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Marco Simnacher

1 Introduction

The elliptic, non-linear sinh-Gordon equation is given by

∆u+ sinh(2u) = 0,

for twice partially di�erentiable functions u : R2 → R where ∆ is the Lapla-
cian of R2 with respect to the Euclidean metric. This di�erential equation
arises in the context of surface theory. There, it is possible to describe con-
stant mean curvature tori using the solutions of the sinh-Gordon equation.
Pinkall and Sterling constructed �nite-type solutions in terms of two com-
muting �ows on a certain space of matrix-valued polynomials [7]. These
polynomials are called potentials and their degree is related to the genus of
a naturally assigned algebraic curve. In this thesis, we investigate solutions
of spectral genus two. These solutions are doubly periodic and hence, they
are associated to a period lattice [4]. The goal of this work is to connect the
period lattices and the spectral curves based on the Whithamdeformations
from [2] and [5].

In section two we introduce basic de�nitions which are essential to under-
stand the following results. Furthermore, we summarize important facts
about the connection between the set of potentials, polynomial Killing �elds
and isospectral sets.
In this context, we consider a related system of ordinary di�erential equa-
tions, whose monodromies give insight into the connection between the gen-
erators of the period lattice and polynomials associated with the Whitham
deformations. These observations in the third part allow us to give a short
outline of the underlying theory of constant-mean-curvature surfaces and
spectral curves at the beginning of section four.
Once it is clear why it is useful to consider the connection between Whitham
deformations, spectral curves, and the period lattice, especially in our case,
we use the main part of the thesis to show that the equations of the Whitham
deformations can be solved uniquely by introducing reasonable additional
constraints. The solution form a vector �eld which we also calculate explic-
itly. Furthermore, we obtain a similar vector �eld by solving a related but
di�erent initial value problem. This sheds light on the dependence of the
period lattice on the responding spectral curves.
The conclusion summarizes the results of chapter four and give some remarks
on how the work could be carried forward. In particular, it seems possible
to calculate the dependence of the period lattice from the spectral curve
explicitly.
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Marco Simnacher 2 FUNDAMENTALS

2 Fundamentals

In this section, we introduce basic de�nitions based on [1]. Furthermore, we
summarize the most important results of [4] and [6]. The parametrization
of the spectral-genus-two family of solutions of the sinh-Gordon equation is
de�ned on the set of so-called potentials. The solutions of the Lax equations
are so-called polynomial Killing �elds and the solutions of the sinh-Gordon
equation are parametrized by them. Once we introduced the respective def-
initions, we conclude the main results with the sources for the solutions of
the Lax-equations, the corresponding induced group action, and the so-called
isospectral sets. Using these, we try to understand the connection between
the polynomial a ∈M1

2 and the period lattice.

De�nition 2.1. Let M be a di�erentiable manifold and p a point in M .
Then, two smooth curves c0 and c1 through p are called equivalent if

d(x ◦ c0)

dt
(0) =

d(x ◦ c1)

dt
(0)

with respect to a chart x around p. This formulation is independent of the
particular choice of x and de�nes an equivalence relation on the set of smooth
curves through p. We call d(x◦c0)

dt
(0) tangent vector of M in the point p, also

known as foot point. The set TpM of all tangent vectors of M in p is called
the tangent space of M in p, the set TM =

⋃
p∈M

TpM of all tangent vectors

of M is the tangent bundle of M .

De�nition 2.2. A subset L ⊆ M is called l-dimensional di�entiable sub-
manifold of M if, for every p ∈ L, there exists a chart x : U → U ′ × U ′′

of M around p where U ′ ⊂ Rl and U ′′ ⊂ Rm−l are open with 0 ∈ U ′′ and
x(U ∩ L) = U ′ × {0}.

De�nition 2.3. Let W be a subset of a di�erentiable manifold M . Then,
di�erential forms of degree k are indexed families ω of alternating k-linear
maps ω(p) : (TpM)k → R, p ∈ W . They are also called k-forms.

De�nition 2.4.

The set of potentials is the following set of cubic polynomials with matrix-
valued coe�cients:

P2 :=

{
ζλ =

(
0 −γ−1

0 0

)
+

(
α β
γ −α

)
λ+

(
−α −γ
−β ᾱ

)
λ2

+

(
0 0
−γ−1 0

)
λ3 | α, β ∈ C, γ ∈ R+

}
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where λ ∈ C is called the spectral parameter.
Every ζλ ∈ P2 can be written as

ζλ =

(
αλ− αλ2 −γ−1 + βλ− γλ2

γλ− βλ2 + γ−1λ3 −αλ+ αλ2

)
(2.1)

and satis�es the reality condition

λ3ζ
t

1/λ = −ζλ (2.2)

Later, it will be convenient to write ζλ abstractly as

(
A(λ) B(λ)
λC(λ) −A(λ)

)
with

complex polynomials A(λ), B(λ), C(λ) of maximal degree two.
Now we can de�ne the polynomial Killing �elds on the set of potentials:

De�nition 2.5.

Polynomial Killing �elds are maps ζλ : R2 → P2, (x, y) 7→ ζλ(x, y) which
solve the Lax equations

∂ζλ
∂x

= [ζλ, U(ζλ)]
∂ζλ
∂y

= [ζλ, V (ζλ)] (2.3)

with ζλ(0) = ζ0
λ ∈ P2 and

U(ζλ) :=

(
α−α

2
−γ−1λ−1 − γ

γ + γ−1λ α−α
2

)
V (ζλ) := i

(
α+α

2
−γ−1λ−1 + γ

γ − γ−1λ −α+α
2

)
Due to the de�nition of the set of potentials, we can see that any ζλ ∈ P2 is
composed of a uniquely de�ned triplet

α = (ζλ)α ∈ C, β = (ζλ)β ∈ C, γ = (ζλ)γ ∈ R+.

Accordingly, the condition to the maps ζλ satisfying the di�erential equa-
tions above can be translated in equivalent requirements for the maps α, β, γ,
namely that they satisfy some other uniquely de�ned di�erential equations.
Thus, a polynomial Killing �eld also induces the following triple of functions

α : R2 → C, (x, y) 7→ (ζλ(x, y))α

β : R2 → C, (x, y) 7→ (ζλ(x, y))β

γ : R2 → R+, (x, y) 7→ (ζλ(x, y))γ

which have to satisfy the following lemma:
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Lemma 2.6. Let ζλ be a polynomial Killing �eld. Then, the entries α, β :
R2 → C and γ : R2 → R satisfy the modi�ed Lax equations

∂α

∂x
= γ2 + βγ − βγ−1 − γ−2 ∂α

∂y
= i(γ−2 + βγ − βγ−1 − γ2)

∂β

∂x
= −αβ + αβ − 2αγ + 2αγ−1 ∂β

∂y
= i(−αβ − αβ + 2αγ + 2αγ−1)

∂γ

∂x
= −αγ − αγ ∂γ

∂y
= i(αγ − αγ).

Proof. This lemma is a consequence of the commutators structure above and
the calculations in [4].

Remark 2.7.

We conclude for the partial derivatives with respect to x and y of γ:

∂γ

∂x
= −αγ − αγ = −2γ<(α) ∈ R

∂γ

∂y
= i(αγ − αγ) = 2γ=(α) ∈ R. (2.4)

Based on [4], we can see that the local �ows φE(x) and φF (x) obtained by
the Lax equations 2.3 commute and we also get the following equation:

[V (ζλ), U(ζλ)] +
∂U(ζλ)

∂y
− ∂V (ζλ)

∂x
= 0, (2.5)

∂2ζλ
∂x∂y

=
∂2ζλ
∂y∂x

Here, the commutator equals

[V (ζλ), U(ζλ)] = V (ζλ)U(ζλ)− U(ζλ)V (ζλ)

= i

(
2(γ2 − γ−2) −2γ−1αλ−1 − 2γα
−2γα− 2γ−1αλ 2(γ−2 − γ2)

)
(2.6)

= −(
∂U(ζλ)

∂y
− ∂V (ζλ)

∂x
)

The equation 2.5 is called Maurer-Cartan equation and can be turned into
the sinh-Gordon equation using the following procedure: First, we de�ne the
coordinate

z := x+ iy.
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and express the x- and y-coordinate in terms of z

x =
1

2
(z + z) y = − i

2
(z − z).

Now, we specify the derivative with respect to z using the chain rule

∂

∂z
=

1

2
(
∂

∂x
− i ∂

∂y
)

∂

∂z
=

1

2
(
∂

∂x
+ i

∂

∂y
)

Furthermore, we de�ne the variable

u := lnγ ⇔ eu = γ.

In order to calculate the partial derivative with respect to the new coordinate
z, we use the results in 2.4:

∂u

∂x
=

1

γ

∂γ

∂x
= −(α + α)

∂u

∂y
=

1

γ

∂γ

∂y
= i(α− α)

and hence, we obtain

∂u

∂z
= −α ∂u

∂z
= −α.

In the next step, we express the Maurer-Cartan equation in terms of u and
derivatives of u with respect to z, z. They will be denoted as uz, uz. With
equation 2.6, we obtain:

[V (ζλ), U(ζλ)] = i

(
2(e2u − e−2u) 2e−uuzλ

−1 + 2euuz
2euuz + 2e−uuzλ 2(e−2u − e2u)

)
(2.7)

To calculate the derivatives of U(ζλ), V (ζλ), we rewrite the matrices as

U(ζλ) =

(
α−α

2
−γ−1λ−1 − γ

γ + γ−1λ α−α
2

)
=

(
1
2
(uz − uz) −e−uλ−1 − eu
eu + e−uλ 1

2
(uz − uz)

)
V (ζλ) := i

(
α+α

2
−γ−1λ−1 + γ

γ − γ−1λ −α+α
2

)
=

(
−1

2
(uz + uz) −e−uλ−1 + eu

eu − e−uλ 1
2
(uz + uz)

)
and use the formulas

∂

∂x
=

∂

∂z
+

∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
+

1

2

(
∂

∂x
+ i

∂

∂y

)
∂

∂y
= −i

(
∂

∂z
− ∂

∂z

)
= − i

2

(
∂

∂x
+ i

∂

∂y

)
− i

2

(
∂

∂x
− i ∂

∂y

)
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in order to calculate

∂U(ζλ)

∂y
= −i

(
1
2
(uz̄z̄ − 2uzz + uzz) −λ−1e−u(uz − uz)− eu(uz − uz)

eu(uz − uz) + λe−u(uz − uz) 1
2
(−uz̄z̄ + 2uzz − uzz)

)
∂V (ζλ)

∂x
= i

(
−1

2
(uz̄z̄ + 2uzz + uzz) λ−1e−u(uz + uz) + eu(uz + uz)

eu(uz + uz) + λe−u(uz + uz)
1
2
(uz̄z̄ + 2uzz + uzz)

)
.

This yields

∂V (ζλ)

∂x
− ∂U(ζλ)

∂y
= i

(
−2uzz 2λ−1e−uuz + 2euuz

2euuz + 2λe−uuz 2uzz

)
(2.8)

Thus, the Maurer-Cartan equation is satis�ed if and only if 2.7 equals 2.8.
This observation gives us the condition:

uzz = (e−2u − e2u) ⇔ uzz + sinh(2u) = 0

⇔ 1

4
∆u+ sinh(2u) = 0.

The last equivalence is given by

∆u =
∂2u

∂x2
+
∂2u

∂y2
= (uzz + 2uzz + uzz)− (uzz − 2uzz + uzz) = 4uzz.

By choosing z′ = 1
2
z and implementing the analogous calculations, we obtain

the sinh-Gordon equation from the Maurer-Cartan equation

∆u+ sinh(2u) = 0.

This calculation explains the context of analyzing potentials and polynomial
killing �elds and the sinh-Gordon equation.
In the next step, we investigate the determinant of such ζλ ∈ P2. Therefore,
we de�ne the polynomials a ∈ C4[λ] of fourth degree as

det(ζλ) = λa(λ).

Due to the calculation of the determinant of ζλ ∈ P2, we obtain for a:

det(ζλ) = −A(λ)2 + λC(λ)B(λ)

= −λ2(α− αλ)2 − λ(−γ−1 + βλ− γλ2)(γ − βλ+ γ−1λ2)

= −λ2(α2 − 2ααλ+ α2λ2)− λ(βγλ− ββλ2 + βγ−1λ3

− γ2λ2 + βγλ3 − λ4 − 1 + βγ−1λ− γ−2λ

= λ[λ4 + (−α2 − βγ−1 − βγ)λ3 + (2αα + ββ + γ2 + γ−2)λ2

+ (−α2 − βγ−1 − βγ)λ+ 1]

=: λa(λ).
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a is also determined by the following equations:

a(λ) = λ4 + a1λ
3 + a2λ

2 + a1λ+ 1

with a1 = −α2−βγ−1 − βγ ∈ C and a2 = 2αα + ββ + γ2 + γ−2 ∈ R.

For such determinant-polynomials a(λ), we de�ne the set M1
2 which will

come in handy during the following calculations.

De�nition 2.8.

M2 : = {a ∈ C4[λ]|λa(λ) = det(ζλ) for a ζλ ∈ P2}

= {a ∈ C4[λ]|a(0) = 1, λ4a(λ
−1

) = a(λ), λ−2a(λ) ≥ 0 for λ ∈ S1}

and

M1
2 := {a ∈M2|a has four pairwise distinct roots}.

Furthermore, we de�ne the map

f : P2 →M1
2, ζλ 7→ a(λ). (2.9)

With the above determination of a, due to the one-to-one correspondence
between P2 and C× C× R+, we obtain for such a mapping

f : C× C× R+ → C× R+,

αβ
γ

 7→ (
a1

a2

)
. (2.10)

De�nition 2.9. Level sets of the function f from 2.10 are called isospectral
sets. Given any a ∈M1

2 we denote the respective isospectral set by I(a).

Summarizing the main results about potentials, polynomial Killing �elds and
isospectral sets of [4] and [6] in terms of the above de�nitions yields

Lemma 2.10. Let ζλ ∈ P2 and detζλ = λa(λ) with a(λ) ∈ M1
2. Then

ζλ ∈ I(a) has no roots.

Proof. According to [4, Theorem 4.5], every root λ̃ ∈ C of ζλ is a double root
of a(λ). Since a ∈M1

2 has only simple roots, ζλ cannot have a root.

Corollary 2.11. Given any initial value (α0, β0, γ0) ∈ C × C × R+, the
solutions of the modi�ed Lax equations 2.3 are global, i.e. well-de�ned for all
(x, y) ∈ R2, and bounded.
Therefore, given any ζλ ∈ P2, we obtain a continuous, commutative group
action

φ(x, y)(ζλ) := φF (y, φE(x, ζλ)) for (x, y) ∈ R2. (2.11)

Furthermore, when a ∈ M1
2 and ζλ ∈ I(a), then φ(x, y)(ζλ) ∈ I(a) for all

times (x, y) ∈ R2.

9
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Proof. The statement is shown in [4, chapter 5].

Corollary 2.12. The vector �elds 2.3 induce the action 2.11 of R2 on P2.
For a ∈M1

2 the isospectral sets I(a) ⊂ P2 are compact and two-dimensional
compact submanifolds of P2 with transitive group action 2.11, i.e.

I(a) = {φ(x, y)ζλ|(x, y) ∈ R2}.

Proof. The corollary is proven in [6, chapter 2].

10
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3 Period lattice

In this section, we introduce a lattice for a ∈ M1
2 and a system of ordinary

di�erential equations and the respective fundamental solution, the so-called
frame. We investigate the elements of the lattice and the frame at these
elements, i.e. the monodromies. In particular, this leads to a to a connection
between the action of the monodromies on the eigenspaces of the initial values
ζ0
λ and the elements of the lattice. First of all, we de�ne for given a ∈ M1

2

and an initial value ζλ ∈ I(a) the set

Γaζ := {(x, y) ∈ R2|φ(x, y)(ζλ) = ζλ}. (3.1)

3.1 Generators and frame

In [4] and [6], it is proven that the set 3.1 de�nes a lattice and is independent
of the choice of the initial value ζλ ∈ I(a). Moreover, we obtain the following
lemma:

Lemma 3.1. Let a ∈M1
2. Then, the set

Γa = {(x, y) ∈ R2|φ(x, y)(ζλ) = ζλ}

does not depend on the choice of ζλ ∈ I(a) and de�nes a lattice in R2. In
particular, there exist two lineary independent generators ω1, ω2 ∈ R2 such
that

Γa = ω1Z + ω2Z.

Proof.

While the choice of such generators is not unique, the idea is to introduce
a minimality condition to force them being unique. A pair of generators
(ω1, ω2) satis�es the minimality condition if wa1 ∈ Γa\{0} has minimal length
as well as ωa2 ∈ Γa\(ωa1Z). Based on [4], we de�ne:

De�nition 3.2. Two lattices Γ,Γ′ are called isomorphic if there exists an
orthogonal linear transformation mapping Γ to Γ′, i.e. if there is a linear
mapping C → C composite of a rotation and the multiplication with a real
number. This mapping is called rotation-dilation.

In [3], it is proven that each lattice Γ in C is isomorphic to Γτ := Z + Zτ
with

τ ∈ {τ ∈ C|=(τ) > 0, |<(τ)| ≤ 1

2
, ||τ || ≥ 1} (3.2)

11



Marco Simnacher 3 PERIOD LATTICE

up to a rotation dilation. We can identify τ uniquely up to the following
identi�cations of τ :

−1

2
+ iy ∼ 1

2
+ iy for y ∈ [

√
3

2
,∞)

−x+ i
√

1− x ∼ x+ i
√

1− x for x ∈ [0,
1

2
].

We de�ne the quotient topology of the subset 3.2 of C divided by the relation
∼ of such τ as F . Then, there exists a unique map

T :M1
2 → F , a 7→ τa,

such that Γa is isomorphic to Γτa . In the following, we investigate the de-
pendence of τa on a ∈M1

2. To do this, we introduce the following system of
ordinary di�erential equations:

∂Fλ
∂x

= FλU(ζλ)
∂Fλ
∂y

= FλV (ζλ) Fλ(0, 0) = 1. (3.3)

Using the Maurer-Cartan equation and the Picard-Lindelöf theorem, it is
shown in [4] that there exists a unique fundamental solution which solves
both equations as well as the initial condition. This fundamental solution is
a function of (x, y) ∈ R2. Besides, we de�ne

M i
λ = Fλ(ωi), i = 1, 2 (3.4)

for the ωi which we obtain through the double periodicity of the �ows which
is re�ected in the coe�cients (α, β, γ)(x, y) and hence, also in the respective
U(ζλ), V (ζλ):

U((x, y) + ω1) = U(x, y) = U((x, y) + ω2)

V ((x, y) + ω1) = V (x, y) = V ((x, y) + ω2).

We consider

F̃ i
λ := (M i

λ)
−1Fλ((x, y) + ωi), i = 1, 2.

Due to the uniqueness of the fundamental solution of 3.3, we obtain Fλ =
F̃ i
λ, i = 1, 2 and

Fλ((x, y) + ωi) = M i
λFλ(x, y), i = 1, 2.

De�nition 3.3. The fundamental solution Fλ from 3.3 is called frame and
the matrix Mω for F at any ω ∈ Γa is called monodromy, especially the
matrices M1

λ ,M
2
λ from 3.4.

12
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In the following, we summarize some lemmata of [4] which investigate the
monodromies M i

λ, i = 1, 2. Additionally, we analyse how these monodromies
act on the eigenspaces of ζ0

λ for any ω ∈ Γa. At the end of this section, we
thereby obtain a connection between polynomials b1, b2 and the eigenvalues
of the monodromies M1

λ ,M
2
λ .

Lemma 3.4. The monodromies M i
λ, i = 1, 2 and the initial value of a poly-

nomial Killing �eld ζ0
λ := ζλ(0, 0) commute pairwise.

Lemma 3.5. The monodromies 3.4 satisfy det(M i
λ) = 1, i = 1, 2.

Lemma 3.6. Let a ∈ M1
2 and let λ̃ be an arbitrary root of a. Then, the

eigenvalues of the monodromies satisfy

µi
λ̃

= ±1, for i = 1, 2.

Proof. For the proofs we refer the reader to [4, chapter 7].

Remark 3.7.

Since det(M i
λ) = 1, i = 1, 2, we denote the eigenvalues of the monodromies

3.4 as

µiλ,
1

µiλ
.

Moreover, we denote the eigenvalues of ζλ as vλ,−vλ using the fact that
tr(ζλ) = 0 (this can be easily calculated for ζλ in terms of the abstract form).
Then, we obtain the following equations:

0 = det(ζλ − vλ1)

= −A2 − λBC + v2

= v2
λ + det(ζλ)

= v2
λ + λa(λ).

3.2 Lattice elements and monodromies

The following is based on the work in [6, chapter 3,4]. In the previous subsec-
tion, we investigated the set Γa = {(x, y) ∈ R2|φ(x, y)(ζλ) = ζλ} for a ∈M1

2.
It de�nes a lattice in R2 and is independent of the choice of ζλ ∈ I(a).
Especially, it is a lattice

Γa = ω1Z + ω2Z

13
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with linearly independent generators ω1, ω2 ∈ R2.
In the following, we will obtain a context between the elements of the lattice
and polynomials bω of degree three which satisfy corresponding reality con-
ditions.
We now consider the monodromy Mω of the fundamental solution Fλ of the
system of ordinary di�erential equations 3.3 at ω with eigenvalues µω for any
ω ∈ Γa. Again, we obtain the result: Mω commutes with ζ0

λ for all ω ∈ Γa

and maps the eigenspaces of ζ0
λ onto themselves. Due to the fact that ζ0

λ

is traceless and ζ0
λ ∈ I(a) with a ∈ M1

2 has no roots (lemma 2.10), the
eigenspaces of each ζ0

λ are one-dimensional. They are parametrized by

Σ∗ = {(λ, v) ∈ (C\{0})× C|det(v1− ζ0
λ) = v2 + λa(λ) = 0}. (3.5)

The monodromies Mω act on these one-dimensional eigenspaces of ζ0
λ by

multiplication with a function µω : Σ∗ → C\{0}. We observe the involutions

σ : (λ, v) 7→ (λ,−v), ρ : (λ, v) 7→ (λ−1,−λ−3v).

They act on µω by

σ∗µω = µ−1
ω , ρ∗µω = µ−1

ω . (3.6)

We can describe the lattice Γa in the following way:

Lemma 3.8. For all a ∈ M1
2 the elements of Γa are characterized as those

ω ∈ C such that the function exp(ωλ−1v) on Σ∗ factorizes into the product
of a holomorphic function µω on Σ∗ obeying 3.6 with a holomorphic function
on Σ∗, which extends holomorphically to λ = 0 and takes the value 1 there.

Proof. The lemma is proven in [6, Lemma 3.1].

In the proof, it is also shown that the function µω in the lemma is unique
and acts on the eigenspaces of ζ0

λ equally to the monodromies Mω. The
logarithmic derivative of this function is a meromorphic di�erential of second
kind with second order poles at λ = 0 and λ = ∞. Due to 3.6, it takes the
form

dlnµω = π
bω(λ)

v
dlnλ with bω ∈ C3[λ] such that λ

3
bω(λ−1) = bω(λ).

(3.7)

Finally, we obtain the connection between the elements of the lattice Γa for
a ∈M1

2 and the polynomials bω and thus the eigenvalues of the monodromies
µω when we consider bω at λ = 0:

14
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Corollary 3.9. For a ∈ M1
2 the elements of Γa are the values ω = bω(0)

of those bω in 3.7, whose 1-forms dlnµω are the logarithmic derivatives of a
holomorphic function µω on Σ∗.

Proof. The corollary is proven in [6, p.10-12]

In the following, we introduce the Whitham deformations. For two generators
ω1, ω2 of the lattice Γa for a ∈M1

2, we obtain, using the monodromiesM i
λ, i =

1, 2 and the above-mentioned logarithmic derivative, two polynomials b1, b2.
With the minimality condition, the generators are uniquely determined and
hence, b1, b2 are unique.

15
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4 Whitham deformations

4.1 CMC tori and Whitham equations

In this subsection, we derive the equations of the Whitham deformations.
To understand why we can work with them in our case and how they and
this work are related to constant mean curvature tori in R3, we give a short
outline. It would exceed the scope of this work to analyze the following in
all details. Nevertheless, we will adapt the de�nitions of the paper [2], ac-
cordingly, to investigate the connection between the period lattice and the
spectral curves.
Based on [2], constant mean curvature tori can be described by an alge-
braic curve, called the spectral curve, together with a line bundle on this
curve and a point on S1, called the sym point. Moreover, the spectral
data (X,λ, ρ, λ0, L) of a CMC torus is introduced. Here, X is an algebraic
curve, the spectral curve, with a degree-two meromorphic function λ, anti-
holomorphic involution ρ, a point on the unit circle λ0 and a line bundle
L on this curve, which is quaternionic with respect to σ ρ, where σ is the
hyperelliptic involution induced by λ. The quadruple (X,λ, ρ, λ0) of such
spectral data satis�es periodicity conditions for a CMC torus.
We investigate now the spectral curves of spectral genus two. We put some
restrictions on the spectral curves X = Xa in C2 and describe them by an
equation of the form

v2 = λa(λ) = (−1)2λ
2∏
i=1

(λ− αi)(λ− α−1
i )

where a ∈M1
2 and thus, it satis�es the following conditions:

1. the reality condition a(λ) = λ4a(λ−1),

2. λ−2a(λ) ≥ 0 for λ ∈ S1,

3. the lowest and highest coe�cient are 1,

4. the roots of a are pairwise distinct, forcing Xa to be smooth.

We want to express the periodicity conditions in terms of a pair of meromor-
phic di�erentials on the spectral curve which equal the logarithmic derivatives
of the previous section. To do this, we de�ne the space Ba for each a ∈M1

2,
which denotes the 2-dimensional space of polynomials bω of degree three sat-
isfying the reality conditions bω = λ3bω(λ−1) and such that the meromorphic

16
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di�erential

Θb := π
b(λ)

v
d lnλ

has purely imaginary periods. Every bω of Ba is uniquely determined by
b(0) up to adding a holomorphic di�erential, which is �xed by the condition
on the periods. Thus, the elements correspond one-to-one to the numbers
bω(0) ∈ C.
Applying corollary 3.9 to the above-described case, we obtain linearly inde-
pendent b1, b2 ∈ Ba with b1(0) = ω1, b2(0) = ω2 for the generators ω1, ω2

of the lattice Γa for a ∈ M1
2 and the respective logarithmic derivatives

d lnµiλ = d lnµi, i = 1, 2 for functions µ1, µ2, as described in lemma 3.8,
with

1. the logarithmic di�erentials d lnµi, i = 1, 2 are meromorphic di�eren-
tials of the second kind with second order poles at λ = 0 and λ =∞,

2. d lnµ1 = Θb1 , d lnµ2 = Θb2 ,

3. d lnµi, i = 1, 2 takes the value ±1 at each root of a.

In the next step, we derive the Whitham equations using connection men-
tioned above. Then, under certain assumptions, we calculate a vector �eld
(a, b1, b2)→ (ȧ, ḃ1, ḃ2) through these equations. The vector (ȧ, ḃ1, ḃ2) denotes
the tangent vector at t = 0 which in�nitesimally preserves the periods of

µ1, µ2. The periods of the meromorphic di�erential forms d
dt

∣∣∣∣
t=0

d lnµi for

i = 1, 2 vanish. Also, these forms have no residues and hence, there exist
meromorphic functions q̇i on Xa such that

dq̇i =
d

dt

∣∣∣∣
t=0

d lnµi

and we may write

q̇i = π
ici(λ)

v

with polynomials ci ∈ C3[λ] of degree three and ci(λ) = λ3ci(λ−1). Thus, we
obtain the Whitham equation

∂

∂λ

ici(λ)

v
=

∂

∂t

bi(λ)

vλ

∣∣∣∣
t=0

17
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which yields, using the product and chain rule, to

(2λac′1 − ac1 − λa′c1)i = 2aḃ1 − ȧb1

(2λac′2 − ac2 − λa′c2)i = 2aḃ2 − ȧb2

where the dot and prime denote the derivative with respect to t, evaluated at
t = 0, and the derivative with respect to λ, respectively. Multiplying the �rst
with c2 and the second with c1 and using the compatibility of both, yields

2a(c′1c2λ− c′2c1λ+ c1ḃ2 − c2ḃ1) = ȧ(c1b2 − c2b1).

This implies that any roots of a at which ȧ does not vanish are also roots
of c1b2 − c2b1. Additionally, when ȧ vanishes at a root of a, then c1 and c2

vanish at this root, too. Therefore, c1b2 − c2b1 vanish at all roots of a and
we conclude that

c1b2 − c2b1 = Qa

with polynomials Q ∈ C2[λ] of degree two and Q(λ) = λ2Q(λ−1).

Remark 4.1.

We obtain the equations of the Whitham deformations for above-mentioned
polynomials by summarizing the results with the three equations

(2λac′1 − ac1 − λa′c1)i = 2aḃ1 − ȧb1 (4.1)

(2λac′2 − ac2 − λa′c2)i = 2aḃ2 − ȧb2 (4.2)

c1b2 − c2b1 = Qa. (4.3)

4.2 Preliminaries

In this subsection, we calculate the above-mentioned vector �eld (a, b1, b2)→
(ȧ, ḃ1, ḃ2) under certain conditions . These assumptions and a brief explana-
tion how we compute the vector �eld are given in the following. Let

M2 := {a ∈ C4[λ]|λa(λ) = det(ζλ) for a ζλ ∈ P2}

= {a ∈ C4[λ]|a(0) = 1, λ4a(λ
−1

) = a(λ), λ−2a(λ) ≥ 0 for λ ∈ S1}

and

M1
2 := {a ∈M2|a has four pairwise distinct simple roots}

18
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as in de�nition 2.8.
Given a ∈M1

2 and two polynomials b1 and b2 obtained through the previous
calculations in section 3, 4.1, which satisfy the reality conditions,

bj(λ) = λ3bj(λ−1), j = 1, 2

we obtain a triple (a, b1, b2). In this work, such a triple always ful�lls the
above-mentioned conditions and the polynomials b1 and b2 do not have a
common root. Under the assumption that gcd(b1, b2) = 1, we �nd, using
the equations from the Whitham deformations 4.1,4.2 and 4.3, for every
Q ∈ C2[λ] satisfying the reality condition

λ2Q(λ−1) = Q(λ)

a unique pair of polynomials (c1, c2) of degree 3 which ful�ll the reality con-
ditions

λ3c1(λ−1) = c1(λ)

and λ3c2(λ−1) = c2(λ)

solving equation 4.3 and satisfying the conditions 4.4,4.5.
Given such (a, b1, b2) and uniquely determined (c1, c2), the equations 4.1-4.2
have a unique solution and we obtain the triple (ȧ, ḃ1, ḃ2).
The pair (c1, c2) solving equation 4.3 is uniquely determined byQ through the
condition that the highest and lowest coe�cient of the polynomial a ∈M1

2 is
one and hence, the highest and lowest coe�cient of ȧ vanishes. Additionally,
this requirement can be expressed through the following condition for c1 and
c2:

4∑
i=1

c1(αi)

b1(αi)
= 0 (4.4)

4∑
i=1

c2(αi)

b2(αi)
= 0 (4.5)
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which we obtain, using the equations 4.1 and 4.2, through the calculation

a(λ) =
4∑
i=1

(λ− αi) a′(λ) =
4∑
i=1

4∏
j=1
j 6=i

(λ− αj)

ȧ(λ) = −
4∑
i=1

α̇i

4∏
j=1
j 6=i

(λ− αj)

4∑
i=1

d

dt
ln(αi) =

d

dt
ln(

4∏
i=1

αi) =
d

dt
ln(1) = 0

and

iαic1(αi)a
′(αi) = ȧ(αi)b1(αi)

⇔ c1(αi)

b1(αi)
=

ȧ(αi)

iαia′(αi)
= − α̇ia

′(αi)

iαia′(αi)
= − α̇i

iαi

⇒
4∑
i=1

c1(αi)

b1(αi)
= i

4∑
i=1

α̇i
αi

= i
4∑
i=1

d

dt
ln(αi) = 0.

Analogously for c2 and b2, using equation 4.2.

4.3 Solving the Whitham equations

Now we want to calculate the vector �eld (a, b1, b2) → (ȧ, ḃ1, ḃ2). First,
we prove that, under the assumptions 4.4 and 4.5, the equation 4.3 has a
uniquely determined pair of polynomials (c1, c2) of degree three as solution.
Second, we construct a c1 and c2 and show that they are this exact pair of
polynomials. Third, we prove the reality conditions for these (c1, c2).
Finally, we calculate the unique triple (ȧ, ḃ1, ḃ2) depending on (a, b1, b2, c1, c2).

Lemma 4.2. Let a and Q be a complex polynomial of degree 4 and of degree
2, respectively, and b1 and b2 two complex polynomials of degree 3 without
common roots. Then, there exist unique complex polynomials c1 and c2 of
degree three, which solve equation 4.3 and the sum of the values of c1

b1
and c2

b2
at all roots of a are zero, i.e. they also satisfy the conditions 4.4 and 4.5.

Proof. Let c1 = x1b1 + d1 and c2 = x2b2 + d2, where x1, x2 are complex
numbers and d1 and d2 are complex polynomials of degree at most two.
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Thus, it follows that

c1b2 − c2b1 = Qa

⇔ (x1b1 + d1)b2 − (x2b2 + d2)b1 = Qa

⇔ d1b2 − d2b1 = aQ− (x1 − x2)b1b2. (4.6)

Since the left-hand side is a polynomial of degree at most �ve, x1−x2 has to be
a unique complex number such that the right-hand side is also a polynomial of
degree at most �ve. We obtain three conditions through equation 4.6 which
uniquely determine the polynomials d1, d2 of degree at most two. These
conditions can be obtained by evaluating the equations at the roots of b1 and
b2 in the following way:
Case 1: If b1 or b2 have three simple roots, the values of the corresponding d
at the roots of the respective polynomial b are de�ned through equation 4.6.
Case 2: If b1 or b2 has one root of order two and one root of order one, we
need to derive the equation 4.6:

d′1b2 + d1b
′
2 − d′2b1 − d2b

′
1 = a′Q+ aQ′ − (x1 − x2)(b′1b2 + b1b

′
2). (4.7)

Thus, we obtain two conditions for the respective d at the root of order two
of the according b by the equations 4.6 and 4.7. The third condition is given
by the equation 4.6, evaluated at the simple root of the respective b.
Case 3: When b1 or b2 have one root of order three we, get the three condi-
tions using

d′′1b2 + 2d′1b
′
2 + d1b

′′
2 − d′′2b1 − 2d′2b

′
1 − d2b

′′
1

=a′′Q+ 2a′Q′ + aQ′′ − (x1 − x2)(b′′1b2 + 2b′1b
′
2 + b1b

′′
2)

and the equations 4.6 and 4.7 at this root of the respective b.
In the following, we assume that d1 and d2 are such unique polynomials of
degree at most two. Then, d1b2 − d2b1 − aQ vanishes at all roots of b1 and
b2 and is divisible by b1 and b2. Therefore, we obtain the previous equation
if x1 − x2 is this uniquely determined number such that the right-hand side
of equation 4.6 is a polynomial of degree at most �ve. Due to

c1

b1

=
d1

b1

+ x1
c2

b2

=
d2

b2

+ x2

and the condition that the sum of c1
b1

and c2
b2

vanishes at all roots of a, the
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numbers x1 and x2 are clearly determined by:

4∑
i=1

c1(αi)

b1(αi)
= 0 =

4∑
i=1

(
d1(αi)

b1(αi)
+ x1

)

⇔ x1 = −1

4

4∑
i=1

d1(αi)

b1(αi)

and analogous x2 = −1

4

4∑
i=1

d2(αi)

b2(αi)
.

Dividing equation 4.6 by b1b2 yields

(x1b1 + d1)b2 − (x2b2 + d2)b1 = Qa

⇔ d1

b1

+ x1 −
(
d2

b2

+ x2

)
=

aQ

b1b2

.

Because the values at all roots of a of the function on the right-hand side
sum up to zero, the obtained x1 and x2 solve the equation. Hence, we obtain
the lemma.

Now, we calculate such a pair of polynomials (c1, c2) explicitly. We make the
same approach as in the proof of the previous lemma with c1 = d1 +x1b1 and
c2 = d2 + x2b2:
First, we construct the explicit polynomials d1 and d2 and hence, we intro-
duce a case analysis depending on the order of the roots of the respective
polynomial b. Second, we use the condition 4.4 and 4.5 to �nd the complex
numbers x1 and x2 in each of the cases. Finally, we obtain the uniquely
de�ned pair of polynomials (c1, c2).

Lemma 4.3. Let a,Q, b1, b2 be polynomials as in the previous Lemma. Then,
we obtain the following unique complex polynomials c1, c2 of degree three of
lemma 4.2 depending on the order of the roots of b1, b2 where b1 and b2 can
have di�erent orders of roots:
Case 1: br has only roots of order one, bs is the other polynomial of b1, b2.
Then,

cr(λ) = br(λ)

(
3∑
j=1

Q(brj)a(brj)

bs(brj)(λ− brj)b′r(brj)
− 1

4

4∑
i=1

3∑
j=1

Q(brj)a(brj)

bs(brj)(αi − brj)b′r(brj)

)

= br(λ)
3∑
j=1

Q(brj)a(brj)

bs(brj)b′r(brj)

(
1

(λ− brj)
− 1

4

4∑
i=1

1

(αi − brj)

)
(4.8)
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Case 2: br has the root br1 of order two and br2 of order one, bs is the other
polynomial of b1, b2. Then,

cr(λ) = br(λ)

((
2(a′(br1)Q(br1) + a(br1)Q′(br1))

b′′r(br1)bs(br1)
− y

(
b′s(br1)

bs(br1)
+
b′′′r (br1)

3b′′r(br1)

))
1

(λ− br1)

+
2a(br1)Q(br1)

b′′r(br1)bs(br1)

1

(λ− br1)2
+
a(br2)Q(br2)

b′r(br2)bs(br2)

1

(λ− br2)

)

− br(λ)
1

4

4∑
i=1

((
2(a′(br1)Q(br1) + a(br1)Q′(br1))

b′′r(br1)bs(br1)
− y

(
b′s(br1)

bs(br1)
+
b′′′r (br1)

3b′′r(br1)

))
1

(αi − br1)

+
2a(br1)Q(br1)

b′′r(br1)bs(br1)

1

(αi − br1)2
+
a(br2)Q(br2)

b′r(br2)bs(br2)

1

(αi − br2)

)
(4.9)

Case 3: br has one root of order three, bs is the other polynomial of b1, b2.
Then,

cr(λ) =

((
3(a′′(br1)Q(br1) + 2a′(br1)Q′(br1) + a(br1)Q′′(br1))

b′′′r (br1)bs(br1)

− b′s(br1)

bs(br1)
y − b′′s(br1)

2bs(br1)
z

)(
1

(λ− br1)
− 1

4

4∑
i=1

1

αi − br1

)
(4.10)

+

(
6(a′(br1)Q(br1) + a(br1)Q′(br1))

bs(br1)b′′′r (br1)
− b′s(br1)

bs(br1)

)(
1

(λ− br1)2
(4.11)

− 1

4

4∑
i=1

1

αi − br1

)
+

(
6a(br1)Q(br1)

b′′′r (br1)bs(br1)

)(
1

(λ− br1)3
− 1

4

4∑
i=1

1

αi − br1

))
(4.12)

Proof. We need to do a case analysis due to the fact that we will get di�erent
d1, d2 if b1, b2 have roots of di�erent order and as a result also di�erent x1, c1

and x2, c2. Without loss of generality, we consider only for c1 while c2 can
be constructed similarly depending on b2 with roots of respective order. It
is important to mention that there exists such a pair of polynomials (c1, c2)
and hence, it is reasonable to calculate c1 and c2.
Case 1: b1 has only roots of order one at b1j, j = 1, ..., 3. Then, d1 is the
complex polynomial of degree two

d1(λ) =
3∑
j=1

Q(b1j)a(b1j)

b2(b1j)

b1(λ)

(λ− b1j)b′1(b1j)
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Using the rule of l'Hospital we see that d1 solves equation 4.6 at all roots of
b1:

d1(b1i) =
3∑
j=1

lim
λ→b1i

Q(b1j)a(b1j)

b2(b1j)

b1(λ)

(λ− b1j)b′1(b1j)

= lim
λ→b1i

Q(b1i)a(b1i)

b2(b1i)

b′1(λ)

b′1(b1i)
=
Q(b1i)a(b1i)

b2(b1i)
.

Using the fact that we obtain the x1 in the proof of lemma 4.2 by evaluating
condition 4.4, we get for the explicit case

4∑
i=1

c1(αi)

b1(αi)
=

4∑
i=1

d1(αi) + x1b1(αi)

b1(αi)
= 0

⇔ x1 = −1

4

4∑
i=1

d1(αi)

b1(αi)
= −1

4

4∑
i=1

∑3
j=1

Q(b1j)a(b1j)

b2(b1j)
b1(αi)

(αi−b1j)b′1(b1j)

b1(αi)

⇔ x1 = −1

4

4∑
i=1

3∑
j=1

Q(b1j)a(b1j)

b2(b1j)b′1(b1j)

1

(αi − b1j)
.

The constructed d1 and x1 satisfy the conditions in lemma 4.2 and c1 =
d1 + x1b1 is a polynomial as in lemma 4.2 and equals the polynomial 4.8
given in the claim.
Case 2: Let b11 be the root of order two and b12 the one of order one of b1.
Again, we construct the d1 and x1 and we see that the obtained c1 equals
the one in case 2 of the statement. In this instance, the three conditions for
d1 are given through the respective d1 and the derivative d′1 at b11 together
with the d1 at the root b12. d1 has to solve the equations

d1(b11)b2(b11 = a(b11)Q(b11) (4.13)

d′1(b11)b2(b11) + d1(b11)b′2(b11) = a′(b11)Q(b11) + a(b11)Q′(b11) (4.14)

d1(b12)b2(b12) = a(b12)Q(b12). (4.15)

We make the following approach: Let

d1(λ) = b1(λ)

(
x

(λ− b11)
+

y

(λ− b11)2
+

z

(λ− b12)

)
with constants x, y, z ∈ C. Then, we get

d′1(λ) = b′1(λ)

(
x

(λ− b11)
+

y

(λ− b11)2
+

z

(λ− b12)

)
− b1(λ)

(
x

(λ− b11)2
+

2y

(λ− b11)3
+

z

(λ− b12)2

)
.
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Obviously, we obtain z through equation 4.15, if we investigate d1 at b12.
We obtain a similar result as in case 1 for the simple root using the rule of
l'Hospital:

d1(b12) =
xb1(b12)

(b12 − b11)
+

yb1(b12)

(b12 − b11)2
+ lim

λ→b12

zb1(λ)

(λ− b12)

= lim
λ→b12

zb′1(λ)

1

⇒ d1(b12)b2(b12) = a(b12)Q(b12)

⇔ zb′1(b12)b2(b12) = a(b12)Q(b12)

⇔ z =
a(b12)Q(b12)

b′1(b12)b2(b12)
.

In the next step, x and y are calculated. First, we obtain y using equation
4.13 and second, compute x depending on this y, employing equation 4.14.

d1(b11) = lim
λ→b11

b1(λ)

(λ− b11)
x+ lim

λ→b11

b1(λ)

(λ− b11)2
y +

b1(b11)

(λ− b12)
z

= lim
λ→b11

b′1(λ)

1
x+ lim

λ→b11

b′′1(λ)

2
y

=
b′′1(b11)

2
y

and

d′1(b11) = lim
λ→b11

b′1(λ)(λ− b11)− b1(λ)

(λ− b11)2
x+ lim

λ→b11

b′1(λ)(λ− b11)− 2b1(λ)

(λ− b11)3
y

+ lim
λ→b11

b′1(b11)(b11 − b11)− b1(b11)

(b11 − b12)2
z

= lim
λ→b11

b′′1(λ)(λ− b11) + b′1(λ)− b′1(λ)

2(λ− b11)
x+ lim

λ→b11

b′′1(λ)(λ− b11) + b′1(λ)− 2b′1(λ)

3(λ− b11)2
y

= lim
λ→b11

b′′1(λ)

2
x+ lim

λ→b11

b′′′1 (λ)(λ− b11) + 2b′′1(λ)− 2b′′1(λ)

6(λ− b11)
y

=
b′′1(b11)

2
x+

b′′′1 (b11)

6
y.

Inserting d1(b11) in 4.13 yields

d1(b11)b2(b11 = a(b11)Q(b11)

⇔ b′′1(b11)

2
yb2(b11 = a(b11)Q(b11)

⇔ y =
2a(b11)Q(b11)

b′′1(b11)b2(b11)
.
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Inserting d′1(b11) in 4.14 yields x depending on y:

d′1(b11)b2(b11) + d1(b11)b′2(b11) = a′(b11)Q(b11) + a(b11)Q′(b11)(
b′′1(b11)

2
x+

b′′′1 (b11)

6
y

)
b2(b11) +

b′′1(b11)b′2(b11)

2
y = a′(b11)Q(b11) + a(b11)Q′(b11)

x =
2(a′(b11)Q(b11) + a(b11)Q′(b11))

b′′1(b11)b2(b11)
− y

(
b′2(b11)

b2(b11)
+
b′′′1 (b11)

3b′′1(b11)

)
.

Applying these x, y, z ∈ C yields the following d1:

d1(λ) = b1(λ)

( 2(a′(b11)Q(b11)+a(b11)Q′(b11))
b′′1 (b1(b11)b2(b11)

− y
(
b′2(b11)

b2(b11)
+

b′′′1 (b11)

3b′′1 (b11)

)
(λ− b11)

+
2a(b11)Q(b11)

b′′1(b11)b2(b11)(λ− b11)2
+

a(b12)Q(b12)

b′1(b12)b2(b12)(λ− b12)

)
.

Apparently, this d1 solves 4.13,4.14 and 4.15 at the respective roots of b1 and
equals the d1 from the proof of lemma 4.2.
Hence, we again construct an x1 with the result of case 1 and the d1 of case
2:

x1 = −1

4

4∑
i=1

d1(αi)

b1(αi)

= −1

4

4∑
i=1

( 2(a′(b11)Q(b11)+a(b11)Q′(b11))
b′′1 (b11)b2(b11)

− y
(
b′2(b11)

b2(b11)
+

b′′′1 (b11)

3b′′1 (b11)

)
(αi − b11)

+
2a(b11)Q(b11)

b′′1(b11)b2(b11)(αi − b11)2
+

a(b12)Q(b12)

b′1(b12)b2(b12)(αi − b12)

)
.

Then, c1 = d1 + x1b1 is the unique complex polynomial c1 of lemma 4.2 and
equals the polynonomial 4.9 in the claim.
Case 3: Let b11 be the root of order three of b1. d1 must solve the following
equations as mentioned in the proof of lemma 4.2:

d1(b11)b2(b11) = a(b11)Q(b11) (4.16)

d′1(b11)b2(b11) + d1(b11)b′2(b11) = a′(b11)Q(b11) + a(b11)Q′(b11) (4.17)

d′′1(b11)b2(b11) + 2d′1(b11)b′2(b11) + d1(b11)b′′2(b11)

= a′′(b11)Q(b11) + 2a′(b11)Q′(b11) + a(b11)Q′′(b11). (4.18)

We make the following approach: Let

d1(λ) = b1(λ)

(
x

(λ− b11)
+

y

(λ− b11)2
+

z

(λ− b11)3

)
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with constants x, y, z ∈ C. Calculating the derivatives yields

d′1(λ) = b′1(λ)

(
x

(λ− b11)
+

y

(λ− b11)2
+

z

(λ− b11)3

)
− b1(λ)

(
x

(λ− b11)2
+

2y

(λ− b11)3
+

3z

(λ− b12)4

)
d′′1(λ) = b′′1(λ)

(
x

(λ− b11)
+

y

(λ− b11)2
+

z3

(λ− b11)3

)
− 2b′1(λ)

(
x

(λ− b11)2
+

2y

(λ− b11)3
+

3z

(λ− b11)4

)
+ b1(λ)

(
2x

(λ− b11)3
+

6y

(λ− b11)4
+

12z

(λ− b11)5

)
.

In the following, z is derived through equation 4.16, y by use of 4.17 and
�nally z employing 4.18. Again, we calculate the derivatives of d1 at the root
b11:

d1(b11) = lim
λ→b11

b1(λ)

(λ− b11)
x+ lim

λ→b11

b1(λ)

(λ− b11)2
y + lim

λ→b11

b1(λ)

(λ− b11)3
z

= lim
λ→b11

b′1(λ)

1
x+ lim

λ→b11

b′′1(λ)

2
y + lim

λ→b11

b′′′1 (λ)

6(λ− b11)
z

=
b′′′1 (b11)

6
z

d′1(b11) = lim
λ→b11

b′1(λ)(λ− b11)− b1(λ)

(λ− b11)2
x+ lim

λ→b11

b′1(λ)(λ− b11)− 2b1(λ)

(λ− b11)3
y

+ lim
λ→b11

b′1(b11)(b11 − b11)− 3b1(b11)

(λ− b11)4
z

= lim
λ→b11

b′′1(λ)(λ− b11) + b′1(λ)− b′1(λ)

2(λ− b11)
x

+ lim
λ→b11

b′′′1 (λ)(λ− b11) + 2b′′1(λ)− 2b′′1(λ)

6(λ− b11)
y

+ lim
λ→b11

b′′′′1 (λ)(λ− b11) + 3b′′′1 (λ)− 3b′′′1 (λ)

24(λ− b11)
z

= lim
λ→b11

b′′′1 (λ)

6
y =

b′′′1 (b11)

6
y.

The last equation sign is valid due to the fact that b1 is a polynomial of
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degree three and hence, b′′′′1 (λ) = 0.

d′′1(b11) = lim
λ→b11

b′′1(λ)(λ− b11)2 − 2b′1(λ)(λ− b11) + 2b1(λ)

(λ− b11)3
x

+ lim
λ→b11

b′′1(λ)(λ− b11)2 − 4b′1(λ)(λ− b11) + 6b1(λ)

(λ− b11)4
y

+ lim
λ→b11

b′′1(λ)(λ− b11)2 − 6b′1(λ)(λ− b11) + 12b1(λ)

(λ− b11)5
z

= + lim
λ→b11

b′′′1 (λ)

3
x =

b′′′1 (b11)

3
x

Equation 4.16 yields

d1(b11)b2(b11) = a(b11)Q(b11)

⇔ b′′′1 (b11)b2(b11)

6
z = a(b11)Q(b11)

⇔ z =
6a(b11)Q(b11)

b′′′1 (b11)b2(b11)

Inserting d′1(b11) in equation 4.17 for y depending on the above calculated z:

d′1(b11)b2(b11) + d1(b11)b′2(b11) = a′(b11)Q(b11) + a(b11)Q′(b11)

⇔ b2(b11)b′′′1 (b11)

6
y +

b′′′1 (b11)b′2(b11)

6
z = a′(b11)Q(b11) + a(b11)Q′(b11)

⇔ y =
6(a′(b11)Q(b11) + a(b11)Q′(b11))

b2(b11)b′′′1 (b11)
− b′2(b11)

b2(b11)

and �nally we get x through 4.18:

d′′1(b11)b2(b11) + 2d′1(b11)b′2(b11) + d1(b11)b′′2(b11)

= a′′(b11)Q(b11) + 2a′(b11)Q′(b11) + a(b11)Q′′(b11)

⇔ b′′′1 (b11)b2(b11)

3
x+ 2

b′2(b11)b′′′1 (b11)

6
y +

b′′′1 (b11)b′′2(b11)

6
z

= a′′(b11)Q(b11) + 2a′(b11)Q′(b11) + a(b11)Q′′(b11)

⇔ x =
3(a′′(b11)Q(b11) + 2a′(b11)Q′(b11) + a(b11)Q′′(b11))

b′′′1 (b11)b2(b11)

− b′2(b11)

b2(b11)
y − b′′2(b11)

2b2(b11)
z.
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In summary, using this approach for d1, it is

d1(λ) = b1(λ)

(
x

(λ− b11)
+

y

(λ− b11)2
+

z

(λ− b11)3

)
= b1(λ)

((
3(a′′(b11)Q(b11) + 2a′(b11)Q′(b11) + a(b11)Q′′(b11))

b′′′1 (b11)b2(b11)

− b′2(b11)

b2(b11)
y − b′′2(b11)

2b2(b11)
z

)
1

(λ− b11)
+

(
6(a′(b11)Q(b11) + a(b11)Q′(b11))

b2(b11)b′′′1 (b11)

− b′2(b11)

b2(b11)

)
1

(λ− b11)2
+

(
6a(b11)Q(b11)

b′′′1 (b11)b2(b11)

)
1

(λ− b11)3

)

Obviously, this d1 solves the three equations 4.16,4.17 and 4.18 at b11 and
resembles the explicit d1 mentioned in the proof of lemma 4.2. Similarly to
the previous cases, we construct our x1. The respective

x1 = −1

4

4∑
i=1

((
3(a′′(b11)Q(b11) + 2a′(b11)Q′(b11) + a(b11)Q′′(b11))

b′′′1 (b11)b2(b11)

− b′2(b11)

b2(b11)
y − b′′2(b11)

2b2(b11)
z

)
1

(αi − b11)
+

(
6(a′(b11)Q(b11) + a(b11)Q′(b11))

b2(b11)b′′′1 (b11)

− b′2(b11)

b2(b11)

)
1

(αi − b11)2
+

(
6a(b11)Q(b11)

b′′′1 (b11)b2(b11)

)
1

(αi − b11)3

)

is a complex number and it equals the x1 in the proof of lemma 4.2. Thus,
we obtain the c1 = d1 + x1b1 of lemma 4.2. It equals 4.12.
By constructing d2, x2 for b2 and respectively a c2 analogously, we obtain
an explicit pair of unique complex polynomials (c1, c2) of degree three which
are the polynomials c1 and c2 of lemma 4.2 and hence, this completes the
proof.

Lemma 4.4. Let a ∈ M1
2, Q ∈ C2[λ], b1, b2 ∈ C3[λ] and b1, b2 without com-

mon roots satisfying the following reality conditions:

a(λ) = λ4a(λ−1)

Q(λ) = λ2Q(λ−1)

b2(λ) = λ3b2(λ−1)

b1(λ) = λ3b1(λ−1)
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Then, the pair (c1, c2) of lemma 4.3 satis�es the reality conditions

λ3c1(λ−1) = c1(λ)

λ3c2(λ−1) = c2(λ).

Proof. We know that the c1, c2 from lemma 4.3 solve equation 4.3 uniquely
under the conditions 4.4 and 4.5. With the involution λ → 1

λ̄
, the roots

of a get mapped onto themselves. Therefore, also the second condition in
lemma 4.2 is invariant under the involution. We apply the reality conditions
of a,Q, b1 and b2 as well as the above-mentioned involution to equation 4.3:

Q(λ)a(λ) = c1(λ)b2(λ)− c2(λ)b1(λ)

⇔ Q(λ)a(λ)

b1(λ)b2(λ)
=
c1(λ)

b1(λ)
− c2(λ)

b2(λ)

⇔ λ2Q(λ−1)λ4a(λ−1)

λ3b2(λ−1)λ3b1(λ−1)
=

c1(λ)

λ3b1(λ−1)
− c2(λ)

λ3b2(λ−1)

⇔ Q(λ−1)a(λ−1)

b2(λ−1)b1(λ−1)
=
λ−3c1(λ)

b1(λ−1)
− λ−3c2(λ)

b2(λ−1)

⇔ Q(λ−1)a(λ−1) = λ−3c1(λ)b2(λ−1)− λ−3c2(λ)b1(λ−1).

Since c1, c2 solve equation 4.3 for every λ, we can substitute λ by 1
λ
and

obtain:

⇔ Q(λ)a(λ) = λ3c1(λ−1)b2(λ)− λ3c2(λ−1)b1(λ).

Now, we form the complex conjugate of this equation. This yields

⇔ Q(λ)a(λ) = λ3c1(λ−1)b2(λ)− λ3c2(λ−1)b1(λ).

Due to the fact that c1, c2 solve equation 4.3 uniquely, it follows that

c1(λ) = λ3c1(λ−1) c2(λ) = λ3c2(λ−1)

Additionally, we can prove this result by calculating c1(λ), c2(λ) and λ3c1(λ−1),
λ3c2(λ−1) using the explicit form of (c1, c2) from lemma 4.3. Here, we only
compute them for case 1, c1 of lemma 4.3. First of all, we need the reality
condition for b′1 at the roots of b1 which can be calculated through derivation
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of the reality condition of b1 at b1j, j = 1, ..., 3:

b1(λ) = λ3b1(λ−1)

d

dλ
b1(λ)

∣∣∣∣
λ=b1j

=
d

dλ
λ3b1(λ−1)

∣∣∣∣
λ=b1j

= 3b2
1jb1(b−1

1j ) + b3
1j

d

dλ
b1(λ−1)

∣∣∣∣
λ=b1j

Let b1(λ) = β0 + β1λ+ β1λ
2 + β0λ

3 b1(λ−1) = β0 + β1
1

λ
+ β1

1

λ2
+ β0

1

λ3
.

⇒ d

dλ
b1(λ−1)

∣∣∣∣
λ=b1j

=
d

dλ

(
β0 + β1

1

λ
+ β1

1

λ2
+ β0

1

λ3

) ∣∣∣∣
λ=b1j

= −β1

1

b2
1j

− 2β1
1

b3
1j

− 3β0
1

b4
1j

We obtain for b′1 : b′1(λ) = β1 + 2β1λ+ 3β0λ
2

and b′1(λ−1) = β1 + 2β1
1

λ
+ 3β0

1

λ2

⇒ b′1(b1j) =
d

dλ
b1(λ)

∣∣∣∣
λ=b1j

=
d

dλ
λ3b1(λ−1)

∣∣∣∣
λ=b1j

= 3b2
1jb1(b−1

1j ) + b3
1j

d

dλ
b1(λ−1)

∣∣∣∣
λ=b1j

= −β1b1j − 2β1 − 3β0
1

b1j

⇒ b′1(b1j) = −b1(b1j)b′1(b−1
1j )

In the second last line, b1(b−1
1j ) = 0 is valid due to the fact that b−1

1j = b1j.
Now, we calculate

λ3c1(λ−1) = λ3b1(λ−1)
3∑
j=1

Q(b1j)a(b1j)

b2(b1j)b′1(b1j)

(
1

(λ−1 − b1j)
− 1

4

4∑
i=1

1

(αi − b1j)

)
.

With the calculation rules for the complex conjugate we obtain (with the
reality condition of b1):

λ3c1(λ−1) = b1(λ)
3∑
j=1

Q(b1j)a(b1j)

b2(b1j)b′1(b1j)

(
1

(λ−1 − b1j)
− 1

4

4∑
i=1

1

(αi − b1j)

)

and we compute the following equations:

Q(b1j)a(b1j)

b2(b1j)b′1(b1j)

(
1

(λ−1 − b1j)
− 1

4

4∑
i=1

1

(αi − b1j)

)
.
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Using the reality condition, we conclude for the left one:

Q(b1j)a(b1j)

b2(b1j)b′1(b1j)
=

b2
1jQ(b−1

1j )b4
1ja(b−1

1j )

b3
1jb2(b−1

1j )(−b1jb1(b−1
1j ))

= −
Q(b−1

1j )a(b−1
1j )

b−2
1j b2(b−1

1j )b1(b−1
1j )

.

Let b1j̃ := b−1
1j . Then, we get

Q(b1j)a(b1j)

b2(b1j)b′1(b1j)
= −

Q(b1j̃)a(b1j̃)

b2
1j̃
b2(b1j̃)b

′
1(b1j̃)

.

For the term on the right, we obtain (due to the fact that αi = α−1
i and

because the polynomial a has four pairwise distinct roots):

1

(λ−1 − b1j)
=

λb−1
1j

(b−1
1j − λ)

=
λb1j̃

(b1j̃ − λ)

−1

4

4∑
i=1

1

(αi − b1j)
= −1

4

4∑
i=1

α−1
i b−1

1j

(b−1
1j − α−1

i )
= −1

4

4∑
i=1

αib1j̃

(b1j̃ − αi)
.

Inserting this yields

λ3c1(λ−1) = b1(λ)
3∑
j=1

Q(b1j)a(b1j)

b2(b1j)b′1(b1j)

(
1

(λ−1 − b1j)
− 1

4

4∑
i=1

1

(αi − b1j)

)

= −b1(λ)
3∑
j=1

Q(b1j̃)a(b1j̃)

b2
1j̃
b2(b1j̃)b

′
1(b1j̃)

(
λb1j̃

(b1j̃ − λ)
− 1

4

4∑
i=1

αib1j̃

(b1j̃ − αi)

)

= −b1(λ)
3∑
j=1

Q(b1j̃)a(b1j̃)

b2(b1j̃)b
′
1(b1j̃)

1

b1j̃

(
λ

(b1j̃ − λ)
− 1

4

4∑
i=1

αi
(b1j̃ − αi)

)
.

Since b11 = b12̃, b12 = b11̃, b13 = b13̃ and, by changing the order of the sum-
mands, we have to prove that

− 1

b1j

(
λ

(b1j − λ)
− 1

4

4∑
i=1

αi
(b1j − αi)

)
=

1

(λ− b1j)
− 1

4

4∑
i=1

1

(αi − b1j)

⇔ 1

4

4∑
i=1

αi
(b1j − αi)

+
1

4

4∑
i=1

b1j

(αi − b1j)
=

λ

(b1j − λ)
+

b1j

(λ− b1j)

⇔ 1

4

4∑
i=1

αi − b1j

(b1j − αi)
=

λ− b1j

(b1j − λ)
⇔ 1 = 1

Consequently, c1(λ) = λ3c1(λ−1) and analogously for c2. Thus, this completes
the proof for case 1 of lemma 4.3 explicitly, too.

32



Marco Simnacher

The last three lemmata show that the pair (c1, c2), constructed in lemma
4.3, is the unique solution of equation 4.3 which also allow 4.1 and 4.2 to
be solved. These polynomials c1 and c2 are of degree three and satisfy the
respective reality conditions.
In the next steps, we prove that 4.1 and 4.2 have a unique solution (ȧ, ḃ1, ḃ2)
under certain assumptions.
First, we calculate ȧ of the equations 4.1 and 4.2 with the uniquely deter-
mined pair of polynomials (c1, c2) from the lemma 4.3. Furthermore, we
consider the equations 4.1 and 4.2 at the roots of a and use the assump-
tion that gcd(b1, b2) = 1. For overseeable α̇i, we do not insert the explicit
polynomials c1 and c2 from lemma 4.3. Then, we obtain the following case
di�erentiation depending on the polynomials b1, b2 at the roots of a:
Case 1: a,b1 have a root at αi. In this case, b2 cannot have a root at αi and
we obtain, using 4.2,

iαic2(αi)a
′(αi) = ȧ(αi)b2(αi)

⇔ iαi
c2(αi)

b2(αi)
=
ȧ(αi)

a′(αi)
= −

α̇i
∏4

r=1,r 6=i(αi − αr)∏4
r=1,r 6=i(αi − αr)

⇔ α̇i = −iαi
c2(αi)

b2(αi)
.

Case 2: We get a similar result if a and b2 have a root at αi. Then, b1

cannot have a root at αi and we obtain, using 4.1,

α̇i = −iαi
c1(αi)

b1(αi)
.

Case 3: αi is a root of a but neither for b1 nor b2. We obtain, using 4.1 and
4.2,

α̇i = −iαi
c2(αi)

b2(αi)
= −iαi

c1(αi)

b1(αi)

Since (c1, c2) solve equation 4.3, i.e.

c1b2 − c2b1 = aQ

⇔ c1(αi)

b1(αi)
=
c2(αi)

b2(αi)
,

the last equation is satis�ed.
Due to the fact that the pair of polynomials (c1, c2) is uniquely determined,
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we obtain the uniquely de�ned

ȧ(λ) = −
4∑
i=1

α̇i

4∏
j=1
j 6=i

(λ− αj)

for given (a, b1, b2), Q and the respective (c1, c2).
In the next step, we calculate (ḃ1, ḃ2) of the equations 4.1 and 4.2.

(2λac′1 − ac1 − λa′c1)i = 2aḃ1 − ȧb1

⇔ ḃ1 = i

(
2λac′1 − ac1 − λa′c1

2a

)
+
b1

2a
ȧ

and

(2λac′2 − ac2 − λa′c2)i = 2aḃ2 − ȧb2

⇔ ḃ2 = i

(
2λac′2 − ac2 − λa′c2

2a

)
+
b2

2a
ȧ.

Again, we do not insert c1, c2 and ȧ for neatly arranged (ḃ1, ḃ2).

Corollary 4.5. Given a polynomial a ∈ M1
2, two polynomials b1, b2 ∈ C3[λ]

without common roots and a pair of polynomials (c1, c2) of lemma 4.3, the
system 4.1-4.2 has a unique solution for (a, b1, b2, c1, c2).

Proof. Let αi be a root of a. Through equation 4.1 and 4.2 ȧ is uniquely
determined at the roots of a due to the fact that only b1 or b2 can have a
root at each αi. If b1 or b2 have a root at αi, the other one cannot have
one due to the fact that gcd(b1, b2) = 1 and the respective equation 4.1 or
4.2 determines ȧ at αi uniquely as mentioned in the calculations above. If
neither b1 nor b2 have a root at αi the respective α̇i obtained by 4.1 and 4.2
is the same because (c1, c2) solve 4.3 at αi, i.e.

c1(αi)

b1(αi)
=
c2(αi)

b2(αi)
.

This ȧ is computed in the case di�erentiation above depending on b1, b2 at
the roots of αi, i = 1, ..., 4.
For such (a, b1, b2, c1, c2, ȧ), the system 4.1-4.2 has a unique solution for (ḃ1, ḃ2)
given by

ḃ1 = i

(
2λac′1 − ac1 − λa′c1

2a

)
+
b1

2a
ȧ

ḃ2 = i

(
2λac′2 − ac2 − λa′c2

2a

)
+
b2

2a
ȧ.
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Finally, we write the polynomials a,Q, c1, c2 in the following way:

a(λ) = λ4 + a1λ
3 + a2λ

2 + a1λ+ 1

Q(λ) = q0 + q1λ+ q0λ
2

c1(λ) = γ0 + γ1λ+ γ1λ
2 + γ0λ

3

c2(λ) = γ̃0 + γ̃1λ+ γ̃1λ
2 + γ̃0λ

3

with a1, q0, γ0, γ1, γ̃0, γ̃1 ∈ C and q1 ∈ R, a2 ∈ R+. Denoting the complex
parameters in terms of the real and imaginary part, we obtain three real
degrees of freedom for ȧ and Q and four real degrees of freedom for c1 and
c2. Since Q and ȧ both have three real degrees of freedom, we can investigate
the map f : R3 → R3, Q 7→ ȧ and prove that it is an invertible linear map:

Lemma 4.6. Let a ∈ M1
2, b1 and b2 as above de�ned and without common

root, and let ȧ be the partial derivative of a with respect to t evaluated at

t = 0 and Q ∈ C2[λ] satisfying the reality condition Q(λ) = λ2Q(λ−1).
Then, f : R3 → R3, Q 7→ ȧ is an invertible linear map.

Proof. Using the previous calculations, we see that the function g : R3 →
R4×R4, Q 7→ (c1, c2) is a linear map. With the computations before corollary
4.5 also the function h : R4×R4 → R3, (c1, c2)→ ȧ is a linear map. Therefore,
the composition of these functions is a linear map, i.e. f = h ◦ g : R3 →
R3, Q 7→ ȧ. Now we can show that f is bijective. In order to do this, we
show that ker(f) = {0}. Thus, we know that f is injective and since f is a
linear mapping it is also bijective.
Let ȧ = 0. We consider the following equations 4.1 and 4.2:

(2λac′1 − ac1 − λa′c1)i = 2aḃ1 − ȧb1,

(2λac′2 − ac2 − λa′c2)i = 2aḃ2 − ȧb2.

The terms 2λac′i − aci, i = 1, 2 and the right-hand sides of the equations
vanish at every root of a. Since a ∈M1

2, a has four simple roots αi, i = 1, ...4
and the derivative a′ with respect to λ cannot have a root in common with a.
Thus, c1 and c2 equal zero at every αi. Due to the fact that a has four roots
but c1 and c2 are only polynomials of degree three, it follows that c1 = 0 and
c2 = 0. Then, we obtain ȧ = 0⇒ Q = 0 by 4.3 and ker(f) = {0}. With the
above-mentioned argumentation, f is an invertible linear map.
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5 Conclusion and outlook

In this section, we brie�y summarize the results of the thesis and give some
remarks on how the work could be carried forward.
First of all, we introduced fundamental de�nitions and explained how a ∈
M1

2 and the respective period lattice are connected. For the two gener-
ators of such a lattice we obtained polynomials b1 and b2. Then, we de-
scribed the spectral curves of CMC tori in R3 by an equation of the form
v2 = λa(λ) equally to a polynomial a in M1

2. This explained the context
between the underlying theory of CMC tori and the calculations in sec-
tion four. Additionally, we described the Whitham deformations and in-
troduced the vector �eld (a, b1, b2) → (ȧ, ḃ1, ḃ2). Afterwards, we calculated
such a vector �eld explicitly using the equations 4.1,4.2 and 4.3 for given
(a, b1, b2), Q. We obtained a unique pair of polynomials (c1, c2) of degree

three satisfying ci(λ) = λ3ci(λ−1), i = 1, 2 for given a ∈M1
2, two polynomials

b1, b2 ∈ C3[λ] which have no common root and satisfy the reality conditions

bi(λ) = λ3bi(λ−1), i = 1, 2 and Q ∈ C2[λ] with Q(λ) = λ2Q(λ−1). For these
uniquely determined (c1, c2) and (a, b1, b2), the equations 4.1 and 4.2 have a
unique solution (ȧ, ḃ1, ḃ2). Finally, the mapping of such a polynomial Q and
ȧ was investigated and we proved that this mapping is linear and invertible.

The goal of these calculations is to obtain the dependence of this period lat-
tice from the spectral curve. In particular, we are interested in how a change
of the polynomial a a�ects the period lattice. In the following we describe
how, based on our work, this connection can be made explicit. This means,
we need to calculate along a continuous di�erentiable path parametrized by t
in the setM1

2, which starts at the given (a, b1, b2), the polynomials b1, and b2.
Since we proved that the mapping of Q and ȧ is invertible, we can also com-
pute a unique Q and ḃ1, ḃ2 for given (a, b1, b2), ȧ under the same assumptions
as before. In this case, we know the polynomials b1, b2 at the beginning of
the path and also ȧ along the whole path. Thus, we can calculate Q for such
an ȧ and hence, the respective ḃ1, ḃ2 along the whole path. By integration
along the whole path, it is possible to obtain the polynomials b1, b2 from ḃ1, ḃ2.

Consequently, we receive the respective b1, b2 for any a ∈ M1
2. The genera-

tors of the associated period lattice are determined at λ = 0 as we described
in section three. Finally, this explains the dependence of the period lattice on
the spectral curve and facilitates the investigation on how the period lattice
changes when a changes.
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