CS 550 Algorithmics, Spring 2020 Exercise Sheet 2

Exercise 2.1:

Consider the following LP:

maximize
$$x_1 + x_2$$

subject to
$$4x_1 - x_2 \le 8$$

$$2x_1 + x_2 \le 10$$

$$5x_1 - 2x_2 \ge -2$$

$$x_1, \ x_2 \ge 0$$

- a) Find all extremal points of this LP.
- b) Transform the given LP into normal form and find the admissible basic points.
- c) Solve the LP by evaluating the target function for each extremal point identified in (a).

Exercise 2.2:

Solve the following linear program using the Simplex algorithm from the lecture.

$\mathbf{maximize}$	$1x_1$	+	$1x_2$	
subject to	$1x_1$			≤ 9
			$1x_2$	≤ 6
	$1x_1$	+	$2x_2$	≤ 16
	$2x_1$	+	$1x_2$	≤ 20
	x_1	,	x_2	≥ 0

Exercise 2.3:

Consider the following LP:

$$\begin{array}{ll} \mbox{maximize} & 3x_1 + x_2 + 2x_3 \\ \mbox{subject to} & x_1 + x_2 + 3x_3 \leq 30 \\ & 2x_1 + 2x_2 + 5x_3 \leq 24 \\ & 4x_1 + x_2 + 2x_3 \leq 36 \\ & x_1, \ x_2, \ x_3 \geq 0 \end{array}$$

- a) Determine the initial Simplex tableau and highlight all pivot positions.
- b) Solve the LP using the Simplex method.

Exercise 2.4:

_

a) A farmer owns 200 acres of land, on which he plans to grow barley, wheat and potatoes. The respective details are provided in the following table:

	Potatoes	Barley	Wheat	Capacity
Cultivation costs (\in /acre)	1,000	2,000	3,000	150,000 €
Days of work $(d/acre)$	1	3	4	$160 \mathrm{~days}$
Net profit (\in /acre)	2,000	2,000	3,000	

Maximize the farmer's total net profit.

b) The owner of a chicken farm uses two sorts of grain (called A and B) to feed the animals. Each kind contains protein, fat, carbohydrates and additional indigestible components. On the basis of A and B the farmer now wants to create a blend which contains at least 1 kg of protein, 800 g of fat and 1.8 kg of carbs. The composition and prices per kg of each sort of grain are given in the table below:

Grain A	Grain B
100 g	200 g
$200 \mathrm{~g}$	$100 \mathrm{~g}$
$100 \mathrm{~g}$	$600 \mathrm{~g}$
8€	12 €
	100 g 200 g 100 g

Minimize the price of the blend using the Simplex method based on the normal form of the original LP instance (see Ex. 2.2) and a *helper tableau* T^{aux} .

Exercise 2.5:

Consider the following LP instance I:

maximize	$-2x_1 - 3x_2$
subject to	$x_1 + x_2 \le 7$
	$x_1 - x_2 \le -16$
	$x_1, \ x_2 \ge 0$

Determine $opt(I_{aux})$. Does I have any valid solutions?