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Exercise 4.1



Task

Given two languages L1 ⊆ Σ∗
1 and L2 ⊆ Σ∗

2 with L1 ∈ P and ∅ ̸= L2 ̸= Σ∗
2, show: L1 ≤p L2.

Would P = NP imply that all languages in P are NP-complete?

1



Solution

According to the definition of L2, there exist (arbitrarily chosen) wyes ∈ L2 and
wno ∈ Σ∗

2 \ L2. We define f : Σ∗
1 → Σ∗

2 as:

f(w) =

{
wyes if w ∈ L1,

wno otherwise.

Obviously, for all w ∈ Σ∗
1 it holds that: w ∈ L1 ⇔ f(w) ∈ L2. Now we show that there exists

a polynomial-time algorithm M which computes f: For a given input w, M first decides
whether w ∈ L1. This can be done in polynomial time because L1 ∈ P. Based on the
result, M then computes f(w) according to the definition above.

2



Solution

According to the definition of L2, there exist (arbitrarily chosen) wyes ∈ L2 and
wno ∈ Σ∗

2 \ L2. We define f : Σ∗
1 → Σ∗

2 as:

f(w) =

{
wyes if w ∈ L1,

wno otherwise.

Σ∗
2

L2

wno
wyes

w ̸∈ L1

w ∈ L1

Σ∗
1

w

Remember: L1 ∈ P.
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Solution

It is now also straightforward to see that each language in {L ∈ P | L ̸= ∅ ∧ L ̸= ∅} is
P-complete w.r.t. ≤p (and, for this reason, also NP-complete if P = NP).

This is not true for L with ∅ ∈ {L,L}. Let L1 ⊆ Σ∗
1 with ∅ ̸= L1 ̸= Σ∗

1 and let L2 = Σ∗
2. Then,

there cannot exist a polynomial transformation f : Σ∗
1 → Σ∗

2 from L1 to L2 as the case
f(w) /∈ L2 for w /∈ L1 would not be available because Σ∗

2 \ L2 = ∅. (Analogously for L2 = ∅.)

L2 = Σ∗
2

?
wyes

w ̸∈ L1

w ∈ L1

Σ∗
1

w
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Solution

This is not true for L with ∅ ∈ {L,L}. Let L1 ⊆ Σ∗
1 with ∅ ̸= L1 ̸= Σ∗

1 and let L2 = Σ∗
2. Then,

there cannot exist a polynomial transformation f : Σ∗
1 → Σ∗

2 from L1 to L2 as the case
f(w) /∈ L2 for w /∈ L1 would not be available because Σ∗

2 \ L2 = ∅. (Analogously for L2 = ∅.)
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1

w

L2 = ∅
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Exercise 4.2



Task

Show that NP is closed w.r.t. ≤p, i.e., from L1 ≤p L2 and L2 ∈ NP follows L1 ∈ NP.
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Efficiently Verifiable Proofs

Definition 1
We say that a given decision problem Π has Efficiently Verifiable Proofs if there is a
proof scheme (ProofΠ,VΠ) for Π, which is defined as follows

• Proofs: ProofΠ assigns to each input x for Π a set ProofΠ(x) of possible proofs.
• Efficient Verification: VΠ = VΠ(x, y) denotes a decision algorithm of running time

polynomially bounded in |x|, which decides for each input x for Π and each possible
proof y ∈ ProofΠ(x) if y is a proof for the claim that Π(x) = 1.

• Correctness: It holds that Π(x) = 1 if and only if there is some y ∈ Proofπ(x) such
that VΠ(x, y) = 1.
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Solution

To show: L1 ≤p L2 ∧ L2 ∈ NP =⇒ L1 ∈ NP.

• There is a polynomial reduction f : Σ∗
1 → Σ∗

2 with x ∈ L1 ⇔ f(x) ∈ L2.
• There exist efficiently verifiable proofs for L2.

Definition 2 (Proof Scheme for L1)

• Proofs: ProofL1 assigns to each input x ∈ Σ∗
1 the set ProofL2(f(x)) of possible proofs.

• Efficient Verification: VL1(x, y) denotes the following decision algorithm: first
compute f(x) in polynomial time then run VL2(f(x), y), i.e. VL1(x, y) = VL2(f(x), y).

• Correctness: As f is a polynomial reduction and L2 ∈ NP, the scheme is correct.
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Exercise 4.3



Task

We call two languages L1 ⊆ Σ∗
1 and L2 ⊆ Σ∗

2 polynomial-time isomorphic if there is a bijective
function f : Σ∗

1 → Σ∗
2 such that f is a polynomial reduction from L1 to L2 and f−1 is a polynomial

reduction from L2 to L1.
Show that the following decision problems (treated as languages) are polynomial-time isomorphic.
The respective instances consist of an undirected graph G = (V,E) and a number K ∈ {0, . . . , |V|}.

Independent Set: G contains an independent set (i.e., a set of vertices such that for every two
vertices in the set, there is no edge connecting the two) of size at least K.

Clique: G contains a clique of size at least K.

Vertex Cover: G contains a vertex cover (i.e., a set of vertices such that each edge of the graph is
incident to / ”contains” at least one vertex of the set) of size at most |V| − K.
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Solution

It is easy to see that the following statements are equivalent:

I) W is an independent set in G.
II) W is a clique in the complement graph Gc of G, where Gc := (V,Ec) and

Ec := {{u, v} ⊆ V | u ̸= v, {u, v} ̸∈ E}.
III) V \ W is a vertex cover for G.
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Solution

Example to illustrate the equivalence of (I) Independent Set and (II) Clique:

(I) An independent set1 (red nodes) in G

1The independent set is not maximal in this case.
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Solution

Example to illustrate the equivalence of (I) Independent Set and (II) Clique:

(II) The corresponding clique2 (red nodes) in Gc

2The clique is not maximal in this case.
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Solution

Example to illustrate the equivalence of (I) Independent Set and (III) Vertex Cover:

(I) An independent set3 (red nodes) in G

3The independent set is not maximal in this case.
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Solution

Example to illustrate the equivalence of (I) and (III):

(III) The corresponding vertex cover4 (blue nodes) in G

4The vertex cover is not minimal in this case.
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Solution

It is easy to see that the following statements are equivalent:

I) W is an independent set in G.

II) W is a clique in the complement graph Gc of G, where Gc := (V,Ec) and
Ec := {{u, v} ⊆ V | u ̸= v, {u, v} ̸∈ E}.

III) V \ W is a vertex cover for G.

Now the transformations are clear:

• fI→II (from Independent Set to Clique) maps (G,K) to (Gc,K).
• fI→III (from Independent Set to Vertex Cover) maps (G,K) to (G, |V| − K).
• fII→III (from Clique to Vertex Cover) can be constructed using composition:

fII→III := fI→III ◦ f−1
I→II.
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Exercise 4.4



Task

In this exercise, the inputs are DNF-formulas (i.e., disjunctions M1 ∨ · · · ∨ Mn of
conjunctions L1 ∧ · · · ∧ Ls of literals Li). Assume P ≠ NP and decide for each of the
following two problems whether it is in P:

a) Is there an assignment to the variables of the DNF-formula given as an input such that
it evaluates to 1?

b) Is there an assignment to the variables of the DNF-formula given as an input such that
it evaluates to 0?
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Solution

a) Is there an assignment to the variables of the DNF-formula given as an input such that it evaluates to 1?

This problem is in P.
A monomial (i.e., a conjunction of literals) is satisfiable iff it does not contain a variable and
its negation. (For each monomial, this can obviously be checked in polynomial time w.r.t.
the size of the monomial.)
A DNF-formula is satisfiable iff at least one of its monomials is satisfiable. (Hence, the
monomials of the DNF-formula can be checked independently, one after another for
satisfiability. The search terminates once a satisfiable monomial has been found or if no
monomials are left to check.)

Example for two variables x1 and x2:
( x1 ∧ ¬x1 ) ∨ ( x1 ∧ x2 ) ∨ ( ¬x1 ∧ ¬x2 )

( 1 ∧ 0 ) ∨ ( 1 ∧ 1 ) ∨ ( 0 ∧ 0 )
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Solution

b) Is there an assignment to the variables of the DNF-formula given as an input such that it evaluates to 0?

This problem is NP-complete and, hence, not in P if P ̸= NP.
Through negation and the use of De Morgan’s laws, each instance of SAT (which is known
to be NP-complete) can be transformed (in polynomial time) into an instance of this
problem.

1 = (¬x1 ∨ x1) ∧ (¬x1 ∨ ¬x2) ∧ (x1 ∨ x2)

⇔ 0 = ¬((¬x1 ∨ x1) ∧ (¬x1 ∨ ¬x2) ∧ (x1 ∨ x2))

= ¬(¬x1 ∨ x1) ∨ ¬(¬x1 ∨ ¬x2) ∨ ¬(x1 ∨ x2)

= (x1 ∧ ¬x1) ∨ (x1 ∧ x2) ∨ (¬x1 ∧ ¬x2)
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Exercise 4.5



Task

The Directed Hamiltonian Circuit Problem (DHC) for directed graphs is defined
analogously to the Hamiltonian Circuit Problem (HC) for undirected graphs, which has
already been introduced in the lecture.

Prove that HC is NP-complete by showing that DHC ≤p HC. HC ∈ NP and DHC ∈ NPC
can be assumed as known facts in this exercise.
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Solution

We know that HC ∈ NP. In order to show DHC ≤p HC, we use the following local replacement:

⇒

A directed Hamiltonian circuit in the given directed graph can be translated straightforwardly into an
undirected Hamiltonian circuit in the new undirected graph.
If there is an undirected Hamiltonian circuit in the new graph, we have two possible “directions” to
walk it. We fix a direction by picking an edge in this Hamiltonian circuit which has a corresponding
edge in the given directed graph and assigning the respective direction.This yields a directed
Hamiltonian circuit; because if we reached the left node in the undirected component of the above
image from the left side and left this node to the left side as well, the node in the middle would not be
passable as part of a Hamiltonian circuit any longer.
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