point.

Moreover, for all i, k + 1 ≤ i ≤ p, x∗ has a positive distance to the hyperplane
Hi = {x,Li(x) = bi}.

Consequently, there exist some ϵ > 0 such that all points in Ball(x∗, ϵ) satisfy all relation Ri,
k + 1 ≤ i ≤ p.

This implies that L∗ ∩ Ball(x∗, ϵ) defines a line in X(I) containing x∗ as an inner point, x∗ is
not extremal.

43

Proof of Theorem 19, II

Now suppose that r = n, i.e. X∗ = {x∗}.

For deriving a contradiction suppose that x∗ is not extremal and fix some points y, z ∈ X(I)
such that x∗ is an inner point of the line between x and y, i.e., there is some λ, 0 < λ < 1,
with x∗ = λ · y + (1− λ) · z.

As y ̸∈ X∗, there is some i, 1 ≤ i ≤ k, such that y does not satisfy Ri with equality. This
implies that Ri has the form Li(x) ≤ bi or Li(x) ≥ bi, as in the case Li(x) = bi the point y
would not satisfy Ri.

We assume Ri has the form Li(x) ≤ bi, which implies that Li(y) < bi.

But this implies that Li(z) > bi, which is a contradiction to z ∈ X(I).

This is because in the case Li(z) ≤ bi we had

Li(x∗) = λ · Li(y) + (1− λ) · Li(z) < λ · bi + (1− λ) · Li(z) ≤ λ · b + (1− λ) · bi = bi,

which contradicts to the assumption that Li(x) = bi. □
44

Comments

• Theorem 19 defines an Exhaustive Search Algorithm for Linear Programming.
(1) For all subsets S ⊆ {1, · · · , p}, |S| = n do
(2) test if the set of linear restrictions {Ri, i ∈ S} is linearly independent
(3) If yes, compute xS satisfying all relations in {Ri, i ∈ S} with equality and test if x∗ ∈ X(I)
(4) If yes, put x∗ to a set Extr, which is initially empty
(5) Output a point x∗ ∈ Extr with optimal c-value.

• If an optimum exists, the exhaustive search algorithm finds an optimal point in X(I).

• Running Time: O(
(p

n
)
) iterations, where the rank determination in step 3, and solving

a system of linear equations in step 4 are the most expensive ones (cost O(n3)). This
yields overall running time O(

(p
n
)
· n3).

• Caution: This implies exponential running time! (Note, e.g., that
(2n

n
)
> 2n.)

• Important Question: Can we do better?

45

LP-Instances in Normal Form

An LP-instance is called to be of normal form if it is defined as

• Maximize
∑n

j=1 cjxj − z under
•
∑n

j=1 ai,jxj ≤ bi for all i = 1, · · · ,m, and
• xj ≥ 0 for j = 1, · · · ,n.

Consequently, an n-dimensional LP-instance in normal form corresponds to a tupel

I = (n,m, c, z,A,b)

where n,m are naturals, c = (c1, · · · , cn) ∈ Rn, z ∈ R, A = (ai,j)
m,n
i,j=1 ∈ Rm×n and

b = (b1, · · · ,bm) ∈ Rm.

46

Transforming general LP-Instances into Normal Form

• Make min to max by multiplying the target function by −1,
• Replace equalities

∑n
j=1 ai,jxj = bi by two inequalities

n∑
j=1

ai,jxj ≤ bi,

n∑
j=1

(−ai,j)xj ≤ −bi,

or replace the equality and put

xn =
bi

ai,n
−

n−1∑
j=1

ai,j
ai,n

xj

into the other restrictions.
• Replace inequalities

∑n
j=1 ai,jxj ≥ bj by

∑n
j=1(−ai,j)xj ≤ −bj

• Replace unrestricted variables xj by

x+j − x−j , x+j ≥ 0, x−j ≥ 0.

47

Slacking Extensions

Definition 20
For each point d = (d1, · · · ,dn) ∈ Rn we denote byd1, · · · ,dn,b1 −

n∑
j=1

a1,jdj, · · · ,bm −
n∑

j=1
am,jdj

 ∈ Rn+m

the slacking extension of d.

Lemma 21

(i) d ∈ Rn fulfils n linear independent restrictions in I with equality if the slacking
extension of d is zero at n linearly independent positions.

(ii) d ∈ X(I) iff the slacking extension of d has only nonnegative components,
(iii) d is an extremal point in X(I) iff d ≥ 0 and the slacking extension of d is zero at n

linearly independent positions. □

48

Slacking Normal Form Instances

Given an normal form LP-instance I = (m,n, c, z,A,b) over x = (x1, · · · , xn), the equivalent
Slacking Normal Form Instance SNF(I) is defined as follows

Definition 22

• Maximize
∑n

j=1 cjxj − z under
• x1 ≥ 0, · · · , xn ≥ 0, xn+1 ≥ 0, · · · , xn+m ≥ 0, where for all i = 1, · · · ,m
• the slacking variables xn+i are defined by xn+i = bi −

∑n
j=1 ai,jxj.

Notes

• The slacking variable xn+i = bi −
∑n

j=1 ai,jxj measures the slacking distance of∑n
j=1 ai,jxj from the bound bi.

• The point d ∈ Rn is a valid solution of I iff the slacking extension of d is a valid solution
of SNF(I).

49

Basic Points

Let d = (d1, · · · ,dn+m) ∈ Rn+m denote the slacking extension of a point (d1, · · · ,dn).

Definition 23

• Point d is called a basic point, if there is a set N ⊂ {x1, · · · , xn+m} of n linearly
independent variables such that dk = 0 for all xk ∈ N. In this case, N is called the set
of non-basic variables of the basic point d and B = {x1, · · · , xn+m} \ N is called the
set of basic variables of d.

• A basic point d is called admissible basic point if dk ≥ 0 for all k, 1 ≤ k ≤ n + m.
• The basic point (0⃗,b) = (0,0, · · · ,0,b1, · · · ,bm) is called the canonical basic point.

It is admissible iff b ≥ 0⃗.

Note: The admissible basic points are exactly the slacking extensions of the extremal
points of the polyhedron defined by X(I) = {x; A ◦ x ≤ b, x ≥ 0}.

50

The Simplex Tableaux corresponding to SNF(I,N)

Let I = (n,m, c, z,A,b) a normal form LP-instance, N = {x1, · · · , xn} and
B = {xn+1, · · · , xn+m}.

We collect all information describing the slacking normal form instance SNF(I,N) in a data
structure called the Simplex Tableaux T(I,N):

T(I,N,B):=

x1 · · · xn

z c1 · · · cn

xn+1 b1 a11 · · · a1n
...

...
...

xn+m bm am1 · · · amn

51

The Simplex Method

for non-negative restriction vectors b ≥ 0⃗

52

First Steps

First we extract from T(I,N) the information

• if (0⃗,b) is optimal, or,

• if the problem is unbounded, i.e., max =∞, or,

• which neighbor admissible basic point of (0⃗,b) improves the target function.

53

Directions starting from (0⃗,b)

Note: The point (0⃗,b) is left by n lines D1, · · · ,Dn, called directions, where for all q,
1 ≤ q ≤ n, direction Dq is defined by increasing component q, i.e.,

Dq = {dq(λ), λ ≥ 0},

where
dq(λ) = (0 · · · ,0, λ, 0 · · · ,0,b1 − λ · a1,q, · · · ,bm − λ · am,q).

where λ stands at position q.

• A direction Dq is called bounded if there is some bound λ0 ≥ 0 such that dq(λ) is
admissible if and only if 0 ≤ λ ≤ λ0.

• A direction Dq is called improving if the target function strictly increases on Dq with
increasing λ.

54

Improving Directions and Optimality of (0⃗,b)

Lemma 24
Suppose that (0⃗,b) is an admissible basic point.

(i) A direction Dj, 1 ≤ j ≤ n, is improving if and only if cj > 0.
(ii) If cj ≤ 0 for all j, 1 ≤ j ≤ n, then (0⃗,b) is optimal.

Proof of (i): Observe that the target function c behaves at direction Dj as

c(dj(λ)) = cj · λ.

Consequently, if c is (strictly) increasing on Dj then cj > 0.

Proof of (ii): Note that all admissible points x ∈ X(I) in the environment of 0⃗ have to have
only nonnegative components. Consequently, if cj ≤ 0 for all j, 1 ≤ j ≤ n, then 0⃗ is a local
optimum as c(x) ≤ c(0⃗) = 0 for all x ∈ X(I) in the environment of 0⃗. By Theorems 16 and
17, 0⃗ is optimal. □

55

Bounded and Unbounded Directions

Lemma 25
Suppose that (0⃗,b) is an admissible basic point.

(i) A direction Dj, 1 ≤ j ≤ n, is bounded if and only if there is some i, 1 ≤ i ≤ m, such that
ai,j > 0.

(ii) In this case dj(λ) ∈ X(I) if and only if 0 ≤ λ ≤ min{ bi
ai,j

;1 ≤ i ≤ m,ai,j > 0}.

Proof: Note that dj(λ) ∈ X(I) if bi − ai,j · λ ≥ 0, i.e., λ ≤ bi
ai,j

, for all i, 1 ≤ i ≤ m, fulfilling
ai,j > 0. □

Lemma 26

If there is some j, 1 ≤ j ≤ n, such that cj > 0 and ai,j ≤ 0 for all i, 1 ≤ i ≤ m, then Dj is an
improving unbounded direction, i.e., opt(I) = limλ→∞ cj · λ =∞. □

56

Pivot Positions

Definition 27

Suppose that (0⃗,b) is admissible.

A pair of indicees (p,q), 1 ≤ p ≤ m, 1 ≤ q ≤ n, is called a Pivot Position

(1) cq > 0 and ap,q > 0,
(2) bp

ap,q
= min{ bi

ai,q
,1 ≤ i ≤ m,ai,q > 0}.

Lemma 28

Suppose that (0⃗,b) is admissible but not optimal, and that all improving directions
starting at (0⃗,b) are bounded. Then there is a Pivot position (p,q), and for the point
y = dq(

bp
ap,q

) it holds that y is an admissible basic point, and that c(y) > c((0⃗,b)).

57

Proof of Lemma 28

Note first that, due to definition 27

c(y) = cq ·
bp

ap,q
> 0.

Note further that
yn+p = bp − ap,q ·

bp
ap,q

= 0,

i.e. y = dq(
bp

ap,q
) is zero at positions {1, · · · ,n} \ {q} and at position n + p.

It can be easily shown that the set of variables

({x1, · · · , xn} \ {xq}) ∪ {xn+p}

is linearly independent if and only if ap,q ̸= 0 (which is true as (p,q) is a Pivot position). □

58

Scheme of the Simplex Method

Input: T = (I,N,B), where I = (n,m, c, z,A,b) and N = {x1, · · · , xj} and
B = {xn+1, · · · , xn+m}.

0 x← (0⃗,b)
1 Check if x is optimal and stop if yes.
2 Check if there is an unbounded improving direction starting at x and stop if yes.
3 Fix a pivot position (p,q), set y = dq(

bp
ap,q

) and compute the simplex tableaux T(I, Ñ, B̃)
corresponding to Ñ = ({x1, · · · , xn} \ {xq}) ∪ {xn+p} and
B̃ = ({xn+1, · · · , xn+m} \ {xn+p}) ∪ {xq}.

4 x← y
5 goto 1

59

The Simplex Transformation (1)

Let (p,q) a pivot position and y =(
0, · · · , 0, bp

ap,q
, 0, · · · , 0, b1 −

a1,qbp

ap,q
, · · · , bp−1 −

ap−1,qbp

ap,q
, 0, bp+1 −

ap+1,qbp

ap,q
, · · · , bm − am,qbp

ap,q

)
the corresponding admissible neighbor basic point of (0⃗,b).

Computing the simplex tableaux T(I, Ñ, B̃) with Ñ = {x1, · · · , xq−1, xn+p, xq+1, · · · , xn}
means to compute coefficients c̃j, z̃, b̃i, ãi,j such that

• c(x) =
∑q−1

j=1 c̃jxj + c̃qxn+p +
∑n

j=q+1 c̃jxj − z̃

• xn+i = b̃i −
∑q−1

j=1 ãi,jxj − ãi,qxn+p −
∑n

j=q+1 ãi,jxj, for i ̸= p, and

• xq = b̃p −
∑q−1

j=1 ãp,jxj − ãp,qxn+p −
∑n

j=q+1 ãp,jxj.

60

The Simplex Transformation (2)

It holds

xn+p = bp −
q−1∑
j=1

ap,jxj − ap,qxq −
n∑

j=q+1
ap,jxj.

This implies

xq =
bp

ap,q
−

q−1∑
j=1

ap,j
ap,q

xj −
1

ap,q
xn+p −

n∑
j=q+1

ap,j
ap,q

xj.

Hence

• b̃p =
bp

ap,q
,

• ãp,j =
ap,j
ap,q

for j ̸= q, and

• ãp,q = 1
ap,q

61

The Simplex Transformation (3)

For i ̸= p it holds

xn+i = bi −
q−1∑
j=1

ai,jxj − ai,qxq −
n∑

j=q+1
ai,jxj.

This implies

xn+i = bi −
q−1∑
j=1

ai,jxj − ai,q

 bp
ap,q
−

q−1∑
j=1

ap,j
ap,q

xj −
1

ap,q
xn+p −

n∑
j=q+1

ap,j
ap,q

xj

− n∑
j=q+1

ai,jxj.

This can be transformed in the desired form

xn+i =

(
bi −

ai,q · bp

ap,q

)
−

q−1∑
j=1

(
ai,j −

ai,q · ap,j

ap,q

)
xj −

(
− ai,q

ap,q

)
xn+p −

n∑
j=q+1

(
ai,j −

ai,q · ap,j

ap,q

)
xj.

62

The Simplex Transformation (4)

Consequently, for i ̸= p,

• b̃i = bi − ai,q·bp
ap,q

,

• ãi,j = ai,j − ai,q·ap,j
ap,q

for j ̸= q, and

• ãi,q = − ai,q
ap,q

.

63

The Simplex Transformation (5)

It holds

c(x) =
q−1∑
j=1

cjxj + cqxq +
n∑

j=q+1
cjxj − z.

This implies

c(x) =
q−1∑
j=1

cjxj + cq

 bp
ap,q
−

q−1∑
j=1

ap,j
ap,q

xj −
1

ap,q
xn+p −

n∑
j=q+1

ap,j
ap,q

xj

+
n∑

j=q+1
cjxj − z.

This can be transformed into the desired form

c(x) =
q−1∑
j=1

(
cj −

cq · ap,j
ap,q

)
xj +

(
−

cq
ap,q

)
xn+p +

n∑
j=q+1

(
cj −

cq · ap,j
ap,q

)
xj −

(
z− cq · bp

ap,q

)
.

64

The Simplex Transformation (5)

This implies

• c̃j = cj − cq·ap,j
ap,q

for j ̸= q,

• c̃q = − cq
ap,q

,

• z̃ = z− cq·bp
ap,q

.

65

Result

We obtain the simplex tableaux

T(I, Ñ, B̃) :=

x̃1 · · · x̃n

z̃ c̃1 · · · c̃n
˜xn+1 b̃1 ã11 · · · ã1n
...

...
...

˜xn+m b̃m ˜am1 · · · ˜amn

which corresponds to the slacking normal form SNF(I, Ñ, B̃)

• Maximize
∑n

j=1 cjxj − z =
∑n

j=1 c̃jx̃j − z̃

• under ˜xn+i = b̃i −
∑n

j=1 ãi,jx̃j for all i = 1, · · · ,m,
• and x̃k ≥ 0 for all k = 1, · · · ,n + m.

66

Simplex Tableaux

Definition 29

• An (m,n)-Simplex Tableaux T = (ti,j)0≤i≤m,0≤j≤n is a real (m + 1)× (n + 1) matrix.
• Rows and columnes are labelled by variables from {x1, · · · , xn+m} such that each of

these variables occurs exactly once as a label.
• N(T) denotes the set of variables occuring as columne labels and is called the set of

non basic variables w.r.t. T.
• B(T) denotes the set of variables occuring as row labels and is called the set of basic

variables w.r.t. T.
• x(T) ∈ Rn+m denotes the basic point corresponding to T and is defined as x(T)k = 0 if

xk ∈ N(T) and x(T)k = tik,0, where ik, 1 ≤ ik ≤ m, is the index of the row labelled by xk,
when xk ∈ B(T).

.

67

The Simplex Tableaux T = T(I,N)

The Simplex Tableaux T = T(I,N), I = (m,n,A,b, c, z) corresponding to our LP-instance is
defined as follows:

• t0,0 = z,

• t0,j = cj for 1 ≤ j ≤ n,

• ti,0 = bi for 1 ≤ i ≤ m,

• ti,j = ai,j for 1 ≤ i ≤ m, 1 ≤ j ≤ n,

• N(T) = N = {x1, · · · , xn},

• B(T) = {xn+1, · · · , xn+m}.

Note that x(T) = (0⃗,b).

68

The Simplex Tableaux Transformation

Given an (m,n)-Simplex Tableaux T, the Transformation T̃ = Pivotp,q(T), 1 ≤ p ≤ m,
1 ≤ q ≤ n is possible if tp,q ̸= 0 and is defined as

1 t̃p,q = 1
tp,q ,

2 t̃p,j = tp,j
tp,q , for j ̸= q,

3 t̃i,q = − ti,q
tp,q , for i ̸= p,

4 t̃i,j = ti,j − ti,q·tp,j
tp,q , for i ̸= p and j ̸= q,

5 exchange the labels of row p and columne q.

Note that if T = T(I,N) then T̃ = T(I, Ñ) and that x(T̃) = y.

69

Known definitions for Simplex Tableaus (1)

Consider an (m,n)-Simplex Tableaux T.

Definition 30

• T is called admissible if ti,0 ≥ 0 for all i = 1, · · · ,m.
• T is called optimal if T is admissable and t0,j ≤ 0 for all j = 1, · · · ,n.
• T is called unbounded if there is some q, 1 ≤ q ≤ n, such that t0,q > 0 and ti,q ≤ 0 for

all i, 1 ≤ i ≤ m.
• Suppose that T is admissible then (p,q), 1 ≤ p ≤ m, 1 ≤ q ≤ n, is called a Pivot

Position of T if
(1) t0,q > 0 and tp,q > 0,
(2) tp,0

tp,q = min{ ti,0
ti,q

, 1 ≤ i ≤ m, ti,q > 0}.

70

The Main Program of the Simplex Method

SimplexSearch(T) (* T admissible Simplex Tableaux *)

1 Repeat if T not optimal
2 then if T not unbounded
3 then choose Pivot Position (p,q)
4 T← Pivotp,q(T)
5 until T optimal or unbounded
6 Output T

71

Correctness

Theorem 31

Suppose that SimplexSearch(T(I,N)) terminates and let T̄ be the output tableaux. Then
the following holds

• T̄ is unbounded if and only if c is unbounded on X(I).
• If T̄ is not unbounded then the admissible basic point x(T̄) is the optimum, i.e.,

c(x(T̄)) = −t̄0,0 = max{c(x), x ∈ X(I)}. □

72

Two Problems still to be solved

(1) How we can ensure that SimplexSearch(m,n,T) terminates?

(2) How we can solve the problem if (0⃗,b) is not admissible, i.e., if there is some i,
1 ≤ i ≤ m, for which bi < 0?

(3) How we can detect if the LP-instance I = (m,n,A,b, c) is infeasible, i.e., X(I) = ∅?

Note: Infeasibility implies that (0⃗,b) is not admissible, otherwise X(I) ̸= ∅.

73

Degenerate Pivot steps

Lemma 32

Degenerate Pivot steps: If T′ = Pivotp,q(T) and tp,0 = 0 then x(T) = x(T′).

Proof: This is true as for all position (i,0) in the leftmost column of T′ it holds

t′i,0 = ti,0 −
ti,q · tp,0

tp,q
= ti,0

for i ̸= p and t′p,0 =
tp,0
tp,q = 0 = tp,0. □

Comments: Degenerate Pivot can occur in admissible basic points with more than n
zeros. They have to be performed if for all pivot positions (p,q) in T it holds t0,p = 0.

Making a degenerate Pivot step means staying in the same basic points but changing to
another set of n non-basic variables (which hopefully makes an improving direction visible).

74

Consequences

• If SimplexSearch(T) performs only non degenerate Pivot steps then it always
terminates.

• If it performs also degenerate Pivot steps then it may not terminate, if the heuristic of
choosing the next Pivot position is badly designed.

• By an appropriate control structure, it should be ensured that SimplexSearch(T) never
visits tableaux which are defined w.r.t. the same set of nonbasic variables.

75

Detecting Infeasibility, Idea

How we can detect that X(I) ̸= ∅ for a normal form instance I = (n,m, c,A,b) with
bp = min{bi, i = 1, · · · ,m}< 0.

For all x0 ≥ 0 we consider the set

X(I, x0) = {x ∈ Rn;
n∑

j=1
a1,jxj ≤ b1+x0, · · · ,

n∑
j=1

am,jxj ≤ bm+x0, x ≥ 0⃗}.

Observations

• X(I,0) = X(I) and X(I, x0) ⊆ X(I, x′0) for x0 ≤ x′0.

• X(I,−bp) ̸= ∅ as bi + (−bp) ≥ 0 for all i = 1, · · · ,m, and, thus 0⃗ ∈ X(I,−bp).

Our Approach: We compute xmin
0 = min{x0; x0 ≥ 0,X(I, x0) ̸= ∅}.

By Definition: X(I) ̸= ∅ if and only if xmin
0 = 0.

76

Computing xmin
0 and a starting tableaux for I

We compute xmin
0 by solving the following LP-instance Iaux:

• Maximize −x0 subject to
•
∑n

j=1 ai,jxj − x0 ≤ bi for all i, 1 ≤ i ≤ m,
• xj ≥ 0 for all j, 0 ≤ j ≤ n.

Theorem 33

(0) X(Iaux) ̸= ∅ (as (−bp,0, · · · ,0) ∈ X(Iaux)).

(1) If opt(Iaux) < 0 then X(I) = ∅ (as xmin
0 = −opt(Iaux)).

(2) Let opt(Iaux) = 0 and (0, x̄1, · · · , x̄n) be Iaux-optimal. Then x̄ = (x̄1, · · · , x̄n) belongs to
X(I) and defines an admissible basic point of I.

77

Proof of Theorem 33

Proof of (2): Suppose that opt(Iaux) = xmin
0 = 0 and fix an optimal Iaux-solution

(0, x̄1, · · · , x̄n) which is an extremal point in X(Iaux). Note that the slacking normal form
extension of this point is0, x̄1, · · · , x̄n,b1 −

n∑
j=1

a1,jx̄j, · · · ,bm −
n∑

j=1
am,jx̄j


As this Iaux-basic point is admissible, all components are non negative. Moreover, besides
x̄0 = 0, it contains n 0-components. This implies that x̄ is an extremal point in X(I) asx̄1, · · · , x̄n,b1 −

n∑
j=1

a1,jx̄j, · · · ,bm −
n∑

j=1
am,jx̄j


is an admissible basis point w.r.t. I. □

78

The Tableaux Taux(I), I = (m,n, c, z,A,b), b ̸≥ 0⃗

Taux(I) :=

x0 x1 · · · xn

0 −1 0 · · · 0
z 0 c1 · · · cn

xn+1 b1 −1 a11 · · · a1n
...

...
...

...
xn+m bm −1 am1 · · · amn

Note 1: Row 2 corresponds to the original target function, which, for efficiency, we include
into the transformation.

Note 2: Again, Taux(I) is not admissible, as b ̸≥ 0⃗.

79

Finding an admissible neighbor basic point w.r.t. Taux(I)

We have seen that
d̃ = (−bp,0, · · · ,0) ∈ X(Iaux),

where bp = min{bi,1 ≤ i ≤ m}.

Note that the slacking extension of d̃ is

(−bp,0, · · · ,0,b1 − (−1)(−bp), · · · ,bm − (−1)(−bp))

= (−bp,0, · · · ,0,b1 − bp, · · · ,bm − bp) ≥ 0

is an admissible basic point w.r.t. Iaux, as it has another zero at position n + 1 + p.

This implies that T = Pivotp,0(Taux) is an admissible tableaux, i.e., SimplexSearch(T)
yields opt(Iaux) and, if opt(Iaux) = 0, an admissible starting tableaux for I.

80

Initialize(I), I = (m,n, c, z,A,b) in Normal Form

1 if b ≥ 0 then output T(I)
2 else fix p, 1 ≤ p ≤ m, s.t. bp = min{bi,1 ≤ i ≤ m}
3 T′ = Taux(I)
4 T′ ← Pivotp,0(T′)

5 T′ ←SimplexSearch(T′) (* w.r.t. target function −x0 *)
6 if t′0,0 ̸= 0
7 then output infeasible
8 else if x0 ∈ B(T′) (* as label of row i *)
9 then T′ ← Pivoti,j(T′) (* for some t′i,j ̸= 0 *)

11 else fix j s.t. x0 is label of column j
12 T← Delete columne j and row 0 of T′

13 output T

81

Correctness Initialize(I)

One has to show that solving the LP-problem corresponding to T is equivalent to solving I.
This is obvious if b ≥ 0.

If not, after executing line 8, T′ is optimal w.r.t. to the secondary basic function, and x(T′)

defines (0, x̄1, · · · , x̄n) as in Theorem 33.

If x0 ∈ B(T′), i.e. x0 occurs as label of a row i, 1 ≤ i ≤ m, then t′i,−1 = 0.

Consequently, the Pivot step in line 9 is degenerate and does not change x(T′).

It can be derived straightforwardly that T obtained after 11 is defined by the admissible
basic point defined by (x̄1, · · · , x̄n).

82

Simplex(I), I = (m,n,A,b, c) in Normal Form

1 if Initialize(I) =infeasible
2 then output infeasible
3 else T← Initialize(I)
4 T← SimplexSearch(T)
5 if T is unbounded
6 then output unbounded
7 else output opt(I) = −t0,0, taken at xopt

where xopt is obtained by the values assigned by x(T) to the variables x1, · · · , xn.

83

Comments

• The Worst Case Running Time of the Simplex Method is exponential in n and m, but
the average running time is polynomial.

• There are polynomial time LP-algorithms (e.g., Khachians Ellipsoid Method,
Kamarka’s Method).

• In practice, the Simplex Method performs well, much better as the Ellipsoid Method,
or Kamarka’s Algorithm.

• There are very efficient LP-solvers for practice, which use a large number of additional
nontrivial techniques.

84

The Dual Linear Programm

Let I = (n,m, c,0,A,b) an normal form LP-instance called primal,

• Maximize c(x) =
∑n

j=1 cjxj subject to
•
∑n

j=1 ai,jxj ≤ bi for i = 1, · · · ,m
• xj ≥ 0 for j = 1, · · · ,n.

The corresponding dual LP is defined by

• Minimize b(y) =
∑m

i=1 biyi subject to
•
∑m

i=1 ai,jyi ≥ cj for j = 1, · · · ,n and
• yi ≥ 0 for i = 1, · · · ,m.

85

Primality and Duality

Theorem 34

Given a primal LP-instance I = (n,m,A,b, c) in normal form, let Idual denote the
corresponding dual LP-instance. There are three possibilities:

• X(I) is empty, then Idual is unbounded.

• X(Idual) is empty, then I is unbounded.

• Both problems are feasible and not unbounded. Then

opt(I) = opt(Idual),

which implies that c(x) ≤ b(y) for all x ∈ X(I) and y ∈ X(Idual).

Proof: The proof will follow the following calculations.

86

Proof of Theorem 34, Weak Duality

Lemma 35
Let x ∈ Rn be a valid solution for the primal LP and y ∈ Rm be a valid solution for the dual
LP. Then c(x) ≤ b(y).

Proof: It holds

c(x) =
n∑

j=1
cjxj ≤

n∑
j=1

(m∑
i=1

ai,jyi

)
xj =

m∑
i=1

 n∑
j=1

ai,jxj

 yi ≤
m∑

i=1
biyi = b(y).

Corollary 36
Let x be a valid solution for the primal LP and y be a valid solution for the dual LP and let
c(x) = b(y).

Then x is optimal for the primal LP and y for the dual LP. □

87

Proof of Theorem 34, LP-Duality (1)

Suppose that opt(I) exists and let T denote the last tableaux T produced by the Simplex
algorithm. Let

T:=

xj1 · · · xjn
z’ c′j1 · · · c′jn

xi1 b′
i1 a′

11 · · · a′
1n

...
...

...
xim b′

im a′
m1 · · · a′

mn

Note that c′jr ≤ 0 for all r, 1 ≤ r ≤ n, and b′
is ≥ 0 for all s, 1 ≤ s ≤ m.

88

Proof of Theorem 34, LP-Duality (2)

Let x̄ ∈ Rn denote the optimal solution of the primal program. We know that for all
j = 1, · · · ,n, of the primal program is defined by

x̄j =

{
b′

j , if j ∈ {i1, · · · , im}
0, if j ∈ {j1, · · · , jn}

We define a dual point ȳ ∈ Rm. For all i = 1, · · · ,m let

ȳi =

{
−c′n+i, if xn+i ∈ {j1, · · · , jn}

0, if xn+i ∈ {i1, · · · , im}

Lemma 37
It holds that ȳ is valid for the dual LP, and that c(x̄) = b(ȳ) = −z′, i.e. x̄ and ȳ are optimal
for the primal and dual LP, resp.

89

The Proof of Theorem 34 (3)

For k = 1, · · · ,n + m let

c′k =

{
c′k, if xk ∈ N
0, if xk ∈ B

Note that ȳi = −c′n+i for all i = 1, · · · ,m.

For all x = (x1, · · · , xn) ∈ Rn it holds

c(x) =
n∑

j=1
cjxj =

n+m∑
k=1

c′kxk − z′ =
n∑

j=1
c′j xj +

m∑
i=1

c′n+ixn+i − z′

=
n∑

j=1
c′j xj +

m∑
i=1

(−ȳi)

bi −
n∑

j=1
ai,jxj

− z′, i.e.,

90

The Proof of Theorem 34 (4)

n∑
j=1

cjxj =
n∑

j=1
c′j xj −

m∑
i=1

biȳi +
n∑

j=1

(m∑
i=1

ai,jȳi

)
xj − z′

=

(
−z′ −

m∑
i=1

biȳi

)
+

n∑
j=1

(
c′j +

m∑
i=1

ai,jȳi

)
xj.

As this equality holds for all x = (x1, · · · , xn) ∈ Rn, it holds

−z′ −
m∑

i=1
biȳi = 0, and

cj = c′j +
m∑

i=1
ai,jȳi

for all j, 1 ≤ j ≤ n.

91

The Proof of Theorem 34 (5)

The first equality implies that b(ȳ) = c(x̄) = −z′.

The second equality implies that

cj ≤
m∑

i=1
ai,jȳi

as c′j ≤ 0 for all j, 1 ≤ j ≤ n.

Consequently, ȳ is feasible for the dual LP. □

92

The Maximum Flow Problem

Flow Networks

Definition 38
A flow network G = (V,E, c) refers to a directed graph G = (V,E) and is defined as
follows

• There is a distinguished nonempty set S∗ ⊆ V called the set of sources.
• There is another nonempty distinguished set T∗ ⊆ V, S∗ ∩ T∗ = ∅, called the set of

sinks.
• There is a capacity function c : E −→ R, where c(e) > 0 for all e ∈ E.

Note: Flow networks can be used to model systems of transportation routes (streets,
pipelines etc.) for goods.

Note: For u, v ∈ V let a capacity value c(u, v) = 0 be equivalent to (u, v) ̸∈ E.

93

Flows on Flow Networks

Definition 39
A mapping f : E −→ R is called a flow for G = (V,E, c) if

• for all e ∈ E it holds 0 ≤ f(e) ≤ c(e), and

• for all v ∈ V \ (S∗ ∪ T∗) it holds∑
u,(u,v)∈E

f(u, v) =
∑

w,(v,w)∈E

f(v,w).

The value

|f| =
∑
s∈S∗

 ∑
w,(s,w)∈E

f(s,w)−
∑

u,(u,s)∈E

f(u, s)


is called the size of the flow f.

94

The Maximum Flow Problem

Definition 40
The Maximum Flow Problem is defined as:

• Input: G = (V,E, c) flow network with S∗,T∗ ⊆ V.
• Output: A flow on G with maximal value.

The maximum flow problem has many practical applications (transportation problems,
pipelining problems etc.). We solve it for restricted flow networks:

Definition 41
A flow network G = (V,E, c) is called restricted if it contains only one source s ∈ V and
one sink t ∈ V, where indegG(s) = outdegG(t) = 0.

Moreover, G does not contain pairs (u, v), (v,u) of antiparallel edges, i.e., (u, v) ∈ E
implies (v,u) ̸∈ E.

95

Efficient Simulation of General Flow Networks by Restricted Ones (1)

Lemma 42
Let G = (V,E, c) be a general flow network with set of sources S∗ and set of sinks T∗.
Then there is a restricted network G′ = (V′,E′, c′) with |V′| ≤ |V|+ |E|/2 + 2, such that
each flow on G corresponds to a flow on G′ with the same value, and vice versa.

Construction Idea:

• We add a new source s and edges (s, s∗) for all s∗ ∈ S∗, where

c′(s, s∗) =
∑
v∈V

c(s∗, v),

which upper bounds the maximal possible flow coming from source s∗ in G.

96

Efficient Simulation of General Flow Networks by Restricted Ones (2)

• We add a new sink t and edges (t∗, t), where

c′(t∗, t) =
∑
v∈V

c(v, t∗),

which upper bounds the maximal possible flow reaching sink t∗ in G.

• For all pairs (v,w), (w, v) in E we add a new vertex y and replace one of these edges
(say (w, v)) by two new edges (w, y), (y, v) with c′(w, vp) = c′(vp, v) = c(w, v).

Claim: Each flow f corresponds to a flow f′ on G′ (and vice versa) with |f| = |f′|, where the
flow f′ is defined as follows:

97

Efficient Simulation of General Flow Networks by Restricted Ones (3)

• For all edges e ∈ E which are also contained in E′ it holds f′(e) = f(e).

• For all edges (w, v) ∈ E which are replaced in E′ by two new edges (w, y), (y, v) it
holds f′(w, y) = f′(y, v) = f(w, v).

• For all edges (s, s∗) ∈ E′ it holds

f′(s, s∗) =
∑

v∈V,(s∗,v)∈E

f(s∗, v)−
∑

u∈V,(u,s∗)∈E

f(u, s∗).

• For all edges (t∗, t) ∈ E′ it holds

f′(t∗, t) =
∑
v∈V

f(v, t∗)−
∑
w∈V

f(t∗,w).

It can be easily checked that f′ is a flow on G′ and |f| = |f′|. □

98

MaxFlow Instances as LP-instances

Maximum flow instances G = (V,E, c) can be formulated as LP-instances:

• Variables: f(u, v), where (u, v) ∈ E

• Maximize
∑

w,(s,w)∈E f(s,w) subject to

0 ≤ f(u, v) ≤ c(u, v)

for all (u, v) ∈ E, and ∑
u,(u,v)∈E

f(u, v)−
∑

w,(v,w)∈E

f(v,w) = 0

for all v ∈ V \ {s, t}.

Do there exist MaxFlow-Algorithms better than Simplex ?

99

Towards the Ford-Fulkerson Method: Residual Networks

Definition 43
Let G = (V,E, c) be a flow network, and f : E −→ R a flow for G. Then the residual flow
network Gf = (V,Ef, cf) is defined as follows.

• For all (u, v) ∈ E let cf(u, v) = c(u, v)− f(u, v) and cf(v,u) = f(u, v).
• For all (u′, v′) ∈ V× V for which (u′, v′) ̸∈ E and (v′,u′) ̸∈ E let cf(u′, v′) = 0.
• Let Ef = {(u, v) ∈ V× V; cf(u, v) ̸= 0}.

Note 1: Ef consists of forward edges (u, v), for which (u, v) ∈ E and f(u, v) < c(u, v), and
backward edges (v,u), for which (u, v) ∈ E and f(u, v) > 0.

100

Example

101

Basics on Residual Networks

The capacities on Gf give the information how f can be changed for getting a better flow.

The capacity cf(u, v) of a forward edge (u, v) ∈ Ef indicates the maximal value by which
the flow through (u, v) ∈ E on G can be increased.

The capacity cf(v,u) of a backward edge (v,u) ∈ Ef indicates the maximal value by which
the flow through the corresponding edge (u, v) ∈ E can be decreased.

Definition 44
Each directed path p from s to t in Gf is called an augmenting path with respect to G
and f. and we denote by

cf(p) = min{cf(e),e ∈ p}.

the minimal capacity of p.

102

Special Flows on Gf: Augmenting Paths

Definition 45

Given an augmenting path p on Gf we define a flow g = g(f,p) on G. For all edges
(v,w) ∈ E let

(1) g(v,w) = f(v,w), if (v,w) ̸∈ p and (w, v) ̸∈ p,
(2) g(v,w) = f(v,w) + cf(p), if (v,w) ∈ p, and
(3) g(v,w) = f(v,w)− cf(p), if (w, v) ∈ p.

Lemma 46

The mapping g = g(f, fp) defines a flow on G and it holds |g| = |f|+ cf(p).

103

The Proof of Lemma 46

First we have to show that g(v,w) ≥ 0 for all (v,w) ∈ E.

The only critical situation occurs if item (3) of Definition 45 is applied.

Let us fix some (v,w) ∈ E for which (w, v) ∈ p. Then, as cf(w, v) ≥ cf(p).

g(v,w) = f(v,w)− cf(p) ≥

f(v,w)− cf(w, v) = f(v,w)− f(v,w) = 0.

We have still to show that g satisfies the balance rule for all nodes v ∈ V \ {s, t}. There can
occur three cases:

(a) g changes two ingoing edges or two outgoing edges of v,
(b) g changes one ingoing and one outgoing edge of v,
(c) The g-values of all ingoing and all outgoing edges of v equal the f-values.

104

The Proof of Lemma 46, (II)

In case (a) exactly one edge corresponds to a forward and exactly one edge to a backward
edge in Gf, i.e., one g value is defined according rule (2) and one according to rule (3).

In case (b) either both edges correspond to forward edges and the g values are defined
according to rule (2), or both edges correspond to backward edges and the g values are
defined according to rule (3).

In all cases, the balance rule is preserved in node v.

Finally observe that the first edge along p starting in s has to be a forward edge, as
indegG(s) = 0.

This implies that |g| = |f|+ cf(p). □

105

Example

106

Example

107

Cuts in G

Definition 47

A partition V = S ∪ T is called a cut of G iff s ∈ S and t ∈ T.

• Let
c(S,T) =

∑
e=(u,v)∈E,u∈S,v∈T

c(e)

denote the capacity of the cut (S,T).
• Let f be a flow on G, then

f(S,T) =
∑

e=(u,v)∈E,u∈S,v∈T

f(e)−
∑

e=(v,u)∈E,v∈T,u∈S

f(e)

denotes the flow through the cut (S,T).

108

Flows and Cuts

Lemma 48

Let f be a flow on G and (S,T) be a cut. Then |f| = f(S,T).

Proof: It holds
|f| =

∑
v∈V

f(s, v)−
∑
v∈V

f(v, s).

Moreover, for all u ∈ S \ {s} it holds
∑

v∈V f(u, v)−
∑

v∈V f(v,u) = 0. Consequently,

|f| =
∑
v∈V

f(s, v)−
∑
v∈V

f(v, s) +
∑

u∈S\{s}

(∑
v∈V

f(u, v)−
∑
v∈V

f(v,u)
)
.

109

Proof of Lemma 48

This implies
|f| =

∑
u∈S

∑
v∈V

f(u, v)−
∑
v∈V

∑
u∈S

f(v,u)

=
∑
u∈S

∑
v∈T

f(u, v) +
∑
u∈S

∑
v∈S

f(u, v)−
∑
v∈T

∑
u∈S

f(v,u)−
∑
v∈S

∑
u∈S

f(v,u).

Now observe that the second and fourth term are equal. We obtain

|f| =
∑
u∈S

∑
v∈T

f(u, v)−
∑
v∈T

∑
u∈S

f(v,u) = f(S,T). □

110

A Consequence: MinCut bounds MaxFlow

As |f| = f(S,T) ≤ c(S,T) applies, we obtain the following lemma.

Lemma 49
For all flows f on G = (V,E, c) and cuts (S,T) of V it holds |f| ≤ c(S,T). □

An even stronger result applies:

Theorem 50
Let G = (V,E, c) be a flow network and f a flow on G. Conditions (1) to (3) are equivalent

(1) The flow f is maximal.
(2) There is no path from s to t in Gf.
(3) There is a cut (S,T) such that |f| = c(S,T).

Proof: From (1) follows (2) by Lemma 46, from (3) follows (1) by the above Lemma.

111

The Proof of Theorem 50 (1)

It remains to show that from (2) follows (3). Suppose that there is no path from s to t in Gf.
We construct a cut (S,T) such that |f| = c(S,T).

Let S be the set of all v ∈ V which are reachable from s in Gf, and T = V \ S. By definition,
s ∈ S and t ∈ T, i.e., (S,T) is a cut. Remember that

|f| =
∑

e=(u,v)∈E,u∈S,v∈T

f(e)−
∑

e=(v,u)∈E,v∈T,u∈S

f(e).

Consider first an arbitrary edge e = (u, v) ∈ E for which u ∈ S, v ∈ T. It must hold that
cf(e) = 0, otherwise v would be reachable from s in Gf. This implies f(e) = c(e).

112

The Proof of Theorem 50 (2)

Consider now an arbitrary edge e = (v,u) ∈ E for which v ∈ T,u ∈ S. It must hold that
cf(u, v) = 0, otherwise v would be reachable from s in Gf. This implies that f(v,u) = 0.
Consequently,

|f| =
∑

e=(u,v)∈E,u∈S,v∈T

c(e)−
∑

e=(v,u)∈E,v∈T,u∈S

0 = c(S,T). □

113

The Ford-Fulkerson Method

Input: A Flow Network G = (V,E, s, t, c)

Output: A maximal flow f : E −→ R.

1 Let f be the constant-0 flow on G
2 Repeat
3 Fix a path p from s to t in Gf

4 f← g(f, fp)
5 until t is not reachable from s in Gf

6 Output f

If the program terminates, the correctness follows from Theorem 50.

114

Termination of Ford Fulkerson

Let G = (V,E, c) be a flow network.

• If all capacities are integral then Ford-Fulkerson terminates after at most
∑

e∈E c(e)
iterations. (This is because |f| increased by at least one in each iteration, and as
|f| ≤

∑
e∈E c(e)).

• It is possible to construct flow networks with irrational capacities and a stupid way for
choosing augmenting pathes such that Ford-Fulkerson never terminates!

• Networks with rational capacities can be transformed into equivalent networks with
integral capacities (multiply all capacities by the least common multiple (lcm) of all
denominators of capacities of G).

• If in each iteration a shortest augmenting path is chosen, then Ford-Fulkerson
terminates after O(|V| · |E|) iterations. This corresponds to the Edmonds-Karp
Algorithm.

115

Running time of the Edmonds-Karp Algorithm

Definition 51
Given a flow f on G = (V,E, c) and nodes u, v ∈ V, we denote by δf(u, v) the distance of v
from u in Gf, i.e. the length (=number of edges) of a shortest path from u to v in Gf.

Now suppose f is a flow on G = (V,E, c) and flow f′ is obtained from f by one iteration of
Ford-Fulkerson, where the corresponding augmenting path is a shortest path from s to t.

Lemma 52

For all v ∈ V it holds that δf(s, v) ≤ δf′(s, v).

116

Proof of Lemma 52 (1)

Suppose that Lemma 52 is not true. Define

W = {w ∈ V, δf(s,w) > δf′(s,w)}

and suppose correspondingly that W ̸= ∅.

Choose v ∈W such that δf′(s, v) = min{δf′(s,w),w ∈W}.

Choose a shortest path from s to v in Gf′ and let u be the predecessor of v along p.

It holds δf′(s, v) = δf′(s,u) + 1, and, as u ̸∈W, δf′(s,u) ≥ δf(s,u).

It holds (u, v) ̸∈ Ef, otherwise it would hold

δf(s, v) ≤ δf(s,u) + 1 ≤ δf′(s,u) + 1 = δf′(s, v),

which would contradict to v ∈W.

117

Proof of Lemma 52 (2)

The fact that (u, v) ̸∈ Ef but (u, v) ∈ Ef′ implies that f′ changes the flow on edge (v,u), i.e.
(v,u) belongs to the augmenting path corresponding to the transition from f to f′.

As this path is a shortest path in Gf, we obtain.

δf(s, v) = δf(s,u)− 1 ≤ δf′(s,u)− 1 = δf′(s, v)− 2,

which contradicts to v ∈W. □

118

Correctness Theorem

Definition 53
Given a flow f on G = (V,E, c) and an augmenting path p in Gf. An edge e = (u, v) from
p is called critical, if it has minimal capacity in p, i.e., cf(e) = cf(p).

Lemma 54

During the execution of the Edmonds-Karp Algorithm on a flow network G = (V,E, c),
each edge e ∈ E can become critical at most |V|/2 times.

Proof: Consider an arbitrarily fixed iteration of the Edmonds-Karp algorithm, fix the
corresponding flow f on G and an corresponding augmenting path p, and suppose that the
edge (u, v) ∈ E becomes critical. Then, after the execution of this iteration, (u, v) is
removed from the residual network, but (v,u) remains.

119

Proof of Lemma 54 (2)

The edge (u, v) can only return to the residual network after a transition in which (v,u)
belongs to the augmenting path. Let f′ denote the flow in the corresponding iteration, and
p′ the corresponding augmenting path. As p and p′ are shortest paths, we obtain by
Lemma 52

δf′(s,u) = δf′(s, v) + 1 ≥ δf(s, v) + 1

= δf(s,u) + 1 + 1 = δf(s,u) + 2.

Now consider the iteration when (u, v) becomes critical the next time and denote by f̃ the
corresponding flow. By Lemma 52 we obtain

δ̃f(s,u) ≥ δf′(s,u) ≥ δf(s,u) + 2.

120

Proof of Lemma 54 (3)

Consequently, for each time (u, v) becomes critical the distance from s to u in the residual
network increases by at least 2. As this distance is upperbounded by |V| − 1, (u, v) can
become critical in at most |V|/2 iterations. □

Theorem 55
The Karp-Edmonds Algorithm stops after at most |E| · (|V|/2) iterations. Thus the running
time is O(|V||E|2).

Proof: Using Breadth-First Search in Gf in each iteration for computing a shortest
augmenting path from s to t yields running time O(|E|) in each iteration. □

121

Matchings in Undirected Graphs

The Maximum Matching Problem

Input: An undirected graph G = (U,E).

Output: A maximal matching in G, i.e., a matching M ⊆ E in G with maximal number of
edges.

Remember: A graph G = (V,E) is called undirected if for all edges e = (u, v) ∈ E it holds
that (v,u) ∈ E. Pairs of antiparallel edges (u, v), (v,u) are identified with the undirected
edge {u, v}.

Definition 56
Let G = (V,E) be an undirected graph. A subset M ⊆ E is called to be a matching in G if
for all edges e ̸= e′ ∈ M it holds that e ∩ e′ = ∅.

The Maximum Matching problem has many practical applications.

122

Example

123

Characterizing Maximum Matchings by Augmenting Paths

Let G = (V,E) be an undirected graph and M ⊆ E be a matching.

Definition 57

• A node v ∈ V is called M-exposed if no edge of M contains v.
• A simple path p in G is called M-augmenting, if its endpoints are M-exposed and, if p

has more than one edge, it contains alternatingly edges which are not in M and edges
which are in M.

Theorem 58

A matching M ⊆ E is maximal if and only if there is no M-augmenting path.

124

Proof of the Matching Theorem 58 (I)

Proof: We prove first that the existence of an M-augmenting path p implies that M is not
maximal.

Let p = (w0, v1,w1, · · · , vs,ws, vs+1), s ≥ 0, where

• w0, vs+1 are M-exposed,
• the set of edges M1 = {(w0, v1), (w1, v2), · · · , (ws−1, vs), (ws, vs+1)} is disjoint with M

and,
• if s > 0, then the set of edges M2 = {(v1,w1), · · · , (vs,ws)} is a subset of M.

Note that M′ = (M \M2) ∪M1 is a matching with |M′| = |M|+ 1.

125

Proof of the Matching Theorem 58 (II)

Now we show that if M is not maximal then there is an M-augmenting path.

Let N be another matching of G with |N| > |M|, let E′ = M∆N consist of all edges
contained either in M or in N, and let G′ = (V,E′).

Note that the connected components of G′ are isolated points, or simple paths, or simple
circuits, where in the paths and circuits the edges are alternatingly from N or from M.

Consequently, in all circuits, the number of N- and M-edges is the same.

As we have more N- than M-edges, there must be a simple path with one more N-edge.
This path defines an M-augmenting path. □

126

Maximal Matchings in Bipartite Graphs

Definition 59
An undirected graph G = (U,E) is called bipartite, if there is a partition U = V ∪W of the
node set into two disjoint subsets such that for all edges e = {v,w} ∈ E it holds that
v ∈ V and w ∈W.

One practical application: The marriage problem

• Given a set V of females and W of males.
• For v ∈ V and w ∈W let {v,w} ∈ E if both v and w do in principle not object to marry

each other.
• Problem: Compute a maximal number of possible couples.

127

Solving the Maximal Matching Problem for Bipartite Graphs

1.) Transform the bipartite input graph G = (V,W,E) into a flow network G′ = (V′,E′, c),
where

• V′ = V ∪ W ∪ {s, t}
• E′ = E′

1 ∪ E′
2 ∪ E′

3, where
• E′

1 = {(s, v), v ∈ V}
• E′

2 = {(v,w), v ∈ V,w ∈ W, {v,w} ∈ E}
• E′

3 = {(w, t),w ∈ W},
• c(e′) = 1 for all e′ ∈ E′.

2.) Compute a maximum flow on G′ with Ford-Fulkerson.

128

Example

129

Example

130

Proof of Correctness (1)

We show that

• Each flow computed by Ford-Fulkerson on G′ is integral.
• Each integral flow f on G′ defines a matching of G with |f| edges, and vice versa.

Lemma 60
If all capacities of a flow network are integral then all flows computed during the
application of the Ford-Fulkerson Method are integral, i.e., they assign only integers to
edges.

Proof: We start with an integral flow (the constant-0 flow). Then, in each iteration, the flow
through each edge remains either unchanged, or it will be increased or decreased by the
capacity of the critical edge, which is always integral. □

131

Proof of Correctness (2)

Lemma 61
Each integral flow f on G′ defines a matching of G with |f| edges, and vice versa.

Proof: Let f be an integral flow on G′. As all capacities are 1, for each edge e′ ∈ E′ it holds
f(e′) ∈ {0,1}. Moreover, the indegree of s is 0. Consequently, there is a subset of nodes
Ṽ ⊆ V, |Ṽ| = |f|, such that f(s, v) = 1 for all v ∈ Ṽ and f(s, v) = 0 for all v ̸∈ Ṽ.

Due to the flow maintaining property, for each v ∈ Ṽ there is exactly one node w(v) ∈W
such that (v,w(v)) ∈ E and f(v,w(v)) = 1. As each node w ∈W is left by exactly one edge,
it holds w(v) ̸= w(v′) for all v ̸= v′ in Ṽ.

Consequently, the edges {{v,w(v)}, v ∈ V′} build a matching of size |f| in G.

132

Proof of Correctness (3) and Summary

Now let M = {{vi,wi}, i = 1, · · · , s} be a matching of size s in G. Define a flow f on G′ by

f(s, vi) = f(vi,wi) = f(wi, t) = 1

for all i = 1, · · · , s, and f(e′) = 0 for all other edges in E′.

It can be easily checked that f is a flow of size s on G′. □

Summary: A maximal matching in a bipartite graph G = (V,W,E) can be computed in
time O(min{|V|, |W|} · |E|) by applying the Ford-Fulkerson Method.

133

The Structure of residual networks, I

Let f be a non maximal integral flow on G′ defining a (nonmaximal) matching
Mf = {{vi,wi}, i = 1, · · · , s} in G.

The residual network G′
f contains edges of the following six types, all with capacity one:

• Forward edges of type (s, v) for some v ∈ V. This implies that f(s, v) = 0, i.e., v is
Mf-exposed.

• Backward edges of type (v, s) for some v ∈ V. This implies that f(s, v) = 1, i.e., in v
starts some Mf-edge.

• Forward edges of type (v,w) for some v ∈ V, w ∈W. This implies that f(v,w) = 0, i.e.,
(v,w) ̸∈ Mf.

134

The Structure of residual networks, II

• Backward edges of type (w, v) for some v ∈ V, w ∈W. This implies that f(v,w) = 1,
i.e., (v,w) ∈ Mf.

• Forward edges of type (w, t) for some w ∈W. This implies that f(w, t) = 0, i.e., w is
Mf-exposed.

• Backward edges of type (t,w) for some w ∈W. This implies that f(w, t) = 1, i.e., w
belongs to an Mf-edge.

135

The Structure of Augmenting Paths

Note that augmenting paths p in G′
f

• start with a forward edge (s, v) with v ∈ V
• followed by a sequence of edges which are alternatingly forward and backward

edges, where the first and the last edge are forward edges,
• finished by a forward edge (w, t) with w ∈W.

As v,w are Mf-exposed, and as the forward and backward edges between v and w
correspond to edges not in Mf and in Mf, resp., the subpath of p from v to w form an
Mf-augmenting path p′ in G.

The improved flow on G′ corresponding to f and fp corresponds to the matching in G
improved via p′.

136

Example

137

NP-Completeness and -Hardness

Feasible and Unfeasible Problems

Efficiently solvable (feasible) Problems:

• Sorting
• Computation of connected components, minimal spanning trees,
• Arithmetic operations on integers, Primality Testing
• Solving Linear Programs · · ·

Appearently Unfeasible Problems:

• SAT: Satisfiability of Boolean formulas in conjunctive normal form (CNF-formulas)
• Traveling Salesman Problem
• Maximum Clique Problem,
• Solving Linear Integer Programs
• Computation of Discrete Logarithms and Integer Factorization

138

How to prove Non Feasibility?

How to prove that a given problem Π does not have an efficient algorithm?

1.) Empirical ... many smart people tried for many years to find an efficient algorithm for
Π ... but did not succeed.
Not convincing from a scientific point of view

2.) Absolute ... someone found a mathematical proof that the problem does not have an
efficient algorithm.
Ideal from a scientific point of view but this seems to be impossible

3.) Relative ... One can identify a complexity class HARD such that for any problem
Π ∈ HARD the following holds: The discovery of an efficient algorithm for Π has the
drastic consequence that for a huge set of problems, which are assumed to be
unfeasible, efficient algorithms can be constructed.

The theory of NP-Completeness allows to identify such a complexity class.

139

Unfeasible Graph Problems I: Maximum Clique

Maximum Clique

• Input: Undirected graph G = (V,E)
• Output: A maximum clique V′ ⊆ V of G, i.e., a clique with the maximal number of

nodes.

Definition 62
A node set V′ ⊆ V is called clique (or complete subgraph) of G = (V,E), if for all
v ̸= w ∈ V′ it holds {v,w} ∈ E.

Decisional variant

• Input: (G, k), where k ∈ N

• Accept (G, k) iff there is a clique of G with (at least) k nodes.

140

Example: Cliques

ed

cb

a

4-Clique
{a,b, c,e}

ed

cb

a

3-Cliques, e.g. {a, c,e}
no 4-Clique

141

Unfeasible Graph Problems II: Hamiltonian Circuit Problem (HC)

Sir William Rowan Hamilton (1805-1865), irish mathematician and physicist, founder of
the Hamiltonian Mechanics, formulated the Hamiltonian Circuit Problem (HC) for
dodecahedral graphs.

• Input: Undirected graph G = (V,E)
• Accept if G has a Hamiltonian circuit.

Definition 63
A Hamilton Circuit is a simple circuit in G with |V| edges which visits all nodes v ∈ V.

Observation: Consider the Euler Circuit Problem

• Input: G = (V,E)
• Accept if G has an Euler circuit, i.e. a circuit in G which contains all edges.

Note: The Euler Circuit Problem has an efficient algorithm.

142

Example: Hamiltonian Circuit

ed

cb

a

Hamiltonian Circuit
a→ b→ e→ c→ d→ a

ed

cb

a

No Hamiltonian Circuit

143

Unfeasible Graph Problems III: The Traveling Salesman Problem (TSP)

• Input: Weighted Graph G = (V,E,d), V = {v1, · · · , vn}, encoded as distance matrix
D = (d(vi, vj))

n
i,j=1.

• Output: A shortest round trip

vπ(1) → vπ(2) → · · · → vπ(n) → vπ(1)

in G, encoded as permutation π ∈ Sn.
• Cost of a round trip:

c(D, π) = Dπ(1),π(2) + · · ·+ Dπ(n−1),π(n) + Dπ(n),π(1).

144

TSP Example

D =


1 1 2 1 1
1 1 2 2 1
2 2 1 1 1
1 2 1 1 1
1 1 1 1 1

 .

c
(

D,

(
1 2 3 4 5
1 2 5 3 4

))
= D1,2 + D2,5 + D5,3 + D3,4 + D4,1 = 1 + 1 + 1 + 1 + 1 = 5.

c
(

D,

(
1 2 3 4 5
1 4 2 3 5

))
= D1,4 + D4,2 + D2,3 + D3,5 + D5,1 = 1 + 2 + 2 + 1 + 1 = 7.

145

Unfeasible Problems: The Knapsack Problem (KP)
Input

• n objects to be packed into a knapsack, with weights w = (w1, · · · ,wn) ∈ (R+)
n and

benefit values c = (c1, · · · , cn) ∈ (R+)
n,

• a weight bound W.

Output

A subset I ⊆ {1, · · · ,n} of objects for which w(I) =
∑

i∈I wi ≤W and

c(I) =
∑
i∈I

ci = max{c(I′); I′ ⊆ {1, · · · ,n},w(I′) ≤W}.

Example: n = 10, w = (8,4,3,7,1,6,4,1,2,3), c = (7,2,2,7,2,4,3,1,3,2), W = 20

I = {4,5,6,7,9}, w = (8,4,3,7,1,6,4,1,2,3), c = (7,2,2,7,2,4,3,1,3,2),

w(I) = 20, c(I) = 19.

Is benefit 19 the maximum? 146

Unfeasible Problems: Partition

Input: A set A of n natural numbers A = {a1, · · · ,an}.

Output: Yes if and only if there is a subset I ⊆ {1, · · · ,n} fulfilling∑
i∈I

ai =
∑
i̸∈I

ai.

Example: n = 11, A = {15,28,30,17,15,19,22,34,27,13,24}

Σ = 244

Solution: A = {15,28,30,17,15,19,22,34,27,13,24}

Σ = Σ = 122

147

The Knapsack Problem (KP)

Decisional Variant

• Input: (n,w, c,W) as above and a value bound C.
• Accept (n,w, c,W,C) iff there is a subset I ⊆ {1, · · · ,n} of objects such that w(I) ≤W

and c(I) ≥ C.

Formulation as Integer Linear Program

• Maximize c(x) =
∑n

i=1 cixi subject to
•
∑n

i=1 wixi ≤W, and
• 0 ≤ xi ≤ 1 and xi ∈ Z, for all i = 1, · · · ,n.

An Integer Linear Program is a Linear Program with the additional restriction that all
components of the solution have to be integral.

148

Unfeasible Number Theoretic Problems: Discrete Logarithm

Input: An n-bit prime p ∈ N, an n-bit basis g ∈ N for Z∗
p = {1, · · · ,p− 1}, an n-bit number

y ∈ N.

Note that g basis implies that Z∗
p = {1,g2,g3, · · · ,gp−2}

Output: The discrete logarithm dlogg(y) in Zm, i.e., an n-bit number x ∈ N such that

gx ≡ y mod m.

Example

Input: m = 11, g = 2, y = 9

Z∗
11 = {20 = 1,21 = 2,22 = 4,23 = 8,24 = 5,25 = 10,26 = 9,27 = 7,28 = 3,29 = 6}

Output: dlog2(9) = 6 in Z∗
11.

149

Unfeasible Number Theoretic Problems: Factorization

• Input: An n-bit number m

• Output: A proper divisor d of m (if existent), i.e., a natural number d, 2 ≤ d ≤ m− 1,
such that m = d · λ for some integer λ.

• Decisional Variant: Additional input b ∈ N, decide if there is a proper divisor d of m
fulfilling d ≤ b.

Remark: The practical unfeasibility of the Discrete Logarithm Problem and the
Factorization problem (for input length n ≥ 2048) is the basic security assumption for
many practical cryptographic systems.

150

The Satisfiability Problem (SAT), Preliminaries (1)

• Boolean variables are variables xi which can take the values 1 (true) and 0 (false).

• Boolean formulas over a set x1, · · · , xn of Boolean variables are recursively defined
as follows:

• Boolean variable xi and the constant 0, 1 are Boolean formulas.
• If F,G are Boolean formulas then also ¬(F), F ∨ G and F ∧ G.

• Special Boolean formulas
• Constants 0, 1.
• Literals xi, ¬xi.
• Clauses L1 ∨ L2 ∨ · · · ∨ Ls, Lk literals, i.e., ¬x1 ∨ x2 ∨ ¬x4

• Conjunctive Normal Form (CNF) Formulas C = C1 ∧ C2 ∧ · · · ∧ Cm, Cj clauses.
(x1 ∨ ¬x2) ∧ (x2 ∨ ¬x3)

• Monomials L1 ∧ L2 ∧ · · · ∧ Ls, Lk literals, i.e., x1 ∧ ¬x3 ∧ ¬x4.
• Disjunctive Normal Form (DNF) Formulas D = M1 ∨ M2 ∨ · · · ∨ Mm, Mj monomials,
(x1 ∧ x2) ∨ (¬x2 ∧ ¬x3) 151

The Satisfiability Problem (SAT), Preliminaries (2)

• Boolean formulas F = F(x1, · · · , xn) assign to each {0,1}-assignment
b = (b1, · · · ,bn) ∈ {0,1}n to x1, · · · , xn a function value F(b) ∈ {0,1} via

• 1(b) = 1, 0(b) = 0,
• xi(b) = bi,
• ¬(F)(b) = 1 − F(b),
• (F ∨ G)(b) = max{F(b),G(b)}, and
• (F ∧ G)(b) = min{F(b),G(b)}.

• b = (b1, · · · ,bn) ∈ {0,1}n is called a satisfying assignment for a formula
F = F(x1, · · · , xn) if F(b) = 1.

• Example: (0,0,1) satisfies x1 ∨ x2 ∨ x3 but not (x1 ∨ ¬x2) ∧ (x2 ∨ ¬x3).

152

The Satisfiability Problem (SAT)

• Input: A CNF-formula C = C1 ∧ · · · ∧ Cm over {x1, · · · , xn}.

• Decide if C is satisfiable, i.e.,
if there is a satisfying assignment b = (b1, · · · ,bn) ∈ {0,1}n which satisfies all
clauses Cj, j = 1, · · · ,m, of C.
Note: An assignment b = (b1, · · · ,bn) ∈ {0,1}n satisfies C = C1 ∧ · · · ∧Cm if and only
if in each clauses Cj of C at least one literal is satisfied by b.

• Examples:
• (x1 ∨ ¬x2) ∧ (x2 ∨ ¬x3) is in SAT, satisfied by (1, 1, 1).
• (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (x2 ∨ ¬x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) is not in SAT

153

Efficiently Verifiable Proofs

Definition 64
We say that a given decision problem Π has Efficiently Verifiable Proofs if there is a
proof scheme (ProofΠ,VΠ) for Π, which is defined as follows

• Proofs: ProofΠ assigns to each input x for Π a set ProofΠ(x) of possible proofs.

• Efficient Verification: VΠ = VΠ(x, y) denotes a decision algorithm of running time
polynomially bounded in |x|, which decides for each input x for Π and each possible
proof y ∈ ProofΠ(x) if y is a proof for the claim that Π(x) = 1.

• Correctness: It holds that Π(x) = 1 if and only if there is some y ∈ Proofπ(x) such
that VΠ(x, y) = 1.

154

A Corresponding Game

Let a decision problem Π have efficiently verifiable proofs (ProofΠ,VΠ). This corresponds
to the following communication game between (potentially ingenious) Alice and Bob. Bob
is a normal boy who can only solve problems which are computable in polynomial time.

• Alice claims: For this input x it holds Π(x) = 1 !
• Bob: I do not believe you, give me a proof !
• Alice chooses some possible proof y ∈ ProofΠ(x)
• Bob verifies - by computing VΠ(x, y) - if y is a correct proof for the claim Π(x) = 1 (and

wins if VΠ(x, y) = 0, otherwise Alice wins) .

Note: The efficiency of VΠ implies that the bit length of proofs y from ProofΠ(x) has to
be polynomially bounded in |x|.

155

Efficiently Verifiable Proofs for Π = SAT

• Input a CNF-formula C = C1 ∧ · · · ∧ Cm over {x1, · · · , xn},
• Proofs ProofΠ(C) contains all possible assignment b ∈ {0,1}n for the variables
{x1, · · · , xn}.

• Verification V(C,b) = 1 if and only if Cj(b) = 1 for all j = 1, · · · ,m.

Corresponds to a game

• Alice: This CNF-formula C = C1 ∧ · · · ∧ Cm is satisfiable !!
• Bob: I do not believe you, give me a proof !
• Alice chooses some assignment b ∈ {0,1}n for the variables in C.
• Bob verifies - by computing Cj(b) for all j = 1, · · · ,m - if b is a correct proof for the

claim that C is satisfiable (and wins if this is not the case).

156

Further Examples for Efficiently Verifiable Proofs

• Π = Clique:
• Input G = (V,E) and a bound k ≤ |V|.
• Proofs ProofΠ(G, k) contains all V′ ⊆ V, |V′| = k.
• Verification: VΠ(G,V′) = 1 if V′ is Clique in G.

• Π = TSP:
• Input A distance matrix D = (di,j)

n
i,j=1 over n cities, a bound d.

• Proofs the set of all round trips π ∈ Sn

• Verification: Accepts π as a proof for TSP(D, d) = 1 if the length c(D, π) does not exceed
d.

157

Examples for Efficiently Verifiable Proofs (3)

Π = KP:

• Input a KP-instance (n,w, c,W,C) corresponding to n objects.
• Proofs a subset of objects I ⊆ {1, · · · ,n}
• Verification Accept I as a correct proof if w(I) ≤W and c(I) ≥ C.

158

The Complexity Classes P and NP

Definition 65

• PTIME denotes the set of all problems which can be computed in polynomial
worst-case time.

• P denotes the set of all decision problems computable in polynomial worst-case
time.

• NP denotes the set of all decision problems having efficiently verifiable proofs.

• Observation 1: P ⊆ NP
• Observation 2: SAT and the decision variants of Clique, HC, TSP, KP, DiscreteLog,

Factorization belong all to NP.
• A Fundamental Problem: P = NP ? (Millions of Dollars for a solution, e.g., from the

New York Times.)

159

Basic Properties of Efficiently Verifiable Proofs

• Important: Efficiently Verifiable Proofs (ProofΠ,VΠ) for a decision problem Π do not
yield an efficient algorithms for Π.
For that reason we would need an efficient algorithm for finding correct proofs y for
Π(x) = 1 in ProofΠ(x). This is problematic as the size of ProofΠ(x) is exponentially in
|x|.

• However: Efficiently Verifiable Proofs (ProofΠ,VΠ) for Π yield an Exhaustive Search
Algorithm for Π:

• Given an input x for Π
• For all proof candidates y ∈ ProofΠ(x)
• do If VΠ(x, y) = 1 then output Π(x) = 1, stop
• output Π(x) = 0

Running time exponentially in |x|.

160

Background PNP-Problem

The problem if P ̸= NP or P = NP concern a fundamental question in artificial intelligence:
Is it really more complicated to find a mathematical proof for a given theorem than to check
if a given proof for this theorem is correct?

P ̸= NP implies that finding a proof is more complicated than verifiying correctness.

P = NP implies that the creative process of finding a proof (or making arts or making some
other creative things) can be in principle efficiently simulated by a computer.

161

Polynomial Reductions

We identify decision problems Π : {0,1}∗ −→ {0,1} with languages L = LΠ ⊆ {0,1}∗ via
x ∈ L ⇐⇒ Π(x) = 1.

Definition 66
Let L,L′ ⊆ {0,1}∗ be languages. A function f : {0,1}∗ −→ {0,1}∗ is called polynomial
reduction from L to L′ iff

• f ∈ PTIME, and
• for all x ∈ {0,1}∗ it holds that x ∈ L if and only if f(x) ∈ L′.

We say that L is polynomially reducible to L′ (abbreviation L ≤pol L′) if there is a
polynomial reduction from L to L′.

162

Informal Explanation

Suppose that we know an efficient algorithm A′ for a decision problem Π′, corresponding
to a language L′ ⊆ {0,1}∗.

Let Π be another decision problem, corresponding to a language L ⊆ {0,1}∗, for which we
are looking for a good algorithm.

Suppose we know another efficient algorithm Af, computing a polynomial reduction from L
to L′, i.e., Af transforms inputs x for L into inputs x′ for L′ such that Π(x) = Π′(f(x)).

Then

• Run Af on input x for computing f(x)
• Run A′ on f(x) for computing Π(x) = Π′(f(x)).

is an efficient algorithm A for Π. Consequently,
Lemma 67
If L′ ∈ P and L ≤pol L′ then also L ∈ P. □.

163

One Example: HC ≤pol TSP

Let G = (V,E) be an undirected graph, let V = {v1, · · · , vn}.

We construct a distance matrix D = (di,j)
n
i,j=1 such that

G ∈ HC ⇐⇒ (D,n) ∈ TSP.

i.e., there is a round trip of length ≤ n w.r.t. D if and only if G has a Hamiltonian circuit. Let

di,j =

{
1, if (i, j) ∈ E
2, if (i, j) ̸∈ E

Note that each each Hamiltonian circuit in G induces a round trip of length n in D.

On the other hand, if G does not contain a HC then each roundtrip in D contains one
transition i→ j for which (i, j) ̸∈ E, i.e., the length of the round trip is at least
n− 1 + 2 = n + 1.

164

NP-Completeness

Definition 68

• A language L ∈ NP is called NP-complete, if for all L′ ∈ NP it holds L′ ≤pol L, i.e., all
languages in NP are polynomially reducible to L.

• NPC denotes the class of NP-complete problems.

Theorem 69
If P ̸= NP then P ∩ NPC = ∅, i.e., NP-complete problems do not have polynomial time
algorithms.

Proof: Let L ∈ P ∩ NPC. Then L′ ≤pol L for all L′ ∈ NP. But this implies that L′ ∈ P for all
L′ ∈ NP, as P is closed w.r.t. polynomial reductions. This implies NP = P. □

Important Question: Do NP-complete problems exist?

165

Cook’s Theorem

Theorem 70
(Cook 1971) SAT is NP-complete (Stephen A. Cook (*1939), Uni Toronto).

The Proof: Let L ∈ NP be arbitrarily fixed. We construct for each input x ∈ {0,1}∗ a
CNF-formula Cx of polynomial size such that x ∈ L ⇐⇒ Cx ∈ SAT.

The only thing we know about L is that there are polynomially bounded functions p = p(n)
and t = t(n) and a verification algorithm VL such that

• For all x ∈ {0,1}∗ and proofs y ∈ {0,1}p(|x|) VL stops at input (x, y) after exactly t(|x|)
steps with output VL(x, y) ∈ {0,1}.

• For all x ∈ {0,1}∗ it holds that x ∈ L if and only if there is a proof y ∈ {0,1}p(|x|) such
VL(x, y) = 1.

We assume that proofs y ∈ ProofL(x) are encoded as {0,1}p(|x|)-strings and that VL is
equipped with a clock ensuring the same running time for inputs of equal length.

166

Proof of Cook’s Theorem: Turing Machines

For the proof we use the Extended Hypothesis of Church1, which implies that each
polynomial time algorithm can be executed on a polynomial time bounded One-tape
Turing machine (for short 1-TM)2, a very simple type of a formal computational device:

• A 1-TM M has one linear tape consisting of a (potentially unbounded) number of
register cells, where in each register cell characters from {0,1,#} can be stored.

• At the tape a head is operating which is connected with a CPU.

• M is working clockwise on the basis of a TM-program, called state transition
function. In each clock cycle, the machine is in a certain inner state q, and the head
is at and reads a character b from a certain register cell. Depending on q and b, the
head writes a new letter into this cell, moves to the left or to the right neighbor cell,
and changes the inner state.

1Alonzo Church (1903-1995), US-mathematician, logician and philosopher.
2Alan Turing (1912-1954), English Pioneer of Modern Computer Science

167

Proof of Cook’s Theorem: Formal TM Definition

Definition 71
A 1-TM is a triple M = (Q,q0, δ), where Q is a finite set of states including the initial state
q0, and

δ : Q× {0,1,#} −→ {0,1,#} ×MOVE×Q

is the state transition function, where MOVE = {L,R,N} consists of the commands L
(move the head to the left), R, (move the head to the left), and N (do not move).

• δ-Instances (q,b;b′,m,q′) correspond to TM-commands of type: If M is in state q
and reads b then write b′, move the head according to m and change into state q′.

• At the beginning of an computation, M is in initial state q0 and the head is at some
predefinded initial position.

• Instances (q,b;b,N,q) for q ∈ Q and b ∈ {0,1,#} are called stop instances.
• States q ∈ Q for which (q,b;b,N,q) ∈ δ for all b ∈ {0,1,#} are called stop states.

168

1-TM Example: Incrementing a Binary Number

• We define a 1-TM M = ({q0,q1,q2},q0, δ) which increments a given binary number
x = (xn−1, · · · , x0) by 1, where

δ = {(q0,1;0,L,q0), (q0,0;1,R,q1), (q0,#;1,R,q1), (q1,0;0,R,q1),

(q1,1;1,R,q1), (q1,#;#,L,q2), (q2,0;0,N,q2), (q2,1;1,N,q2), (q2,#;#,N,q2)}.
• At the initial configuration, the inscription of the tape is

· · ·###xn−1xn−1 · · · x1x0### · · ·

and the head is on the cell with x0 and M is in state q0.
• Then, under q0, while reading characters 1 the M-head overwrites these characters 1

by 0 and goes left until it finds the rightmost character 0 or the left delimiter #,
overwrites this character by 1 and changes to q1.

• Under q1, while reading characters 0, the M-head goes right until it finds the right
delimiter #, there it moves right, changes to state q2 and stops as no further
command is applicable.

169

1-TM Configurations and Computations

Definition 72

• An M-configuration K = (q,w, i) of a 1-TM M = (Q,q0, δ) describes the overall state
of M at a given time. It consists of the current state q, the current tape inscription
w ∈ {0,1,#}∗ and the current head position i ∈ Z.

• An δ-instance I = (q,b;b′,m,q′) ∈ δ is applicable to an M-configuration K = (q̃,w, i) if
q = q̃ and wi = b.

• Note that for each M-configuration K exactly one δ-instance I is applicable to K. I(K)
denotes the successor configuration of K obtained by executing command I on K
(denotation K M−→ I(K)).

• K is called stop configuration if the instance which is applicable to K is a stop
instance.

• The sequence K −→
M

K1 −→
M

K2 −→
M
· · · is called computation of M on K, which is

called halting if it leads to a stop configuration. 170

Example Computation M on K

We consider the 1-TM M = ({q0,q1,q2},q0, δ) incrementing a given binary number. Let
the start configuration K on input number 1010111 be

##101011q01##

Here, head position and current state are encoded by inserting into the current tape
inscription the state as right neighbor of the register cell at which the head is. The
corresponding computation of M on K is

##101011q01##
M−→ ##10101q010##

M−→ ##1010q0100##

M−→ ##101q00000##
M−→ ##1011q1000##

M−→ ##10110q100##

M−→ ##101100q10##
M−→ ##1011000q1##

M−→ ##101100q20##

which implies timeM(K) = 8.

171

Back to the Proof of Cook’s Theorem

To Do: We have to define a polynomial reduction that assigns to each x ∈ {0,1}∗ a
CNF-Formula Cx of polynomial size in |x| such that

x ∈ L ⇐⇒ Cx ∈ SAT.

We know that there are polynomially bounded functions P = P(n) and T = T(n) and a
1-TM M = (Q,q1, δ) with the following properties:

• Let Q = {q1, · · · ,qs−1,qs}, where qs−1 (output 0 = reject) or qs (output 1 = accept)
are the only stopping states of M.

• For all n ∈ N, x ∈ {0,1}n and possible proofs y ∈ {0,1}P(n) on the starting
configuration K0(x, y) = · · ·#q1x1 · · · xn#y1 · · · yP(n)# · · · , M stops after T(n) steps.

• For all x ∈ {0,1}∗ it holds that x ∈ L if and only there is a proof y ∈ {0,1}P(n) and a
sequence of M-configurations K1, · · · ,KT(n) such that

K0(x, y)
M−→ K1

M−→ · · · M−→ KT(n)

and KT(n) is a stop configuration with the accepting state qs. 172

Encoding Configurations

• We fix n ∈ N and x ∈ {0,1}n and set P = P(n) and T = t(n). Note that T ≥ P + n.
• For constructing Cx we encode sequences of M-configurations K0, · · · ,KT as
{0,1}-assignments of a set H∪R∪Q∪Y of Boolean variables, where the variables in
the set H =

∪T
t=0 Ht encode the tape inscriptions in the steps t = 0, · · · ,T, the

variables in R =
∪T

t=0 Rt encode the head positions in the steps t = 0, · · · ,T, the
variables in Q =

∪T
t=0 Qt encode the inner states in the steps t = 0, · · · ,T, and the

variables Y = {Y1, · · · ,YP} encode the proofs.
• As for all proofs y ∈ {0,1}P M runs T steps on K0(x, y), the leftmost head position is
−T + 1 and the rightmost head position is T + 1, i.e., Rt = {Rt

−T+1, · · · ,Rt
T+1}, where

Rt
j = 1 means that in step t ∈ {0, · · · ,T} the M-head is on position

j ∈ {−T + 1, · · · ,T + 1}.
• Further Ht =

∪T+1
j=−T+1{Ht

j,0,Ht
j,1,Ht

j,#}, where Ht
j,b = 1 means that in step

t ∈ {0, · · · ,T} the character stored at tape position j is b ∈ {0,1,#}.
• Qt = {Qt

1, · · · ,Qt
s}, where Qt

r = 1 means that in step t ∈ {0, · · · ,T} the machine M is
in state qr, r ∈ {1, . . . , s}. 173

The Structure of Cx = Cx(H,R,Q,Y)

Cx has to be constructed in such a way that an assignment to H ∪ R ∪Q ∪ Y satisfies Cx if
and only if it encodes an accepting computation of M on K0(x, y) for some proof
y ∈ {0,1}P. Cx is defined over O(T + P) variables and has the following structure.

Cx =
T∧

t=0
C1,t

x ∧ C2
x ∧

T∧
t=1

C3,t
x ∧QT

s , where

• for all t = 0, · · · ,T an assignment to Ht ∪ Rt ∪Qt satisfies C1
x(Ht,Rt,Qt) if and only if it

is an M-Conf assignment in the sense that it correctly encodes an M-configuration K,

• an M-Conf assignment K to H0 ∪ R0 ∪Q0 and an assignment y to Y satisfy
C2

x(H0,R0,Q0,Y) if and only if K = K0(x, y).

• for all t = 1, · · · ,T, M-Conf assignments K to Ht−1 ∪ Ht ∪ Rt−1 and K′ to Rt ∪Qt−1 ∪Qt

satisfy C3,t
x (Ht−1,Ht,Rt−1,Rt,Qt−1,Qt) if and only if K M−→ K′.

174

The Construction of C1,t
x

Note that an assignment to Ht ∪ Rt ∪Qt is an M-conf assignment if and only if it satisfies
exactly one Rt variable, and exactly one Qt variable, and, for all j = −T + 1, · · · ,T + 1,
exactly one Ht

j variable.

We use the fact that the special CNF-formula

F(z1, · · · , zm) =

(m∨
i=1

zi

)
∧

∧
1≤i̸=j≤m

(¬zi ∨ ¬zj) ,

with 1 + (m− 1)m = O(m2) clauses is satisfied if and only if exactly one z-variable is
satisfied.

Consequently, an assignment to Ht ∪ Rt ∪Qt satisfies

C1,t
x = F(Rt

−T+1, · · · ,Rt
T+1) ∧ F(Qt

1, · · · ,Qt
s) ∧

T+1∧
j=−T+1

F
(
Ht

j,#,Ht
j,0,Ht

j,1
)

if and only if it is an M-conf assignment. Note that C1,t
x has O(T2) clauses.

175

The Construction of C2
x

We have to construct C2
x(H0,R0,Q0,Y) in such a way that an M-conf assignment K to

H0 ∪ R0 ∪Q0 and an assignment y to Y satisfies C2
x(H0,R0,Q0,Y) if K coincides at each

tape position with K0(x, y).

This implies

Cx
2 =

0∧
j=−T+1

H0
j,# ∧

n∧
j=1

H0
j,xj
∧H0

n+1,# ∧
P∧

j=1

(
(¬Yj → H0

n+1+j,0) ∧ (Yj → H0
n+1+j,1)

)
∧

T+1∧
j=n+P+2

H0
j,#.

Note that the logical implication x→ y is false if and only if x = 1 and y = 0, which implies

x→ y ≡ ¬x ∨ y.

Note further that C2
x has O(T) clauses.

176

The Construction C3,t
x , t = 1, · · · ,T

We have to construct C3,t
x (Ht−1,Ht,Rt−1,Rt,Qt−1,Qt) in such a way that M-conf

assignments K to Ht−1 ∪Rt−1 ∪Qt−1 and K′ to Ht ∪Rt ∪Qt satisfy C3,t
x if and only if K M−→ K′.

We assume that δ =
{
(qr,b;br,b,mr,b,qnext(r,b)); r = 1, · · · , s,b ∈ {0,1,#}

}
. Then

C3,t
x =

T+1∧
j=−T+1

s∧
r=1

∧
b∈{0,1,#}

((
Qt−1

r ∧ Rt−1
j ∧ Ht−1

j,b

)
−→

(
Ht

j,bq,b
∧ Rt

mq,b(j) ∧Qt
next(r,b)

))
∧

∧
T+1∧

j=−T+1

∧
b∈{0,1,#}

((
¬Rt−1

j ∧ Ht−1
j,b

)
−→ Ht

j,b

)
.

Hereby, m(j) = j− 1 for m = L, m(j) = j + 1 for m = R, and m(j) = j für m = N.

Note that C3,t
x has O(T) clauses.

177

Comments to the Construction of C3,t
x

Note that the effect of the formula

(z1 ∧ z2 ∧ z3) −→ (z4 ∧ z5 ∧ z6)

is that each satisfying assignment which satisfies z1 and z2 and z3 has to satisfy also z4
and z5 and z6.

Note further that
(z1 ∧ z2 ∧ z3) −→ (z4 ∧ z5 ∧ z6) ≡

(¬z1 ∨ ¬z2 ∨ ¬z3 ∨ z4) ∧ (¬z1 ∨ ¬z2 ∨ ¬z3 ∨ z5) ∧ (¬z1 ∨ ¬z2 ∨ ¬z3 ∨ z6) .

Summary

We defined an CNF-formula Cx defined over O(T) and with O(T3) clauses. We showed
that Cx can be satisfied only by encodings of an accepting computation of M on input x#y
for some proof y ∈ {0,1}P. □

178

The Reduction Method for Showing NP-Completeness

Theorem 73
We want to show that a given NP-Problem L is NP-complete.

For that it is sufficient to find an appropriate NP-complete problem L′ (for example,
SAT), and to construct a polynomial reduction g from L′ to L.

Proof

Let g : {0,1}∗ −→ {0,1}∗ denote a polynomial reduction from L′ to L.

For showing that L is NP-complete it is sufficient to fix an arbitrary problem L̃ ∈ NP and
construct a polynomial reduction from L̃ to L.

As L′ is NP-complete there is a polynomial reduction f : {0,1}∗ −→ {0,1}∗ from L̃ to L′,
i.e., for all x ∈ {0,1}∗ it holds that

x ∈ L̃⇐⇒ f(x) ∈ L′ ⇐⇒ g(f(x)) ∈ L.

Consequently, L̃ ≤pol L, as g ◦ f defines a polynomial reduction from L̃ to L. □ 179

A Polynomial Reduction from SAT to 3SAT, I

Theorem 74
3SAT ∈ NPC.

Proof: We construct a polynomial reduction from SAT to 3SAT which assigns for each
n ∈ N and each CNF-formula C = C1 ∧ · · · ∧ Cm over Xn = {x1, · · · , xn} the
3-CNF-Formula D = D1 ∧ · · · ∧ Dm over X ∪ Y1 ∪ · · · ∪ Ym with

C ∈ SAT⇐⇒ D ∈ 3SAT. (1)

Here, for all j = 1, · · · ,m, Dj is a 3CNF-formula over the variables Xn ∪ Yj, where Yj is a set
of special helping variables which occur only in Dj.

If Cj = Lj
1 ∨ · · · ∨ Lj

sj and sj ≤ 3 then Cj = Dj. Otherwise Yj = {yj
1, · · · , y

j
sj−3} and

Dj = (Lj
1 ∨ Lj

2 ∨ yj
1) ∧ (¬yj

1 ∨ Lj
3 ∨ yj

2) ∧ (¬yj
2 ∨ Lj

4 ∨ yj
3) ∧ · · ·

· · · ∧ (¬yj
sj−4 ∨ Lj

sj−2 ∨ yj
sj−3) ∧ (¬yj

sj−3 ∨ Lj
sj−1 ∨ Lj

sj).

180

The Polynomial Reduction from SAT to 3SAT, II

Lemma 75

For all {0,1}-assignments b of Xn it holds Cj(b) = 1 if and only if there is a
{0,1}-assignment c of Yj with Dj(b, c) = 1.

Proving Relation 1 with Lemma 75:

C ∈ SAT ⇐⇒ There is an assignment b to Xn such that Cj(b) = 1 for all j = 1, · · · ,m

⇐⇒

There is an assignment b to Xn such that for all j = 1, · · · ,m there is an assignment cj to Yj

such that Dj(b, cj) = 1 (this is true by Lemma 75).

⇐⇒

D ∈ 3SAT as (b, c1, · · · , cm) satisfies D. □

181

The Proof of Lemma 75

Assume that Cj = Lj
1 ∨ · · · ∨ Lj

s and s ≥ 4 (for s ≤ 3, the proof of Lemma 75 is obvious).

The Proof Lemma 75 consists of two observations

Observation 1: Fix an assignment b to Xn such that Lj
k(b) = 0 for all k = 1, · · · , sj. Then

Dj(b, ·) = (0 ∨ 0 ∨ yj
1)(¬yj

1 ∨ 0 ∨ yj
2) ∧ · · · ∧ (¬yj

sj−4 ∨ 0 ∨ yj
sj−3) ∧ (¬yj

sj−3 ∨ 0 ∨ 0)

= yj
1 ∧ (¬yj

1 ∨ yj
2) ∧ · · · ∧ (¬yj

sj−4 ∨ yj
sj−3) ∧ ¬yj

sj−3.

This formula can not be satisfied, as the first clause forces that yj
1 ← 1, which, by the

second clause, forces that yj
2 ← 1, and so on, where the penultimate clause forces that

yj
sj−3 ← 1, but the last clause forces yj

sj−3 ← 0.

182

Further in the Proof of Lemma 75

Observation 2: Fix assignment b to Xn such that Lj
k(b) = 1 for exactly one k = 1, · · · , sj.

Then Dj(b, ·) is obtained from yj
1 ∧ (¬yj

1 ∨ yj
2)∧ · · · ∧ (¬yj

sj−4 ∨ yj
sj−3)∧¬yj

sj−3 by deleting the
clause which contained Lj

k.

We show that for all k = 1, · · · , sj the corresponding formula Dj(b, ·) is satisfiable.

• Case k = 1,2: Then Dj(b, ·) = (¬yj
1 ∨ yj

2) ∧ · · · ∧ (¬yj
sj−4 ∨ yj

sj−3) ∧ ¬yj
sj−3

This is satisfied by yj
1 = yj

2 = · · · = yj
sj−4 = yj

sj−3 ← 0.

• Case k = s− 1, s: Then Dj(b, ·) = yj
1 ∧ (¬yj

1 ∨ yj
2) ∧ · · · ∧ (¬yj

sj−4 ∨ yj
sj−3)

This is satisfied by yj
1 = yj

2 = · · · = yj
sj−4 = yj

sj−3 ← 1.

• Case k ≥ 5, 3 ≤ k ≤ s− 2: Lj
k is in clause (¬yj

k−2 ∨ Lj
k ∨ yj

k−1) and Dj(b, ·) =

yj
1 ∧ (¬yj

1 ∨ yj
2) ∧ · · · ∧ (¬yj

k−3 ∨ yj
k−2) ∧ (¬yj

k−1 ∨ yj
k) ∧ · · · ∧ (¬yj

sj−4 ∨ yj
sj−3) ∧ ¬yj

sj−3.

This is satisfied by yj
1 = yj

2 = · · · = yj
k−2 ← 1 and yj

k−1 = · · · = yj
sj−3 ← 0.

183

Concluding the Proof of Lemma 75

Observation 3: Fix an assignment b to Xn such that Lj
k(b) = 1 for more than one literal

Lj
k, k ∈ {1, · · · , sj}.

Then Dj(b, ·) is obtained by deleting one clause or more clauses from one of the satisfiable
formulas in the three cases of Observation 2.

Note that any CNF-formula C which is obtained by deleting clauses from a satisfiable
formula C′ is satisfiable too, as any satisfying assignment for C′ satisfies C.

Consequently, Dj(b, ·) is satisfiable. □

184

An Illustrating Examples

• The clause Cj = x1 ∨ ¬x2 ∨ ¬x3 ∨ x4 defines

Dj = (x1 ∨ ¬x2 ∨ yj
1) ∧ (¬yj

1 ∨ ¬x3 ∨ x4).

• Consider assignment b = (0,1,1,0) which does not satisfy Cj, i.e.,
Cj(0,1,1,0) = x1(0) ∨ ¬x2(1) ∨ ¬x3(1) ∨ x4(0) = 0.

• Then
Dj(0,1,1,0, yj

1) = (0 ∨ 0 ∨ yj
1) ∧ (¬yj

1 ∨ 0 ∨ 0) = yj
1 ∧ ¬yj

1,

which can not be satisfied.
• However,

Dj(0,0,1,0, yj
1) = (0 ∨ 1 ∨ yj

1) ∧ (¬yj
1 ∨ 0 ∨ 0) = ¬yj

1,

can be satisfied with yj
1 ← 0,

• and
Dj(0,1,1,1, yj

1) = (0 ∨ 0 ∨ yj
1) ∧ (¬yj

1 ∨ 0 ∨ 1) = yj
1,

can be satisfied with yj
1 ← 1.

185

A Further Example

• The clause Cj = x1 ∨ ¬x2 ∨ ¬x3 ∨ x4 ∨ ¬x5 defines

Dj = (x1 ∨ ¬x2 ∨ yj
1) ∧ (¬yj

1 ∨ ¬x3 ∨ yj
2) ∧ (¬yj

2 ∨ x4 ∨ ¬x5).

• Dj(0,1,1,0,1, yj
1, y

j
2) = (0∨0∨yj

1)∧(¬yj
1∨0∨yj

2)∧(¬y2
1∨0∨0) = yj

1∧(¬yj
1∨yj

2)∧¬yj
2,

can not be satisfied.

• Dj(0,0,1,0,1, yj
1, y

j
2) = (0 ∨ 1 ∨ yj

1) ∧ (¬yj
1 ∨ 0 ∨ yj

2) ∧ (¬y2
1 ∨ 0 ∨ 0) = (¬yj

1 ∨ yj
2) ∧ ¬yj

2,
can be satisfied by (yj

1, y
j
2)← (0,0).

• Dj(0,1,0,0,1, yj
1, y

j
2) = (0 ∨ 0 ∨ yj

1) ∧ (¬yj
1 ∨ 1 ∨ yj

2) ∧ (¬y2
1 ∨ 0 ∨ 0) = yj

1 ∧ ¬yj
2, can be

satisfied by (yj
1, y

j
2)← (1,0).

• Dj(0,1,1,0,0, yj
1, y

j
2) = (0 ∨ 0 ∨ yj

1) ∧ (¬yj
1 ∨ 0 ∨ yj

2) ∧ (¬y2
1 ∨ 0 ∨ 1) = yj

1 ∧ (¬yj
1 ∨ yj

2),
can be satisfied by (yj

1, y
j
2)← (1,1).

186

Clique is NP-complete, I

Theorem 76
Clique is NP-complete.

Proof: We define a polynomial reduction from 3SAT to Clique by constructing for each
3CNF-formula C = C1 ∧ · · · ∧ Cm over X = {x1, · · · , xn} a graph G = (V,E) with |V| = 3m
nodes, such that C ∈ SAT ⇐⇒ G has a clique of size m, i.e., (G,m) ∈ Clique.

As L ≡ L ∨ L for each literal L we can assume w.l.o.g. that each clause in C has exactly 3
literals, i.e.,

C = (L1
1 ∨ L1

2 ∨ L1
3) ∧ (L2

1 ∨ L2
2 ∨ L2

3) ∧ · · · ∧ (Lm
1 ∨ Lm

2 ∨ Lm
3).

The Set V of Nodes of G consists of m groups V1 ∪ V2 ∪ · · · ∪ Vm of three nodes each,
i.e., Vj = {vj

1, v
j
2, v

j
3} corresponding to the literals {Lj

1,L
j
2,L

j
3} of clause Cj.

The Set E of Edges of G: Let {vj
a, vk

b} ∈ E if and only vj
a and vk

b belong to different
groups Vj and Vk, i.e., j ̸= k, and the corresponding literals Lj

a and Lk
b do not contradict,

i.e., Lj
a ̸= ¬Lk

b. 187

Clique is NP-complete, II

We show that C→ (G,m) defines a polynomial reduction from 3SAT to Clique.

• Assume first that G contains an m-clique V′ = {vj1
a1 , · · · , v

jm
am}.

• As there are no edges inside the groups Vj, all nodes in V′ have to come from different
subgroups, i.e.,

V′ = {v1
a1
, v2

a1
, · · · , vm

am},
and the corresponding set {L1

a1
,L2

a2
, · · · ,Lm

am} does not contain a pair {xi,¬xi} of
contradicting literals.

• Consequently, there is an {0,1}-assignment b of Xn such that
L1

a1
(b) = L2

a2
(b) = · · · Lm

am(b) = 1, which implies that C(b) = 1 as b satisfies at least
one literal per clause, i.e., C ∈ 3SAT.

• Now assume that C ∈ 3SAT, let b a satisfying assignment for C, and fix for each
clause Cj a literal Lj

aj with Lj
aj(b) = 1.

• Consequently, {L1
a1
,L2

a2
, · · · ,Lm

am} does not contain a pair {xi,¬xi} of contradicting
literals, which implies that {v1

a1
, v2

a1
, · · · , vm

am} is an m-clique in G. □ 188

An Example

Consider the 3CNF-formula

C = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3)

defining the graph G over the node groups V1, V2, and V3:v1
1

v1
2

v1
3


v2

1
v2

2
v1

3


v3

1
v3

2
v3

3


Consider the assignment b = (0,0,1) which satisfies the blue literals and forms the blue
3-clique in G.

189

Example

190

The NP-Completeness of the Special Knapsack Problem

Definition 77
The special knapsack problem KP∗ consists of input instances (n,w1, · · · ,wn,W), where
wi,W ∈ N, for which there is a subset I ⊆ {1, · · · ,n} fulfilling

∑
i∈I wi = W.

Lemma 78
KP∗ ≤pol KP.

Proof: We assign to each KP∗-instance (n,w1, · · · ,wn,W) the KP-instance
(n,w1, · · · ,wn,W, c1, · · · , cn,C) with ci ← wi, and C←W.

It can be easily checked that (n,w1, · · · ,wn,W) ∈ KP∗ ⇔
(w1, · · · ,wn,W,w1, · · · ,wn,W) ∈ KP. □

Theorem 79

3SAT ≤pol KP∗, i.e., the special knapsack problem and the knapsack problem are
NP-complete. 191

The Polynomial Reduction 3SAT to KP∗

Proof of Theorem 79: We assign to each 3CNF-formula C = C1 ∧ · · · ∧ Cm over
X = {x1, · · · , xn} the following decimal numbers with n + m digits

• Numbers ai = (0, · · · ,0,1,0 · · · ,0,ai
n+1, · · · ,ai

n+m) for i = 1, · · · ,n,
1 i n

with an+j ∈ {0,1} and an+j = 1 if and only if literal xi belongs to clause Cj.
• Numbers bi = (0, · · · ,0,1,0 · · · ,0,bi

n+1, · · · ,bi
n+m) for i = 1, · · · ,n,

1 i n
with bn+j ∈ {0,1} and bn+j = 1 if and only literal ¬xi belongs to clause Cj.

• Numbers cj = (0, · · · ,0,0, · · · ,0,1,0, · · · ,0) for j = 1, · · · ,m
1 n n + j

• Numbers dj = (0, · · · ,0,0, · · · ,0,2,0, · · · ,0) for j = 1, · · · ,m
1 n n + j

• Number W = (1, · · · ,1,4, · · · ,4).
1 n

192

Example

Consider the 3CNF-formula

C = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3)

with n = m = 3 defining

a1 = 100101 a2 = 010110 a3 = 001100

b1 = 100010 b2 = 010001 b3 = 001011

c1 = 000100 c2 = 000010 c3 = 000001

d1 = 000200 d2 = 000020 d3 = 000002

193

Comments

Obviously, the KP∗-instance (2(n + m),a1, · · · ,an,b1, · · · ,bn, c1, · · · , cm,d1, · · · ,dm,W)

can be constructed from C in polynomial time in n and m.

Note that for all i = 1, · · · ,n the numbers ai and bi encode the formula C in the sense
that they record the occurences of the literals xi and ¬xi in C.

Lemma 80

The assignment C→ (2(n + m),a1, · · · ,an,b1, · · · ,bn, c1, · · · , cm,d1, · · · ,dm,W) defines
a polynomial reduction from 3SAT to KP∗.

Proof of Lemma 80: Let us try to construct a collection of ai,bi, cj,dj- numbers which sum
up to W.

For matching the n leading ones of W, for all i = 1, · · · ,n we have to insert either ai or bi

into the collection.
194

The Proof of Lemma 80

This is equivalent to choose some assignment β ∈ {0,1}n and to include ai if βi = 1 and to
include ai if βi = 0.

Let us denote by W(β) the corresponding partial sum

W(β) =
∑

i,βi=1
ai +

∑
i,βi=0

bi = (1, · · · ,1,W(β)n+1, · · · ,W(β)n+m).

Note that for all j = 1, · · · ,m the entry W(β)n+j belongs to {0,1,2,3} and equals the
number of literals in clause Cj which are satisfied by β.

Consequently, β satisfies C if and only if W(β)n+j ∈ {1,2,3} for all j = 1, · · · ,m.

Lemma 81

There are subsets J,K ⊆ {1, · · · ,m} such that W(β) +
∑

j∈J cj +
∑

k∈K dk = W if and only
if W(β)n+j ∈ {1,2,3} for all j = 1, · · · ,m.

Note that Lemma 81 concludes the proof of Lemma 80. 195

Example

Consider the 3CNF-formula

C = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3)

with n = m = 3 defining

a1 = 100101 a2 = 010110 a3 = 001100

b1 = 100010 b2 = 010001 b3 = 001011

c1 = 000100 c2 = 000010 c3 = 000001

d1 = 000200 d2 = 000020 d3 = 000002

W(1,1,0) = a1 + a2 + b3 = 111222, i.e., W(1,1,0) + c1 + c2 + c3 = 111444.

W(1,0,1) = a1 + b2 + a3 = 111202, i.e., C(1,0,1) = 0.

196

The Proof of Lemma 81

For all j = 1, · · · ,m do

• If W(β)n+j = 1 (i.e., β satisfies exactly one literal in clause Cj) then
(W(β) + cj + dj)j = 4, i.e., include j into J and K.

• If W(β)n+j = 2 (i.e., β satisfies exactly two literals in clause Cj) then (W(β) + dj)j = 4,
i.e., include j into K.

• If W(β)n+j = 3 (i.e., β satisfies exactly three literals in clause Cj) then (W(β) + cj)j = 4,
i.e., include j into J.

If there is some j such that W(β)n+j = 0 (which is equivalent to β does not satisfy Cj and,
thus, β does not satisfy C) then there is no possibility to bring this component to 4.

We have shown that C ∈ 3SAT if and only if
(2(n + m),a1, · · · ,an,b1, · · · ,bn, c1, · · · , cm,d1, · · · ,dm,W) ∈ KP∗. □

197

The NP-Completeness of Partition

Remember that the problem Partition is to decide if a sequence of natural numbers can
be partitioned into two subsets which have the same sum.

Theorem 82

It holds KP∗ ≤ Partition, i.e., Partition is NP-complete.

Proof: We assign to each KP∗-instance (n,w1, · · · ,wn,W) the Partition-instance
(w1, · · · ,wn,S−W + 1,W + 1) for Partition, where S =

∑n
i=1 wi, and show that this

defines a polynomial reduction.

Assume first that (n,w1, · · · ,wn,W) ∈ KP∗, i.e., there is some I ⊆ {1, · · · ,n} such that∑
i∈I wi = W.

Then ∑
i∈I

wi + S−W + 1 = S + 1 = S−W + W + 1 =
∑
i̸∈I

wi + W + 1,

which implies that (w1, · · · ,wn,S−W + 1,W + 1) ∈ Partition. 198

The Proof of Theorem 82

Now assume that (w1, · · · ,wn,S−W + 1,W + 1) ∈ Partition, i.e., there is some subset
J ⊆ {1, · · · ,n + 2} which defines a partition.

As S−W + 1 + W + 1 = S + 2 > S + 1, it holds that either S−W + 1 ∈ J or W + 1 ∈ J.

We assume w.l.o.g. that S−W + 1 ∈ J, i.e., there is some subset I ⊆ {1, · · · ,n} such that∑
i∈I

wi + S−W + 1 = S + 1,

which implies
∑

i∈I wi = W and, thus, (n,w1, · · · ,wn,W) ∈ KP∗. □

199

The NP-Completeness of TSP and HC

Definition 83
The Directed Hamiltonian Circuit Problem, for short DHC, denotes the problem to
decide if a given directed graph G = (V,E) contains a DHC, i.e., a directed circuit with n
edges which visits each node v ∈ V exactly once.

• The NP-Completeness of TSP and HC follows from the reductions

3SAT ≤pol DHC ≤pol HC ≤pol TSP.

• We have already shown the polynomial reduction HC ≤pol TSP.
• The reduction DHC ≤pol HC will be shown later.

We show now
Theorem 84

3SAT ≤pol DHC.
200

The NP Polynomial Reduction from 3SAT to DHC

We assign to each 3CNF-formula C = C1 ∧ · · · ∧ Cm over Xn = {x1, · · · , xn} a directed
graph G = (V,E), which has the following components:

• n control nodes v1, · · · , vn,
• m component graphs G1, · · · ,Gm, where each component graph Gj has six nodes,

three entry nodes uj
1,u

j
2,u

j
3 and three exit nodes u′j

1,u
′j
2,u

′j
3.

Gj consists of the entry triangle {(uj
1,u

j
2), (u

j
2,u

j
3), (u

j
3,u

j
1)} and the reversely oriented

exit triangle {(u′j
1,u

′j
3), (u

′j
3,u

′j
2), (u

′j
2,u

′j
1)}, connected by the bridging edges

{(uj
1,u

′j
1), (u

j
2,u

′j
2), (u

j
3,u

′j
3)}

• For each i, 1 ≤ i ≤ n, there is an directed xi-path and an directed ¬xi-path , both
starting in control node vi, visiting all component graphs Gj for which clause Cj
contains the literal xi, respectively ¬xi, and finishing at control node vi+1, for i < n
and v1 for i = n.

• Consequently, G has n + 6m nodes, and the set of edges contains the 9m internal
edges of the component graphs and the edges of the xi- and the¬xi-paths.

201

Reduction from 3-SAT to Hamiltonian Circuit

u1

u′
1

u2

u′
2

u3

u′
3

202

How the xi-Paths visit Components

• Let Cj1 , · · · ,Cjs denote the clauses containing xi, where j1 < j2 < · · · < js.

• Then the xi-path connects the components Gj1 , · · · ,Gjs

• Choose values k1, · · · , ks from {1,2,3} such that the literals Lj1
k1
, · · · ,Ljs

ks
equal xi.

• If i < n then the xi-path contains the edges vi → uj1
k1

, u′j1
k1
→ uj2

k2
,· · · , u′js−1

ks−1
→ ujs

ks
,

ujs
ks
→ vi+1.

• If i = n then the xi-path contains the edges vn → uj1
k1

, u′j1
k1
→ uj2

k2
,· · · , u′js−1

ks−1
→ ujs

ks
,

ujs
ks
→ v1.

• The ¬xi-path connects vi with the components containing ¬xi and vi+1 mod n in the
same way.

203

Reduction from 3-SAT to Hamiltonian Circuit, x1-path

v1 v2 v3

(x1 ∨ x̄2 ∨ x3) ∧ (x1 ∨ x2 ∨ x̄3) ∧ (x̄1 ∨ x̄2 ∨ x3)

204

Reduction from 3-SAT to Hamiltonian Circuit, x̄2-path

v1 v2 v3

(x1 ∨ x̄2 ∨ x3) ∧ (x1 ∨ x2 ∨ x̄3) ∧ (x̄1 ∨ x̄2 ∨ x3)

205

Properties of Possible DHCs in G

We have to show that C ∈ 3SAT if and only if G ∈ DHC.

First note that there are the following nine possibilities that a simple directed circuit in G
goes through component Gj, where the entry node is uj

1.

(1) · · · → uj
1 → u′j

1 → · · ·
(2) · · · → uj

1 → u′j
1 → u′j

3 → · · ·
(3) · · · → uj

1 → u′j
1 → u′j

3 → u′j
2 · · ·

(4) · · · → uj
1 → uj

2 → u′j
2 → · · ·

(5) · · · → uj
1 → uj

2 → u′j
2 → u′j

1 → · · ·
(6) · · · → uj

1 → uj
2 → u′j

2 → u′j
1 → u′j

3 → · · ·
(7) · · · → uj

1 → uj
2 → uj

3 → u′j
3 → · · ·

(8) · · · → uj
1 → uj

2 → uj
3 → u′j

3 → u′j
2 → · · ·

(9) · · · → uj
1 → uj

2 → uj
3 → u′j

3 → u′j
2 → u′j

1 → · · ·

Corresponding statements are true if the entry nodes are uj
2 or uj

3. 206

The Key Lemma 85

The key for the construction lies in the following property of the component graphs Gj.

Lemma 85

Suppose that a DHC in G enters component Gj via uj
1. Then the following three out of

nine possibilities are possible.

(1) · · · → uj
1 → u′j

1 → · · · ,

(5) · · · → uj
1 → uj

2 → u′j
2 → u′j

1 → · · · ,

(9) · · · → uj
1 → uj

2 → uj
3 → u′j

3 → u′j
2 → u′j

1 → · · · .

A corresponding result holds if a DHC enters Gj via uj
2 resp. uj

3.

Proof: Note that in all but in possibility (9), the DHC has to enter Gj at least twice as not all
nodes in Gj have been visited. We prove Lemma 85 by showing for possibilities (2,3,4)
and (6,7,8) that it is not possible for the DHC to catch all nodes in Gj during later visits.

207

Reduction from 3-SAT to Hamiltonian Circuit, One Visit

u1

u′
1

u2

u′
2

u3

u′
3

· · · ∧ (x1 ∨ x2 ∨ x3) ∧ · · ·
1 0 0

208

Reduction from 3-SAT to Hamiltonian Circuit, Two Visits

u1

u′
1

u2

u′
2

u3

u′
3

· · · ∧ (x1 ∨ x2 ∨ x3) ∧ · · ·
1 1 0

209

Reduction from 3-SAT to Hamiltonian Circuit, Three Visits

u1

u′
1

u2

u′
2

u3

u′
3

· · · ∧ (x1 ∨ x2 ∨ x3) ∧ · · ·
1 1 1

210

The Proof of Lemma 85

Look, for instance at possibility (8) · · · → uj
1 → uj

2 → uj
3 → u′j

3 → u′j
2 → · · · . Here, no DHC

can reach the remaining node Uj
1, as the only nodes, which have edges to u′j

1, namely u′j
2

and uj
1, have been already visited.

The proofs of the remaining cases are left to the reader. □ Lemma 85 implies

Lemma 86

• Each possible DHC entering Gj via uj
k has to leave it via u′j

k , k = 1,2,3.

• Each possible DHC has to follow β for some assignment β = (β1, · · · , βn) ∈ {0,1}n

in the sense that it has to follow either the x1-path (β1 = 1), or the ¬x1-path (β1 = 0)
between v1 and v2, and either the x2-path (β2 = 1) or the ¬x2-path (β2 = 0) between v2
and v3, · · · , and either the xn-path (βn = 1) or the ¬xn-path (βn = 0) between vn and v1.

• Each possible DHC can visit Gj either once (taking possibility (9)), or twice (taking
possibility (1) and (5)), or three times (taking possibility (1) each time). □

211

Consequences from Lemma 86, Completing the Proof of the Theorem

• A possible DHC which follows β = (β1, · · · , βn) ∈ {0,1}n visits a component Gj ⇐⇒ it
contains an L-path for some literal L occuring in Cj ⇐⇒ β satisfies Cj.

• Consequently, if C(β) = 0 then no possible DHC which follows
β = (β1, · · · , βn) ∈ {0,1}n can stay a DHC in G, as the components Gj for which
Cj(β) = 0 will not be visited.

• Consequently, if C ̸∈ SAT then G ̸∈ DHC.
• If C(β) = 1 then all components Gj are visited. We transform a possible DHC which

follows β = (β1, · · · , βn) ∈ {0,1}n into a complete DHC by choosing, for all
j = 1, · · · ,m,

• possibility (9), if one literal in Cj is satisfied by β,
• possibility (1) and (5), if two different literals in Cj are satisfied by β, or
• three times possibility (1), if three different literals in Cj are satisfied by β.

• Consequently, if C ∈ SAT then G ∈ DHC. □

212

The NP-Completeness of HC

Theorem 87

It holds DHC ≤pol HC, i.e., HC is NP-complete.

Proof: We define a polynomial reduction from DHC to HC by assigning to each directed
graph G = (V,E) an undirected graph G′ = (V′,E′) as follows

V′ =
∪
v∈V
{vl, vm, vr}

E′ =
∪
v∈V
{{vl, vm}, {vm, vr}} ∪

∪
(v,w)∈E

{{vr,wl}} .

• Suppose that G contains a DHC u1 → u2 → · · · → u|V| → u1.
• Then

u1
r − u2

l − u2
m − u2

r − · · · − u|V|
l − u|V|

m − u|V|
r − u1

l − u1
m − u1

r

defines a HC in G′, i.e., G ∈ DHC =⇒ G′ ∈ HC. 213

Reduction from DHC to HC

⇒

214

Reduction from DHC to HC

u v

w

=⇒

ul um ur vl vm vr

wl wm wr

215

Reduction from DHC to HC

u v

w

=⇒

ul um ur vl vm vr

wl wm wr

216

Completing the Proof of Theorem 87

(1) Suppose now that G′ contains a HC.
(2) As every node in an HC is part of two consecutive HC-edges, and as ul−um−ur are

the only edges in E′ containing a node of type um, the HC has to contain the pair
ul−um−ur of consecutive edges for all u ∈ V.

(3) Obviously, the HC has to contain edges of type {vr,wl} as only edges of this type
connect the isolated components ul−um−ur.

(4) Assume that such an edge {vr,wl} will be followed by an edge of type {wl, zr}, i.e., the
HC contains a part vr − wl − zr. Then the edge wl−wm can not be in the HC which
contradicts to item (2).

(5) This implies that the HC has the form

u1
r − u2

l −u2
m−u2

r − · · · − u|V|
l −u|V|

m −u|V|
r − u1

l −u1
m−u1

r

which defines the DHC u1 → u2 → · · · → u|V| → u1 in G.
(6) Consequently, G′ ∈ HC =⇒ G ∈ DHC. □

217

Hardness of General Problems

The Goal

• Assume P ̸= NP: If a decision problem L is NP-complete then L ̸∈ P.
• A corresponding concept for general computational problems Π:

Π is called NP-hard if Π ∈ PTIME implies P = NP.

How to show NP-hardness?

• We showed NP-completeness by constructing polynomial reductions, a concept
applicable only to decision problems.

• Here we define Turing-reducibility (Π ≤T Π′), a reducibility concept applicable to
general problems Π,Π′.

• Informally, a Turing reduction from Π to Π′ is a polynomial time algorithm for Π,
which has access to a subroutine for Π′, which on arbitrary inputs x returns
immediately a solution y with (x, y) ∈ Π′.

• More formally, · · ·

218

Oracle Algorithms and Turing-Reducibility

Definition 88

• A Π′-Oracle is a computational device with possibly supernatural computational
power. It solves the computational problem Π′ with maximal efficiency, i.e. for all
inputs x the Π′-Oracle returns a solution y with (x, y) ∈ Π′ in time |x|+ |y|.

• A Π′-Oracle Algorithm for a given computational problem Π′ is an algorithm which
solves Π and has access to an Π′-oracle.

• We define Π to be Turing-reducible to Π′ (Π ≤T Π′), if there is a polynomial time
Π′-oracle algorithm for Π.

• The concept of oracle algorithms corresponds to the well-known concept in
programming that a given computer program calls a subprogram.

• The concept of Turing-Reducibility allows to determine the complexity of a given
problem Π relative to another problem Π′ in the sense of If Π is hard then also Π′

is hard or If Π′ is easy then also Π is easy.
219

Oracle-Algorithms, Example SAT.ASSIGNMENT

Lemma 89
If Π′ ∈ PTIME and Π ≤T Π′ then Π ∈ PTIME, or, equivalently, if Π ̸∈ PTIME and Π ≤T Π′

then Π′ ̸∈ PTIME.

Proof: Suppose Π′ has a t(n)-time bounded algorithm A′ and Π has a p(n)-time bounded
Π′-oracle algorithm, where t and p are polynomials in n.

We get a p(t(n)) time bounded algorithm for Π by simulating each oracle call of A to the
Π′-oracle with input x by applying A′ to x. □

Example Problem

SAT.ASSIGNMENT

Input: A CNF-formula C = C1 ∧ · · · ∧ Cm over Xn = {x1, · · · , xn}

Output: If C ∈ SAT then output b ∈ {0,1}n with C(b) = 1 else output C ̸∈ SAT.

220

Example

C = (x1 ∨ x2) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3∨) ∧ (x1 ∨ ¬x3)

SAT.ASSIGNMENT(C) outputs b = (1,0,1)

C = (x1 ∨ x2) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3∨) ∧ (x1 ∨ ¬x3)

221

An SAT-Oracle Algorithm for SAT.ASSIGNMENT

Lemma 90
SAT.ASSIGNMENT ≤T SAT.

Proof: How to efficiently compute satisfying assignments on the basis of an efficient
satisfiability test?

Here, a SAT-oracle algorithm for SAT.ASSIGNMENT (input C):

1 If SAT(C)= 0 then output C ̸∈ SAT, stop.
2 else for i← n downto 1
3 do if SAT(C|xi=1)= 1 then bi ← 1, C← C|xi=1 else bi ← 0, C← C|xi=0
4 output b

The correctness follows from C(b1, · · · ,bn) = C|xn=bn(b1, · · · ,bn−1).

Note that C|xi=1 can be computed from C by deleting all clauses containing literal xi and by
deleting all occurences of literal ¬xi in the clauses containing ¬xi.

222

Example

C = (x1 ∨ x2) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3∨) ∧ (x1 ∨ ¬x3)

C|x1=0 = (0 ∨ x2) ∧ (1 ∨ x2 ∨ x3) ∧ (0 ∨ ¬x2 ∨ x3) ∧ (1 ∨ ¬x2 ∨ ¬x3∨) ∧ (0 ∨ ¬x3)

=⇒ C|x1=0 = (x2) ∧ (¬x2 ∨ x3) ∧ (¬x3) not satisfiable

C|x1=1 = (1 ∨ x2) ∧ (0 ∨ x2 ∨ x3) ∧ (1 ∨ ¬x2 ∨ x3) ∧ (0 ∨ ¬x2 ∨ ¬x3∨) ∧ (1 ∨ ¬x3)

=⇒ C|x1=1 = (x2 ∨ x3) ∧ (¬x2 ∨ ¬x3∨) satisfiable with x2 ← 0, x3 ← 1

yields satisfying assignment b = (1,0,1) for C.

223

Basic Cases of Turing Reducibility

Lemma 91
Polynomial Reductions are special cases of Turing reductions, i.e., from L ≤pol L′ it
follows that L ≤T L′.

Proof: Let Af be the polynomial time algorithm computing the polynomial reduction from L
to L′.

Here, the L′-oracle algorithm for L:

• Given input x, compute y = Af(x).
• Accept x⇐⇒ L′(y)= 1. □

Lemma 92
For all optimization problems Π, the decisional variant LΠ is Turing reducible to Π. □

Proof: One call to the Π-oracle with input x yields the cost (resp. benefit) of an optimal
solution to x, which immediately allows to decide if x respects a given cost (resp. benefit)
bound. □

224

Self Reducibility

Self Reducibility means that the reverse case is also true, i.e., the optimization variant
is Turing-reducible to the (easier looking) decisional variant. Here one example:

Lemma 93
The optimization problem MaxClique (of computing a clique of maximal size in a given
input graph G = (V,E)) is Turing-reducible to its decision variant Clique (of deciding if G
contains a clique of size at least k).

Proof: We describe a polynomial time Clique-oracle algorithm for MaxClique, applied
to input G = (V,E):

1 Compute k∗ ← max{k,Clique(G, k) = 1} (≤ |V| oracle calls).
2 For all e ∈ E
3 do G′ ← (V,E \ {e})
4 If Clique(G′, k∗)= 1 then G← G′.

225

Example: Cliques 1

ed

cb

a

k∗ = 4, due to{b, c,d,e}

226

Example: Cliques 1

ed

cb

a

G′ Clique(G′,4) = 1, due to {b, c,d,e}

227

Example: Cliques 1

ed

cb

a

new G

228

Example: Cliques 1

ed

cb

a

G′, Clique(G′,4) = 1 due to {b, c,d,e}

229

Example: Cliques 1

ed

cb

a

new G

230

Example: Cliques 1

ed

cb

a

G′, Clique(G′,4) = 1 due to {b, c,d,e}

231

Example: Cliques 1

ed

cb

a

new G is 4-clique {b, c,d,e}

232

Example: Cliques 2

ed

cb

a

k∗ = 3, due to, e.g., {a,b, c}

233

Example: Cliques 2

ed

cb

a

G′, Clique(G′,3) = 1 due to {a, c,e}

234

Example: Cliques 2

ed

cb

a

new G

235

Example: Cliques 2

ed

cb

a

G′, Clique(G′,3)= 0

236

Example: Cliques 2

ed

cb

a

G′, Clique(G′,3) = 1, due to {a, c,e}

237

Example: Cliques 2

ed

cb

a

new G

238

Example: Cliques 2

ed

cb

a

G′, Clique(G′,3)= 0

239

Example: Cliques 2

ed

cb

a

G′, Clique(G′,3) = 1, due to {a, c,e}

240

Example: Cliques 2

ed

cb

a

new G

241

Example: Cliques 2

ed

cb

a

G′, Clique(G′,3) = 1, due to {a, c,e}

242

Example: Cliques 2

ed

cb

a

new G is 3-clique {a, c,e}

243

The Proof of Correctness

Claim: The output graph consists of a clique V∗ of maximal size k∗ and n− k∗ isolated
nodes.

• As we remove only edges for which the removal does not lower the clique size, the
output graph contains a clique V∗ of G of maximal size k∗.

• We have to show that the output graph does not contain any edge which is outside of
the clique over V∗.

• Let us assume that the opposite is true, i.e., that the output graph contains such an
edge, say e∗.

• However, when calling the Clique-oracle with input G \ {e∗}, k∗ the answer is 1 as
G \ {e∗} contains the clique V∗. This implies that e∗ is removed, contradiction. □

Remark: Similar self reductions from the optimization variant to the decision variant can
be constructed for other optimization problems like Knapsack, TSP and many others.

244

NP-hard, NP-easy and NP-equivalent Problems

Definition 94
A computational problem Π is called

• NP-hard, if there is an NPC-problem L with L ≤T Π.

• NP-easy, if there is an NP-problem L with Π ≤T L.

• NP-equivalent, if Π is NP-easy and NP-hard.

Some properties:

• Let Π NP-hard. Then Π ∈ PTIME =⇒ P = NP.
• Let Π NP-easy. Then P = NP =⇒ Π ∈ PTIME.
• All NP problems are NP-easy, all NPC-problems are NP-equivalent.
• Optimization problems, for which the decisional variant is NP-complete, are NP-hard.
• Optimization problems, which can be Turing-reduced to its decisional variant are

NP-easy (MaxClique,MinTSP,MaxKP, · · ·). 245

Algorithms for NP-hard Optimization Problems

Approaches to solving NP-hard problems

Situation: In many practical situations there occur NP-hard optimization problems.
Nevertheless, they have to be solved.

Approaches

• Algorithms which run efficiently on certain inputs (e.g. pseudopolynomial algorithms)

• Approximation algorithms computing good but not optimal solutions

• Improved Exhaustive search heuristics (e.g. Branch and Bound)

• Alternative algorithmic approaches (e.g. Simulated Annealing, Genetic Algorithms,
DNA-computing, Randomized algorithms, · · ·)

• Combinations of different approaches

246

DynamicKP, a Dynamic Algorithm for MaxKP, (1)

W present a dynamic algorithm for the knapsack problem MaxKP, which is efficient if the
benefit values are bounded.
Theorem 95
There is an algorithm for the NP-hard problem MaxKP which needs time O(n · cmax(I)) for
each integral input instance I = (n,w1, · · · ,wn, c1, · · · , cn,W), where
cmax(I) = max{ci, i = 1, · · · ,n}.

Proof: We assume that 0 < wi ≤W for all i = 1, · · · ,n, otherwise the corresponding
objects could be removed.

Remember that the solution to I is a set of objects Sopt ⊆ {1, · · · ,n} with w(Sopt) ≤W and

c(Sopt) = copt = max{c(S),S ⊆ {1, · · · ,n},w(S) ≤W}.

Here is the idea how the algorithm computes copt and Sopt.

• For all i = 1, · · · ,n let Ci = {c(S);S ⊆ {1, · · · , i},w(S) ≤W} contain all benefit
values of subsets of the first i objects, which respect the weight bound. 247

DynamicKP, a Dynamic Algorithm for MaxKP, (2)

• Note that copt = max{c; c ∈ Cn}.

• Moreover |Ci| ≤ i · cmax for all i = 1, · · · ,n.
• We compute for all i = 1, · · · ,n the set Ci and for each c ∈ Ci a minimal weight value

wc,i and a corresponding set Sc,i ⊆ {1, · · · , i} with
• c(Sc,i) = c
• wc,i = w(Sc,i) ≤ W
• wc,i = min{w(S);S ⊆ {1, · · · , i}, c(S) = c}.

• Note that Sopt = Scopt,n.

• Let Ti(I) = {(c,wc,i,Sc,i); c ∈ Ci}.

• Note that T1(I) = {(0, ∅,0), (c1, {1},w1)}

• Thus, for computing Sopt it is sufficient to define an algorithm which computes
Ti+1(I) from Ti(I) for i = 2, · · · ,n.

248

DynamicKP, a Dynamic Algorithm for MaxKP, (2)

Input Ti(I) for some i = 1, · · · ,n− 1

Output Ti+1(I)

1 Ti+1(I)← Ti(I)
2 For all (c,w,S) ∈ Ti(I)
3 do if w + wi+1 ≤W and Ti+1(I) does not contain

already a triple (c + ci+1, w̃, S̃) with w̃ ≤ w + wi+1

4 then put (c + ci+1,w + wi+1,S ∪ {i + 1}) to Ti+1(I)
5 and cancel all other triples (c + ci+1, ·, ·) from Ti+1(I).

Running time O(|Ti(I)|) = O(n · cmax(I)), where cmax(I) = max{ci; i = 1, · · · ,n}.

This allows to compute Tn(I) and the optimal solution Sopt in time O(n2 · cmax(I)). □

249

Example

c = (11,18,7,4), w = (7,9,4,2), W = 16

T1 : (0,0, ∅) (11,7, {1})

T2 : (0,0, ∅) (11,7, {1}) (18,9, {2}) (29,16, {1,2})

T3 : (0,0, ∅) (11,7, {1}) (18,9, {2}) (29,16, {1,2})

(7,4, {3}) (18,11, {1,3}) (25,13, {2,3}) (36,23, {1,2,3})

250

Example

c = (11,18,7,4), w = (7,9,4,2), W = 16

T1 : (0,0, ∅) (11,7, {1})

T2 : (0,0, ∅) (11,7, {1}) (18,9, {2}) (29,16, {1,2})

T3 : (0,0, ∅) (11,7, {1}) (18,9, {2}) (29,16, {1,2})

(7,4, {3}) (18,11, {1,3}) (25,13, {2,3}) (36,23, {1,2,3})

251

Example

c = (11,18,7,4), w = (7,9,4,2), W = 16

T1 : (0,0, ∅) (11,7, {1})

T2 : (0,0, ∅) (11,7, {1}) (18,9, {2}) (29,16, {1,2})

T3 : (0,0, ∅) (11,7, {1}) (18,9, {2}) (29,16, {1,2}) (7,4, {3}) (25,13, {2,3})

T4 : (0,0, ∅) (11,7, {1}) (18,9, {2}) (29,16, {1,2}) (7,4, {3}) (25,13, {2,3})

(4,2, {4}) (15,9, {1,4}) (22,11, {2,4}) (36,18, {1,2,4}) (14,6, {3,4}) (29,15, {2,3,4})

252

Example

c = (11,18,7,4), w = (7,9,4,2), W = 16

T1 : (0,0, ∅) (11,7, {1})

T2 : (0,0, ∅) (11,7, {1}) (18,9, {2}) (29,16, {1,2})

T3 : (0,0, ∅) (11,7, {1}) (18,9, {2}) (29,16, {1,2}) (7,4, {3}) (25,13, {2,3})

T4 : (0,0, ∅) (11,7, {1}) (18,9, {2}) (29,16, {1,2}) (7,4, {3}) (25,13, {2,3})

(4,2, {4}) (15,9, {1,4}) (22,11, {2,4}) (36,18, {1,2,4}) (14,6, {3,4}) (29,15, {2,3,4})

253

Example

c = (11,18,7,4), w = (7,9,4,2), W = 16

T1 : (0,0, ∅) (11,7, {1})

T2 : (0,0, ∅) (11,7, {1}) (18,9, {2}) (29,16, {1,2})

T3 : (0,0, ∅) (11,7, {1}) (18,9, {2}) (29,16, {1,2}) (7,4, {3}) (25,13, {2,3})

T4 : (0,0, ∅) (11,7, {1}) (18,9, {2}) (7,4, {3}) (25,13, {2,3})

(4,2, {4}) (15,9, {1,4}) (22,11, {2,4}) (14,6, {3,4}) (29,15, {2,3,4})

Sopt = {2,3,4}, copt = 29

254

Number Problems and Pseudopolynomial Algorithms

Definition 96

• A problem is called number problem if the components of input instances I are
natural numbers.

• If I is an input instance of a number problem then let Max(I) denote the maximal
component of I.

Definition 97
Let Π denote a number problem. An algorithm A for Π is called pseudopolynomial if the
running time is polynomially bounded in |I| and Max(I).

We have shown
Lemma 98
The NP-hard MaxKP has a pseudopolynomial algorithm. □

255

Strong NP-hard problems

Definition 99
If Π is a number problem and d : N→ N a bound function, then Π≤d denotes the problem
Π restricted to inputs I with Max(I) ≤ d(|I|).

Definition 100
A number problem Π is called strong NP-hard if there is a polynomial bound d such that
Π≤d is NP-hard.

Lemma 101
If a number problem Π has a pseudopolynomial algorithms then for all polynomial bounds
d it holds that Π≤d ∈ PTIME.

Consequently, if P ̸= NP then strong NP-hard number problems do not have
pseudopolynomial algorithms. □

256

The Strong NP-Hardness of TSP

Lemma 102
MinTSP is strong NP-hard.

Proof: Remember the polynomial reduction f from the NP-complete problem HC to TSP.

To each undirected input graph G = (V,E) the reduction f assigns a distance matrix DG
with Max(DG) ≤ 2.

Consequently, TSP≤2 is NP-complete, and consequently, MinTSP≤2 is NP-hard. □

257

Approximation Algorithms for NP-hard Optimization Problems

Definition 103
Each optimization problem Π can defined by the parameters Π = (LΠ, c,goal), where

• LΠ(x) defines for each input x ∈ {0,1}∗ the set of admissible solutions to x.

• c : {0,1}∗ × {0,1}∗ −→ R is the target function, which defines for each pair (x, y),
y ∈ LΠ(x), the target value c(x, y) ∈ R of the adnissible solution y to x.

• The goal ∈ {min,max} defines if Π is a minimization- or a maximization problem.

Π consists of all pairs (x,optΠ(x)), where x ∈ {0,1}n is the input, and optΠ(x) ∈ LΠ(x) an
optimal solution to x, i.e.,

c(x,optΠ(x)) = goal{c(x, ỹ), ỹ ∈ LΠ(x)}.

258

Approximation Algorithms

Definition 104

• An algorithm A is called an approximation algorithm for Π = (LΠ, c,goal) if it outputs
for each input x an admissible solution to x, i.e. A(x) ∈ LΠ(x).

• The approximation ratio RA(x) ≥ 1 of A on input x is defined to be

RA(x) =


c(x,A(x))

c(x,optΠ(x)) goal = min
c(x,optΠ(x))

c(x,A(x)) goal = max

• The function RA : N −→ R defined by

RA(n) = max{RA(x), |x| = n}

is called the (worst case) approximation ratio of A.

Note: RA = 1 means that A computes an optimum for all inputs, i.e. A solves Π. 259

Properties of Approximation Algorithms
Important Fact

Many NP-complete optimization problems have polynomial time approximation
algorithms which reach a good approximation ratio. In particular,

• Good News: There are NP-hard optimization problems with polynomial time
approximation algorithms of constant ratio Ra(n) ∈ O(1) (VertexCover).

• Better News: There are even NP-hard optimization problems with polynomial time
approximation algorithms with constant ratio arbitrarily close to one (MaxKP).

• Bad News: There are other NP-hard optimization problems which do not have
polynomial time approximation algorithms with constant ratio (MinTSP).

Determining the minimal ratio for which a given NP-hard optimization problem can be
approximated in polynomial time is one of the main research topics in modern
algorithmics.

260

Example Vertex Cover

Definition 105
A subset V′ ⊆ V is called a vertex cover of a undirected graph G = (V,E) if for all
edges e = {u, v} ∈ E the set V′ contains u or v (or both).

The problem VertexCover is to compute for given undirected input graphs a vertex
cover of minimal size.

Theorem 106
The decisional variant of VertexCover (decide if for given r ∈ N an undirected graph G
has a vertex cover of size at most r) is NP-complete.

Proof: V′ is a vertex cover in G⇐⇒ for all nodes v, v′ ∈ V \ V′ it holds {v, v′} ̸∈ E⇐⇒
V \ V′ is a clique in the complementary graph Ḡ.

Consequently, (G, k)→ (Ḡ, |V| − k) defines a polynomial reduction from Clique to
VertexCover. □

261

Example Graph Vertex Cover

a

b

c

d

e

fg

262

Optimal Vertex Cover (3 Nodes)

a

c

g f

b d

e

263

An Approximation Algorithm for VertexCover

Definition 107
A matching M ⊆ E of an undirected graph G = (V,E) is called a locally maximal
matching, if M ̸⊂ M′ for all matchings M′ of G.

Lemma 108
Let M ⊆ E be a locally maximal matching and V′ ⊆ V a minimal vertex cover in
G = (V,E) then |M| ≤ |V′| ≤ 2|M|.

Proof: As the edges in a matching are pairwise disjoint, V′ has to contain at least one
node per M-edge, i.e., |M| ≤ |V′|.

Moreover, as no E \M-edge can be added to M without destroying the matching property,
the set VM of all nodes which are contained in an M-edge forms a vertex cover, i.e.,
|V′| ≤ |VM| = 2|M|. □

Attention: A locally maximal matching is not necessarily a (globally) maximal matching.
264

A Locally Maximal Matching M and VM

a

fg

b

c

d

e

265

A (Globally) Maximal Matching M′

g

a

b

c

d

e

f

266

Efficient Computation of a Locally Maximal Matching

We proved

Lemma 109
Computing a locally maximal matching M ⊆ E in an undirected input graph G = (V,E)
and outputting VM yields an approximation algorithm for VertexCover with constant
approximation ratio 2. □

A simple efficiently greedy algorithm for computing a locally maximal matching M ⊆ E in
an undirected input graph G = (V,E):

1 E′ ← E
2 M← ∅
3 while E′ ̸= ∅ do
4 choose e = (u, v) ∈ E′

5 M← M ∪ {e}
6 Delete all edges in E′ containing u or v

267

Example Graph Vertex Cover

a

b

c

d

e

fg

268

Computing a Locally Maximal Matching, 1

a

b

c

d

e

fg

269

Computing a Locally Maximal Matching, 2

a

b

c

d

e

fg

270

Computing a Locally Maximal Matching, 3

a

b

c

d

e

fg

271

Computing a Locally Maximal Matching, 4

a

b

c

d

e

fg

272

Approximate Vertex Cover (4 Nodes)

a

fg

b

c

d

e

273

Optimal Vertex Cover (3 Nodes)

a

c

g f

b d

e

274

Fully Polynomial Approximation Schemes

Definition 110
A Fully Polynomial Approximation Scheme (FPTAS) for an optimization problem Π is
an algorithm A = A(x, ϵ), such that, for all ϵ > 0, A(·, ϵ) is an approximation algorithm
for Π with ratio 1 + ϵ.

Moreover, for all ϵ > 0, the running time of A(·, ϵ) is polynomial in |x| and ϵ−1.

Theorem 111
MaxKP has a FPTAS.

Proof: The corresponding algorithm is called KP-FPTAS. It is based on the
pseudopolynomial algorithm DynamicKP for MaxKP.

Remember that DynamicKP computes an optimal subset Sopt(I) ⊆ {1, · · · ,n} with respect
to a KP-instance I with n objects in time O(n2 · cmax(I)).

275

The FPTAS for MaxKP

Input: KP-instance I = (n, c1, · · · , cn,w1, · · · ,wn,W) and some ϵ > 0.

KP-FPTAS(I,ϵ)

1 t←
⌊
log2

(
ϵ·cmax

(1+ϵ)n

)⌋
, where cmax ← max{c1, · · · , cn}

2 For i← 1 to n
3 do c′i ← ⌊ci · 2−t⌋
4 Output DynamicKP(I′), I′ = (n, c′1, · · · , c′n,w1, · · · ,wn,W)

Observation:

• KP-FPTAS(I,ϵ) outputs an optimal solution Sopt(I′) ⊆ {1, · · · ,n} for I′.
• Sopt(I′) is admissible also for I, as the weight values of I and I′ are equal, but not

necessarily optimal for I.

We estimate the ratio and the running time of KP-FPTAS(I,ϵ).
276

Estimating the Ratio of KP-FPTAS(I,ϵ)

Lemma 112

It holds c(Sopt(I))
c(Sopt(I′)) ≤ 1 + ϵ.

Proof: As Sopt(I) is optimal for I it holds c(Sopt(I)) ≥ c(Sopt(I′)).

As c′i = ⌊ci · 2−t⌋, it holds c′i ≤ ci · 2−t, which implies ci ≥ 2t · c′i , i.e.,

c(Sopt(I′)) ≥ 2t · c′(Sopt(I′)) ≥ 2t · c′(Sopt(I)) (as Sopt(I′) is optimal for I′)

=
∑

i∈Sopt(I)

2t⌊ci · 2−t⌋ ≥
∑

i∈Sopt(I)

2t(ci · 2−t − 1) ≥ c(Sopt(I))− n · 2t.

Consequently,
c(Sopt(I))− c(Sopt(I′)) ≤ n · 2t = n ·

⌊
ϵ · cmax

(1 + ϵ) · n

⌋
≤ n · ϵ · cmax

(1 + ϵ)n ≤
ϵ · cmax

(1 + ϵ)
, 277

Completing the Proof of Lemma 112

· · · which implies c(Sopt(I′)) ≥ c(Sopt(I))− ϵ·cmax

(1+ϵ) .

We assume wi ≤W for all i = 1, · · · ,n, which implies c(Sopt(I)) ≥ c({imax}) = cmax.

Consequently,

c(Sopt(I′)) ≥ cmax −
ϵ · cmax

(1 + ϵ)
=

(1 + ϵ) · cmax

(1 + ϵ)
− ϵ · cmax

(1 + ϵ)
=

cmax

(1 + ϵ)
.

We obtain
c(Sopt(I))
c(Sopt(I′))

=
c(Sopt(I′)) + c(Sopt(I))− c(Sopt(I′))

c(Sopt(I′))

≤ 1 +
ϵ · cmax

1+ϵ
cmax

1+ϵ

= 1 + ϵ. □

278

Estimating the Running Time of KP-FPTAS(I,ϵ)

Lemma 113
The running time of KP-FPTAS(I,ϵ) is O(n3 · ϵ−1).

Proof: The running time of DynamicKP on I′ is O(n2 · c′max(I′)), where

c′max(I′) =
⌊
cmax · 2−t⌋ =

⌊
cmax · 2−⌊log2(

ϵ·cmax
(1+ϵ)n)⌋

⌋

≤ cmax · 2−⌊log2(
ϵ·cmax
(1+ϵ)n)⌋ ≤ cmax · 2−(log2(

ϵ·cmax
(1+ϵ)n)−1) = cmax ·

(1 + ϵ) · n
ϵ · cmax

· 2

= 2 · n · 1 + ϵ

ϵ
≤ 4 · n · ϵ−1

if ϵ ≤ 1. □

279

Example

Let the KP-instance I be defined over n = 4 objects with weight bound W = 18 and

c1 = 13,200 w1 = 7

c2 = 21,600 w2 = 9
c3 = 8,400 w3 = 4
c4 = 4,800 w4 = 2

Let ϵ = 1
2 .

This implies t =
⌊
log2

ϵ·cmax

(1+ϵ)·n

⌋
=
⌊
log2

21,600
3·4

⌋
= ⌊log2(1800)⌋ = 10.

Consequently,

c′1 =
⌊
13,200 · 2−10⌋ = 12 and c′2 =

⌊
21,600 · 2−10⌋ = 21

c′3 =
⌊
8,400 · 2−10⌋ = 8 and c′4 =

⌊
4,800 · 2−10⌋ = 4.

280

Example

Let the KP-instance I be defined over n = 4 objects with weight bound W = 18 and

c1 = 13,200 w1 = 7

c2 = 21,600 w2 = 9
c3 = 8,400 w3 = 4
c4 = 4,800 w4 = 2

Let ϵ = 1
9 .

This implies t =
⌊
log2

ϵ·cmax

(1+ϵ)·n

⌋
=
⌊
log2

21,600
10·4

⌋
= ⌊log2(540)⌋ = 9.

Consequently,

c′1 =
⌊
13,200 · 2−9⌋ = 25 and c′2 =

⌊
21,600 · 2−9⌋ = 42

c′3 =
⌊
8,400 · 2−9⌋ = 16 and c′4 =

⌊
4,800 · 2−9⌋ = 9.

281

Example

Let the KP-instance I be defined over n = 4 objects with weight bound W = 18 and

c1 = 13,200 w1 = 7

c2 = 21,600 w2 = 9
c3 = 8,400 w3 = 4
c4 = 4,800 w4 = 2

Let ϵ = 1
99 .

This implies t =
⌊
log2

ϵ·cmax

(1+ϵ)·n

⌋
=
⌊
log2

21,600
100·4

⌋
= ⌊log2(54)⌋ = 5.

Consequently,

c′1 =
⌊
13,200 · 2−5⌋ = 412 and c′2 =

⌊
21,600 · 2−5⌋ = 675

c′3 =
⌊
8,400 · 2−5⌋ = 262 and c′4 =

⌊
4,800 · 2−5⌋ = 150.

282

The Nonapproximability of MinTSP, (1)

Theorem 114
Let a ≥ 1 be a constant. If P ̸= NP then there is no polynomial time approximation
algorithm for TSP of worst case approximation ratio a.

Proof: We consider the following polynomial reduction from HC to TSP:

For all n ∈ N and each undirected graph G = (V,E) over V = {1, · · · ,n} we denote by
DG = (dG

i,j)
n
i,j=1 a distance matrix for n cities, defined by

dG
i,j = 1 ⇐⇒ (i, j) ∈ E and dG

i,j = n(a− 1) + 2 ⇐⇒ (i, j) ̸∈ E.

Obviously, DG can be computed from G in polynomial time in n.

Observations

• G ∈ HC =⇒ DG has a roundtrip of length n, namely this corresponding to the HC in G.
• G ̸∈ HC =⇒ all roundtrips in DG contain at least one non-edge-transition.

Correspondingly, their length is at least n− 1 + n(a− 1) + 2 = an + 1.
283

The Nonapproximability of MinTSP, (1)

Now assume that MinTSP has a polynomial time approximation algorithm A with worst
case ratio RA(n) = a.

G ∈ HC =⇒ A computes on DG a roundtrip of length at most a · n.

G ̸∈ HC =⇒ A computes on DG a roundtrip of length at least a · n + 1.

Thus, A yields a polynomial time algorithm for computing HC

1 Given G = (V,E), compute DG

2 If A computes on DG a roundtrip of length ≤ a · n then output G ∈ HC, else output
G ̸∈ HC

Consequently, P = NP as HC ∈ NPC. □

End of Lecture
284

	Prerequisites
	Introduction
	Problems, Algorithms, Computations
	First Example: Shortest Paths in Weighted Graphs
	Formalizing Optimization Problems

	Solving Linear Programs
	Optimizing Linear Functions over Convex Sets
	The Simplex Method, Basics
	The Simplex Method for non-negative restriction vectors
	The Simplex Method for restriction vectors with negative components
	Duality in Linear Programming

	The Maximum Flow Problem
	Matchings in Undirected Graphs
	NP-Completeness and -Hardness
	Hardness of General Problems
	Algorithms for NP-hard Optimization Problems

