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Abstract

Constant mean curvature tori are of special interest in the field
of surface theory. They can be described through the solution of the
elliptic sinh-Gordon equation. Its solutions are defined on the space
of potentials. Hence they can be described in terms of spectral curves.
We investigate the space of the spectral curves of spectral genus two
that describe constant mean curvature tori with some additional condi-
tions. We can show that this special space is a 2-dimensional submani-
fold of the space of spectral curves of spectral genus two. Furthermore,
we use Whitham deformations to get the tangent vector fields on the
tangent space.
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1 Introduction
An interesting topic in the field of constant mean curvature surfaces is the
construction of constant mean curvature (CMC) tori. In 1984 Wente dis-
proved the Hopf conjecture that any closed, compact surface with constant
mean curvature is a sphere by showing that there exists a CMC torus, the
so-called Wente torus. Since then, a rich theory has been developed. It is
possible to construct many more examples than just the Wente torus. These
tori are described by solutions of the so-called sinh-Gordon equation

∆u+ sinh(2u) = 0,

which are in return described through potentials, which are polynomials with
matrices as coefficients. The determinants of these solutions are called spec-
tral curves and will be of special interest in this thesis. They have the
following form

y2 = λa(λ) = (−1)gλ

g∏
j=1

ηj
|ηj|

(λ− ηj)(λ− η−1
j ).

The number g is called spectral genus. It can be shown that the space S2
1,

which is a space of special spectral curves, is a two-dimensional submanifold
of H2. Ultimately, the goal of this work is to examine this submanifold. To
do this we want to complement the elements a ∈ S2

1 with a basis (b1, b2) of
the two-dimensional vector space Ba. Then, a will be in S2

1 if and only if
both polynomials of degree 3 (b1, b2) have a root at λ = 1. Through With-
ham deformations we want to obtain two vector fields V1 and V2 that map
(a, b1, b2) → (ȧ, ḃ1, ḃ2). With these vector fields we want to examine a map-
ping from S2

1 → S1 × S1.

In chapter two we will introduce some preliminaries regarding manifolds,
submanifolds and vector fields.

The third chapter introduces spectral data, spectral curves, the space of
spectral curves and elaborates on the polynomials a, b1 and b2. With a bet-
ter understanding of the special space of spectral curves we can start arguing
that it is in fact a submanifold. Furthermore, we refer to [CS16] to argue
that we determined the closure of the space of spectral curves of constant
mean curvature tori with spectral genus 2.

In chapter four we will use Whitham deformations to obtain two vector
fields V1, V2 : (a, b1, b2) → (ȧ, ḃ1, ḃ2). In order to do so we introduce two
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polynomials of degree 3, which will be called c1 and c2, and a third poly-
nomial of degree 2, which will be called Q. All three of these polynomials
will satisfy the reality condition. Through the Whitham deformation we will
get two partial differential equations and a regular equation depending on
a, b1, b2, c1, c2 and Q. We want to solve them for polynomials ȧ, ḃ1 and ḃ2.
This chapter is divided into a theoretical part, in which we derive the sytem
of equations and prove that given a, b1 and b2 we can uniquely solve it, and
into a second part, in which we try to explicitly calculate the vector fields V1

and V2.

In the fifth chapter we demonstrate that these vector fields commute.

In the sixth chapter we use Cayley transforms and try to get simpler re-
sults through Whitham deformations than in chapter four.

Finally in chapter seven we draw a conclusion.



2 PRELIMINARIES 3

2 Preliminaries
Since this work covers topics that are not treated equally in every bachelor’s
program, first of all this chapter will provide some necessary basics of an
Analysis III/Differential Topology course based on [For09], [Die73], [Bal15]
and [JJ11]. We assume a basic understanding of the notion of a manifold.

Definition 2.1 (Immersion). Let T ⊂ Rk be open. A continuously differen-
tiable function

φ = (φ1, ..., φn) : T → Rn

is called immersion if

rank(dφ(t)) = k for all t ∈ T.

Definition 2.2 (Submanifold). Let X, Y be two differentiable manifolds and
f : X → Y an immersion. If f is a homeomorphism of X into f(X) ⊂ Y ,
then f(X) is a submanifold of Y and f : X → f(X) is a diffeomorphism.

Since we are interested in vector fields that map points to their tangent
vectors the following definition is useful to understand chapter three and
four.

Definition 2.3 (Tangents). Let M be a differentiable manifold and p ∈ M .
Two smooth curves γ0 and γ1 passing through p. They are called equivalent
if for a chart x around p

d(x ◦ γ0)

dt

∣∣∣∣
t=0

=
d(x ◦ γ1)

dt

∣∣∣∣
t=0

holds.

This equivalence is independent from the choice of x and therefore defines a
equivalence class on the set of smooth curves passing through p. Hence we
use the following definitions:

i) The tangent vector on M in p denotes the corresponding equivalence class.

ii) TpM denotes the set of all tangent vectors and is called the tangent space.

iii) TM =
⋃
p∈M

TpM is called the tangent bundle.

Theorem 2.4. Let f : M → N be a differentiable map, dimM = n, dimN =
n,m ≤ n, p ∈ N . Let df(x) have rank n for all x ∈ M with f(x) = p. Then
f−1(p) is a union of differentiable submanifolds of Mof dimension m-n.
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Proof. Let x ∈M thus we can write x = (x1, x2, ..., xn, xn+1, ..., xm). Assume
p = f(x) ∈ N and rank(df(x)) = n. By the implicit function theorem there
exists an open neighborhood Ux and a differentiable map

g(xn+1, ..., xm) : U2 ⊂ Rm−n → U1 ⊂ Rn

with

Ux = U1 × U2

and

f(x) = p⇔ (x1, ..., xn) = g(xn+1, ..., xm).

With

yk =

{
xk − g(xn+1, ..., xm), for k ∈ {1, ..., n}
xk, for k ∈ {n+ 1, ...,m}

we then get coordinates for which

f(x) = p⇔ yk = 0fork ∈ {1, ..., n}.

Thus (yn+1, ..., ym) yield local coordinates for {f(x) = p} and this implies
that in some neighborhood of x {f(x) = p} is a submanifold of M of dimen-
sion m− n.

We want to show that a special space of spectral curves is a two-dimensional
submanifold. We will achieve this with the following corollary.

Corollary 2.5 (Implicit function theorem). If df of f : M → N is onto for
any chart y of N around f(p) with y(f(p)) = 0 there exists a chart x of M
around p with x(p) = 0 such that

(y ◦ f ◦ x−1)(u1, ..., um) = (u1, ..., un).

If additionally q is a regular (smooth point) point of f L = f−1(q) is a
submanifold of M of diemsion m− n with TpL = ker(df)∀p ∈ L.

Proof. If df is onto in p ∈M then it is also onto in a neighborhood of p.

Since we work with polynomials to a large extent the following definition is
very useful.
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Definition 2.6 (Greatest common divisor of Polynomials). The greatest
common divisor (gcd) of two polynomials is a polynomial of the maximal
degree such that it is a factor in both of them.

Example: gcd((x+ 1)(x+ 2), (x+ 1)(x+ 3)) = (x+ 1)

We will also make use of the concept of Resultants, which are defined in
[GKZ94] as follows.

Definition 2.7 (Resultant). The Resultant of two polynomials
f(x) = amx

m + am−1x
m−1 + ... + a0 and g(x) = bnx

n + bn−1x
n−1 + ... + b0

is denoted by Res(f, g) and is defined as the determinant of the Sylvester−
Matrix. Thus it can be written as

Res(f, g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

am am−1 . . . a0

am am−1 . . . a0

. . . . . .
am am−1 . . . a0

bn bn−1 . . . b0

bn bn−1 . . . b0

. . . . . .
bn bn−1 . . . b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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3 Spectral curves of CMC tori in R3

This section will briefly summarize chapter 2 of [CS16] and introduce the
concept of spectral curves. Some constant mean curvature immersions of
genus one surfaces (surfaces with one hole) in R3 can be described by so-
called spectral data. That is the correspondence to the spectral curve X,
which is an algebraic curve, a degree two meromorphic function λ, an anti-
holomorphic involution ρ, a point on the unit circle λ0 and a quarternionic
line bundle L on the curve X. The immersions that can be described in such a
way are said to be of finite type. However, in the case that the spectral data
describes a CMC torus certain periodicity conditions need to be satisfied. It
is an important fact that all doubly-periodic such immersions correspond to
spectral data and hence are of finite type. The arithmetic genus of X is
called spectral genus. In this work it will remain equal two.

We say a polynomial f(λ) of degree n satisfies the reality condition if

λnf(λ̄−1) = f(λ) holds.

The space of those polynomials is called P n
R . Now as mentioned in the intro-

duction solutions of the sinh-Gordon equation

∆u+ sinh(2u) = 0,

describe CMC tori. The solution of this equation is defined on the space
of potentials in [KHS17] the space of potentials for genus two solutions is
described as follows:

P2 :=

{
ζ =

(
αλ− αλ2 −γ−1 + βλ− γλ2

γλ− βλ2 + γ−1λ3 −αλ+ αλ2

) ∣∣∣∣∣ α, β ∈ C, γ ∈ R+

}

The determinant of these matrices will now help us to describe the spectral
curve X which will from now on be denoted as Xa. It is a Riemann surface
and will be described by the equation

y2 = λa(λ) = (−1)2λ
2∏
j=1

ηj
|ηj|

(λ− ηj)(λ− η−1
j ).

Then a ∈ H2 := {space of spectral curves of CMC immersions of finite
type} are polynomials of degree four that satisfy certain conditions, which
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are:

1. the reality condition λ4a(λ̄−1) = a(λ)

2. λ−2a(λ) > 0 for all λ ∈ S1

3. the highest coefficient is
η1η2

|η1||η2|
thus it has absolute value 1

4. the roots of a are pairwise distinct, therefore Xa is smooth

The roots η1, η2 of a are in B1(0) \ {0}. The periodicity conditions can be
described through two meromorphic differentials Θb1 ,Θb2 on Xa. To define
these differentials we need to define the polynomials b1 and b2 first. For
any a ∈ H2 let Ba denote the space of polynomials b of degree three that
satisfy the reality condition. Also Θbk := b(λ)dλ

λy
has to have purely imaginery

periods, that is the periodicity condition. All b ∈ Ba are uniquely defined up
to adding a holomorphic differential by b(0) ∈ C. Furthermore, each family
of connstant mean curvature immersions of a CMC torus corresponds to a
pair (a, λ0) ∈ H2 × S1 such that there exist linearly independent b1, b2 ∈ Ba

and functions µ1, µ2 on Xa. The µ satisfy:

1. log(µ1), log(µ2) are holomorphic except in
x0 = λ−1{0} and x∞ = λ−1{∞},
which are simple poles with linearly independent residues

2. Θb1 = dlog(µ1),Θb2 = dlog(µ2)

3. µ1(λ0) = µ2(λ0) = ±1

4. b1(λ0) = 0 = b2(λ0)

λ0 is called the sym point. We can define the set

P2
λ0

:= {a ∈ H2 | Xa is the spectral curve of a CMC torus in R3},

which is contained in the subset

S2
λ0

:= {a ∈ H2 | all b ∈ Ba satisfy b(λ0) = 0}.

The sym point we want to use in this work is one therefore we will choose
λ0 = 1 later on. Thus we get

P2 := {a ∈ H2 | Xa is the spectral curve of a CMC torus in R3}
S2

1 := {a ∈ H2 | all b ∈ Ba satisfy b(1) = 0}.
R2 := {a ∈ H2 | all b ∈ Ba have a common root }

S2 :=
⋃
λ0∈S1

S2
λ0
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Corollary 3.1. a is in S2
1 if and only if b1(1) = 0 = b2(1). Thus S2

1 can be
identified with

T := {(a, b1, b2) | a ∈ S2
1, b1, b2 is basis of Ba with b1 = 0 = b2}.

Proof. By Definition of S2
1.

This is a subset and a real subvariety of

F2 := the frame bundle of B2,

where B2 := H2 × (P3
R)2. Its elements are triplets of the form (a, b1, b2).

For spectral genus two

R2 = P2 = S2

holds. The proof is included in chapter (3.2).

3.1 S21 submanifold of H2

In chapter 3 of [CS16] Carberry and Schmidt introduce an integer invariant
of a ∈ H2 the so-called winding number. It is defined as

n(f̃) := deg(f̃).

Where f̃ : S1 → S1 is the mapping f̃ = b0
b∞

with b0, b∞ ∈ P 3
R. For unique

b1, b2 ∈ Ba with b1(0) = 1 and b2(0) = i these polynomials become b0 =
b2 − ib1 and b∞ = b2 + ib1. Another usefull mapping is

f :=
b1

b2

with b1, b2 ∈ Ba.

Together f̃ becomes

f̃ =
ib0

−ib∞
=
b1 + ib2

b1 − ib2

=
f + i

f − i
.

The polynomials b1 and b2 have degree three, therefore

deg(f) = deg
(b1

b2

)
= 3− deg(gcd(Ba)).

Chapter 3 also contains a very important Lemma, which is briefely written
below. It is Lemma 3.2, which is:
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Lemma 3.2.

The following three statements are equivalent:
(i) g(Xa) = 0, where g denotes the arithmetic genus (spectral genus).
(ii) deg(f) = 1.

(iii) deg(f) = n(f̃).

Hence for g > 0, the winding number of f obeys

|n(f̃)| ≤ deg(f)− 2.

Proof. In [CS16].

Corollary 3.3. b1 and b2 have exactly one common root.

Proof. Let g = 2 and b1, b2 ∈ P 3
R.

Assumption: Assume b1, b2 have at least two common roots. Then

deg(f) = deg
(b1

b2

)
= 1

therefore equivalence (ii) from the Lemma above is satisfied. Hence also (i)
holds which gives g(Xa) = 0. This is a contradiction to g = 2.
⇒ b1, b2 have only one common root.

We observe that

|n(f̃)| ≥ 0 and deg(gcd(Ba)) ≥ 0.

With the two equations above we see

0 ≤ |n(f̃)| ≤ 3− deg(gcd(Ba))− 2

⇔ 0 ≤ |n(f̃)|+ deg(gcd(Ba)) ≤ 1

⇔ 0 ≤ deg(gcd(Ba)) ≤ 1.

Thus for a ∈ R2 we get deg(gcd(Ba)) = 1 and therefore theorem [5.5] from
[CS16] holds. This gives us

i) a is a smooth point of S2
1, of codimension 2 in H2

ii) a is smooth in R2, of codimension 1
iii) a belongs to the closure of two different Vj.

Therefore i) gives us with the implicit function theorem (Corollary 2.5) that
S2

1 is a nonempty submanifold of H2 of dimension two.
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3.2 The closure of P2

We want to determine P2. In fact we will see the following Lemma.

Lemma 3.4.

R2 = P2 = S2

The proof resembles some of the key outcomes of [CS16].

Proof. First of all we are going to look at the set R2. We notice that the
condition that all b ∈ Ba have a common root is equivalent to gcd(deg(B2)) ≥
1. Thus

R2 ={a ∈ H2 | deg(gcd(Ba)) ≥ 1}
Cor. 3.3

= {a ∈ H2 | deg(gcd(Ba)) = 1}

=
⋃
λ0∈S1
{a ∈ H2 | b1(λ0) = 0 = b2(λ0)}

=S2

.

Now it remains to show that also P2 is equal to both sets. Therefore we want
to show that

i) P2 ⊂ R2

ii) S2 ⊂ P2.

The first point i) is a consequence of chapter five of [CS16]. The four con-
ditions [A-D] force a ∈ P2 to be in R2. The second point ii) follows directly
because any sym point λ0 is contained in the unit circle S1. Thus we obtain
equality throughout these sets.

This only holds true for the spectral genus two. For higher spectral genus
the conjecture of [CS16] gives that only Sg ⊂ Rg holds and hence equality
cannot be proved.
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4 Whitham deformations
This chapter is mainly based on chapter 4 from[CS16]. We will now use the
so-called Whitham deformations to construct two vector fields with certain
conditions from (a, b1, b2) 7−→ (ȧ, ḃ1, ḃ2). The vector (ȧ, ḃ1, ḃ2) denotes the
tangent vector at t = 0 and preserves the periods of Θb1 and Θb2 . Since
the meromorphic differential forms d

dt

∣∣
t=0

Θb1 and d
dt

∣∣
t=0

Θb2 have vanishing
periods and no residues there exist meromorphic functions q̇1 and q̇2 on the
Riemann surface Xa that satisfy

dq̇k =
d

dt

∣∣∣∣
t=0

Θbk

for k = 1, 2. This gives

q̇k =
ick(λ)

y

with ck ∈ P 3
R and y =

√
λa(λ). Together with the equation above we get the

Whitham equation

∂

∂λ

ick(λ)

y
=

∂

∂t

bk(λ)

yλ

∣∣∣∣
t=0

.

Using product and chain rule we get the following expression

ic′k(λ)y − ick(λ)y′

y2
=
ḃk(λ)yλ− bk(λ)ẏλ

(yλ)2

here a dot (e.g. ȧ) denotes the derivative with respect to t, evaluated at
t = 0 and a prime (e.g. a′) denotes the derivative with respect to λ. By the
definition of y we get

ic′k(λ)
√
λa(λ)− ick(λ)(a(λ)+λa′(λ)

2
√
λa(λ)

)

λa(λ)
=
ḃkλ
√
λa(λ)− bk(λ)( λ2ȧ(λ)

2
√
λa(λ)

)

λ2λa(λ)
.

This term can be transformed into

ic′k(λ)√
λa(λ)

− ick(a(λ) + λa′(λ))

2
√
λa(λ)

3 =
ḃk(λ)

λ
√
λa(λ)

− bk(λ)ȧ(λ)

2
√
λa(λ)

3 .

Multiplying both sides by 2
√
λa(λ)

3
yields

2ic′k(λ)λa(λ)− ick(λ)a(λ)− ickλa′(λ) = 2ḃk(λ)a(λ)− bkȧ(λ).
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Therefore for k = 1 we get

(2λac′1 − ac1 − λa′c1)i = 2aḃ1 − ȧb1 (1)

and for k = 2

(2λac′2 − ac2 − λa′c2)i = 2aḃ2 − ȧb2. (2)

These two equations are exactly equations [7] and [8] from [CS16]. Since
equation (1) and equation (2) are compatible we can calculate c2·equation
(1)-c1·equation (2), which gives us

ic22λac′1 − ic2ac1 − ic2λa
′c1 − ic12λac′2 + ic1ac2 + ic1λa

′c2

= c22aḃ1 − c2ȧb1 − c12aḃ2 + c1ȧb2.

This expression can be simplified to

2a(ic′1c2λ− ic′2c1λ+ c1ḃ2 − c2ḃ1) = ȧ(c1b2 − c2b1).

Therefore both sides need to vanish at all roots of a. If ȧ does not vanish at
all roots of a, c1b2− c2b1 needs to vanish at the remaining ones. Additionally
equation (1) and equation (2) yield that c1 and c2 also vanish at the roots
that a and ȧ have in common. Thus we get the following expression

c1b2 − c2b1 = Qa, (3)

where Q ∈ P 2
R. Q also satisfies the reality condition. We have seen how

starting with a given tangent vector (ȧ, ḃ1, ḃ2) one can first use equation (1)
and equation (2) to get two polynomials c1, c2 ∈ P 3

R and then secondly solve
equation (3) for Q ∈ P 2

R. Our goal is now to reverse this process. To do this
we will proceed as follows.

1. Solve equation (3) with given (a, b1, b2) ∈ F2and Q ∈ P 2
R for c1, c2 ∈ P 3

R.

2. Solve equation (1) and equation (2) with given (a, b1, b2, Q, c1, c2) for

the tangent vector (ȧ, ḃ1, ḃ2).

4.1 Uniqueness of solutions

First of all we are going to prove that we can indeed solve these equations
uniquely with polynomials that satisfy the reality condition. Secondly we
want to explicitly solve them given the values of c1(1), c2(1). We will be able
to derive certain conditions depending on these values such that we can solve
the equations (1)-(3) with unique solutions. The first c1, c2 we are interested
in are such that c1(1) = 1 and c2(1) = 0, while the second c1, c2 are such that
c1(1) = 0 and c2(1) = 1. Additionally we want ḃ1, ḃ2 to have a root at λ = 1.
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Lemma 4.1. If the polynomials b1, b2 have a root at λ = 1, then Q also has
a root at λ = 1, i.e. gcd(Ba) divides Q.

Proof. Assume b1, b2 have a root at λ = 1, then equation (3) evaluated at
λ = 1 gives us 0 = Q(1)a(1). So either Q or a needs to have a root at λ = 1.
Case 1: Q has root of maximal order 2 at λ = 1.
This case already implies that Q has a root at λ = 1 and is therefore fairly
trivial.
Case 2: a has a root at λ = 1.
Due to the distinctness of the roots of a the order of the root λ = 1 is 1.
Therefore a′ does not have a root at λ = 1. Evaluating equation (1) at λ = 1
then yields −a′(1)c1(1)i = 0. Since a′ cannot have a root at λ = 1 c1 needs to
have a root at λ = 1. The same argumentation applied to equation (2) gives
us that also c2 has to have a root at λ = 1. Now the right side of equation
(3) has a root at λ = 1 of order 2. Thus Qa also needs to have a root of
order 2 at λ = 1. Since all roots of a only have order 1 Q also needs to have
a root at λ = 1.
In both cases Q has a root at λ = 1.

Corollary 4.2. If either c1 or c2 has no root at λ = 1 a has no root at λ = 1.

Proof. Assume a has a root at λ = 1, then with the same argumentation as
in the proof of Lemma (4.1) we get due to equation (1) and (2) that c1 and
c2 have to have a root at λ = 1. This is a contradiction to the prequisite that
one of both has no root at λ = 1 (in fact we want to have c1, c2 such that
either of them is one at λ = 1).

Thus a does not have a root at λ = 1 in the cases we are interested in.

Lemma 4.3. If a, b1 and b2 are such that b1 and b2 have only one common
root of first order and this root is at λ = 1 and a(1) 6= 0 then there are unique
solutions of equation (1), (2) and (3) such that ḃ1 and ḃ2 vanish at λ = 1.
They are uniquely defined through c1(1) and c2(1).

Proof. If we set λ = 1 in equation (1) we get:

(2a(1)c′1(1)− a(1)c1(1)− a′(1)c1(1))i = 0

⇔ 2a(1)c′1(1) = a(1)c1(1) + a′(1)c1(1)

⇔ c′1(1) =
1

2a(1)
(a(1)c1(1) + a′(1)c1(1))

⇔ c′1(1) =
c1(1)

2
+
a′(1)c1(1)

2a(1)
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And if we set λ = 1 in equation (2) we get:

(2a(1)c′2(1)− a(1)c2(1)− a′(1)c2(1))i = 0

⇔ 2a(1)c′2(1) = a(1)c2(1) + a′(1)c2(1)

⇔ c′2(1) =
1

2a(1)
(a(1)c2(1) + a′(1)c2(1))

⇔ c′2(1) =
c2(1)

2
+
a′(1)c2(1)

2a(1)

Since we are interested in special c1, c2 we can later explicitly calculate these
polynomials through these conditions. We will now see that the values of
Q′(1) and Q′′(1) are defined by c1(1) and c2(1). To get this result we will
differentiate equation (3) with respect to lambda and set λ = 1

c′1b2 + c1b
′
2 − c2b1 − c2b

′
1 = Q′a+Qa′. (3’)

Setting λ = 1 gives us

c′1(1)b2(1) + c1b
′
2(1)− c2(1)b1(1)− c2(1)b′1(1) = Q′(1)a(1) +Q(1)a′(1)

b1(1)=0,b2(1)=0,Q(1)=0⇔ c1(1)b′2(1)− c2(1)b′1(1) = Q′(1)a(1)

⇔ Q′(1) =
c1(1)b′2(1)− c2(1)b′1(1)

a(1)
.

We also want to obtain the second derivative of Q at λ = 1 that is Q′′(1).
Therefore we differentiate (3’) with respect to λ to get

c′′1b2 + 2c′1b2 + c1b
′′
2 − c′′2b1 − 2c′2b

′
1 − c2b

′′
1 = Q′′a+ 2Q′a′ +Qa′′. (3”)

This expression evaluated at λ = 1 together with b1(1) = 0, b2(1) = 0 and
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Lemma (4.1) (Q(1) = 0) gives us:

2c′1b
′
2(1) + c1(1)b′′2(1)− 2c′2(1)b′1(1)− c2(1)b′′1(1) = Q′′(1)a(1) + 2Q′(1)a′(1)

c′1(1),c′2(1)
⇔[

c1(1) +
a′(1)

a(1)
c1(1)

]
b′2(1) + c1(1)b′′2(1)−

[
c2(1) +

a′(1)

a(1)
c2(1)

]
b′1(1)

− c2(1)b′′1(1) = Q′′(1)a(1) + 2Q′(1)a′(1)

Q′(1)⇔[
c1(1) +

a′(1)

a(1)
c1(1)

]
b′2(1) + c1(1)b′′2(1)−

[
c2(1) +

a′(1)

a(1)
c2(1)

]
b′1(1)

− c2(1)b′′1(1) = Q′′(1)a(1) + 2
a′(1)

a(1)

[
c1(1)b′2(1)− c2(1)b′1(1)

]
⇔

Q′′(1)a(1) =
[
c1(1)− a′(1)

a(1)
c1(1)

]
b′2(1) + c1(1)b′′2(1)

−
[
c2(1)− a′(1)

a(1)
c2(1)

]
b′1(1)− c2(1)b′′1(1)

⇔
Q′′(1) =[
c1(1)− a′(1)

a(1)
c1(1)

]
b′2(1) + c1(1)b′′2(1)−

[
c2(1)− a′(1)

a(1)
c2(1)

]
b′1(1)− c2(1)b′′1(1)

a(1)

Since Q is a polynomial of degree two and since we have three conditions on
Q it is therefore uniquely defined through the values of c1(1) and c2(1). The
next step will be to show that equation (3) with the corresponding Q gives
us unique c1 and c2. To do this we want to use the roots of b1 and b2 that
both do not have in common. Since they can also have double roots we need
to look at all the possible cases, which are:

Case 1: b1 and b2 have two other distinct roots
Case 2: b1 has a double root other than one, b2 has two other distinct roots
Case 3: b1 has two other distinct roots, b2 has a double root other than one
Case 4: b1 has a double root other than one, b2 has a double root other than
one
Case 5: b1 has a double root at one, b2 has two other distinct roots
Case 6: b1 has two other distinct roots, b2 hase a double root at one
Case 7: b1 has a double root at one, b2 has a double root other than one
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Case 8: b1 has a double root other than one, b2 has a double root at one

Case 1: Let b1 have two distinct roots at β11 and β12 and let b2 have two
distinct roots at β21 and β22. Now let us look at equation (3) evaluated at
these roots. (3) evaluated at λ = β11 yields

c1(β11)b2(β11) = Q(β11)a(β11)

c1(β11) =
Q(β11)a(β11)

b2(β11)

for λ = β12 we get

c1(β12)b2(β12) = Q(β12)a(β12)

c1(β12) =
Q(β12)a(β12)

b2(β12)
.

Together with the value of c1(1) and the derivative c′1(1) we obtain four
conditions on c1(λ):

I. c1(1)

II. c′1(1) =
c1(1)

2
+
a′(1)

2a(1)
c1(1)

III. c1(β11) =
Q(β11)a(β11)

b2(β11)

IV. c1(β12) =
Q(β12)a(β12)

b2(β12)

Likewise we get the following four conditions for c2, where β21 and β22 denote
the two distinct roots of b2:

I. c2(1)

II. c′2(1) =
c2(1)

2
+
a′(1)

2a(1)
c2(1)

III. c2(β21) =
Q(β21)a(β21)

b1(β21)

IV. c2(β22) =
Q(β22)a(β22)

b1(β22)

Because c1 and c2 are both polynomials of degree three they both have a
maximum of four different coefficients that need to be determined. Since we
found four conditions on each of these polynomials we can now solve them
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to get the desired coefficients. Since we already showed that Q is uniquley
defined by c1(1) and c2(1) the obtained solutions will also be unique. Thus
we obtain unique c1 and c2.

Case 2: Let b1 have a double root at β11 and b2 have two distinct roots
at β21 and β22. Then the conditions on c2 will not change. So we only have
to look at c1. Due to the fact that b1 has a double root at β11 the old condi-
tions III and IV are equal. Therefore we need to replace one of them through
a new condition. Following the previous reasoning it is intuitive to look at
the derivatives of (3) with respect to λ evaluated at β11, which yields

c′1(β11)b2(β11) + c1(β11)b′2(β11)− c′2(β11)b1(β11)− c2(β11)b′1(β11)

= Q′(β11)a(β11) +Q(β11)a′(β11).

Since b1 has a double root at β11 we get b1(β11) = 0 and b′1(β11) = 0. Thus
the expression above simplifies to

c′1(β11)b2(β11) + c1(β11)b′2(β11) = Q′(β11)a(β11) +Q(β11)a′(β11).

This equation gives us a fourth equation to uniquely determine c1. The four
conditions for c1 in this case are:

I. c1(1)

II. c′1(1) =
c1(1)

2
+
a′(1)

2a(1)
c1(1)

III. c1(β11) =
Q(β11)a(β11)

b2(β11)

IV. c′1(β11)b2(β11) + c1(β11)b′2(β11) = Q′(β11)a(β11) +Q(β11)a′(β11)

The conditions on c2 remain the same and are therefore:

I. c2(1)

II. c′2(1) =
c2(1)

2
+
a′(1)

2a(1)
c2(1)

III. c2(β21) =
Q(β21)a(β21)

b1(β21)

IV. c2(β22) =
Q(β22)a(β22)

b1(β22)

Case 3: Let b1 have two distinct roots at β11 and β12 and b2 have a double
root at β21. Then we get the converse conditions to case 2. Thus the con-
ditions on c1 remain the same as in case 1 and the conditions on c2 can be



18 4 WHITHAM DEFORMATIONS

derived as the conditions for c1 in case 2. Therefore we obtain the following
conditions on c1:

I. c1(1)

II. c′1(1) =
c1(1)

2
+
a′(1)

2a(1)
c1(1)

III. c1(β11) =
Q(β11)a(β11)

b2(β11)

IV. c1(β12) =
Q(β12)a(β12)

b2(β12)

Taking the derivative of equation (3) with respect to λ evaluated at λ = β22

gives us

I. c2(1)

II. c′2(1) =
c2(1)

2
+
a′(1)

2a(1)
c2(1)

III. c2(β21) =
Q(β21)a(β21)

b1(β21)

IV. c′2(β21)b1(β21) + c2(β21)b′1(β21) = Q′(β21)a(β21) +Q(β21)a′(β21).

Hence we again get that c1 and c2 can be uniquely defined.

Case 4: Let b1 have a double root at β11 and let b2 have a double root
at β21. This is clearly a combination of case 2 and case 3. We can therefore
simply take the conditions on c1 from case 2 and the conditions from case 3
on c2 to get that both are uniquely defined. Thus our conditions on c1 are

I. c1(1)

II. c′1(1) =
c1(1)

2
+
a′(1)

2a(1)
c1(1)

III. c1(β11) =
Q(β11)a(β11)

b2(β11)

IV. c′1(β11)b2(β11) + c1(β11)b′2(β11) = Q′(β11)a(β11) +Q(β11)a′(β11).

While the conditions on c2 are:
I. c2(1)

II. c′2(1) =
c2(1)

2
+
a′(1)

2a(1)
c2(1)

III. c2(β21) =
Q(β21)a(β21)

b1(β21)

IV. c′2(β21)b1(β21) + c2(β21)b′1(β21) = Q′(β21)a(β21) +Q(β21)a′(β21)
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Case 5: Let b1 have a double root at λ = 1 and a single root at λ = β11.
While b2 has three distinct roots at λ = 1, β21, β22. The conditions on c2

remain the same, whereas the conditions on c1 differ slightly. Thus we get
I. c1(1)

II. c′1(1) =
c1(1)

2
+
a′(1)

2a(1)
c1(1)

III. c1(β11) =
Q(β11)a(β11)

b2(β11)

IV. c′1(1)b2(1) + c1(1)b′2(1) = Q′(1)a(1) +Q(1)a′(1)

and
I. c2(1)

II. c′2(1) =
c2(1)

2
+
a′(1)

2a(1)
c2(1)

III. c2(β21) =
Q(β21)a(β21)

b1(β21)

IV. c2(β22) =
Q(β22)a(β22)

b1(β22)
.

Case 6: Let b2 have a double root at λ = 1 and a single root at λ = β21.
While b1 has three distinct roots at λ = 1, β11, β12. The conditions on c1

remain the same, whereas the conditions on c2 differ slightly. Thus we get
I. c1(1)

II. c′1(1) =
c1(1)

2
+
a′(1)

2a(1)
c1(1)

III. c1(β11) =
Q(β11)a(β11)

b2(β11)

IV. c1(β12) =
Q(β12)a(β12)

b2(β12)

and
I. c2(1)

II. c′2(1) =
c2(1)

2
+
a′(1)

2a(1)
c2(1)

III. c2(β21) =
Q(β21)a(β21)

b1(β21)

IV. c′2(1)b1(1) + c2(1)b′1(1) = Q′(1)a(1) +Q(1)a′(1).
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Case 7: Let b1 have a double root at λ = 1 and a single root at λ = β11.
While b2 has a single root at λ = 1 and a double root at λ = β21. This is a
combination of case (3) and (5). Thus we get

I. c1(1)

II. c′1(1) =
c1(1)

2
+
a′(1)

2a(1)
c1(1)

III. c1(β11) =
Q(β11)a(β11)

b2(β11)

IV. c′1(1)b2(1) + c1(1)b′2(1) = Q′(1)a(1) +Q(1)a′(1)

and

I. c2(1)

II. c′2(1) =
c2(1)

2
+
a′(1)

2a(1)
c2(1)

III. c2(β21) =
Q(β21)a(β21)

b1(β21)

IV. c′2(β21)b1(β21) + c2(β21)b′1(β21) = Q′(β21)a(β21) +Q(β21)a′(β21).

Case 8: Let b1 have a double root at β11 and b2 have a double root at
λ = 1 and a single root at β21. Since this combines case 2 and case 6 we get

I. c1(1)

II. c′1(1) =
c1(1)

2
+
a′(1)

2a(1)
c1(1)

III. c1(β11) =
Q(β11)a(β11)

b2(β11)

IV. c′1(β11)b2(β11) + c1(β11)b′2(β11) = Q′(β11)a(β11) +Q(β11)a′(β11)

and

I. c2(1)

II. c′2(1) =
c2(1)

2
+
a′(1)

2a(1)
c2(1)

III. c2(β21) =
Q(β21)a(β21)

b1(β21)

IV. c′2(1)b1(1) + c2(1)b′1(1) = Q′(1)a(1) +Q(1)a′(1).
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Since b1 and b2 can only have exactly one common root due to Corollary (3.3)
and we require that this common root is at λ = 1 we covered all possible
cases. And since all cases yield unique solutions for c1 and c2 we can always
obtain a unique solution. The next and final step to get the result that we
can uniquely solve equations (1),(2) and (3) for ȧ, ḃ1 and ḃ2 is to simply solve
equations (1) and (2) for these polynomials with the derived polynomials c1

and c2. We will start by determining ȧ. Since a(λ) =
∏2

j=1

ηj
|ηj |(λ−ηj)(λ−η

−1
j )

all we need to do is to find η̇1, η̇2. Since the complex conjugation commutes
with differentiation with respect to real variables this will immediately imply
η̇
−1

1 , η̇
−1

2 and therefore ȧ. We will first calculate the derivatives of a with
respect to λ and with respect to t eveluated at t = 0.

a′(λ) =
η1η2

|η1||η2|
((λ− η̄−1

1 )(λ− η2)(λ− η̄−1
2 ) + (λ− η1)(λ− η2)(λ− η̄−1

2 )

+ (λ− η1)(λ− η̄−1
1 )(λ− η̄−1

2 ) + (λ− η1)(λ− η̄−1
1 )(λ− η2))

and

ȧ(λ) =
(η̇1η2 + η1η̇2)|η1||η2| − η1η2( ˙|η1||η2|+ |η1| ˙|η2|)

(|η1||η2|)2
((λ− η1)(λ− η̄−1

1 )

(λ− η2)(λ− η̄−1
2 )) +

η1η2

|η1||η2|
(−η̇1(λ− η̄−1

1 )(λ− η2)(λ− η̄−1
2 )

− η̇−1

1 (λ− η1)(λ− η2)(λ− η̄−1
2 )− η̇2(λ− η1)(λ− η̄−1

1 )(λ− η̄−1
2 )

− η̇−1

2 (λ− η1)(λ− η̄−1
1 )(λ− η2))

Equation (1) and (2) suggest now to evaluate both at the roots of a, which
are η1, η2, η

−1
1 , η−1

2 . From the calculations above we get e.g. for λ = η1

a′(η1) =
η1η2

|η1||η2|
(η1 − η̄−1

1 )(η1 − η2)(η1 − η̄−1
2 ).

and

ȧ(η1) =
η1η2

|η1||η2|
(−η̇1)(η1 − η̄−1

1 )(η1 − η2)(η1 − η̄−1
2 )

⇒ ȧ(η1) =− η̇1a
′(η1)

likewise for η2, η
−1
1 and η−1

2

ȧ(η2) =− η̇2a
′(η2)

ȧ(η−1
1 ) =− η̇−1

1 a′(η−1
1 )

ȧ(η−1
2 ) =− η̇−1

2 a′(η−1
2 ).
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By looking at ȧ one may realize that it suffices to calculate η̇1 and η̇2. To
obtain these one can use equation (1) or equation (2) both yield similar
results. We will evaluate the respective equation at either η1 or η2. Without
loss of generality we will use equation (1).

(2η1a(η1)c′1(η1)− a(η1)c1(η1)− η1a
′(η1)c1(η1))i =2a(η1)ḃ1(η1)− ȧ(η1)b1(η1)

⇔ −η1a
′(η1)c1(η1)i =− ȧ(η1)b1(η1)

ȧ(ηk)=−η̇ka′(ηk)⇔ −η1a
′(η1)c1(η1)i =η̇1a

′(η1)b1(η1)

⇔ η̇1 =
−η1a

′(η1)c1(η1)i

a′(η1)b1(η1)

⇔ η̇1 =
−η1c1(η1)i

b1(η1)

With the same calculations one gets

−η2a
′(η2)c1(η2)i =− ȧ(η2)b1(η2)

ȧ(ηk)=−η̇ka′(ηk)⇔ −η2a
′(η2)c1(η2)i =η̇2a

′(η2)b1(η2)

⇔ η̇2 =
−η2a

′(η2)c1(η2)i

a′(η2)b1(η2)

⇔ η̇2 =
−η2c1(η2)i

b1(η2)
.

These calculations with equation (2) yield

η̇1 =
−η1c2(η1)i

b2(η1)

and

η̇2 =
−η2c2(η2)i

b2(η2)
.

This acutally provides a nice backcheck with equation (3), which eveluated
at ηk yields

c1(ηk)b2(ηk)− c2(ηk)b1(ηk) =0

⇔ c1(ηk)b2(ηk) =c2(ηk)b1(ηk)

⇔ c1(ηk)

b1(ηk)
=
c2(ηk)

b2(ηk)
.

Since we can now write ȧ(λ) down we automatically get ḃ1(λ) from equation
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(1) and ḃ2(λ) from equation (2). Which are as follows

(2λac′1 − ac1 − λa′c1)i = 2aḃ1 − ȧb1

⇔(2λac′1 − ac1 − λa′c1)i+ ȧb1

2a
= ḃ1

and
(2λac′2 − ac2 − λa′c2)i = 2aḃ2 − ȧb2

⇔(2λac′2 − ac2 − λa′c2)i+ ȧb2

2a
= ḃ2

Since we uniquely determined c1, c2 and ȧ above we also get uniquely defined
ḃ1, ḃ2. Thus we have finally proved Lemma (4.3).

Corollary 4.4. If ck vanishes at λ = 1 then so does c′k, whilst c′l = 1
2

+ a′(1)
a(1)

for k = 1, 2 and l 6= k.

Proof. Let without loss of generality c1(1) = 1 and c2(1) = 0. We will now
evaluate equation (1) and (2) at λ = 1. Equation (1) yields

2a(1)c′1(1)− a(1)c1(1)− a′(1)c1(1) = 0

⇔ 2a(1)c′1 = a(1)c1(1) + a′(1)c1(1)

c1(1)=1⇔ c′1(1) =
1

2
+
a′(1)

a(1)
.

Equation (2) yields

2a(1)c′2(1)− a(1)c2(1)− a′(1)c2(1) = 0

⇔2a(1)c′2(1) = a(1)c2(1) + a′(1)c2(1)

c2(1)=0⇔ c′2(1) = 0.

It remains to show that Q, c1 and c2 satisfy the reality condition. To do this
we will use the conditions obtained in the proof of Lemma (4.3). First of all
we will prove some basic facts about polynomials of degree three that satisfy
the reality condition.

Lemma 4.5. Let p ∈ P 3
R therefore p is a polynomial of degree three that

satisfies the reality condition λ3p(λ̄−1) = p(λ). Then p also satisfies:

i) p(1) ∈ R

ii) (p′(1)− 3

2
p(1)) ∈ iR

iii) i=(p′′(1)) = 2p′(1)− 3p(1)
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Proof. Since p satisfies the reality condition we know that it has the form
p3λ

3 + p2λ
2 + p2λ+ p3 with p3, p2 ∈ C

i) Thus p(1) = p3 + p2 + p2 + p3 = 2<(p3) + 2<(p20) ∈ R.

ii) By differentiating p with respect to λ we get p′(λ) = 3p3λ
2 + 2p2λ+ p2.

Thus

p′(1)− 3

2
p(1) =3p3 + 2p2 + p2 −

3

2
p3 −

3

2
p2 −

3

2
p2 −

3

2
p3

=3i=(p3) + i=(p2) ∈ iR

iii) By differentiating p′ with respect to λ we get p′′(λ) = 6p3λ + 2p2. We
then observe that

p′′(1) =6p3 + 2p2 = 6<(p3) + 6i=(p3) + 2<(p2) + 2i=(p2),

⇒ i=(p′′(1)) =6i=(p3) + 2i=(p2)

p′(1) =3p3 + 2p2 + p2 = 3<(p3) + 3i=(p3) + 3<(p2) + i=(p2)

p(1) =2<(p3) + 2<(p2)

⇒ 2p′(1)− 3p(1) =6i=(p3) + 2i=(p2) = i=(p′′(1)).

Lemma 4.6. The polynomial Q satisfies the reality condition.

Proof. From the conditions on Q we get:

Q(λ) = (1− λ)Q′(1) + (1− λ)2Q
′′(1)

2

=
Q′′(1)

2
λ2 + (Q′′(1)−Q′(1))λ+Q′(1) +

Q′′(1)

2

with

Q′(1) =
c1(1)b′2(1)− c2(1)b′1(1)

a(1)

and

Q′′(1) =[
c1(1)− a′(1)

a(1)
c1(1)

]
b′2(1) + c1(1)b′′2(1)−

[
c2(1)− a′(1)

a(1)
c2(1)

]
b′1(1)− c2(1)b′′1(1)

a(1)
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The reality condition λ2Q(λ̄−1) = Q(λ) is equivalent to

Q′(1) ∈ iR
Q′(1)−Q′′(1) ∈ R

We observe that true to Lemma (4.5) if c1 and c2 satisfy the reality condition
c1(1) and c2(1) both are real and therefore can be neglected. In fact we are
only interested in the cases c1(1) = 1, c2(1) = 0 and c1(1) = 0, c2(1) = 1, thus
we can focus on the polynomials a, b1 and b2 to check the reality conditions.
We immediately get that a(1) and a(1)2 are real. Thus a(1), c1(1) and c2(1)
are real. Furthermore, we are in the case that b1(1) = 0 and b2(1) = 0. Since
the polynomials b1 and b2 satisfy the reality conditions Lemma (4.5) holds.
Especially (ii) becomes b′1(1) ∈ iR and b′2(1) ∈ iR. Thus c1(1)

a(1)
and c2(1)

a(1)
are

real. Since the product of a real and an imaginary number is again imaginary
we obtain that Q′(1) = c1(1)

a(1)
b′2(1)− c2(1)

a(1)
b′1(1) consists of two imaginary terms

and is therefore imaginary.

It remains to show that the imaginary part of Q′(1)−Q′′(1) vanishes. First
of all we will use a(1)2 as the common denominator of all terms. Thus we
get:

c1(1)a(1)

a(1)2
− c1(1)

a(1)2
a′(1)b′2(1) +

c1(1)a(1)

a(1)
a(1)b′′2(1)

−c2(1)a(1)

a(1)2
+
c2(1)

a(1)2
a′(1)b′1(1)− c2(1)a(1)

a(1)
a(1)b′′1(1)

Since c1(1)a(1)
a(1)2

, c1(1)
a(1)2

, c1(1)a(1)
a(1)

, c2(1)a(1)
a(1)2

, c2(1)
a(1)2

and c2(1)a(1)
a(1)

are real due to the rea-
soning above, it suffices to look at

a′(1)b′1(1)− a(1)b′′1(1)− a′(1)b′2(1) + a(1)b′′2(1).

Now we observe that for a(λ) = a4λ
4 +a3λ

3 +a2λ
2 +a3λ+a4, with a4, a3 ∈ C

and a2 ∈ R

a(1) = 2<(a4) + 2<(a3) + a2

and

a′(1) = 4<(a4) + 4i=(a4) + 4<(a3) + 2i=(a3) + 2a2

holds. Thus we get <(a′(1)) = 2a(1).

⇒ a′(1)− 2a(1) ∈ iR
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If we substitute i=(b′′1(1)) and i=(b′′2(1)) through 2b′1(1)−3b1(1) and 2b′2(1)−
3b2(1) as described in Lemma (4.5) (iii) we obtain

a′(1)b′1(1)− a(1)(2b′1(1)− 3b1(1) + <(b′′1(1))

− a′(1)b′2(1) + a(1)(2b′2(1)− 3b2(1) + <(b′′2(1))

=b′1(1)(a′(1)− 2a(1))− a(1)(−3b1(1) + <(b′′1(1))

− b′2(1)(a′(1)− 2a(1)) + a(1)(−3b2(1) + <(b′′2(1)).

Since b1(1) = 0 = b2(1) we get

b′1(1)(a′(1)− 2a(1))− a(1)<(b′′1(1)− b′2(1)(a′(1)− 2a(1)) + a(1)<(b′′2(1)).

Since b′1(1), (a′(1)−2a(1)), b′2(1) and (a′(1)−2a(1)) are imaginary their prod-
uct is real and since a(1)<(b′′1(1) and a(1)<(b′′2(1)) are real, the whole term
is real. Hence Q satisfies the reality condition.

It only remains now to show that c1 and c2 satisfy the reality conditions as
well. Since both are polynomials of degree three, which are uniquely defined
through four conditions it suffices to prove that λ3c1(λ̄−1) and λ3c2(λ̄−1)
satisfy the corresponding four conditions as well. If this is the case the
polynomials have to be the same due to the unqiueness.

Lemma 4.7. If ck(λ) satisfies the four conditions from the proof of Lemma
(4.3) then so does c̃k(λ) := λ3ck(λ̄−1) for k = 1, 2.

Proof. Let ck for k = 1, 2 be parametrized through

ck(λ) = ck3λ
3 + ck2λ

2 + ck1λ+ ck0

⇒ c̃1(λ) = ck0λ
3 + ck1λ

2 + ck2λ+ ck3λ.

The first condition is ck(1) ∈ R. We have to show that this also implies
that c̃k(1) ∈ R. Since ck(1) = ck3 + ck2 + ck1 + ck0 is real we know that
i=(ck3 + ck2 + ck1 + ck0) = 0. This implies that −i=(ck3 + ck2 + ck1 + ck0) = 0,
which is i=(ck3 + ck2 + ck1 + ck0). Therefore we see that ck(1) = ck3 + ck2 +
ck1 + ck0 = ck3 + ck2 + ck1 + ck0 = c̃k(1). Hence the first condition satisfies
the reality condition.

The second condition refers to the derivative of ck at λ = 1. We want
to show that

c′k(1) =
1

2
ck(1) +

a′(1)

2a(1)
ck(1) = c̃k

′(1)
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with

c̃k = λ3ck(λ̄−1).

To do this we will parametrize ck again as follows

ck = ck3λ
3 + ck2λ

2 + ck1λ+ ck0

⇒ c′k(λ) = 3ck3λ
2 + 2ck2λ

2 + ck1

⇒ c̃′k(λ) = 3ck0λ
2 + 2ck1λ+ ck2.

Thus c′k(1) = 1
2
ck(1) + a′(1)

2a(1)
ck(1) becomes

3ck3 + 2ck2 + ck1 =
1

2
(ck3 + ck2 + ck1 + ck0) +

a′(1)

2a(1)
(ck3 + ck2 + ck1 + ck0).

From the proof of Lemma (4.6) we remember that <(a′(1)) = 2a(1). Apllying
this we get:

3ck3 + 2ck2 + ck1 =
1

2
(ck3 + ck2 + ck1 + ck0)

+
2a(1) + i=(a′(1))

2a(1)
(ck3 + ck2 + ck1 + ck0)

⇔ 3ck3 + 2ck2 + ck1 =
3

2
(ck3 + ck2 + ck1 + ck0)

+
i=(a′(1))

2a(1)
(ck3 + ck2 + ck1 + ck0)

⇔ 3

2
ck3 +

1

2
ck2 −

1

2
ck1 −

3

2
ck0 =

i=(a′(1))

2a(1)
ck(1)

Since ck(1), a(1) ∈ R the right-hand side is imaginary hence we get <(3
2
ck3 +
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1
2
ck2 − 1

2
ck1 − 3

2
ck0) = 0. Thus

i=(
3

2
ck3 +

1

2
ck2 −

1

2
ck1 −

3

2
ck0) =

i=(a′(1))

2a(1)
c1(1)

⇔ 3

2
i=(ck3) +

1

2
i=(ck2)− 1

2
i=(ck1)− 3

2
i=(ck0) =

i=(a′(1))

2a(1)
ck(1)

¯⇔ − 3

2
i=(ck3)− 1

2
i=(ck2) +

1

2
i=(ck1) +

3

2
i=(ck0) = −i=(a′(1))

2a(1)
ck(1)

⇔ 3

2
ck3 +

1

2
ck2 −

1

2
ck1 −

1

2
ck0 = −i=(a′(1))

2a(1)
ck(1)

⇔ − 3ck0 − 2ck1 − ck2 +
3

2
(ck3 + ck2 + ck1 + ck0) = −i=(a′(1))

2a(1)
ck(1)

⇔ − 3ck0 − 2ck1 − ck2 = −1

2
c̃k(1)− c̃k(1)− i=(a′(1))

2a(1)
ck(1)

c̃k(1)=ck(1)⇔ −3ck0 − 2ck1 − ck2 = −1

2
ck(1)− 2a(1)

2a(1)
ck(1)− i=(a′(1))

2a(1)
ck(1)

2a(1)==(a′(1))⇔ − 3ck0 − 2ck1 − ck2 = −1

2
ck(1)− a′(1)

2a(1)
ck(1)

⇔ − c̃′k(1) = −1

2
ck(1)− a′(1)

2a(1)
ck(1)

·(−1)⇔ c̃′k(1) =
1

2
ck(1) +

a′(1)

2a(1)
ck(1)

⇔ c̃′k(1) = c′k(1)

Thus the second condition satisfies the reality condition.

The third and fourth condition in the case that polynomial bk has distinct
roots can be seen from equation (3). Let β denote any root other than one
of the polynomial bk. First of all we observe that

bk(β) = 0
reality condition⇒ β3bk(β̄−1) = 0⇒ bk(β̄−1) = 0.

We know that:

ck(β) =
Q(β)a(β)

b3−k(β)

⇔ck(β) =
β6Q(β̄−1)a(β̄−1)

β3b3−k(β̄−1)

⇔β−3ck(β) =
Q(β̄−1)a(β̄−1)

b3−k(β̄−1)
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We will now look at equation (3) and start with λ = β̄−1. Thus bk vanishes
and we obtain

ck(β̄−1)b3−k(β̄−1) = Q(β̄−1)a(β̄−1)

⇔ck(β̄−1) =
Q(β̄−1)a(β̄−1)

b3−k(β̄−1)
.

With both calculations together we get

ck(β̄−1) = β−3ck(β)

⇔β3ck(β̄−1) = ck(β).

Since this holds for both β = βk1 and β = βk2 the third and fourth condition
also satisfy the reality condition. Thus in this case the reality condition is
satisfied and c1 and c2 satisfy the reality condition due to uniqueness. It
remains to look at the case when any of the two polynomials b1 or b2 has a
double root. Since these cases are just limit cases of the case treated above we
get a term fully dependend on polynomials that satisfy the reality condition.
Thus it satisfies the reality condition. Hence c1 and c2 satisfy the reality
condition in any of the eight cases from the proof of Lemma (4.3).

4.2 Vector field V1

We now want to apply Lemma (4.3) for given c1(1), c2(1). Let V1 denote the
vector field corresponding to the conditions c1(1) = 1 and c2(1) = 0. We just
proved additional conditions for (a, b1, b2, Q, c1, c2) such that we can solve
equations (1),(2) and (3) to obtain (ȧ, ḃ1, ḃ2), which is exactly what we are
going to do. First of all a short overview of all conditions:

1. b1(1) = 0, ḃ1(1) = 0

2. b2(1) = 0, ḃ2(1) = 0

3. c1(1) = 1

4. c2(1) = 0

5. Q(1) = 0

6. a(1) 6= 0

7. all polynomials satisfy the reality condition
8. c1, c2 satisfy the additional conditions from the proof of Lemma (4.3)
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From these conditions we can immediately see what the polynomials b1, b2, Q
look like. That is

b1 = (λ− 1)(b10λ
2 + b11λ+ b12), where b10, b11, b12 ∈ C

b2 = (λ− 1)(b20λ
2 + b21λ+ b22), where b20, b21, b22 ∈ C

Q = (λ− 1)(q0λ+ q1), where q0, q1 ∈ C.

The first step is now to find aQ that satisfies all these conditions from Lemma
(4.3) to solve equation (3) for c1, c2.

Q = (λ− 1)(q0λ+ q1)

= q0λ
2 + q1λ− q0λ− q1

Hence we obtain

Q′(λ) = 2q0λ+ q1 − q0

⇒Q′(1) = q0 + q1

Q′′(λ) = 2q0

⇒Q′′(1) = 2q0.

The conditions from the Lemma were:

I. Q′(1) =
c1(1)b′2(1)− c2(1)b′1(1)

a(1)

II. Q′′(1) =[
c1(1)− a′(1)

a(1)
c1(1)

]
b′2(1) + c1(1)b′′2(1)−

[
c2(1)− a′(1)

a(1)
c2(1)

]
b′1(1)− c2(1)b′′1(1)

a(1)

Given c1(1) = 1 and c2(1) = 0 we get

I. Q′(1) =
b′2(1)

a(1)

II. Q′′(1) =

[
1− a′(1)

a(1)

]
b′2(1) + b′′2(1)

a(1)

Thus we get

q0 + q1 =
b′2(1)

a(1)

2q0 =

[
1− a′(1)

a(1)

]
b′2(1) + b′′2(1)

a(1)
.



4 WHITHAM DEFORMATIONS 31

This yields

q0 =

[
1− a′(1)

a(1)

]
b′2(1) + b′′2(1)

2a(1)

and therefore

q1 =
b′2(1)

a(1)
− q0

⇒q1 =
b′2(1)

a(1)
−

[
1− a′(1)

a(1)

]
b′2(1) + b′′2(1)

2a(1)

⇒q1 =
2b′2(1)−

[
1− a′(1)

a(1)

]
b′2(1)− b′′2(1)

2a(1)

⇒q1 =

[
1 + a′(1)

a(1)

]
b′2(1)− b′′2(1)

2a(1)
.

Hence we obtain Q as follows

Q(λ) = (λ− 1)(q0λ+ q1)

⇔Q(λ) = (λ− 1)
([1− a′(1)

a(1)

]
b′2(1) + b′′2(1)

2a(1)
λ+

[
1 + a′(1)

a(1)

]
b′2(1)− b′′2(1)

2a(1)

)

⇒Q(λ) = (λ− 1)

([
1− a′(1)

a(1)

]
b′2(1) + b′′2(1)

)
λ+ [1 + a′(1)

a(1)

]
b′2(1)− b′′2(1)

2a(1)
(4)

⇒Q(λ) = (λ− 1)
(λ+ 1)b′2(1) + (1− λ)a

′(1)
a(1)

b′2(1)− (1− λ)b′′2(1)

2a(1)
. (5)

Before we continue we want to assure that Q satisfies the reality condition
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that is basically Lemma (4.6).

λ2Q(λ̄−1) =λ2
( b′2(1)

2a(1)
λ̄−2 − a′(1)b′2(1)

2a(1)2
λ̄−2 +

b′′2(1)

2a(1)
λ̄−2 +

b′2(1)

2a(1)
λ̄−1

+
a′(1)b′2(1)

2a(1)2
λ̄−1 − b′′2(1)

2a(1)
λ̄−1 − b′2(1)

2a(1)
λ̄−1 +

a′(1)b′2(1)

2a(1)2
λ̄−1

− b
′′
2(1)

2a(1)
λ̄−1 − b′2(1)

2a(1)
− a′(1)b′2(1)

2a(1)2
+
b′′2(1)

2a(1)

)
=
b′2(1)

2a(1)
− a′(1)b′2(1)

2a(1)2
+
b′′2(1)

2a(1)
+
a′(1)b′2(1)

a(1)2
λ− b′′2(1)

a(1)
λ

− b′2(1)

2a(1)
λ2 − a′(1)b′2(1)

2a(1)2
λ2 +

b′′2(1)

2a(1)
λ2

(4.6)
=

b′2(1)

2a(1)
λ2 − a′(1)b′2(1)

2a(1)2
λ2 +

b′′2(1)

2a(1)
λ2 +

a′(1)b′2(1)

a(1)2
λ− b′′2(1)

a(1)
λ

− b′2(1)

2a(1)
− a′(1)b′2(1)

2a(1)2
+
b′′2(1)

2a(1)

=Q(λ)

With this polyonmial of degree 2 we now want to solve equation (3) for
polynomials c1, c2. First of all we are going to use c1(1) = 1 on the conditions
found in the proof. We limit ourselves to the case where b1 and b2 have two
distinct roots other than one. We did this because all cases led to rather long
terms. Thus these calculations only lead to an exemplary vector field. By
applying Corollary (4.4) we get

I. c1(1) = 1

II. c′1(1) =
1

2
+
a′(1)

2a(1)

III. c1(β11) =
Q(β11)a(β11)

b2(β11)

IV. c1(β12) =
Q(β12)a(β12)

b2(β12)
.
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The first condition already tells us that:

c1(λ) = 1 + (λ− 1)(c10λ
2 + c11λ+ c12)

⇒c′1(λ) = c10λ
2 + c11λ+ c12 + (λ− 1)(2c10λ+ c11)

⇒c′1(1) = c10 + c11 + c12

and
c1(β11) = 1 + (β11 − 1)(c10β

2
11 + c11β11 + c12)

c1(β12) = 1 + (β12 − 1)(c10β
2
12 + c11β12 + c12)

Thus it remains to solve the remaining three conditions for the three coef-
ficients. First of all let us replace c1 in equations II-IV with its definition.
This yields

II. c10 + c11 + c12 =
1

2
+
a′(1)

2a(1)

III. 1 + (β11 − 1)(c10β
2
11 + c11β11 + c12) =

Q(β11)a(β11)

b2(β11)

IV. 1 + (β12 − 1)(c10β
2
12 + c11β12 + c12) =

Q(β12)a(β12)

b2(β12)

⇔

II. c10 + c11 + c12 =
1

2
+
a′(1)

2a(1)

III. c10β
2
11 + c11β11 + c12 =

Q(β11)a(β11)− b2(β11)

b2(β11)(β11 − 1)

IV. c10β
2
12 + c11β12 + c12 =

Q(β12)a(β12)− b2(β12)

b2(β12)(β12 − 1)
.
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III − II := III ′. c10(β2
11 − 1) + c11(β11 − 1) =

Q(β11)a(β11)− b2(β11)

b2(β11)(β11 − 1)
− 1

2
− a′(1)

2a(1)

IV − II := IV ′. c10(β2
12 − 1) + c11(β12 − 1) =

Q(β12)a(β12)− b2(β12)

b2(β12)(β12 − 1)
− 1

2
− a′(1)

2a(1)

−β12 − 1

β11 − 1
III ′ + IV ′ := IV ′′. c10(β2

12 − 1)− β12 − 1

β11 − 1
(β12 − 1)c10 =

Q(β12)a(β12)− b2(β12)

b2(β12)(β12 − 1)
− 1

2
− a′(1)

2a(1)

− (β12 − 1)(Q(β11)a(β11)− b2(β11))

(β11 − 1)b2(β11)(β11 − 1)
+

β12 − 1

2(β11 − 1)
+

(β12 − 1)a′(1)

2(β11 − 1)a(1)

⇔ IV ′′. c10
(β2

12 − 1)(β11 − 1)− (β12 − 1)(β2
11 − 1)

β11 − 1
=
Q(β12)a(β12)− b2(β12)

b2(β12)(β12 − 1)
− 1

2
− a′(1)

2a(1)

− (β12 − 1)(Q(β11)a(β11)− b2(β11))

(β11 − 1)b2(β11)(β11 − 1)
+

β12 − 1

2(β11 − 1)
+

(β12 − 1)a′(1)

2(β11 − 1)a(1)

⇔ c10 =
β11 − 1

(β2
12 − 1)(β11 − 1)− (β12 − 1)(β2

11 − 1)

[Q(β12)a(β12)− b2(β12)

b2(β12)(β12 − 1)
− 1

2
− a′(1)

2a(1)

− (β12 − 1)(Q(β11)a(β11)− b2(β11))

(β11 − 1)b2(β11)(β11 − 1)
+

β12 − 1

2(β11 − 1)
+

(β12 − 1)a′(1)

2(β11 − 1)a(1)

]

III ′. c11 =
1

(β11 − 1)

(Q(β11)a(β11)− b2(β11)

b2(β11)(β11 − 1)
− 1

2
− a′(1)

2a(1)
− (β2

11 − 1)c10

)
II. c12 =

1

2
+
a′(1)

2a(1)
− c10 − c11
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⇒ c11 =
1

(β11 − 1)

(Q(β11)a(β11)− b2(β11)

b2(β11)(β11 − 1)
− 1

2
− a′(1)

2a(1)

− (β11 − 1)(β2
11 − 1)

(β2
12 − 1)(β11 − 1)− (β12 − 1)(β2

11 − 1)

[Q(β12)a(β12)− b2(β12)

b2(β12)(β12 − 1)
− 1

2
− a′(1)

2a(1)

− (β12 − 1)(Q(β11)a(β11)− b2(β11))

(β11 − 1)b2(β11)(β11 − 1)
+

β12 − 1

2(β11 − 1)
+

(β12 − 1)a′(1)

2(β11 − 1)a(1)

])

⇒ c12 =
1

2
+
a′(1)

2a(1)
− β11 − 1

(β2
12 − 1)(β11 − 1)− (β12 − 1)(β2

11 − 1)

[Q(β12)a(β12)− b2(β12)

b2(β12)(β12 − 1)
− 1

2
− a′(1)

2a(1)

− (β12 − 1)(Q(β11)a(β11)− b2(β11))

(β11 − 1)b2(β11)(β11 − 1)
+

β12 − 1

2(β11 − 1)
+

(β12 − 1)a′(1)

2(β11 − 1)a(1)

]
− 1

(β11 − 1)

(Q(β11)a(β11)− b2(β11)

b2(β11)(β11 − 1)
− 1

2
− a′(1)

2a(1)
− (β11 − 1)(β2

11 − 1)

(β2
12 − 1)(β11 − 1)− (β12 − 1)(β2

11 − 1)[Q(β12)a(β12)− b2(β12)

b2(β12)(β12 − 1)
− 1

2
− a′(1)

2a(1)
− (β12 − 1)(Q(β11)a(β11)− b2(β11))

(β11 − 1)b2(β11)(β11 − 1)
+

β12 − 1

2(β11 − 1)
+

(β12 − 1)a′(1)

2(β11 − 1)a(1)

])
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c1(λ) = 1 + (λ− 1)

(
β11 − 1

(β2
12 − 1)(β11 − 1)− (β12 − 1)(β2

11 − 1)

[Q(β12)a(β12)− b2(β12)

b2(β12)(β12 − 1)
− 1

2
− a′(1)

2a(1)

− (β12 − 1)(Q(β11)a(β11)− b2(β11))

(β11 − 1)b2(β11)(β11 − 1)
+

β12 − 1

2(β11 − 1)
+

(β12 − 1)a′(1)

2(β11 − 1)a(1)

]
λ2

+
λ

(β11 − 1)

(Q(β11)a(β11)− b2(β11)

b2(β11)(β11 − 1)
− 1

2
− a′(1)

2a(1)
− (β11 − 1)(β2

11 − 1)

(β2
12 − 1)(β11 − 1)− (β12 − 1)(β2

11 − 1)[Q(β12)a(β12)− b2(β12)

b2(β12)(β12 − 1)
− 1

2
− a′(1)

2a(1)
− (β12 − 1)(Q(β11)a(β11)− b2(β11))

(β11 − 1)b2(β11)(β11 − 1)
+

β12 − 1

2(β11 − 1)
+

(β12 − 1)a′(1)

2(β11 − 1)a(1)

])
+

1

2
+
a′(1)

2a(1)
− β11 − 1

(β2
12 − 1)(β11 − 1)− (β12 − 1)(β2

11 − 1)

[Q(β12)a(β12)− b2(β12)

b2(β12)(β12 − 1)
− 1

2
− a′(1)

2a(1)

− (β12 − 1)(Q(β11)a(β11)− b2(β11))

(β11 − 1)b2(β11)(β11 − 1)
+

β12 − 1

2(β11 − 1)
+

(β12 − 1)a′(1)

2(β11 − 1)a(1)

]
− 1

(β11 − 1)

(Q(β11)a(β11)− b2(β11)

b2(β11)(β11 − 1)
− 1

2
− a′(1)

2a(1)
− (β11 − 1)(β2

11 − 1)

(β2
12 − 1)(β11 − 1)− (β12 − 1)(β2

11 − 1)

[
Q(β12)a(β12)− b2(β12)

b2(β12)(β12 − 1)
− 1

2
− a′(1)

2a(1)
− (β12 − 1)(Q(β11)a(β11)− b2(β11))

(β11 − 1)b2(β11)(β11 − 1)
+

β12 − 1

2(β11 − 1)
+

(β12 − 1)a′(1)

2(β11 − 1)a(1)

]))
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Now we want to calculate c2 with the following conditions:

I. c2(1) = 0

II. c′2(1) = 0

III. c2(β21) =
Q(β21)a(β21)

b1(β21)

IV. c2(β22) =
Q(β22)a(β22)

b1(β22)

The first two conditions yield that c2 has the form

c2(λ) = (λ− 1)2(c20λ+ c21)

⇒c2(β21) = (β21 − 1)2(c20β21 + c21)

⇒c2(β22) = (β22 − 1)2(c20β22 + c21).

Therefore it remains to solve condition III and IV for c20 and c21.

III. (β21 − 1)2(c20β21 + c21) =
Q(β21)a(β21)

b1(β21)

IV. (β22 − 1)2(c20β22 + c21) =
Q(β22)a(β22)

b1(β22)

⇔

III. (c20β21 + c21) =
Q(β21)a(β21)

b1(β21)(β21 − 1)2

IV. (c20β22 + c21) =
Q(β22)a(β22)

b1(β22)(β22 − 1)2

III − IV := III ′. c21β21 − c21β22 =
Q(β21)a(β21)

b1(β21)(β21 − 1)2
− Q(β22)a(β22)

b1(β22)(β22 − 1)2

⇔c21(β21 − β22) =
Q(β21)a(β21)

b1(β21)(β21 − 1)2
− Q(β22)a(β22)

b1(β22)(β22 − 1)2

⇔c21 =
Q(β21)a(β21)

(β21 − β22)b1(β21)(β21 − 1)2
− Q(β22)a(β22)

(β21 − β22)b1(β22)(β22 − 1)2

Now IV gives us:

c22 =
Q(β21)a(β21)

b1(β21)(β21 − 1)2
− c21β22

⇔ c22 =
Q(β21)a(β21)

b1(β21)(β21 − 1)2

− β22

( Q(β21)a(β21)

(β21 − β22)b1(β21)(β21 − 1)2
− Q(β22)a(β22)

(β21 − β22)b1(β22)(β22 − 1)2

)
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Thus we also obtain c2:

c2(λ) =(λ− 1)2

(( Q(β21)a(β21)

(β21 − β22)b1(β21)(β21 − 1)2
− Q(β22)a(β22)

(β21 − β22)b1(β22)(β22 − 1)2

)
λ+

Q(β21)a(β21)

b1(β21)(β21 − 1)2

− β22

( Q(β21)a(β21)

(β21 − β22)b1(β21)(β21 − 1)2
− Q(β22)a(β22)

(β21 − β22)b1(β22)(β22 − 1)2

))

Using the definition of Q we get:

c2(λ) =(λ− 1)2

(((β21 − 1)
([

1− a′(1)
a(1)

]
b′2(1) + b′′2(1)

)
β21 + [1 + a′(1)

a(1)

]
b′2(1)− b′′2(1)a(β21)

2a(1)(β21 − β22)b1(β21)(β21 − 1)2

−
(β22 − 1)

([
1− a′(1)

a(1)

]
b′2(1) + b′′2(1)

)
β22 + [1 + a′(1)

a(1)

]
b′2(1)− b′′2(1)a(β22)

2a(1)(β21 − β22)b1(β22)(β22 − 1)2

)
λ

+
(β21 − 1)

([
1− a′(1)

a(1)

]
b′2(1) + b′′2(1)

)
β21 + [1 + a′(1)

a(1)

]
b′2(1)− b′′2(1)a(β21)

2a(1)b1(β21)(β21 − 1)2

− β22

((β21 − 1)
([

1− a′(1)
a(1)

]
b′2(1) + b′′2(1)

)
β21 + [1 + a′(1)

a(1)

]
b′2(1)− b′′2(1)a(β21)

2a(1)(β21 − β22)b1(β21)(β21 − 1)2

−
(β22 − 1)

([
1− a′(1)

a(1)

]
b′2(1) + b′′2(1)

)
β22 + [1 + a′(1)

a(1)

]
b′2(1)− b′′2(1)a(β22)

2a(1)(β21 − β22)b1(β22)(β22 − 1)2

))
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The remaining step to obtain V1 is to solve equation (1) and (2) for ȧ, ḃ1, ḃ2.
From Lemma (4.3) we can take the derivatives of η with respect to t eveluated
at t = 0. Which were

η̇1 =
−η1c1(η1)i

b1(η1)

˙̄η−1
1 =

−η̄−1
1 c1(η̄−1

1 )i

b1(η̄−1
1 )

η̇2 =
−η2c1(η2)i

b1(η2)

˙̄η−1
2 =

−η̄−1
2 c1(η̄−1

2 )i

b1(η̄−1
2 )

we can calculate ˙|ηk| with chain rule

˙|ηk| =
ηk
|ηk|

η̇k

for k = 1, 2. Since the derivation with respect to t, which is a real variable,
and the complex conjugation commute we get

η̇k = η̇k ⇒ η̇k =
−ηkc1(ηk)i

b1(ηk)
for k = 1, 2.

Now we can use the expression for ȧ from the proof of Lemma (4.3), which
was

ȧ(λ) =
(η̇1η2 + η1η̇2)|η1||η2| − η1η2( ˙|η1||η2|+ |η1| ˙|η2|)

(|η1||η2|)2
((λ− η1)(λ− η̄−1

1 )

(λ− η2)(λ− η̄−1
2 )) +

η1η2

|η1||η2|
(−η̇1(λ− η̄−1

1 )(λ− η2)(λ− η̄−1
2 )

− η̇−1

1 (λ− η1)(λ− η2)(λ− η̄−1
2 )− η̇2(λ− η1)(λ− η̄−1

1 )(λ− η̄−1
2 )

− η̇−1

2 (λ− η1)(λ− η̄−1
1 )(λ− η2)).

Using the derived expressions for the derivatives of the absolute value and
the complex conjugation we get

ȧ(λ) =

(−η1c1(η1)i
b1(η1)

η2 + η1
−η2c1(η2)i
b1(η2)

)|η1||η2| − η1η2( η1
|η1| η̇1|η2|+ |η1| η2|η2|)

(|η1||η2|)2

|η1||η2|
η1η2

a(λ)

+
η1η2

|η1||η2|
(−η̇1(λ− η̄−1

1 )(λ− η2)(λ− η̄−1
2 )− η̇−1

1 (λ− η1)(λ− η2)(λ− η̄−1
2 )

− η̇2(λ− η1)(λ− η̄−1
1 )(λ− η̄−1

2 )− η̇−1

2 (λ− η1)(λ− η̄−1
1 )(λ− η2)).
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Finally we plug in the derivatives of the roots of a with respect to t to get ȧ.

ȧ(λ) =

(−η1c1(η1)i
b1(η1)

η2 + η1
−η2c1(η2)i
b1(η2)

)|η1||η2| − η1η2( η1
|η1|
−η1c1(η1)i
b1(η1)

|η2|+ |η1| η2|η2|
−η2c1(η2)i
b1(η2)

)

(|η1||η2|)2

|η1||η2|
η1η2

a(λ) +
η1η2

|η1||η2|
(−−η1c1(η1)i

b1(η1)
(λ− η̄−1

1 )(λ− η2)(λ− η̄−1
2 )

− −η̄
−1
1 c1(η̄−1

1 )i

b1(η̄−1
1 )

(λ− η1)(λ− η2)(λ− η̄−1
2 )− −η2c1(η2)i

b1(η2)
(λ− η1)

(λ− η̄−1
1 )(λ− η̄−1

2 )− −η̄
−1
2 c1(η̄−1

2 )i

b1(η̄−1
2 )

(λ− η1)(λ− η̄−1
1 )(λ− η2)).

(6)

Since we can now write ȧ(λ) down we automatically get ḃ1(λ) from equation
(1) and ḃ2(λ) from equation (2). Which are as follows

(2λac′1 − ac1 − λa′c1)i = 2aḃ1 − ȧb1

⇔(2λac′1 − ac1 − λa′c1)i+ ȧb1

2a
= ḃ1

⇔ ḃ1 =
(2λac′1 − ac1 − λa′c1)i

2a
+
b1

a
2̇a (7)

and

(2λac′2 − ac2 − λa′c2)i = 2aḃ2 − ȧb2

⇔(2λac′2 − ac2 − λa′c2)i+ ȧb2

2a
= ḃ2

⇔ ḃ2 =
(2λac′2 − ac2 − λa′c2)i

2a
+
b2

2a
ȧ. (8)
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ḃ1 =
(2λac′1 − ac1 − λa′c1)i

2a
+
b1

2a

(−η1c1(η1)i
b1(η1)

η2 + η1
−η2c1(η2)i
b1(η2)

)|η1||η2| − η1η2( η1
|η1|
−η1c1(η1)i
b1(η1)

|η2|+ |η1| η2|η2|
−η2c1(η2)i
b1(η2)

(|η1||η2|)2
)

|η1||η2|
η1η2

a(λ) +
η1η2

|η1||η2|
(−−η1c1(η1)i

b1(η1)
(λ− η̄−1

1 )(λ− η2)(λ− η̄−1
2 )− −η̄

−1
1 c1(η̄−1

1 )i

b1(η̄−1
1 )

(λ− η1)(λ− η2)(λ− η̄−1
2 )

− −η2c1(η2)i

b1(η2)
(λ− η1)(λ− η̄−1

1 )(λ− η̄−1
2 )− −η̄

−1
2 c1(η̄−1

2 )i

b1(η̄−1
2 )

(λ− η1)(λ− η̄−1
1 )(λ− η2))

ḃ2 =
(2λac′2 − ac2 − λa′c2)i

2a
+
b2

2a

(−η1c1(η1)i
b1(η1)

η2 + η1
−η2c1(η2)i
b1(η2)

)|η1||η2| − η1η2( η1
|η1|
−η1c1(η1)i
b1(η1)

|η2|+ |η1| η2|η2|
−η2c1(η2)i
b1(η2)

)

(|η1||η2|)2

|η1||η2|
η1η2

a(λ) +
η1η2

|η1||η2|
(−−η1c1(η1)i

b1(η1)
(λ− η̄−1

1 )(λ− η2)(λ− η̄−1
2 )− −η̄

−1
1 c1(η̄−1

1 )i

b1(η̄−1
1 )

(λ− η1)(λ− η2)(λ− η̄−1
2 )

− −η2c1(η2)i

b1(η2)
(λ− η1)(λ− η̄−1

1 )(λ− η̄−1
2 )− −η̄

−1
2 c1(η̄−1

2 )i

b1(η̄−1
2 )

(λ− η1)(λ− η̄−1
1 )(λ− η2)).
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4.3 Vector field V2

We want to proceed almost like in 4.1 to get another vector field, which we
will call V2. We will again limit ourselves on the case that b1 and b2 have two
distinct roots other than one. Thus the obtained vector field is again only
exemplary. This time we want to have c1(1) = 0 and c2(1) = 1. Thus many
of the conditions from 4.1 simply switch to the other corresponding equation.
This gives us the following conditions:

1. b1(1) = 0, ḃ1(1) = 0

2. b2(1) = 0, ḃ2(1) = 0

3. c1(1) = 0

4. c2(1) = 1

5. Q(1) = 0

6. a(1) 6= 0

7. all polynomials satisfy the reality condition
8. c1, c2 satisfy the additional conditions from the proof of Lemma (4.3)

We already now that Q has the form

Q(λ) = (λ− 1)(q0λ+ q0) , where q0, q1 ∈ C.

We also know that

Q′(1) = q0 + q1

and

Q′′(1) = 2q0.

Now we want to repeat the procedure from the proof of Lemma 4.3, where
we differentiated equation (3) with respect to λ and then evaluated it at 1.
Thus we get

q0 + q1 =
b1(1)

a(1)

and

2q0 =

[
1− a′(1)

a(1)

]
b′1(1) + b′′1(1)

a(1)
.



4 WHITHAM DEFORMATIONS 43

The latter yields

q0 =

[
1− a′(1)

a(1)

]
b′1(1) + b′′1(1)

2a(1)
.

Which in return gives us

q1 =
b1(1)

a(1)
− q0

⇒ q1 =
b1(1)

a(1)
−

[
1− a′(1)

a(1)

]
b′1(1) + b′′1(1)

2a(1)

⇒ q1 =

[
1 + a′(1)

a(1)

]
b′1(1)− b′′1(1)

2a(1)
.

Therefore we can already write down Q corresponding to V2.

Q(λ) = (λ− 1)(q0λ+ q1)

⇔Q(λ) = (λ− 1)
([1− a′(1)

a(1)

]
b′1(1) + b′′1(1)

2a(1)
λ+

[
1 + a′(1)

a(1)

]
b′1(1)− b′′1(1)

2a(1)

)

⇒Q(λ) = (λ− 1)

([
1− a′(1)

a(1)

]
b′1(1) + b′′1(1)

)
λ+ [1 + a′(1)

a(1)

]
b′1(1)− b′′1(1)

2a(1)
(9)

⇒Q(λ) = (λ− 1)
(λ+ 1)b′1(1) + (1− λ)a

′(1)
a(1)

b′1(1)− (1− λ)b′′1(1)

2a(1)
(10)

For simplicity we also assume that b1 has two additional distinct roots at β11

and at β12 and that b2 has two additional distinct roots at β21 and at β22.
Thus we are in case 1 of the proof and get the following conditions on c1:

I. c1(1) = 0

II. c′1(1) = 0

III. c1(β11) =
Q(β11)a(β11)

b2(β11)

IV. c1(β12) =
Q(β12)a(β12)

b2(β12)
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By solving this system of equations for the coefficients of c1 we obtain

c1(λ) =

(λ− 1)2
(( Q(β21)a(β21)

(β21 − β22)(β21 − 1)2b1(β21)
− Q(β22)a(β22)

(β21 − β22)(β22 − 1)2b1(β22)

)
λ

+
Q(β22)a(β22)

(β22 − 1)2b1(β22

− β21

( Q(β21)a(β21)

(β21 − β22)(β21 − 1)2b1(β21)

− Q(β22)a(β22)

(β21 − β22)(β22 − 1)2b1(β22)

)
.

(11)

Likewise we get the following four conditions for c2, where β21 and β22 denote
the two distinct roots of b2:

I. c2(1) = 1

II. c′2(1) =
1

2
+
a′(1)

2a(1)

III. c2(β21) =
Q(β21)a(β21)

b1(β21)

IV. c2(β22) =
Q(β22)a(β22)

b1(β22)

Solving these four conditions yields the following result for c2.
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c2(λ) = 1 + (λ− 1)

(
β21 − 1

(β2
22 − 1)(β21 − 1)− (β22 − 1)(β2

21 − 1)

[Q(β22)a(β22)− b1(β22)

b1(β22)(β22 − 1)
− 1

2
− a′(1)

2a(1)

− (β22 − 1)(Q(β21)a(β21)− b2(β21))

(β21 − 1)b1(β21)(β21 − 1)
+

β22 − 1

2(β21 − 1)
+

(β22 − 1)a′(1)

2(β21 − 1)a(1)

]
λ2 +

λ

(β21 − 1)

(Q(β21)a(β21)− b1(β21)

b1(β21)(β21 − 1)

− 1

2
− a′(1)

2a(1)
− (β21 − 1)(β2

21 − 1)

(β2
22 − 1)(β21 − 1)− (β22 − 1)(β2

21 − 1)

[
Q(β22)a(β22)− b1(β22)

b1(β22)(β22 − 1)
− 1

2
− a′(1)

2a(1)
− (β22 − 1)(Q(β21)a(β21)− b1(β21))

(β21 − 1)b1(β21)(β21 − 1)
+

β22 − 1

2(β21 − 1)
+

(β22 − 1)a′(1)

2(β21 − 1)a(1)

])
+

1

2
+
a′(1)

2a(1)
− β21 − 1

(β2
22 − 1)(β21 − 1)− (β22 − 1)(β2

21 − 1)

[Q(β22)a(β22)− b1(β22)

b2(β22)(β22 − 1)
− 1

2
− a′(1)

2a(1)

− (β22 − 1)(Q(β21)a(β21)− b1(β21))

(β21 − 1)b1(β21)(β21 − 1)

+
β22 − 1

2(β21 − 1)
+

(β22 − 1)a′(1)

2(β21 − 1)a(1)

]
− 1

(β21 − 1)(Q(β21)a(β21)− b1(β21)

b1(β21)(β21 − 1)
− 1

2
− a′(1)

2a(1)
− (β21 − 1)(β2

21 − 1)

(β2
22 − 1)(β21 − 1)− (β22 − 1)(β2

21 − 1)[Q(β22)a(β22)− b1(β22)

b1(β22)(β22 − 1)
− 1

2
− a′(1)

2a(1)
− (β22 − 1)(Q(β21)a(β21)− b1(β21))

(β21 − 1)b1(β21)(β21 − 1)
+

β22 − 1

2(β21 − 1)
+

(β22 − 1)a′(1)

2(β21 − 1)a(1)

])
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For ȧ we get

ȧ(λ) =

(−η1c1(η1)i
b1(η1)

η2 + η1
−η2c1(η2)i
b1(η2)

)|η1||η2| − η1η2( η1
|η1|
−η1c1(η1)i
b1(η1)

|η2|+ |η1| η2|η2|
−η2c1(η2)i
b1(η2)

)

(|η1||η2|)2

|η1||η2|
η1η2

a(λ) +
η1η2

|η1||η2|
(−−η1c1(η1)i

b1(η1)
(λ− η̄−1

1 )(λ− η2)(λ− η̄−1
2 )

− −η̄
−1
1 c1(η̄−1

1 )i

b1(η̄−1
1 )

(λ− η1)(λ− η2)(λ− η̄−1
2 )− −η2c1(η2)i

b1(η2)
(λ− η1)

(λ− η̄−1
1 )(λ− η̄−1

2 )− −η̄
−1
2 c1(η̄−1

2 )i

b1(η̄−1
2 )

(λ− η1)(λ− η̄−1
1 )(λ− η2))

(12)

with c1 as listed above. Finally we can also calculate ḃ1 and ḃ2, which are

ḃ1 =
(2λac′1 − ac1 − λa′c1)i

2a
+
b1

2a
ȧ (13)

and

ḃ2 =
(2λac′2 − ac2 − λa′c2)i

2a
+
b2

2a
ȧ. (14)
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5 Commuting vector fields
Unfortunately the vector fields V1 and V2 have a rather unwieldy form. To
see that they are well defined we have to show that they commute. That
means that their Lie bracket needs to vanish. However since these terms are
so unhandy the commutation in the most general case is too big of an effort.
Therefore we will restrain this chapter on the commutation in the space T.

5.1 Rotation of the spectral parameter

In [5.3] of [CS16] it is shown that the rotation λ 7→ ei∗ϕλ acts on the frame
bundle F2 by

aϕ(λ) = a(eiϕλ), b1ϕ(λ) = b1(eiϕλ) and b2ϕ = b2(eiϕλ)

and preserves the spectral curves. Thus we can rotate λ in a way that we
rotate η1η2

|η1||η2| , which is also on S1, to one.

5.2 Commutation in T

We need to divide the c1 and c2 in both vector fields by y to obtain q̇ from
chapter (4). With this small adaption we see that since a change in b1 only
changes ḃ1 and not ḃ2 and vice versa these vector fields change µ1 and µ2

uniquely at λ = 1. Hence we get a mapping

ϕ : S2
1 → S1 × S1.

This mapping is in fact a composition that maps a ∈ S2
1 to the flows corre-

sponding to V1 and V2. That in return map again to S1 × S1.

In [Hoe15] [6,7] it is shown that any a that has four pairwise distinct roots
and additionally has one as highest and also as lowest coefficient induces a
period lattice. Due to [CS16] [5.3] or (5.1) any a in S2

1 can be transformed
into an aω that has one as highest. Hence for any such a ∈ S2

1 there ex-
ists a period lattice that can be uniquely defined by two generators. This
includes unique b1 and b2. Since the Witham deformations are continuous
deformations it is uniquely defined how b1 and b2 move along when t changes.
Furthermore, we notice that T is locally bijective to S2

1. Since the derivative
of ϕ is invertible we obtain local (a, b1, b2) with the corresponding µ1, µ2 that
belong to the generators of the lattice at λ = 1. Thus ϕ is differentiable
and locally invertible. Thus by Schwarz’s Theorem the vector fields have to
commute in T.
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6 Cayley transform and Witham deformations
Cayley transformations are special Möbius transformations. We try to trans-
form the polynomial y to eventually get simpler expressions of the vector
fields V1 and V2. Let ỹ denote the transformed polynomial. We need to
reverse the mapping from definition (2.8), which is

λ(x) =
x− i
x+ i

⇔ λ(x+ i) = (x− i)
⇔ xλ− x = −i− iλ)

⇔ x(λ− 1) = −i− iλ

⇔ x =
−i− λ
λ− 1

.

Then

y2 = λa(λ)
Cayley Transform⇒ ỹ2 = (1 + x2)a(x), (15)

where

i) x ∈ R
ii) a(x) ∈ R ∀x ∈ R
iii) the highest coefficient of a is one.

6.1 Whitham equation under Cayley transform

With the same argumentation as in section (4) we get

dqk = 2πi
bk(x)

(1 + x2)ỹ
dx,

Θk =
2πibkdx

ỹ(1 + x2)

and

q̇ =
2πick(x)

ỹ
. (16)

Thus we can start with the Whitham equation

∂q̇

∂x
=

∂

∂t

2πibk
ỹ(1 + x2)

∣∣∣∣
t=0

⇔ ∂

∂x

2πick(x)

ỹ
=

∂

∂t

2πibk
ỹ(1 + x2)

∣∣∣∣
t=0

.
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By differentiating with chain and product rule we get:

⇒2πic′kỹ − ỹ′2πick
ỹ2

=
2πiḃkỹ(1 + x2)− ˙̃y(1 + x2)2πibk

ỹ2(1 + x2)2

∣∣∣∣
t=0

⇔
2πic′k

√
(1 + x2)a− 2xa+(1+x2)a′

2
√

(1+x2)a
2πick

(1 + x2)a

=
2πiḃk√
a(1 + x2)

− (1 + x2)ȧ2πibk

2a(1 + x2)3
√
a(1 + x2)

⇔ 2πic′k√
a(1 + x2)

− (2xa+ (1 + x2)a′)πick√
(1 + x2)3a3

=
2πiḃk√
a(1 + x2)3

− πibkȧ√
a3(1 + x2)3

·
√
a3(1+x2)3

πi⇔ 2(1 + x2)ac′k − (2xa+ (1 + x2)a′)ck = 2ḃka− bkȧ

Hence we get equations (1C) and (2C), which are the corresponding equations
to (1) and (2) under the Cayley transformation.

2(1 + x2)ac′1 − (2xa+ (1 + x2)a′)c1 = 2ḃ1a− b1ȧ (1C)

2(1 + x2)ac′2 − (2xa+ (1 + x2)a′)c2 = 2ḃ2a− b2ȧ (2C)

The operation c2·(2C)-c1·(1C) yields:

c22(1 + x2)ac′1 + c2(2xa+ (1 + x2)a′)c1 − c12(1 + x2)ac′2

− c1(2xa+ (1 + x2)a′)c2 = 2ḃ1ac2 − c2b1ȧ− 2c1ḃ2a+ c1b2ȧ

⇔
2(1 + x2)ac′1c2 − 2(1 + x2)ac′2c1 − 2ḃ1ac2 + 2c1ḃ2a = ȧ(c1b2 − c2b1)

With the same reasoning regarding the vanishing at roots of a as in section
(4) we get

c1b2 − c2b1 = Qa (3C)

with deg(b1) = deg(b2) = 2, deg(Q) = 1 and deg(a) = 4. One of the c poly-
nomials has degree three, while the other one has degree two. Hence both
sides are of degree five.

Equation (16) yields that for ck with degree three the highest coefficient
ck3 is one.
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6.2 Vector field Ṽ1

By looking at equation (1C) in the case that c1 has degree three one might
be tempted to think that the left-hand side has degree 8 while the right-hand
side only has degree 6. We will resolve these issues by simple calculations.
In this case we know:

deg(b1) = deg(b2) = 2 and deg(ḃ1) = deg(ḃ2) = 2

deg(a) = 4⇒ deg(a′) = 3 and deg(ȧ) = 3

deg(c1) = 3⇒ deg(c′1) = 2

deg(c2) = 2⇒ deg(c′2) = 1

Thus deg(2(1 + x2)ac′1) = 8 and deg((2xa+ (1 + x2)a′)c1) = 8 while we only
get deg(ḃ1a) = 6. We will use the following parametrizations:

a(x) = a4x
4 + a3x

3 + a2x
2 + a1x+ a0

c1(x) = c13x
3 + c12x

2 + c11x+ c0

We will simply look at the sum of coefficients of x8 which is

2x2a4x
43c13x

2 − 2xa4x
4c13x

3 − x24a4x
3c13x

3

= 6a4c13x
8 − 2a4c13x

8 − 4a4c13x
8 = 0.

Thus the right-hand side has maximal degree seven. But it needs to have
degree six therefore we will also look at the coefficients of x7.

2x2a4x
42c12x+ 2x2a3x

33c13x
2 − 2xa4x

14c12x
2 − 2xa3x

3c13x
2

− x24a4x
13c12x

2 − 3x2a3x
2c13x

3

= 4a4c12x
7 + 6a3c13x

7 − 2a4c12x
7 − 2a3c13x

7 − 4a4c12x
7 − 3a3c13x

7

= a3c13x
7 − 2a4c12x

7

So these coefficients do not vanish on their own. But we still require the left
side to have degree six. Thus we need

a3c13 − 2a4c12 = 0

⇒ a3c13 = 2a4c12

⇔ c12 =
a3c13

2a4

a4=1⇒ c12 =
a3c13

2
c13=1⇒ c12 =

a3

2
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In chapter four we mainly collected conditions to solve these three equations.
With the condition above we already found one. We will now gain another
condition through (2C). We are in the case that deg(c1) = 3 and deg(c2) = 2
and a has degree four. Therefore the left-hand side of (2C) has maximal
degree seven whereas the right-hand side only has degree six. Thus we need
to look at the coefficients of x7 on the left side. These are

2x2a4x
42c22x− 2xa4x

4c22x
2 − x24a4x

3c22x
22

= 4a4c22x
7 − 2a4c22x

7 − 4a4c22x
7

= −2a4c22x
7.

Since we require the right-hand side to have degree six and a4 = 1 we can
conclude that

c22 = 0.

We will now look at (3C) to already determine the two highest coefficients
of Q, which has degree two. Let Q be parametrized through

Q(x) = q1x+ q0.

Equation (3c) has degree five on both sides. Thus we want to compare the
coeffcients of x5. By equating the coefficients we gain

c13b22 = q1a4

⇔ q1 =
c13b22

a4

c13=1=a4⇔ q1 = b22.

Equating the coefficients of x4 yields:

c13b21 + c12b22 + c22b12 = q1a3 + q0

c12=
a3
2⇒ c13b21 +

a3b22

2
+ c22b12 = q1a3 + q0

c22=0⇒ c13b21 +
a3b22

2
= q1a3 + q0

c13=1⇒ b21 +
a3b22

2
= q1a3 + q0

q1=b22⇒ b21 +
a3b22

2
= b22a3 + q0

⇔ q0 = b21 −
a3b22

2
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Thus we already get an expression for Q, which is

Q(x) = b22x+ b21 −
a3b22

2
. (17)

Now we want to solve equation (3C) for the polynomials c1 and c2. Since we
want to equate the coefficients it is a good idea to recap the parametrization
of the polynomials a,Q, b1, b2, c1 and c2.

a(x) = x4 + a3x
3 + a2x

2 + a1x+ a0

Q(x) = b22x+ b21 −
a3b22

2
b1(x) = b12x

2 + b11x+ b10

b2(x) = b22x
2 + b21x+ b20

c1(x) = x3 +
a3

2
x2 + c1x+ c0

c2(x) = c21x+ c20

With these parametrizations equation (3C) becomes

b22x
5 + b21x

4 + b20x
3 +

a3b22

2
x4 +

a3b21

2
x3 +

a3b20

2
x2 + c11b22x

3 + c11b21x
2

+ c11b20x+ c10b22x
2 + c10b21x+ c10b20 − c21b12x

3 − c21b11x
2 − c21b10x

− c20b12x
2 − c20b11x− c20b10 = b22x

5 + b22a3x
4 + b22a2x

3 + b22a1x
2

+ b22a0x+ (b21 −
a3b22

2
)x4 + (b21 −

a3b22

2
)a3x

3 + (b21 −
a3b22

2
)a2x

2

+ (b21 −
a3b22

2
)a1x+ (b21 −

a3b22

2
)a0.

With equating the coefficients of x3, x2, x and x0 we get the following system
of equations.

I. b20 +
a3b21

2
+ c11b22 − c21b12 = b22a2 − (b21 −

a3b22

2
)a3

II.
a3b10

2
+ c11b21 + c10b22 − c21b11 − c20b12 = b22a1 + (b21 −

a3b22

2
)a2

III. c11b20 + c10b21 − c21b10 − c20b11 = b22a0 + (b21 −
a3b22

2
)a1

IV. b20c10 − b10c20 = (b21 −
a3b22

2
)a0



6 CAYLEY TRANSFORM AND WITHAM DEFORMATIONS 53

This is equivalent to:

I. b22c11 − b12c21 =22 a2 − (b21 −
a3b22

2
)a3 − b20 −

a3b21

2

II. b21c11 + b22c10 − b11c21 − b12c20 = b22a1 + (b21 −
a3b22

2
)a2 −

a3b10

2

III. c11b20 + c10b21 − c21b10 − c20b11 = b22a0 + (b21 −
a3b22

2
)a1

IV. b20c10 − b10c20 = (b21 −
a3b22

2
)a0

Solutions to it are:
c11 = (a2

3b
2
10b21b22 − a2

3b10b11b20b22 − a3b
3
10b22 + a3b

2
10b12b20

− a3b
2
10b

2
21 − a2a3b

2
10b

2
22 + a3b10b11b20b21 + a1a3b10b11b

2
22 + a2a3b10b12b20b22

− a1a3b10b12b21b22 + a0a3b10b12b
2
22 − a0a3b

2
11b

2
22 + a0a3b11b12b21b22

− a0a3b
2
12b20b22 + 2b2

10b20b21 + 2a1b
2
10b

2
22 − 2b10b11b

2
20 + 2a2b10b11b20b22

+ 2a1b10b12b
2
21 + 2a0b

2
11b21b22 − 2a0b11b12b

2
21 + 2a0b

2
12b20b21)

/(2(b2
10b

2
22 − b10b11b21b22 − 2b10b12b20b22 + b10b12b

2
21

+ b2
11b20b22 − b11b12b20b21 + b2

12b
2
20))

c10 = −(a2
3b

2
10b

2
22 − a2

3b10b11b21b22 − a2
3b10b12b20b22 + a2

3b
2
11b20b22

+ a3b
2
10b12b21 − a3b

2
10b21b22 − a3b10b11b12b20 + a3b10b11b

2
21 + a3b10b12b20b21

+ a2a3b10b12b21b22 − a1a3b10b12b
2
22 − a3b

2
11b20b21 − a2a3b11b12b20b22

+ a0a3b11b12b
2
22 + a1a3b

2
12b20b22 − a0a3b

2
12b21b22 + 2b2

10b20b22 − 2a2b
2
10b

2
22

− 2b10b11b20b21 + 2a2b10b11b21b22 − 2b10b12b
2
20 + 2a2b10b12b20b22

− 2a2b10b12b
2
21 + 2a0b10b12b

2
22 + 2b2

11b
2
20 − 2a2b

2
11b20b22

+ 2a2b11b12b20b21 + 2a1b11b12b20b22 − 2a0b11b12b21b22

− 2a1b
2
12b20b21 − 2a0b

2
12b20b22 + 2a0b

2
12b

2
21)

/(2(b2
10b

2
22 − b10b11b21b22 − 2b10b12b20b22 + b10b12b

2
21

+ b2
11b20b22 − b11b12b20b21 + b2

12b
2
20))

c21 = −(2b11b
3
20 + 2a0b12b

3
21 − 2b10b

2
20b21 − a0a3b10b

3
22 − a3b10b12b

2
20

+ 2a0b10b21b
2
22 + 2a0b11b20b

2
22 − 2a1b10b20b

2
22 − 2a0b11b

2
21b22 − 2a1b12b20b

2
21

+ a3b10b20b
2
21 + 2a1b12b

2
20b22 − 2a2b11b

2
20b22 + 2a2b12b

2
20b21 − a3b11b

2
20b21

+ a3b
2
10b20b22 + a2

3b11b
2
20b22 − 4a0b12b20b21b22 + 2a1b11b20b21b22

+ a0a3b11b21b
2
22 + a0a3b12b20b

2
22 − a1a3b11b20b

2
22 + a2a3b10b20b

2
22

− a0a3b12b
2
21b22 − a2a3b12b

2
20b22 − a2

3b10b20b21b22 + a1a3b12b20b21b22)

/(2(b2
10b

2
22 − b10b11b21b22 − 2b10b12b20b22 + b10b12b

2
21

+ b2
11b20b22 − b11b12b20b21 + b2

12b
2
20))
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c20 = (2b12b
3
20 − 2a0b10b

3
22 − a3b10b

3
21 + 2b10b20b

2
21 − 2b10b

2
20b22 − 2b11b

2
20b21

− a0a3b11b
3
22 + a1a3b10b

3
22 + 2a0b11b21b

2
22 + 2a0b12b20b

2
22 − 2a1b11b20b

2
22

+ 2a2b10b20b
2
22 − 2a0b12b

2
21b22 + a3b11b20b

2
21 − 2a2b12b

2
20b22 − a3b12b

2
20b21

− a3b
2
10b21b22 − a2

3b10b20b
2
22 + a2

3b10b
2
21b22 + a2

3b12b
2
20b22 + a3b10b11b20b22

+ 2a1b12b20b21b22 + a3b10b20b21b22 + a0a3b12b21b
2
22 − a1a3b12b20b

2
22

− a2a3b10b21b
2
22 + a2a3b11b20b

2
22 − a2

3b11b20b21b22)

/(2(b2
10b

2
22 − b10b11b21b22 − 2b10b12b20b22 + b10b12b

2
21

+ b2
11b20b22 − b11b12b20b21 + b2

12b
2
20))

We notice that

Resultant(b1, b2) =

∣∣∣∣∣∣∣∣
b12 b11 b10 0
0 b12 b11 b10

b22 b21 b20 0
0 b22 b21 b20

∣∣∣∣∣∣∣∣ = b2
10b

2
22 − b10b11b21b22 − 2b10b12b20b22

+ b10b12b
2
21 + b2

11b20b22 − b11b12b20b21 + b2
12b

2
20.

That is exactly one half times the denominator of c11, c10, c21 and c20. It
therefore becomes 2Resultant(b1, b2).

We also want to show a more sophisticated approach to solving (3C) for
c1 and c2. Therefore let them be parametrized through

c1(x) = (γ11x+ γ10) + (γ13x+ γ12)b1(x), with γ13, γ12, γ11 and γ10 ∈ R

and

c2(x) = (γ21x+ γ20) + (γ23x+ γ22)b2(x), with γ23, γ22, γ21 and γ20 ∈ R.

To obtain these polynomials we will first solve for the polynomial of degree
one multiplied with bk for k = 1, 2. As above we will pursue the case that c1

has degree three while c2 has degree two, which means respectively that it
has degree one. We will start with c1. After multiplying we obtain

c1(x) = γ13b12x
3 +(γ13b11 +γ12b12)x2 +(γ11 +γ13b10 +γ12b11)x+γ10 +γ12b10.

Since the highest coefficient of c1 has to be one we get

γ13b12 = 1 ⇒ γ13 =
1

b12

.
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We also know that the second highest coefficient of c1 is a3
2
thus we obtain

γ13b11 + γ12b12 =
a3

2

⇔ b11

b12

+ γ12b12 =
a3

2

⇔ γ12 =
a3

2b12

− b11

b2
12

.

Now we also want to obtain γ11 and γ10. To do this we will use the roots
β11 and β12 of b1 and plug these in equation (3C). Since both b1 and b2 are
real polynomials of degree two we can easily calculate their roots with the
quadratic formula. Thus we get

β11 =
−b11 +

√
b2

11 − 4b12b10

2b12

,

β12 =
−b11 −

√
b2

11 − 4b12b10

2b12

,

β21 =
−b21 +

√
b2

21 − 4b22b20

2b22

,

and

β22 =
−b21 −

√
b2

21 − 4b22b20

2b22

.

For x = β11 we get

c1(β11)b2(β11) = Q(β11)a(β11)

⇔ γ11β11 + γ10 =
Q(β11)a(β11)

b2(β11)
. (18)

For x = β12 we get

c1(β12)b2(β12) = Q(β12)a(β12)

⇔ γ11β12 + γ10 =
Q(β12)a(β12)

b2(β12)
. (19)

Thus it only remains to solve the system of equations (18) and (19) for γ11

and γ10. By (18)-(19) we get

γ11 =
Q(β11)a(β11)b2(β12)−Q(β12)a(β12)b2(β11)

(β11 − β12)b2(β12)b2(β11)
. (20)
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Inserting (20) in (18) gives us

γ10 =
β11Q(β12)a(β12)b2(β11)− β12Q(β11)a(β11)b2(β12)

(β11 − β12)b2(β12)b2(β11)
. (21)

Thus we received c1. As we already know the denominator of these coeffi-
cients needs to contain the Resultant of b1 and b2. And we can easily see
that this is true by calculating b2(β12)b2(β11):(

b22

(−b11 −
√
b2

11 − 4b12b10

2b12

)2

+ b21
−b11 −

√
b2

11 − 4b12b10

2b12

+ b20

)
(
b2

(−b11 +
√
b2

11 − 4b12b10

2b12

)2

+ b21
−b11 +

√
b2

11 − 4b12b10

2b12

+ b20

)
= b2

20 +
b10b

2
21

b12

+
b2

10b
2
22

b2
12

− 2b10b20b22

b12

− b11b20b21

b12

+
b2

11b20b22

b2
12

− b10b11b21b22

b2
12

=
Res(b1, b2)

b2
12

Thus we have the Resultant in the denominator. We will now use the same
procedure again to obtain c2. We know that the degree of c2 is one due to the
calculations on page 51. Thus the polynomial of degree one that is multiplied
by b2 needs to vanish. Hence γ13 = γ12 = 0. It remains to solve for γ11 and
γ10. We will do this by inserting the roots β21 and β22 of b2 in equation (3C).
For x = β21 we obtain

c2(β21)b1(β21) = Q(β21)a(β21)

⇔ γ21β21 + γ20 =
Q(β21)a(β21)

b1(β21)
. (22)

For x = β22 we obtain

c2(β22)b1(β22) = Q(β22)a(β22)

⇔ γ22β22 + γ20 =
Q(β22)a(β22)

b1(β22)
. (23)

By (22)-(23) we receive

γ21 =
Q(β21)a(β21)b1(β22)−Q(β22)a(β22)b1(β21)

(β21 − β22)b1(β22)b1(β21)
. (24)

By inserting the expression from (24) in (22) we get

γ20 =
β21Q(β22)a(β22)b1(β21)− β22Q(β21)a(β21)b1(β22)

(β21 − β22)b1(β22)b1(β21)
. (25)
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With the same calculations as above we can show that

b1(β22)b1(β21) =
Res(b1, b2)

b2
22

.

Thus we already solved equation (3C) for Q, c1 and c2. Now we can commit
ourselves to find ȧ, ḃ1 and ḃ2. We will start by creating a new equation (4C)
out of (1C) and (2C) by calculating b2·(1C)−b1·(2C). This gives us:

2b2(1 + x2)ac′1 − 2(2xa+ (1 + x2)a′)(c1b2 − c2b1)− 2b1(1 + x2)ac′2

= 2ḃ1ab2 − 2ḃ2ab1

(3C)⇔
2b2(1 + x2)ac′1 − 2(2xa+ (1 + x2)a′)Qa− 2b1(1 + x2)ac′2

= 2ḃ1ab2 − 2ḃ2ab1

:2a⇔

b2(1 + x2)c′1 − (2xa+ (1 + x2)a′)Q− b1(1 + x2)c′2 = ḃ1b2 − ḃ2b1 (4C)

We will now paramterize ḃ1 as follows

ḃ1(x) = ḃ11x+ ḃ10 + κb1b1(x),

where ḃ11, ḃ12 and κb1 are real numbers and ḃ2 through

ḃ2(x) = ḃ21x+ ḃ20 + κb2b2(x),

where ḃ21, ḃ22 and κb2 are real numbers. We will undergo the same procedure
to determine these coefficients as we did for the polynomials c1 and c2. Thus
we will start to determine ḃ11 and ḃ12 through the roots of b1. Inserting β11

in (4C) gives us

b2(β11)(1 + β2
11)c′1(β11)− 2β11c1(β11)b2(β11)− (1 + β2

11)a′(β11)Q(β11)

= ḃ1(β11)b2(β11)

⇔

ḃ11β11 + ḃ10 =

b2(β11)(1 + β2
11)c′1(β11)− 2β11c1(β11)b2(β11)− (1 + β2

11)a′(β11)Q(β11)

b2(β11)
.
(26)

For β12 we get

ḃ11β12 + ḃ10 =

b2(β12)(1 + β2
12)c′1(β12)− 2β12c1(β12)b2(β12)− (1 + β2

12)a′(β12)Q(β12)

b2(β12)
.
(27)
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Now (26)-(27) gives us

ḃ11(β11 − β12) =

b2(β11)(1 + β2
11)c′1(β11)− 2β11c1(β11)b2(β11)− (1 + β2

11)a′(β11)Q(β11)

b2(β11)

− b2(β12)(1 + β2
12)c′1(β12)− 2β12c1(β12)b2(β12)− (1 + β2

12)a′(β12)Q(β12)

b2(β12)
.

Hence we get

ḃ11 = [b2(β12)(b2(β11)(1 + β2
11)c′1(β11)− 2β11c1(β11)b2(β11)

− (1 + β2
11)a′(β11)Q(β11))− b2(β11)(b2(β12)(1 + β2

12)c′1(β12)

− 2β12c1(β12)b2(β12)− (1 + β2
12)a′(β12)Q(β12))]

/[(β11 − β12)b2(β11)b2(β12)].

(28)

Since we know that b2(β11)b2(β12)b2
12 = Res(b1, b2) and that c1 is a polynomial

with Res(b1, b2) in its denominator ḃ11 is an expression with Res(b1, b2)2 in
its denominator. With ḃ11 and (26) we will now obtain ḃ10, which is as follows

ḃ10 = [β11b2(β11)(b2(β12)(1 + β2
12)c′1(β12)− 2β12c1(β12)b2(β12)

− (1 + β2
12)a′(β12)Q(β12))− β12b2(β12)(b2(β11)(1 + β2

11)c′1(β11)

− 2β11c1(β11)b2(β11)− (1 + β2
11)a′(β11)Q(β11))]/[(β11 − β12)b2(β11)b2(β12)].

(29)

This expression can also be written with Res(b1, b2) in its denominator. It
remains now to determine the constant κb1 . We will do this by using equation
(1C) and equating coefficients of x6. With the latest parametrization of c1

the left-hand side of (1C) becomes

2(1 + x2)(x4 + a3x
3 + a2x

2 + a1x+ a0)(γ11 + (γ13 + γ12)(2b12x+ b11)

+ γ13(b12x
2 + b11x+ b10))− 2x(x4 + a3x

3 + a2x
2 + a1x+ a0)(γ11x+ γ10

+ (γ13x+ γ12)(b12x
2 + b11x+ b10))− (1 + x2)(4x3 + 3a3x

2 + 2a2x+ a1)

(γ11x+ γ10 + (γ13x+ γ12)(b12x
2 + b11x+ b10)).

Thus the coefficients of x6 on the left side are
4γ13b12 + 2γ11 + 2γ12b11 + 2γ13b10 + 2γ13b10 + 2a3γ13b11

+ 4a3γ12b12 + 2a3γ13b11 + 4a2γ13b12 + 2a2γ13b12 − 2γ11

− 2γ13b10 − 2γ12b11 − 2a3γ13b11 − 2a3γ12b12 − 2a2γ13b12

− 4γ13b12 − 4γ11 − 4γ13b10 − 4γ12b11 − 3a3γ13b11

− 3a3γ12b12 − 2a2γ13b12

= −a3γ12b12 − 4γ11 − 4γ13b10 − 4γ12b11 − a3γ13b11.
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Due to the special parametrization of b1 the coefficient on the right side is
κb1b12. Thus we get

κb1 =
a3γ12b12 − 4γ11 − 4γ13b10 − 4γ12b11 − a3γ13b11

b12

. (30)

Therefore we calculated all coefficients of ḃ1. Now we want to do the same
procedure once again to determine all coefficients of ḃ2. We will start with
ḃ21 and ḃ20, which we will get through the roots of b2. Inserting β21 in (4C)
gives us

b1(β21)(1 + β2
21)c′2(β21)− 2β21c2(β21)b1(β21)− (1 + β2

21)a′(β21)Q(β21)

= ḃ2(β21)b1(β21)

⇔

ḃ21β21 + ḃ20 =

b1(β21)(1 + β2
21)c′2(β21)− 2β21c2(β21)b1(β21)− (1 + β2

21)a′(β21)Q(β21)

b1(β21)
.
(31)

For β22 we get

ḃ21β22 + ḃ20 =

b1(β22)(1 + β2
22)c′2(β22)− 2β22c2(β22)b1(β22)− (1 + β2

22)a′(β22)Q(β22)

b1(β22)
.
(32)

Through (31)-(32) we obtain

ḃ21 = [b1(β22)(b1(β21)(1 + β2
21)c′2(β21)− 2β21c2(β21)b1(β21)

− (1 + β2
21)a′(β21)Q(β21))− b1(β21)(b1(β22)(1 + β2

22)c′2(β22)

− 2β22c2(β22)b1(β22)− (1 + β2
22)a′(β22)Q(β22))]

/[(β21 − β22)b1(β21)b1(β22)].

(33)

With ḃ21 and (31) we will now obtain ḃ20, which is as follows

ḃ20 = [β21b1(β21)(b1(β22)(1 + β2
22)c′2(β22)− 2β22c1(β22)b1(β22)

− (1 + β2
22)a′(β22)Q(β22))− β22b1(β22)(b1(β21)(1 + β2

21)c′2(β21)

− 2β21c2(β11)b1(β21)− (1 + β2
21)a′(β21)Q(β21))]/[(β21 − β22)b1(β21)b1(β22)].

(34)

Now it remains to calculate κb1 . We will equate the coefficients of x6 in
equation (2C). Due to the parametrization of c2 = γ21x + γ20 the left-hand
side becomes

2(1 + x2)(x4 + a3x
3 + a2x

2 + a1x+ a0)γ21 − 2x(x4 + a3x
3 + a2x

2 + a1x

+ a0)(γ21x+ γ20)− (1 + x2)(4x3 + 3a3x
2 + 2a2x+ a1)(γ21x+ γ20).
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Thus the coefficients of x6 are

2γ21 − 2γ21 − 4γ21 = −4γ21.

The coefficient of x6 on the right-hand side are 2κb2b22. Thus we get

κb2 =
−2γ21

b22

. (35)

The final step is to obtain ȧ from either (1C) or (2C) since the solution of
ḃ2 is much shorter we will use (2C) to solve for ȧ. By subtracting ḃ2a and
dividing by −b2 we get

ȧ =
2(1 + x2)ac′2 − (2xa+ (1 + x2)a′)c2 − 2ḃ2a

−b2

. (36)

With the parametrizations of the polynomials we get:

ȧ =
2(1 + x2)aγ21 − (2xa+ (1 + x2)a′)(γ21x+ γ20)− 2(ḃ21x+ ḃ20 + κb2b2)a

−b2

In the way we determined the polynomials ȧ, ḃ1 and ḃ2 under the conditions
that deg(c2) = 2 we could now also determine them again in the same way
under the condition that deg(c1) = 2 that would lead to another vector field
Ṽ2. In this case c1 would actually have degree one as did c2 in the previous
case. Therefore the terms for ḃ2 would be longer. All the procedures used in
this chapter can be applied to the second case. The next task would be to
try simplifying these polynomials.
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7 Conclusion
At the end of this work we want to summarize the findings and observations
we obtained in this thesis and point to interesting topics that could be in-
vestigated in another thesis or even in research papers.

We have seen that the space S2
1 is a submanifold of the space of spectral

curves H2 that describe constant mean curvature tori. To investigate this
submanifold we introduced infinitisemal Whitham deformations, which led
to tangent vector fields on the frame bundle F. We were able to prove that
given the values of c1(1) and c2(1) we can uniquely solve three equations for
these tangent vectors.

In a second step we calculated two explicit vector fields V1 and V2. Un-
fortunately the formulas that describe these vector fields are rather long and
unwieldy. Thus further calculations were left out. Nevertheless we concluded
that the entries of ḃ1 and ḃ2 were linearly independent. Thus these vector
fields commute in T.

With these vector fields we could define a mapping ϕ : S2
1 → S1 × S1. It

would be necessary to extend this mapping to boundary points of S2
1 to get

(a, b1, b2) in the boundary of T. It would then be possible to integrate these
vector fields.

In [KHS17] the corresponding solutions of the Sinh-Gordon equation are
calculated with the restrain that the highest coefficient of a is one. We gave
a rotation of λ such that all the coefficients of a can be transformed to an aω
with highest coefficient one.

An interesting step for future research would be to find reasoning for ϕ to
be a bijection. Thus any point on S1 × S1 would be in one to one and onto
correspondence to a spectral curve in S2

1.

At the end of this thesis we used Cayley transforms on the spectral pa-
rameter to transform it into a real variable. We obtained real polynomials
with shorter terms than in chapter four. Hence it was a success. But the
polynomials are still very long. Nevertheless one could try to calculate the
Lie bracket or use computer programs to simplify the polynomials in another
thesis.
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