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Abstract. Smart heating applications promise to increase energy efficiency and
comfort by collecting and processing room climate data. While it has been sus-
pected that the sensed data may leak crucial personal information about the oc-
cupants, this belief has up until now not been supported by evidence.
In this work, we investigate privacy risks arising from the collection of room
climate measurements. We assume that an attacker has access to the most basic
measurements only: temperature and relative humidity. We train machine learn-
ing classifiers to predict the presence and actions of room occupants. On data that
was collected at three different locations, we show that occupancy can be detected
with up to 93.5% accuracy. Moreover, the four actions reading, working on a PC,
standing, and walking, can be discriminated with up to 56.8% accuracy, which
is also far better than guessing (25%). Constraining the set of actions allows to
achieve even higher prediction rates. For example, we discriminate standing and
walking occupants with 95.1% accuracy. Our results provide evidence that even
the leakage of such ‘inconspicuous’ data as temperature and relative humidity
can seriously violate privacy.

1 Introduction

The vision of the Internet of Things (IoT) is to enhance work processes, energy effi-
ciency, and living comfort by interconnecting actuators, mobile devices and sensors.
These networks of embedded technologies enable applications such as smart heating,
home automation, and smart metering, among many others. Sensors are of crucial im-
portance in these applications. Data gathered by sensors is used to represent the current
state of the environment, for instance in smart heating, sensors measure the room cli-
mate. Using these information and a user-defined configuration of the targeted state of
room climate, the application regulates heating, ventilation, and air conditioning.

While the collection of room climate data is obviously essential to enable smart
heating, it may at the same time impose the risk of privacy violations. Consequently, it is
commonly believed among security experts that leaking room climate data may result in
privacy violations and hence that the data needs to be cryptographically protected [39,
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12, 4]. However, these claims have not been supported by scientific evidence so far.
Thus, one could question whether in practice additional effort for protecting the data
would be justified.

The current situation with room climate data is comparable to the area of smart
metering [18, 44, 24, 27]. In 1989, Hart [18] was the first to draw attention to the fact
that smart metering appliances can be exploited as surveillance devices. Since then,
research has shown far-reaching privacy violations through fine-granular power con-
sumption monitoring, ranging from occupancy and everyday activities detection [31]
up to recognizing which program a TV was displaying [14].

Various techniques have been proposed over the years to mitigate privacy risks of
smart metering [3, 37, 25, 44, 36]. This issue has become such a grave concern that the
German Federal Office for Information Security published a protection profile for smart
meters in 2014 [2]. By considering privacy implications of smart heating, we hope to
initiate consumer protection research and policy debate in this area, analogous to the
developments in smart metering described above.

Research Questions. In this work, we are the first to investigate room climate data
from the perspective of possible privacy violations. More precisely, we address the fol-
lowing research questions:

– Occupancy detection: Can an attacker determine the presence of a person in a room
using only room climate data, i.e., temperature and relative humidity?

– Activity recognition: Can an attacker recognize activities of the occupant in the
room using only the temperature and relative humidity data?

Our threat scenario targets buildings with multiple rooms that are similar in size,
layout, furnishing, and positions of the sensors. These properties are typical for office
buildings, dormitories, cruise ships, and hotels, among others. Assuming that an at-
tacker is able to train a classifier that recognizes pre-defined activities, possible privacy
violations are, e.g., tracking presence and working practices of employees in offices, or
the disclosure of lifestyle and intimate activities in private spaces. All these situations
present intrusions in the privacy of the occupants. In contrast to surveillance cameras
and motion sensors, the occupant does not expect to be monitored. Also, legal restric-
tions regarding privacy might apply to surveillance cameras and motion sensors but not
to room climate sensors.

Experiments. To evaluate these threats, we present experiments that consider occu-
pancy detection and activity recognition based on the analysis of room climate data
from a privacy perspective. We measured room climate data in three office-like rooms
and distinguished between the activities reading, standing, walking, and working on
a laptop. Although we assume that in smart heating applications, only one sensor per
room is most likely to be installed, each room was equipped with several sensors in
order to evaluate different positions of sensors in the room. These sensors measured
temperature and relative humidity at a regular time interval of a few seconds. In our
procedure, an occupant performed a pre-defined sequence of tasks in the experimental
space. In sum, we collected almost 90 hours of room climate sensor data from a total



of 36 participants. The collected room climate data was analyzed using an off-the-shelf
machine learning classification algorithm. To reflect realistic settings, we only evaluated
data of a single sensor and did not apply sensor fusion.

Results. Evaluating our collected room climate data, the attacker detects presence of
a person with detection rates up to 93.5% depending on location and the sensor posi-
tion, which is significantly higher than guessing (50%). The attacker can distinguish
between four activities (reading, standing, walking, and working on a laptop) with de-
tection rates up to 56.8%, which is also significantly better than guessing (25%). We
can also distinguish between three activities (sitting, standing and walking) with detec-
tion rates up to 81.0%, as opposed to 33.3% if guessing. Furthermore, we distinguish
between standing and walking with detection rates up to 95.1%. Thus, we show that
the fears of privacy violation by leaking room climate data are well justified. Further-
more, we analyze the influence of the room size, positions of the sensor, and amount
of the measured sensor data on the accuracy. In summary, we provide the first steps in
verifying the common belief that room climate data leaks privacy-sensitive information.

Outline. The remainder of this paper is organized as follows. In Section 2, we give an
overview of related work. Section 3 presents the threat model considered in this work.
In Section 4, we introduce the experimental design and methods. The results of our
experiments are presented and discussed in Sections 5 and 6, respectively. We draw
conclusions in Section 7. Additional information regarding the experimental procedure
can be found in Appendix A.

2 Related Work

Over the last decade, several experiments have been conducted to detect occupancy in
sensor-equipped spaces and to recognize people’s activities as summarized in Table 1.
Activity recognition has been considered for basic activities, such as leaving or arriv-
ing at home, or sleeping [29], as well as for more detailed views, including toileting,
showering and eating [41].

Most of the previous research uses types of sensors that are different from tempera-
ture and relative humidity. For example, CO2 represents a useful source for occupancy
detection and estimation [43]. Additionally, sensors detecting motion based on passive
infrared (PIR) [1, 6, 15, 28, 17, 46], sound [11, 15], barometric pressure [30], and door
switches [8, 9, 45] are utilized for occupancy estimation. For evaluation, different ma-
chine learning techniques are used, e. g., HMM [43], ARHMM [17], ANN [11], and
decision trees [15, 45].

In contrast to previous work, our results rely exclusively on temperature and relative
humidity. Previously published experimental results involved other or additional types
of sensors, such as CO2, acoustics, motion, or lighting (the latter three are referred to as
AML in Table 1), door switches or states of appliances (also gathered with the help of
switches), such as water taps or WC flushes. For this reason, our detection results are
also not directly comparable to these works.



Table 1: Overview of
previous experiments
on occupancy detec-
tion (D), occupancy
estimation (E), which
aims at determining
the number of people
in a room, and activity
recognition (A) with
a focus on selected
sensors; AML denotes
acoustic, motion, and
lighting sensors.
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3 Threat Model

The overall goal of our work is to understand the potential privacy implications if room
climate data is accessed by an attacker. The goal of the attacker is to gain informa-
tion about the state of occupancy as well as the activity of the occupants without their
consent.

Obviously, the more information an attacker can gather, the more likely she can
deduce privacy-harming information from the measurements. Therefore, we base our
analysis on the attacker model that considers a room climate system where only one
sensor node is used to derive information. This is a realistic scenario since usually one
sensor node per room is sufficient to monitor the room climate. Moreover, we assume
that this sensor node takes only the two most basic measurements, temperature and
relative humidity. These data are the fundamental properties to describe room climate.
Note that our restricted data is in contrast to existing work (cf. Table 1 and Section 2)
that based their experiments on more types of measurements or used data that is less
common to characterize room climate.

We consider a sensor system that measures the climate of a room, denoted as target
location. At the target location, a temperature and relative humidity sensor is installed
that reports the measured values in regular intervals to a central database. We consider
an attacker model where the attacker has access to this database and aims to derive in-
formation about the occupants at the target location. Furthermore, we assume that the
attacker has access to either the target location itself, or a room similar in size, layout,



sensor positions, and furniture. Such situations are given, for example, at office build-
ings, hotels, cruise ships, and student dormitories. This location, denoted as training
location, is used to train the classifier, which is a machine learning algorithm learning
the input data labeled with the groundtruth. As the attacker has full control over the
training location, she can freely choose what actions are taking place during the mea-
surements. For example, she could do measurements while no persons are present at the
training location, or one person is present and executes a predefined activity.

There are various scenarios, in which an attacker has incentives to collect and an-
alyze room climate data. For example, the management of a company aims at observ-
ing the presence and working practices of employees in the offices. In another case,
a provider of private spaces (hotels, dormitories, etc.) wants to disclose lifestyle and
intimate activities in these spaces. This information may be utilized for targeted adver-
tising or sold to insurance companies. In any case, the evaluation of room climate data
provides the attacker with the possibility to undermine the privacy of the occupants.

The procedure of these attacks is as follows: First, the attacker collects training data
at a training location, which might be the target location or another room similar in
size, layout, sensor positions, and furniture. The attacker also records the groundtruth
for all events that shall be distinguished. Examples of events are occupancy and non-
occupancy, or different activities such as working, walking, and sleeping. The training
data is recorded with a sample rate of a few seconds and split into windows (i.e., a
temperature curve and a relative humidity curve) of same time lengths, usually one to
three minutes. Using the collected training data, the attacker trains a machine learning
classifier. After the classifier is trained, it can be used to classify windows of climate
data from the target location to determine the events. The classifier works on previously
collected data, thus reconstructing past events, and also on live-recorded data, thus de-
termining current events “on-the-fly” at the target location.

4 Experimental Design and Methods

We conducted a study to investigate the feasibility of detecting occupancy and inferring
activities in an office environment from temperature and relative humidity: From March
to April 2016, we performed experiments at two locations simultaneously, Location A
and Location B, with a distance of approximately 200 km between them. In addition,
from January to February 2017, we conducted further experiments at a third location,
denoted as Location C, which is located in the same building as Location B.

4.1 Experimental Setup and Tasks

The experimental spaces at the three locations are different in size, layout, and positions
of the sensors. Thus, each target location is also the training location in our study. At
Location A, the room has a floor area of 16.5 m2 and was equipped with room climate
sensors at four positions as shown in Figure 1ii. At Location B, the room has a floor
area of 30.8 m2, i. e., roughly twice as much as at Location A, and had room climate
sensors installed at three positions as illustrated in Figure 1i. Location C has a floor
area of 13.9 m2 and was equipped with room climate sensors at five positions as shown



in Figure 1iii. In all locations, the room climate sensors measured temperature and
relative humidity. The number of deployed sensors varied due to limitations of hardware
availability.
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Fig. 1: Floor plans of the experiment spaces including sensor node locations, h indicates
the node’s height.

Our goal was to determine to which extent the presence and activities of an occu-
pant influences the room climate data. Therefore, we measured temperature and relative
humidity during phases of absence as well as phases of occupants’ presence. If an occu-
pant was present, this person had to perform one task or a sequence of tasks. We defined
the following experimental tasks (see also Figure 2):

Read Sit on an office chair next to a desk and read.
Stand Stand in the middle of the room, try to avoid movements.
Walk Walk slowly and randomly through the room.
Work Sit on an office chair next to a desk and use a laptop, which is located on

the desk.



(i) Read (ii) Stand (iii) Walk (iv) Work

Fig. 2: The defined tasks performed by participants at Location A.

To eliminate confounding factors, we defined location default settings applying to
all locations. Essentially, all windows were required to remain closed and no person was
allowed in the room when not in use for the experiment. The rooms have radiators for
heating, which were adjusted to a constant level. At Location A and B, we used shutters
fixed in such positions that enough light was provided for reading and working.

4.2 Sensor Data Collection

We used a homogeneous hardware and software setup at all locations for data collection,
which is described in the following.

Hardware. At each location, we set up a sensor network consisting of several Moteiv
Tmote Sky sensor nodes with an integrated IEEE 802.15.4-compliant radio [32] as well
as an integrated temperature and relative humidity sensor. The nodes have the Contiki
operating system [7] version 2.7 installed. In addition, we deployed a webcam that took
pictures in a 3-second interval at Location A. These were used for verification during
the data collection phase only, and were not given to the classification algorithms.

Software. For sensor data collection, we customized the Collect-View application in-
cluded in Contiki 2.7, which provides a graphical user interface to manage the sen-
sor network. For our purposes, we implemented an additional control panel offering a
customized logging system. The measurement settings of the Collect-View application
were set to a report interval of 4 seconds with a variance of 1 second, i. e., each sen-
sor node reported its current values in a time interval of 4 ± 1 seconds. The variance
is a feature provided by Collect-View to decrease the risk of packet collisions during
over-the-air transmissions.

Collected Data. We structured data collection in units and aimed for a good balance
between presence and absence as well as the different tasks among all units, as this is
needed for the later analysis using machine learning. Each unit has a fixed time duration,
t, where exactly one person was present (t ∈ {10,30,60}, in minutes) who executed
predefined activities. If the presence time was t minutes, then the absence time before
and after it, respectively, was determined as t

2 + 5 minutes, where 5 minutes served
as buffer. This accounts for both, the equal distribution of presence time and absence
time, respectively, and the fact that temperature and humidity settle within a 15-minute



period after the 60-minute presence of one person. For a detailed description of the
experimental procedure, we refer to Appendix A.1.

Overall, we collected almost 90 hours of sensor data, 40 hours of which with a
person being present. A more extensive overview of the amount of measured sensor data
is shown in Table 2. To encourage replication and further investigations, all collected
sensor data is available as open data sets on GitHub.3

Table 2: Measured sen-
sor data of all locations
(in hours)

Variable Value Recorded Time [h]

Location A Location B Location C

Occupancy no 20:38:26 15:21:00 13:21:42
yes 14:41:56 11:33:06 13:44:29

Task

Read 4:46:13 2:56:44 3:19:47
Stand 2:45:27 2:34:20 3:28:27
Walk 2:43:53 2:37:12 3:20:05
Work 4:03:33 3:00:20 3:20:52

4.3 Participants and Ethical Principles

For participating in the experiment, 14 subjects volunteered at Location A, 12 subjects
at Location B, and 10 subjects at Location C as shown in Table 3. Demographic data of
participants was collected in order to facilitate replication and future experiments. All
subjects provided written informed consent after the study protocol was approved by
the data protection office.4 We assigned each participant to a random ID. All collected
sensor data as well as the demographic data is only linked to this ID.

4.4 Classifier Design

We used classification to predict occupancy and activities in the rooms. We adopt an
approach that has successfully been used in several applications of biosignal process-
ing, namely extraction of a number of statistical descriptors with subsequent feature
selection [26, 21].

The features use measurements from short time windows. We experimented with
windows of different lengths, namely 60 s, 90 s, 120 s, 150 s, and 180 s. The offset be-
tween two consecutive windows was set to 30 s. We excluded all windows where only
a part of the measurements belongs to the same activity.

The feature set was composed from a number of statistical descriptors that were
computed on temperature and humidity measurements within these windows. These

3 https://github.com/IoTsec/Room-Climate-Datasets
4 Ethical review boards at both locations only consider medical experiments.



Characteristic Location

A B C

Gender f: 3 2 5
m: 11 10 5

Weight [kg] µ: 74.9 81.7 63.1
σ: 8.0 12.1 10.0

Height [cm] µ: 175.9 178.4 170.7
σ: 9.2 5.3 9.3

Age µ: 33.7 30.3 25.6
σ: 8.2 4.8 2.8

Table 3: Demographic data of partici-
pants, µ denotes the average, σ denotes
the standard deviation.

are mean value, variance, skewness, kurtosis, number of nonzero values, entropy, dif-
ference between maximum and minimum value of the window (i.e., value range), cor-
relation between temperature and humidity, and mean and slope of the regression line
for the measurement window before the current window. Additionally, we subtracted
from the measurements their least-square linear regression line, and computed all of
the listed statistics on the subtraction residuals. Feature selection was performed using
a sequential forward search [42, Ch. 7.1 & 11.8], with an inner leave-one-subject-out
cross-validation [19, Ch. 7] to determine the performance of each feature set. For classi-
fication, we used the Naı̈ve Bayes classifier. To avoid a bias in the results, we randomly
selected identical numbers of windows per class for training, validation and testing. For
implementation, we used the ECST software [38], which wraps the WEKA library [16].

As performance measures, we use accuracy (i. e., the number of correctly classified
windows divided by the number of all windows), and per-class sensitivity (i. e., the
number of correctly classified windows for a specific class divided by the number of all
windows of this class). Classification accuracy was deemed statistically significant if it
was significantly higher than random guessing which is the best choice if the classifier
could not learn any useful information during training. For each experiment, a binomial
test with significance level p < 0.01 was carried out using the R software [34].

Note that neither the features nor the rather simple Naı̈ve Bayes classifier are par-
ticularly tailored to predicting privacy leaks. However, we show that also such an un-
optimized system is able to correctly predict occupancy and action types and hence
produce privacy leaks. Higher detection rates results can be expected if more advanced
classifiers are applied to this task.

5 Results

In this section, we present the experimental results. First, a visual inspection of the col-
lected data is presented, followed by the machine learning-aided occupancy detection
and activity recognition.
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Fig. 3: Visualization of two examples of room climate measurements. The grey back-
ground indicates the presence of the occupant in the experimental space.

5.1 Visual Inspection

We started our evaluation by analyzing the raw sensor data. Hence, we implemented
a visualization script in MATLAB, which plots this data. The visualizations of two
measurements are exemplarily depicted in Figure 3.

The visualizations show an immediate rise of the temperature and humidity as soon
as an occupant enters the room. Furthermore, variations in temperature and humidity
increase rapidly and can be clearly seen. Thus, one can visually distinguish between
phases of occupancy and non-occupancy. One can also notice different patterns during
the performance of the tasks. As Figure 3i shows, an occupant walking in the experi-
mental space causes a constant increase of temperature and humidity with only small
variations. In contrast, an occupant standing in the room causes the largest variations of
humidity compared to the other defined tasks (cf. Figure 3ii). The effects of the tasks
reading and working on temperature and humidity in the depicted figures are very sim-



ilar: both variables tend to increase showing medium variations. For further analysis of
the data, we used machine learning as outlined in Section 4.4.

5.2 Occupancy Detection

Occupancy detection describes the binary detection of occupants in the experimental
space based on features from windows with length of 180 seconds (cf. Section 4.4).
This is a two-class task, namely to distinguish whether an occupant is present (true)
or not (false). We only considered training and testing data within the same room (but
separated training and testing both by the days and participants of the acquisition). We
randomly selected the same number of positive and negative cases from the data. Thus,
simply guessing the state has a success probability of 50%. However, our classification
results are considerably higher than that. Table 4 shows that the highest accuracies
per location were 93.5% (Location A), 88.5% (Location B), and 91.0% (Location C).
Considering all sensors of all three locations, detection accuracy ranges between 66.8%
(Sensor B3) and 93.5% (Sensor A1) as shown in Figure 4i. All classification accuracies
were statistically significantly different from random guessing. This indicates that an
attacker can reveal the presence of occupants in a target location with a high probability.

Scenario Sensor Sensitivity [%] Guess Acc.

Occup. No Occup. [%] [%]

Occupancy

A1 94.1 93.0 50.0 93.5
A2 94.5 85.0 50.0 89.7
A3 92.0 76.4 50.0 84.2
A4 77.8 79.1 50.0 78.4

B1 91.9 85.1 50.0 88.5
B2 85.3 77.2 50.0 81.3
B3 69.7 63.9 50.0 66.8

C1 92.9 89.2 50.0 91.0
C2 89.9 87.4 50.0 88.6
C3 90.0 82.0 50.0 86.0
C4 89.8 87.6 50.0 88.7
C5 92.5 88.8 50.0 90.7

Table 4: Classification ac-
curacy for occupancy de-
tection. Notations: ‘Oc-
cup.’, sensitivity for class
occupancy. ‘No Occup.’,
sensitivity for class no oc-
cupancy. ‘Guess’, proba-
bility of correct guessing.
‘Acc.’, classification accu-
racy.

5.3 Activity Recognition

Activity recognition reports the current activity of an occupant in the experimental
space. The four activity tasks are described in Section 4.1. The recognition results for
these tasks are shown in Figure 4.

Activity4 classifies between the activities Read, Stand, Walk, Work. As shown in
Figure 4ii, the accuracy of recognizing activities achieved by the machine learning



pipeline ranged from 23.9% (Sensor C1) to 56.8% (Sensor A1). Overall, the accu-
racy of Activity4 was statistically significantly better than the probability of guessing
the correct task (25%) for 8 out of 12 sensors. Thus, the distinction between multiple
activities is possible, but depends on the target location and the position of the sensor.

A B C

Location

40

60

80

100

A
c
c
u

ra
c
y
 [

%
]

A1
A2

A3

A4

B1

B2

B3

C1

C2
C3

C4
C5

(i) Occupancy

A B C

Location

20

30

40

50

60

A
c
c
u

ra
c
y
 [

%
]

A1

A2

A3

A4

B1

B2

B3

C1
C2

C3

C4
C5

(ii) Activity4
(read, stand, walk, work)

A B C

Location

40

60

80

100

A
c
c
u

ra
c
y
 [

%
] A1

A2

A3
A4

B1

B2

B3

C1

C2

C3

C4

C5

(iii) Activity3
(sit, stand, walk)

A B C

Location

50

60

70

80

90

A
c
c
u

ra
c
y
 [

%
]

A1

A2
A3

A4

B1
B2

B3
C1

C2
C3

C4

C5

(iv) Activity2
(sit, upright)

A B C

Location

50

60

70

80

A
c
c
u

ra
c
y
 [

%
]

A1
A2

A3
A4

B1

B2

B3

C1

C2
C3

C4

C5

(v) Activity2a
(read, work)

A B C

Location

40

60

80

100

A
c
c
u

ra
c
y
 [

%
]

A1

A2
A3
A4

B1
B2

B3

C1

C2
C3

C4

C5

(vi) Activity2b
(stand, walk)

Fig. 4: Classification accuracy for occupancy detection and activity recognition. In each
diagram, the guessing probability is plotted as a line. Each symbol represents the accu-
racy that we achieved with a single sensor. A blue dot marks a statistically significant
result, while a red ‘x’ represents a statistically insignificant result.

In the next step, we investigated whether an attacker can increase the recognition
accuracies by distinguishing between a smaller set of activities. To this end, we com-
bined two tasks to a meta task, e.g., the tasks Read and Work became Sit. The model
Activity3 classifies between the tasks Sit, Stand, and Walk. The probability of correct
guessing is thus 33.3%. This model is typical to represent activities of an occupant
in a private space or an office room. For Activity3, the achieved accuracy ranged from
31.8% (Sensor C1) to 81.0% (Sensor A1). Our results were statistically significant for
10 out of the 12 sensors deployed in the three locations. Assuming a known layout of



the target location, the attacker might be able to determine the position of the occupant
in the space and infer activities such as watching TV, exercising, cooking or eating.

The model Activity2 classifies between the tasks Sit and Upright, whereby Sit is as
previously Read or Work, and Upright combines Stand and Walk. In this classifica-
tion, the attacker distinguishes whether an occupant is at a certain posture. The model
Activity2a classifies between the tasks Read and Work, and the model Activity2b clas-
sifies between the tasks Stand and Walk. Activity2a indicates that an attacker can even
distinguish between the sedentary activities, such as reading a book or working on the
laptop. In contrast, Activity2b shows that an attacker can differentiate between standing
and moving activities. Thus, an attacker can detect movements at the target location.
For Activity2, Activity2a, and Activity2b, the probability to guess the correct class is
50%. Using these models, the attacker can infer various work and life habits.

For Activity2, our accuracy varies between 54.6% (Sensor C2) and 82.1% (Sensor
A1), and all accuracies are statistically significant. For Activity2a, the lowest and high-
est accuracies were 54.2% (Sensor B3) and 76.6% (Sensor C2), respectively, which
resulted in statistically significant results for 11 out of 12 sensors. For Activity2b, the
achieved accuracy ranged from 53.3% (Sensor C4) to 95.1% (Sensor A1) and the re-
sults for 10 out of 12 sensors were statistically significant.

5.4 Further Observations

Length of Measurement Windows. The length of the measurement windows influ-
ences the accuracy of detection. We evaluated window sizes in the range between 60
and 180 seconds. Exemplarily, we analyzed the average accuracy of occupancy detec-
tion depending on the window size for all three locations. As shown in Figure 5, the
accuracy increases with a longer window size. We achieved the best results with the
longest window sizes of 180 seconds.
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Fig. 5: Average accuracy over
all sensors from each loca-
tion for occupancy detection de-
pending on the window size

This indicates that the highest accuracies are possible if longer time periods are
considered. From a practical perspective, it is not advisable to extend the window size to
a much larger duration than a few minutes since we assume that the performed activity
is consistent for the whole duration of the window.



Selected Features. To assess the feasibility of an attacker that has only access to either
temperature data or relative humidity data, we evaluated whether it might be enough
to solely collect one type of room climate data. In the classification process, an at-
tacker derives a set of features from temperature and relative humidity data and selects
the best-performing features for each sensor and classification goal automatically (cf.
Section 4.4). Analysis shows that features computed from temperature and relative hu-
midity are of similar importance. In our evaluation, 57.9% of the selected features are
derived from temperature measurements, and 52.3% from relative humidity measure-
ments.5

We also compared the features in terms of differences between the three locations
as well as differences between occupancy detection and activity recognition. In all these
cases, there are no significant differences between the importance of temperature and
relative humidity. An attacker restricted to either temperature or relative humidity data
will perform worse than with both data.

Size and Layout of Rooms. All our locations are office-like rooms, which have a sim-
ilar layout (rectangular) but differ in size and furnishing. In our evaluation, the accuracy
correlates with the size of the target location. As shown in Figure 5, we had the highest
average accuracy in occupancy detection with Location C, which has also the smallest
ground area of 13.9m2. Location A has a ground area of 16.5m2, and has a slightly
lower average accuracy. Location B is almost twice as large (30.8m2) and shows the
worst average accuracy compared to the other locations. Thus, our experiment indi-
cates that an increasing room size leads to decreasing accuracy on average. An attacker
achieves higher accuracies by monitoring target locations of a small size compared to
target locations of larger sizes.

Position of Sensors. According to our threat model in Section 3, the attacker controls
layout of the target location. Thus, we assume an attacker that can decide at which
position in the target location a room climate sensor is installed. We consider how the
position of a room climate sensor influences the accuracy of derived information. For
occupancy detection, we had the best accuracy with a sensor node that is located in the
center point at the ceiling of the target location (Sensors A1, B1, C1). In this position,
the sensor has the largest gathering area to measure the climate of the room. Sensors
mounted to the walls or on shelves perform differently in our experiments. For activity
recognition, the central sensor nodes performed best at Location A and B, but not at
Location C.

From the attacker perspective, the best position to deploy a room climate sensor is
at the ceiling in the center of the target location. In large rooms, multiple sensors at the
ceiling could be installed, each covering a subsection of the room.

5 Note that some features are based on both, temperature and relative humidity, which is why
the sum of both numbers exceeds 100%.



6 Discussion

As our experiments reveal, knowing the temperature and relative humidity of a room
allows to detect the presence of people and to recognize certain activities with a sig-
nificantly higher probability than guessing. By evaluating temperature and relative hu-
midity curves of the length of 180 seconds, we were able to detect the presence of an
occupant in one of our experimental spaces with an accuracy of 93.5% using a single
sensor. In terms of activity recognition, we distinguished between four activities with an
accuracy up to 56.8%, between three activities up to 81.0%, and between two activities
up to 95.1%. Thus, an attacker focusing on the detection of a specific activity is more
successful than an attacker that aims to classify a broader variety of activities. In the
following, we discuss implications and limitations of our results.

Privacy Implications We show that an attacker might be able to infer life and work
habits of the occupants from the room climate data. Thus, the attacker is able to dis-
tinguish between sitting, standing, and moving, which already might reveal the posi-
tion and activities of the occupant in the room. Moreover, the attacker can distinguish
between upright and sedentary activities, between moving and standing, and between
working on the laptop or reading a book.

Given the limited amount of recorded sensor data, the achieved accuracies in occu-
pancy detection and activity recognition give a clear indication that occupants are sub-
ject to privacy violations according to the threat model described in Section 3. However,
activity recognition is not straightforward since the achieved accuracies differ between
the different sensor positions and locations.

Further experiments are required for a better assessment of the privacy risks induced
by the room climate data. Our work provides promising directions for these assess-
ments. For example, we demonstrated the existence of the information leak with the
Naı̈ve Bayes classifier. Naı̈ve Bayes is arguably one of the simplest machine learning
classifiers. In future work, it would be interesting to explore upper boundaries for the
detection of presence/absence and different activities by using more advanced classifiers
such as the recently popular deep learning algorithms.

Location-Independent Classification An important question is whether it is possible
to perform location-independent classification, i.e., to train the classifier with sensor
data of one location and then use it to classify sensor data at the target location that
is not similar to the training location in size, layout, and sensor positions. If this was
possible, the service providers of smart heating applications would be able to detect
occupancy and to recognize activities without having access to the target locations.

According to their privacy statements, popular smart thermostats from Nest [33],
Ecobee [10], and Honeywell [20] send measured climate data to the service providers’
databases. To evaluate these privacy threats, we used the room climate data of the best-
performing sensor of a location as training data set for other locations. For example, to
classify events of an arbitrary sensor of Location A, we trained the classifier with room
climate data collected by Sensor B1 or Sensor C1. We gained statistically significant
results for a few combinations in occupancy detection but the majority of our occupancy



detection results was not significant. For activity recognition, we were not able to gain
statistically significant results.

However, the possibility of location-independent attackers cannot be excluded. Ab-
sence of significant results in our experiments may be merely due to the limited amount
of data. Future studies should be conducted to gather data from various rooms up to a
point where the combined results hold for arbitrary locations. Having more data from a
multitude of rooms available would help the machine learning classifiers to recognize
and ignore data characteristics that are specific to either of the experimental rooms.
Consequently, the algorithms could better identify the distinct data characteristics of
the different classes in occupancy detection and activity recognition. This would enable
location-independent classification of room climate data, in which the training location
is not similar to the target location regarding size, layout, furnishing, and positions of
the sensors.

In a representative smart home survey of German consumers from 2015, 34% of the
participants stated that they are interested in technologies for intelligent heating or are
planning to acquire such a system [5]. Another survey with 1,000 US and 600 Canadian
consumers found that for 72% of them, the most desired smart home device would be
a self-adjusting thermostat, and 37% reported that they were likely to purchase one in
the next 12 months [22]. Sharing smart home data with providers and third parties is a
popular idea and a controversial issue for consumers. Thus, in a recent representative
survey with 461 American adults by Pew Research [35], the participants were presented
with a scenario of installing a smart thermostat “in return for sharing data about some
of the basic activities that take place in your house like when people are there and when
they move from room to room”. Of all respondents, 55% said that this scenario was not
acceptable for them, 27% said that it was acceptable, with remaining 17% answering
“it depends”. Furthermore, in a worldwide survey with 9,000 respondents from nine
countries (Australia, Brazil, Canada, France, Germany, India, Mexico, the UK, and the
US), 54% of respondents said that “they might be willing to share their personal data
collected from their smart home with companies in exchange for money” [23].6

We think that the idea of sharing the smart home data for various benefits will
continue to be intensively discussed in the future, and therefore, consumers and policy
makers should be made aware of the level of detail inferable from smart home data.
Which rewards are actually beneficial for consumers? Moreover, which kind of data
sharing is ethically permissible? Only by answering these questions it would be possible
to design fair policies and establish beneficial personal data markets [40]. In this work,
we take the first step towards informing the policy for the smart heating scenario.

7 Conclusions

We investigated the common belief that the data collected by room climate sensors di-
vulge private information about the occupants. To this end, we conducted experiments
that reflect realistic conditions, i.e., considering an attacker who has access to typical
room climate data (temperature and relative humidity) only. Our experiments revealed

6 Methodological details, such as representativeness, breakdown by country and the exact for-
mulation of the questions, are not known about this survey.



that knowing a sequence of temperature and relative humidity measurements already
allows to detect the presence of people and to recognize certain activities with high
accuracy. Our results confirm that the assumptions that room climate data needs pro-
tection are justified: the leakage of such ‘inconspicuous’ sensor data as temperature
and relative humidity can seriously violate privacy in smart spaces. Future work is re-
quired determine the level of privacy invasion in more depth and develop appropriate
countermeasures.
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A Additional Material

A.1 Experimental Procedure

The participants were assigned to at least one experimental unit with fixed presence
times and tasks, and provided with a script for their actions (that is, for how long and
in which order the tasks should be performed). Every participant performed each unit
twice, with the same tasks, but possibly on different days and in a permuted chronolog-
ical order. Tasks were performed in blocks of 10, 20, or 30 minutes. Thus, 10-minute
units contained only one task of 10 minutes; 30-minute units consisted of either three
tasks of 10 or one task of 10 plus one of 20 minutes; 60-minute units were composed
of either two tasks of 20 plus two of 10, or one task of 10, 20, and 30 minutes each.

At the beginning of the presence time for each unit, i.e., the time period where a
person had to be present, the experimental supervisor unlocked the room door to let the
participant in. The participant started with the first task and was instructed by phone
(at Locations A and C) or through the glass pane (at Location B) when it was time to
change activities or to leave the room.

Overall, we defined 22 units per location, consisting of six 60-minute plus eight
30-minute and eight 10-minute units. Furthermore, the distribution of units and tasks
was identical for all locations. Both, Read and Work account for 180 minutes each,
whereas Stand and Walk provide 160 minutes each. A comprehensive overview of the
distribution of tasks, number of tasks (per unit and block), and aggregated values is
provided by Table 5.

Table 5: Overview of the number and dis-
tribution of tasks and units at one location.
n x t denotes the number of n recorded t-
units (i. e., the time of presence in minutes,
t ∈ {10,30,60}), ttask denotes the defined
task block lengths per unit. For instance, in
a total of six 60-minute units, Read and
Work account for two 30-minute blocks,
whereas in a total of eight 10-minute units,
all tasks account for two blocks of 10 min-
utes each.

Units Tasks

n x t ttask Read Stand Walk Work

30 2 – – 2
6 x 60 20 2 – 4 2

10 – 8 – –

8 x 30 20 2 – 2 2
10 2 6 2 2

8 x 10 10 2 2 2 2

Total time [min] 180 160 160 180


