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Abstract

The elliptic sinh-Gordon equation arises in the context of surface theory. We investigate
solutions of spectral genus two. These solutions are parametrized by a certain class of Poly-
nomial Killing fields, which can be regarded as periodic flows on complex matrix-valued
polynomials of degree three. The determinant is an integral of motion with respect to these
flows and the main part of this elaboration examines the corresponding isospectral sets in
dependence on the position of the determinant’s roots. Thereby, solutions of spectral genus
one and zero are investigated as well. The determinants with pairwise distinct zeroes gen-
erate lattices of periods. Finally, the mapping from the set of these determinants to the set
of equivalent classes of isomorphic lattices is continuously extended to those with several
roots.

Zusammenfassung

Die elliptische sinh-Gordon Gleichung entsteht im Kontext von Flächentheorie. Wir unter-
suchen Lösungen vom sogenannten Spektralgeschlecht zwei. Diese Lösungen werden durch
eine Klasse polynomialer Killingfelder parametrisiert, welche man als periodische Flüsse auf
komplexen Polynomen von Grad drei mit Matrixkoeffizienten auffassen kann. Deren Deter-
minante ist bezüglich dieser Flüsse ein Integral der Bewegung und das Hauptaugenmerk
meiner Ausarbeitung liegt auf der Untersuchung der resultierenden Isospektralmengen in
Abhängigkeit von der Lage der Determinantennullstellen. Dabei werden auch Lösungen
von Spektralgeschlecht eins und null untersucht. Die Determinanten mit paarweise ver-
schiedenen Nullstellen induzieren Periodengitter. Zuletzt wird die Abbildung, welche diese
Determinanten auf die Äquivalenzklassenmenge isomorpher Gitter abbildet, auf solche mit
mehrfachen Nullstellen stetig fortgesetzt.
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1. INTRODUCTION RICARDO PEÑA HOEPNER

1 Introduction

The elliptic, nonlinear sinh-Gordon equation

∆u + sinh(2u) = 0

for twice partially differentiable functions u : R2 → R has applications in the context of
surfaces of constant mean curvature. Due to its algebraic structure, there are infinite-type
as well as finite-type solutions. The finite-type class is parametrized in the following way:
For each nonnegative integer g ∈ N0 - the so-called spectral genus - there exists a family
of solutions whose complexity increases with g. The simplest case g = 0 corresponds only
to the constant zero solution (vacuum solution). The case g = 1 can be expressed in terms
of elliptic functions and is well-known (as the Delaunay solution). In this thesis, solutions
of spectral genus g = 2 are investigated. Almost all of these solutions are doubly periodic
and the examination of the corresponding lattices of periods forms a crucial element of this
work.
Now a short overview of the following chapters is given.

The second chapter puts emphasis on various fundamental findings regarding both submani-
folds and orbits of ordinary differential equations. This will matter tremendously during the
analysis of solutions of the Lax equations on compact isospectral sets.

The third chapter deals with commutators of vector fields. We will figure out how a com-
mutator is defined and that it basically is a vector field itself. Furthermore, we will prove
a relationship between the commutator of two vector fields and the commutativity of the
respective local flows.

In the fourth chapter the set of potentials is introduced as the set on which the parametrization
of solutions will be defined. Moreover, we investigate the moduli space being the space of
corresponding determinant polynomials.

Chapter five examines Polynomial Killing fields which are defined on the potential set from
chapter four and parametrize solutions of the sinh-Gordon equation of spectral genus g = 2.
By means of chapters two and three, we are able to make clear statements on the behavior of
flows induced by the Lax equations.

In chapter six the isospectral sets are structurally analyzed in dependence on the roots’ posi-
tion of the determinant polynomials from the moduli space. Most essentially, we will inves-
tigate whether the flows induced by the Lax equations act transitively on the isospectral sets.

The seventh chapter deals with the lattice of periods induced by particular determinant poly-
nomials. We understand what isomorphy of lattices means and start to analyze the mapping
which transfers such determinant polynomials on the set of equivalent classes of isomorphic
lattices by giving an intuition of the mapping’s behavior on the boundary of its domain.

Chapter eight summarizes the most important results and gives a short outlook on possible
future research topics.
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2 Preliminaries

In this chapter, the main tools of the upcoming analysis are presented. One of the most
important theorems of this thesis is the Implicit Function Theorem A.2, which forms a fun-
damental part of every Advanced Calculus lecture. Closely connected is the study of subman-
ifolds as spaces where - heuristically spoken - the Implicit Function Theorem is applicable.
The second part of this section quickly repeats basic results from the theory of ordinary dif-
ferential equations.

2.1 Submanifolds

The main parts of this chapter originate Königsberger [1]. We denote by Rd
0 ⊂ Rn the d-

dimensional subspace
Rd

0 := {x ∈ Rn | xd+1 = · · · = xn = 0}.

Furthermore, for the entire chapter we denote by V, W finite-dimensional, normed K-vector
spaces.

Definition 2.1 (Submanifold).
A nonempty set M ⊂ V is called d-dimensional differentiable submanifold of V if, given any
point a ∈ M, there is a neighbourhood O ⊂ V of a, an open set O′ ⊂ Rn and a diffeomor-
phism φ : O→ O′ such that

φ(M ∩O) = Rd
0 ∩O′. (2.1)

Such a diffeomorphism φ is called a chart for M and the set {φi}i∈I of charts is called an atlas
for M if {Oi}i∈I is a cover of M.

Obviously, the dimension d is uniquely determined since any diffeomorphism maintains di-
mensions. For the rest of this work, differentiable submanifold will be abbreviated submanifold.

Example 2.2.
The sphere Sn−1 is a (n− 1)-dimensional submanifold of Rn:
Let N = (0, . . . , 0, 1) be the north pole and S = (0, . . . , 0,−1) the south pole. Consider the
stereographic projections φK : Rn \ K → Rn−1

0 with K ∈ {S, N}. Stereographic projections
are diffeomorphisms and thus, φN and φS are charts. Furthermore, Sn−1 \ N and Sn−1 \ S
form a cover of Sn−1, so {φS, φN} is an atlas for Sn−1.

The next theorem characterizes submanifolds locally as solutions of certain equation sys-
tems.

Theorem 2.3.
A nonempty subset M of a n-dimensional normed vector space V is a d-dimensional submanifold
if and only if given any point a ∈ M there is a neighbourhood O ⊂ V of a as well as (n − d)
continuously differentiable functions f1, . . . , fn−d : O→ R such that

(i) M ∩O = {x ∈ O | f1(x) = · · · = fn−d(x) = 0} and

(ii) the differentials d f1(a), . . . , d fn−d(a) in a are linearly independent.
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Proof.
First, let M be a submanifold and a ∈ M arbitrary. Consider the Cartesian components of
the mapping φ = (φ1, . . . , φn) and define

fk := φd+k with k = 1, . . . , n− d.

Then (i) follows by (2.1).
Since φ is a diffeomorphism, dφ(a) = (dφ1(a), . . . , dφn(a)) : V → Rn is an isomorphism and
(ii) directly follows.
Conversely, assume the condition above is satisfied and select an arbitrary a ∈ M. Notice
that d f1(a), . . . , d fn−d(a) ∈ L(V, R) and dim(L(V, R)) = dim(V)dim(R) = n. By (ii) and
Basis Extension Theorem, there exist d linear maps l1, . . . , ld ∈ L(V, R) such that

l1, . . . , ld, d f1(a), . . . , d fn−d(a)

form a basis of L(V, R). Consider the map

g : O→ Rn, x 7→ (l1(x), . . . , ld(x), f1(x), . . . , fn−d(x)) .

By construction,

dg(a) : V → R, x 7→ (l1, . . . , ld, d f1(a), . . . , d fn−d(a))(x)

is an isomorphism and we can apply the Inverse Function Theorem A.1 on g at the point a.
Thus, there is an open set U′ ⊂ O containing a such that the restriction

φ := g
∣∣
U′ : U′ → O′

with O′ := g(U′) is a diffeomorphism. Finally, (i) yields

φ(M ∩U′) = Rd
0 ∩O′

and (2.1) is satisfied. q.e.d.

Definition 2.4.
x ∈ O ⊂ V is called regular point of a differentiable map f : O → W when the differential
d f (x) : V →W is onto.
Furthermore, y ∈ W is called regular value of f when all x ∈ f−1(y) are regular points or
when the pre-image is empty.

Corollary 2.5.
Let O ⊂ V be an open set, f : O→W a continuously differentiable map, c ∈W a regular value and
M := f−1(c) its level set. If M is nonempty, then M is a submanifold of V with dimension

dim M = dim V − dim W.

Proof.
We need to check the conditions of Theorem 2.3. Let a ∈ M. Since a is a regular point, the
differential d f (a) : V →W is a surjective and linear mapping which implies

dim(im(d f (a))) = dim(W)

4
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and by the Rank Theorem we have

dim(V) = dim(ker(d f (a))) + dim(im(d f (a)))
= dim(ker(d f (a))) + dim(W)

or simply dim(V) ≥ dim(W). Let n := dim V and d := dim V − dim W ≥ 0. Notice the fact
that dim V/ker(d f (a)) = n − d and with the Fundamental Theorem on Homomorphisms
we obtain that there exists an isomorphism i : W → Rn−d. Consider the mapping

F : V → Rn−d, x 7→ i ◦ f (x)− C

with C := i(c). We define O := V and focus on the Cartesian components

F = (F1, . . . , Fn−d)

which are continuously differentiable. Furthermore,

M ∩V = M = F−1(0) = {x ∈ V | F1(x) = · · · = Fn−d(x) = 0}

by construction. Last but not least, given any a ∈ M the differential dF(a) = i ◦ d f (a) is
surjective, so the components dF1, . . . , dFn−d are linearly independent. q.e.d.

Definition 2.6.
Let M ⊂ V be a nonempty subset. A vector v ∈ V is called tangent vector of M in the point
a ∈ M if there exists a continuously differentiable curve

α : (−ε, ε)→ M

with ε > 0, α(0) = a and α′(0) = v.
The set of tangent vectors of M in the point a ∈ M is called tangent cone of M in a and will be
denoted as Ta M.
In addition, if Ta M is a vector space, we call it tangent space.

Theorem 2.7.
Let M be a d-dimensional differentiable submanifold of V. Then given any arbitrary point a ∈ M the
following statements hold:

(i) Ta M is a R-vector space of dimension d.

(ii) If there is a continuously differentiable function f : O → W on an open set O ⊂ V and a
regular value c ∈W with pre-image M = f−1(c), then

Ta M = ker d f (a).

In particular, when V = Rn and W = Rm,

Ta M = {v ∈ Rn | f ′(a)v = 0}.

Proof.
For (i), consider first the simplest d-dimensional submanifold M̃ = Rd

0 ∩O′ for O′ ⊂ Rn

open and ã ∈ M̃. Obviously,

Tã(R
d
0 ∩O′) = Rd

0 (2.2)
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and therefore, (i) holds. Regarding the general case, take a chart φ : O→ O′with the notation
from Definition 2.1 and notice that φ establishes a one-to-one relationship between the curve
α : (−ε, ε)→ M ∩O of M and the curve α̃ := φ ◦ α of M̃. Making use of the chain rule gives

α′(0) = (dφ(a))−1 α̃′(0)

and consequently with (2.2)

Ta M = Ta(M ∩O) = (dφ(a))−1 Tφ(a)(R
d
0 ∩O′) = (dφ(a))−1 Rd

0.

This proves (i).
For (ii), consider a curve α : (−ε, ε)→ M and recognize the fact that by assumption, f ◦ α = c
and therefore, d f (a)α′(0) = 0. Hence,

Ta M ⊂ ker d f (a).

Since c is a regular value, d f (a) : V → W maps surjectively and therefore with the help of
the Rank-Nullity Theorem as well as Corollary 2.5 and (i) we obtain

dim ker d f (a) = dim V − dim(im(d f (a)))
= dim V − dim W
= dim M
= d
= dim Ta M

and (ii) is proven. q.e.d.

2.2 Orbits of Ordinary Differential Equations

This subsection presents some useful facts which will be essential during our analysis of the
Lax equations. The proof of the Picard-Lindelöf Theorem is presented in its full length since
some arguments work analogously in the ensuing proposition. This proposition provides
information about the solution’s behaviour close to the maximal interval’s boundaries. Main
parts of the argumentation originate from Barreira et al. [6].

Theorem 2.8 (Picard-Lindelöf).
Let f : D → Rn be a continuous function on an open set D ⊂ R×Rn which is locally Lipschitz
continuous with respect to the second variable. Then for any point (t0, x0) ∈ D, there exists a unique
solution of the initial value problem

x′(t) = f (t, x),
x(t0) = x0

in some open interval containing t0.

Proof.
Let C(a, b) be the set of all bounded continuous functions y : (a, b) → Rn. We need to find

6
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a uniquely defined function x ∈ C(a, b) in an appropriate open interval (a, b) containing t0
such that

x(t) = x0 +
∫ t

t0

f (s, x(s))ds (2.3)

for every t ∈ (a, b). As this will be done with Banach’s Fixed Point Theorem, we need to
construct a metric space (X, d) such that the transformation of the right hand side of (2.3)
maps X to itself and is a contraction. Choose constants a < t0 < b and β > 0 such that the
compact set satisfies

K := [a, b]× B(x0, β) ⊂ D.

Moreover, we define

X := {x ∈ C(a, b) | x(t) ∈ B(x0, β) for t ∈ (a, b)} ⊂ C(a, b),

and show that X is a complete metric space with distance

d(x, y) = sup{‖x(t)− y(t)‖ : t ∈ (a, b)}.

Take any Cauchy sequence (xk)k∈N in X. Since (C(a, b), d) is a complete metric space, it
converges to a function x ∈ C(a, b) and even x ∈ X holds because

‖x(t)− x0‖ = lim
p→∞
‖xk(t)− x0‖ ≤ β.

As mentioned before, we want to apply Banach Fixed-Point Theorem on X. Consider the
continuous transformation

T(x)(t) := x0 +
∫ t

t0

f (s, x(s))ds

and notice

‖T(x)(t)− x0‖ ≤ ‖
∫ t

t0

f (s, x(s))ds‖ ≤ (b− a)M

with
M := max{‖ f (t, x) | (t, x) ∈ K‖} < ∞

by compactness of the set K and continuity of the function f . Thus, for b − a sufficiently
small we have (b− a)M ≤ β and T(X) ⊂ X. Furthermore, given x, y ∈ X, locally Lipschitz
continuity yields

‖T(x)(t)− T(y)(t)‖ ≤
∫ t

t0

L‖x(s)− y(s)‖ds ≤ (b− a)Ld(x, y),

where L is the Lipschitz constant for the compact set K. Therefore,

d(T(x), T(y)) ≤ (b− a)Ld(x, y)

for all x, y ∈ X and with b− a sufficiently small we have

(b− a)L < 1

in addition to (b− a)M ≤ β and T is a contraction in the complete metric space X. By Banach
Theorem, we conclude that T has a unique fixed point x ∈ X. q.e.d.

7
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Proposition 2.9.
Let f : D → Rn be a continuous function on an open set D ⊂ R×Rn which is locally Lipschitz
continuous with respect to the second variable. If a solution x(t) of the equation x′(t) = f (t, x) has
maximal interval (a, b) ⊂ R, then for each compact set K ⊂ D there exists ε > 0 such that

(t, x(t)) ∈ D \ K for every t ∈ (a, a + ε) ∪ (b− ε, b)

(when a = −∞ the first interval is empty and when b = ∞ so is the second).

Proof (Sketch).
We consider only the endpoint b since the argument for a is entirely analogous. We proceed
by contradiction, so we assume that for some compact set K ⊂ D there exists a sequence
(tp)p∈N in R with tp ↑ b for p→ ∞ and

(tp, x(tp)) ∈ K for every p ∈N.

Since K is a compact subset of R×Rn, any sequence in K has a convergent subsequence with
limit in K. In particular, there exists a subsequence (tpk)k∈N and a point (b, x0) ∈ K such that

lim
k→∞

(tpk , x(tpk)) = (b, x0).

Take α, β > 0 such that the following compact set satisfies

Kαβ := [b− α, b + α]× B(x0, β) ⊂ D

and define the finite real number

M := sup{‖ f (t, x)‖ : (t, x) ∈ Kαβ} < ∞.

As in the proof of Picard-Lindelöf, there exist α, β > 0 with

2Mα ≤ β.

Moreover, for each k ∈N we consider the compact set

Lk :=
[
tpk −

α

2
, tpk +

α

2

]
× B

(
x(tpk),

β

2

)
and notice the fact that by construction Lk ⊂ Kαβ for sufficiently small p holds true. There-
fore,

2 sup{‖ f (t, x)‖ : x ∈ Lk}
α

2
≤ 2M

α

2
≤ β

2
.

In complete analogy to the proof of Picard-Lindelöf, one can show that there exists a unique
solution

y : (tpk −
α

2
, tpk +

α

2
)→ Rn

of the initial value problem

y′(t) = f (t, y)
y(tpk) = x(tpk).

Since tpk +
α
2 > b for p sufficiently large, this means we have found an extension of the

solution x to the interval (a, tpk +
α
2 ). This contradicts the fact that b is the right bound of the

maximal interval. q.e.d.

8
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Theorem 2.10 (Criterion for Global Solutions).
Let f : D → Rn be a continuous function on an open set D ⊂ Rn which is locally Lipschitz
continuous and consider the autonomous equation

x′(t) = f (x(t)). (2.4)

Then any solution of this equation whose orbit is contained in a compact subset of D is global.

Proof.
Let F : R× D → Rn be the function F(t, x) = f (x). Then we can rewrite (2.4) in the form

x′(t) = F(t, x(t)).

By Picard-Lindelöf Theorem 2.8, there exists a unique solution of the respective initial value
problem in some open intervall (a, b) ⊂ R comprising t0. We want to figure out how this
maximal interval looks like. Given an orbit {x(t) | t ∈ (a, b)} of a solution x(t) which is
contained in some compact set K ⊂ D and m ∈ R consider the compact set

Km := [−m, m]× K ⊂ R× D.

From Proposition 2.9 follows that there exists εm > 0 such that

(t, x(t)) /∈ Km for every t ∈ (a, a + εm) ∩ (b− εm, b).

Hence, for any given m ∈ R we have found some t ∈ (a, b) so that one of the following
scenarios holds true:

(i) t /∈ [−m, m] and x(t) ∈ K

(ii) t ∈ [−m, m] and x(t) /∈ K

(iii) t /∈ [−m, m] and x(t) /∈ K.

But the cases (ii) and (iii) are impossible due to

{x(t) | t ∈ (a, b)} ⊂ K.

Consequently, for each m ∈ R there exists εm > 0 such that

t /∈ [−m, m] for all t ∈ (a, a + εm) ∩ (b− εm, b).

Regarding m→ ∞ we conclude that a = −∞ and b = ∞. q.e.d.

9
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3 Commutators of Vector Fields

In the upcoming chapters we will be confronted with some ordinary differential equations
of the form

∂u
∂x

= [E, F](x).

Therefore, we need to understand what the right hand side means and how a commutator
of vector fields is defined - is it a vector field itself and what properties does it have? All of
these questions will be answered in this section without using manifold terminology. The
main results are to a large extent extracted from Schmidt [8].

Definition 3.1.
A vector field on an open subset Ω ⊂ Rn is a vector-valued map E : Ω → Rn. Given a vector
field E, a point x0 ∈ Ω and an open interval Ix0 ⊂ R containing zero, a parametric curve

x : Ix0 → Ω, t 7→ x(t) = (x1(t), . . . , xn(t))

with Cartesian coordinates is called integral curve of E passing through x0 ∈ Ω if it satisfies
x(0) = x0 and if it is a solution of the autonomous system of differential equations

x′(t) = E(x(t)). (3.1)

A continuously differentiable vector field E : Ω→ Rn is Lipschitz continuous and therefore
induces for x0 ∈ Ω a uniquely defined maximal integral curve by Picard Lindelöf 2.8 (in the
sense of Ix0 being maximal). We can assign two objects to such a vector field:

i) The local flow φE of E is defined on

WE :=
⋃

x0∈Ω

Ix0 × {x0} ⊂ R×Ω

and describes maximal integral curves

φE : WE → Rn, φE(t, x0) := x(t).

In particular, a local flow satisfies

∂φE

∂t
(t, x0) = E(φE(t, x0)). (3.2)

When Ix0 = R for all x0 ∈ Ω, thus WE = R×Ω, the local flow is global.

ii) The first-order linear differential operator LE : C1(Ω) → C(Ω) computes the directional
derivative along E:

(LE f )(x) = E(x) · ∇ f (x) =
n

∑
i=1

Ei(x)
∂ f (x)

∂xi
.

A quick calculation shows that this operator satisfies the product rule

LE( f g) = (LE f )g + f (LEg).

11



SOLUTIONS OF THE SINH-GORDON EQUATION OF SPECTRAL GENUS TWO

Two continuously differentiable vector fields E, F on Ω ⊂ Rn have commuting local flows
φE, φF if

φE(s, φF(t, x)) = φF(t, φE(s, x))

for all s, t ∈ R, x ∈ Ω such that (t, x) ∈WF, (s, φF(t, x)) ∈WE and (s, x) ∈WE, (t, φE(s, x)) ∈
WF. Notice the fact that this set is always a neighbourhood of {0} × {0} ×Ω.
In order to measure the degree of non-commutativity between the local flows φE and φF we
look at a smooth function f on Ω and for appropriate s, t, x the difference is

4 f (s, t, x) := f (φE(s, φF(t, x))− f (φF(t, φE(s, x)).

Obviously, 4 f is a differentiable function which equals zero whenever s = 0 or t = 0 and
consequently, at (s, t) = (0, 0) the first partial derivatives with respect to s or t disappear.
This justifies having a closer look at second partial derivatives.

Lemma 3.2.
The mixed partial derivative of4 f with respect to s and t at (s, t) = (0, 0) equals the commutator of
the corresponding differential operators applied on f :

∂2

∂t∂s

∣∣∣∣
s=t=0

4 f (s, t, x) = (LFLE f − LELF f )(x).

Proof.
Calculation yields

∂

∂s

∣∣∣∣
s=0

f (φE(s, φF(t, x)) =
(
∇ f (φE(s, φF(t, x))) · ∂φE

∂s
(s, φF(t, x))

) ∣∣∣∣
s=0

= (∇ f (φE(s, φF(t, x))) · E(φE(s, φF(t, x))))
∣∣∣∣
s=0

= ∇ f (φF(t, x)) · E(φF(t, x))
= (LE f )(φF(t, x)).

The third equation holds due to the fact that integral curves solve the system of ordinary
differential equations (3.2). For reasons of simplicity, we substitute the function LE f by g
and obtain

∂

∂t

∣∣∣∣
t=0

(LE f )(φF(t, x)) =
∂

∂t

∣∣∣∣
t=0

g(φF(t, x))

=

(
∇g(φF(t, x)) · ∂φF

∂t
(t, x)

) ∣∣∣∣
t=0

= (∇g(φF(t, x)) · F(φF(t, x)))
∣∣∣∣
t=0

= (LFg)(φF(t, x))
∣∣∣∣
t=0

= (LFLE f )(x).

In total, we obtain
∂2

∂t∂s

∣∣∣∣
s=t=0

f (φE(s, φF(t, x)) = (LFLE f )(x).

12
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By Schwarz’ Theorem, the mixed partial derivative of the other term can be calculated in
reverse order such that the calculation works accordingly. q.e.d.

With other words, we established a relationship between the (non-)commutativity of local
flows and above mentioned differential operators. In the following, we want to specify this
relationship.
Inspired by Lemma 3.2, we define the commutator of operators

[LF, LE] := LFLE − LELF

which, at first sight, wrongly seems to be a second-order operator.

Lemma 3.3.
LFLE − LELF is a first-order linear differential operator and satisfies the product rule.

Proof.
Let E = (E1, . . . , En) and F = (F1, . . . , Fn) the Cartesian components of the vector fields E, F
on the open set Ω ⊂ Rn. Product rule yields

LFLE f =
n

∑
i=1

Fi
∂

∂xi

(
n

∑
j=1

Ej
∂

∂xj
f

)
=

n

∑
i,j=1

Fi
∂Ej

∂xi

∂

∂xj
f +

n

∑
i,j=1

FiEj
∂2 f

∂xi∂xj
.

When subtracting LELF from this expression the last sum disappears by Schwarz’ Theorem
and we obtain

(LFLE − LELF) f =
n

∑
i,j=1

(
Fi

∂Ej

∂xi
− Ei

∂Fj

∂xi

)
∂ f
∂xj

.

Thus, [LF, LE] equals a first-order differential operator LG with G(x) = E′(x)F(x)− F′(x)E(x).
In particular, the commutator is linear and the product rule holds. q.e.d.

Remark 3.4.
More generally, one can quickly show by calculation that if any two differential operators
satisfy the product rule, the corresponding commutator also satisfies the product rule.

Definition 3.5.
The vector field

G : Ω→ Rn, x 7→ G(x) = E′(x)F(x)− F′(x)E(x)

with LG = [LF, LE] is called commutator of the vector fields F and E and will be denoted
[E, F]. The operation [·, ·] is called Lie Bracket.

Lemma 3.6 (Properties of the Lie Bracket).
Let E, F and D be sufficiently differentiable vector fields defined on an open subset Ω ⊂ Rn.
The Lie Bracket satisfies the following identities:

(a) Bilinearity: For a, b ∈ R,

[aE + bF, D] = a[E, D] + b[F, D]

[D, aE + bF] = a[D, E] + b[D, F]

13
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(b) Antisymmetry:
[E, F] = −[F, E]

(c) Jacobi-Identitiy:
[E, [F, D]] + [F, [D, E]] + [D, [E, F]] = 0.

Proof.
(a) and (b) are obvious consequences of the definition and can be proven quickly using lin-
earity of differentiation.
For Jacobi-Identity, the corresponding differential operators need to be taken into consider-
ation. Linearity of differentiation yields

LE+F+D = LE + LF + LD,

so we are allowed to look at the single differential operators and add them afterwards. The
definition of the Lie Bracket results in

L[E,[F,D]] = [LE, L[F,D]] = [LE, LFLD − LDLF]

= LELFLD − LELDLF − LFLDLE + LDLFLE

and analogously,

L[F,[D,E]] = LFLDLE − LFLELD − LDLELF + LELDLF

L[D,[E,F]] = LDLELF − LDLFLE − LELFLD + LFLELD.

The sum of these three terms equals zero. Consequently, the differential operator and, re-
spectively, the vector field disappear. q.e.d.

Remark 3.7.
Lemma 3.6 demonstrates that the space of first order linear vector fields on an open subset
Ω ⊂ R together with the commutator [·, ·] form a Lie Algebra.

Theorem 3.8.
Let E and F be continuously differentiable vector fields defined on an open subset Ω ⊂ Rn.
The local flows φE and φF commute if and only if the commutator [E, F] disappears.

Proof.
When the flows commute, 4 f equals zero for all (s, t, x) such that 4 f is well-defined. In
particular, the second mixed partial derivative with respect to s and t in (s, t) = (0, 0) equals
zero as well as [LF, LE] by Lemma 3.2. By definition of the vector field commutator,

[E, F] = 0

holds.
Conversely, assume that [E, F] disappears. We define for (s, x) ∈ WE and sufficiently small
t ∈ R the differentiable local flow

φs : (t, x) 7→ φE(−s, φF(t, φE(s, x))).

Notice that t needs to be chosen small enough in order to obtain

(t, φE(s, x)) ∈WF and (−s, φF(t, φE(s, x))) ∈WE.

14
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This is possible since

(0, φE(s, x)) ∈WF and (−s, φF(0, φE(s, x))) ∈WE.

Any continuously differentiable local flow of this form belongs to a vector field, so denote
by Bs the vector field associated to φs. We want to determine what Bs looks like by using the
fact that the flow φs solves (3.2). In our case, this means

∂φs

∂t
(t, x) = Bs(φs(t, x)).

By setting t = 0 we obtain the explicit form using the chain rule

Bs(x) =
∂φs

∂t
(t, x)

∣∣∣∣
t=0

=
∂

∂t

∣∣∣∣
t=0

φE(−s, φF(t, φE(s, x)))

= φ′E(−s, φF(t, φE(s, x)))
∣∣∣∣
t=0

∂

∂t

∣∣∣∣
t=0

φF(t, φE(s, x))

= φ′E(−s, φE(s, x)) F(φE(s, x)).

Here - and for the remaining part of the proof - φ′E denotes the derivative with respect to the
space coordinate.
Our next goal is to differentiate for a given x ∈ Ω the map s 7→ Bs(x). In doing so, it is
quite challenging to differentiate the part φ′E(−s, φE(s, x)) directly. An elegant bypass of this
problem is to employ the convenient property of

Rn → Rn, w 7→ φ′E(−s, φE(s, x))w

being a linear map. More precisely, we avoid the difficulties in calculation by differentiating
its inverse mapping and then use differentiation properties of linear mappings in order to
deduce the desired derivative. To find the inverse function, we look at φE(−s, φE(s, x)) = x,
differentiate both sides with respect to x and obtain using chain rule

φ′E(−s, φE(s, x))φ′E(s, x) = 1. (3.3)

Hence, the inverse function of φ′E(−s, φE(s, x)) must be φ′E(s, x). Applying Schwarz’ Theo-
rem, differentiation with respect to s yields

∂φ′E
∂s

(s, x) =
∂2φE

∂s∂x
(s, x) =

∂2φE

∂x∂s
(s, x) =

∂E(φE(s, x))
∂x

= E′(φE(s, x))φ′E(s, x).

Again, the third equality holds by (3.2) and the fourth by the chain rule.

As a quick excursion, we consider a linear mapping A = A(s) depending on s and its inverse
A−1. Differentiation on both sides of AA−1 = 1 leads to

(
∂

∂s
A)A−1 + A(

∂

∂s
A−1) = 0

15
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and thus,

(
∂

∂s
A) = −A(

∂

∂s
A−1)A.

We apply this relationship on our case (3.3) and obtain

d
ds

φ′E(−s, φE(s, x)) = −φ′E(−s, φE(s, x))E′(φE(s, x))φ′E(s, x)φ′E(−s, φE(s, x))

= −φ′E(−s, φE(s, x))E′(φE(s, x)).

Then we can calculate the derivative of Bs with respect to s

d
ds

Bs(x) = −φ′E(−s, φE(s, x))E′(φE(s, x))F(φE(s, x))

φ′E(−s, φE(s, x))F′(φE(s, x))E(φE(s, x))
= −φ′E(−s, φE(s, x))[E, F](φE(s, x))
= 0.

The last equality is valid since by assumption the commutator [E, F] disappears. Thus, the
mapping s 7→ Bs(x) remains constant for all x ∈ Ω. Setting s = 0 yields φ0 = φF, so B0 = F
and consequently, Bs equals F for all s. In particular, both local flows coincide for sufficiently
small s:

φE(−s, ·) ◦ φF(t, ·) ◦ φE(s, ·) = φs(t, ·) = φF(t, ·).

We conclude by linking φE(s, ·) on both sides

φF(t, ·) ◦ φE(s, ·) = φE(s, ·) ◦ φF(t, ·).

q.e.d.
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4 Potentials

During the next two chapters we will become familiar with the mentioned spectral genus
g = 2 family of solutions of the sinh-Gordon equation.
Before we turn towards the parametrization of solutions, we first analyze properties of the
set it will be defined on by introducing algebraic data. This set will be the set of so-called po-
tentials. Potentials have interesting symmetry-features which will be a subject of discussion
throughout the following pages.

Definition 4.1 (Potentials).
The set of potentials is the following set of cubic polynomials with matrix-valued coeffi-
cients:

P2 :=
{

ζλ =

(
0 −γ−1

0 0

)
+

(
α β
γ −α

)
λ +

(
−ᾱ −γ
−β̄ ᾱ

)
λ2

+

(
0 0

γ−1 0

)
λ3
∣∣∣∣ α, β ∈ C, γ ∈ R+

}
where λ ∈ C is called the spectral parameter.

Every ζλ ∈ P2 can be compactly written as

ζλ =

(
αλ− ᾱλ2 −γ−1 + βλ− γλ2

γλ− β̄λ2 + γ−1λ3 −αλ + ᾱλ2

)
(4.1)

and satisfies the reality condition

λ3 ζ
t
1/λ̄ = λ3

(
ᾱλ−1 − αλ−2 γλ−1 − βλ−2 + γ−1λ−3

−γ−1 + β̄λ−1 − γλ−2 −ᾱλ−1 + αλ−2

)
= −ζλ. (4.2)

Sometimes it will be useful to write ζλ abstractly as
(

A(λ) B(λ)
λC(λ) −A(λ)

)
with complex poly-

nomials A(λ), B(λ), C(λ) of maximal degree two. Then it follows due to the reality condition

λ3 A(λ̄−1) = −A(λ)

λ2 B(λ̄−1) = −C(λ)

λ2 C(λ̄−1) = −B(λ).

Now we are interested in the determinant of ζλ ∈ P2:

det ζλ = −A2(λ)− λB(λ)C(λ)

= −λ2(α− ᾱλ)2 − λ(−γ−1 + βλ− γλ2)(γ− β̄λ + γ−1λ2)

= −λ2(α2 − 2αᾱλ + ᾱ2λ2)− λ(βγλ− β̄βλ2 + βγ−1λ3

− γ2λ2 + β̄γλ3 − λ4 − 1 + β̄γ−1λ− γ−2λ2)

= λ
[
λ4 + (−ᾱ2 − βγ−1 − β̄γ)λ3 + (2αᾱ + ββ̄ + γ2 + γ−2)λ2

+ (−α2 − β̄γ−1 − βγ)λ + 1
]

=: λa(λ).
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By the Fundamental Theorem of Algebra, a(λ) has four (possibly multiple) roots in C \ {0}.
Moreover, the highest and lowest coefficient equal one and therefore, the roots’ product
equals one. This can quickly be verified if we consider λ1, λ2, λ3, λ4 ∈ C to be the roots of
a(λ), compute

a(λ) = (λ− λ1)(λ− λ2)(λ− λ3)(λ− λ4)

and verify after explicitly calculating the products that the lowest coefficient equals

λ1λ2λ3λ4
!
= 1.

Notice that the polynomial a(λ) takes the following form

a(λ) = λ4 + a1λ3 + a2λ2 + ā1λ + 1 (4.3)

with

a1 = −ᾱ2 − βγ−1 − β̄γ ∈ C

a2 = 2αᾱ + ββ̄ + γ2 + γ−2 ∈ R.

Apart from this structural symmetry, the polynomial a(λ) bears even more nice features due
to the properties of ζλ. Consider the following calculation using reality condition of ζλ:

λa(λ) = det ζλ = det(−λ3 ζ t
1/λ̄

) = λ6 det ζ1/λ̄ = λ6 λ̄−1a(λ̄−1) = λ5 a(λ̄−1).

So the a(λ) inherits the reality condition

a(λ) = λ4 a(λ̄−1). (4.4)

In particular, if λ0 is a root of a(λ) another root is given by λ̄−1
0 .

It is obvious that, in general, a(λ) assumes values in the complex plane. However, again by
taking advantage of the suitably structured ζλ, we will demonstrate that

λ−2a(λ) ≥ 0 for λ ∈ S1

holds. To do so, we point out some facts from Linear algebra.

Definition 4.2.
A square matrix A is called skew-Hermitian if its conjugate transpose equals its negative:

At
= −A.

Consider A to be skew-Hermitian, a an eigenvector and λ the respective eigenvalue. Without
loss of generality, we assume āta = 1 (otherwise we could take a

‖a‖ instead of a). Now we
conduct a simple calculation

λ̄ = λ̄āta = ātλ̄a = ātλa
t
= āt Āta = āt(−A)a = −ātλa = −λ

and infer that skew-Hermitian matrices have purely imaginary eigenvalues.
Now consider the very specific case of A being 2× 2, skew-Hermitian and traceless. Since
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the trace equals the sum of its eigenvalues, there exists a real number k ∈ R such that the
eigenvalues are

λ1 = ik, λ2 = −ik.

Consequently, the determinant is real and non-negative, because

det A = λ1λ2 = ik (−ik) = k2 ≥ 0.

Now we are prepared to demonstrate the assertion above.
Obviously,

λ−
3
2 ζλ =

(
αλ−

1
2 − ᾱλ

1
2 −γ−1λ−

3
2 + βλ−

1
2 − γλ

1
2

γλ−
1
2 − β̄λ

1
2 + γ−1λ

3
2 −αλ−

1
2 + ᾱλ

1
2

)

is two-by-two, traceless and, for λ ∈ S1, also skew-Hermitian. Due to the previous precon-
siderations, det(λ−

3
2 ζλ) ≥ 0 for λ ∈ S1 follows directly. As a result, for λ ∈ S1

0 ≤ det(λ−
3
2 ζλ) = λ−3 det(ζλ) = λ−2a(λ)

holds. These properties are not only necessary for ζλ ∈ P2, but even sufficient and fully
characterize a(λ), as shown in the upcoming

Theorem 4.3.
The above features fully characterize the determinant-polynomials a(λ). This means, the following
sets are actually the same:

M2 : = {a ∈ C4[λ] | λa(λ) = det(ζλ) for a ζλ ∈ P2}
= {a ∈ C4[λ] | a(0) = 1, λ4a(λ̄−1) = a(λ), λ−2a(λ) ≥ 0 for λ ∈ S1}.

Proof.
After the above findings, it remains to show ⊃. To do so, given any a(λ) from the lower
set, we need to find appropriate (α, β, γ) ∈ C× C×R+, such that the respective ζλ ∈ P2

satisfies det(ζλ) = λa(λ). Since a(0) = 1 and λ4a(λ̄−1) = a(λ) the polynomial a(λ) is
uniquely defined by the two roots λ1, λ2 ∈ C, namely

a(λ) = (λ− λ1)(λ− λ2)(λ− λ̄−1
1 )(λ− λ̄−1

2 ). (4.5)

Notice that a(0) = 1 implies λ1λ2λ̄−1
1 λ̄−1

2 = 1 and therefore

(λ1λ̄−1
2 )−1 = λ2λ̄−1

1 (4.6)

λ̄1λ−1
1 = λ2λ̄−1

2 (4.7)

holds. Choose α = 0. Then, given β and γ, the ζλ should finally look like

ζλ =

(
0 B(λ)

λC(λ) 0

)
with

B(λ) = −γλ2 + βλ− γ−1 (4.8)
C(λ) = γ−1λ2 − β̄λ + γ. (4.9)
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Knowing the fact that in the end

λa(λ) = det(ζλ) = −λB(λ)C(λ)

must pertain, the idea is to define B and C by distributing the roots of a(λ) in a suitable way
and by constructing γ (and implicitly β) such that the polynomials take the forms (4.8) and
(4.9). Accordingly, we define

B(λ) := −γ(λ− λ1)(λ− λ̄−1
2 ) (4.10)

= −γλ2 + γ(λ1 + λ̄−1
2 )λ− γλ1λ̄−1

2 , (4.11)
C(λ) := γ−1(λ− λ2)(λ− λ̄−1

1 ) (4.12)

= γ−1λ2 − γ−1(λ2 + λ̄−1
1 )λ + γ−1λ2λ̄−1

1 . (4.13)

(4.11) is of the form (4.8) if and only if

γ = (λ1λ̄−1
2 )−

1
2 (4.14)

β = γ(λ1 + λ̄−1
2 ) = (λ1λ̄2)

1
2 + (λ1λ̄2)

− 1
2 . (4.15)

Thus, it remains to examine first, whether these β, γ also make (4.13) look like (4.9) and
second, whether γ ∈ R+.
The first part is easily verified using (4.6), since

γ−1λ2λ̄−1
1 = γ−1(λ1λ̄−1

2 )−1 = (λ1λ̄−1
2 )

1
2 (λ1λ̄−1

2 )−1 = γ

and

γ−1(λ2 + λ̄−1
1 ) = (λ1λ̄−1

2 )
1
2 (λ2 + λ̄−1

1 )

= (λ2λ̄−1
1 )−

1
2 (λ2 + λ̄−1

1 )

= (λ2λ̄1)
1
2 + (λ2λ̄1)

− 1
2

= β̄

hold. For the second part we need to apply the last property of a(λ). It is favourable to
regard it in the explicit form

λ−2a(λ) = λ2 − a1λ + a2 − ā1λ−1 + λ−2 ≥ 0 for λ ∈ S1

with

a1 = λ1 + λ2 + λ̄−1
1 + λ̄−1

2

a2 = (λ̄1λ̄2)
−1 + λ1λ̄−1

1 + λ1λ̄−1
2 + λ2λ̄−1

2 + λ2λ̄−1
1 + λ1λ2.

Define
λ̃ := i

√
λ1λ̄−1

1 = i
λ1√
λ1λ̄1

= i
λ1

|λ1|
∈ S1

and apply the last property using (4.7):

λ̃−2a(λ̃) = −λ1λ̄−1
1 − a1λ̃ + a2 − ā1λ̃−1 − λ̄1λ−1

1

= −λ1λ̄−1
1 − a1λ̃ + a2 − ā1λ̃−1 − λ2λ̄−1

2 ≥ 0

λ̃−2a(−λ̃) = −λ1λ̄−1
1 + a1λ̃ + a2 + ā1λ̃−1 − λ2λ̄−1

2 ≥ 0.
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Adding λ̃−2a(λ̃) and λ̃−2a(−λ̃) yields

(λ̄1λ̄2)
−1 + λ1λ̄−1

2 + λ2λ̄−1
1 + λ1λ2 ≥ 0

which is equivalent to

λ1λ2

(
1

|λ1λ2|2
+

1
|λ1|2

+
1
|λ2|2

+ 1
)
≥ 0.

Since the term in brackets is real and positive, we infer λ1λ2 ≥ 0 and due to a(0) = 1 both
roots are nonzero. As a result,

λ1λ2 > 0

is valid and in particular

γ =

(
λ1

λ̄2

)− 1
2

=

(
λ1λ2

|λ2|2

)− 1
2

> 0.

q.e.d.

Definition 4.4.
The setM2 is called moduli space.

0 <

S1

ϕ
r1

r2

Figure 1: Example of an element a ∈ M2. Roots
r1eiϕ, r−1

1 eiϕ, r2e−iϕ, r−1
2 e−iϕ marked as blue bul-

let points.

Lastly, a relationship between the roots of ζλ and the corresponding polynomial a(λ) is es-
sential. Therefore, we state

Theorem 4.5.
Let ζλ ∈ P2 and det ζλ = λa(λ) with a(λ) ∈ M2.
If λ̃ ∈ C is a root of ζλ, then λ̃ is a double root of a(λ).
Conversely, if λ̃ ∈ S1 is a root of a(λ), then λ̃ is a root of ζλ.

Proof.
Consider

ζλ =

(
A(λ) B(λ)

λC(λ) −A(λ)

)
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with a root λ̃ ∈ C\ {0}. In particular, λ̃ is a root of each of its entries, so there are polynomials
Ã, B̃, C̃ of maximal degree one such that

A(λ) = (λ− λ̃)Ã(λ)

B(λ) = (λ− λ̃)B̃(λ)
C(λ) = (λ− λ̃)C̃(λ).

Now the assertion immediately follows since

λa(λ) = det ζλ = −(λ− λ̃)2 [Ã(λ)− λB̃(λ)C̃(λ)
]

.

For the reverse direction, we first conduct certain preconsiderations. We consider for A, B ∈
Cm×n the so-called Frobenius product (details in Horn et al. [11])

〈A, B〉F := tr(ĀtB)

which is an inner product of matrices. Obviously, the modified Frobenius product

〈A, B〉 :=
1
2
〈A, B〉F =

1
2

tr(ĀtB)

stays an inner product and induces a norm

‖A‖ =
√
〈A, A〉.

Furthermore, remember the fact that the determinant of any 2× 2 matrix A can be expressed
by its trace in the following way

det(A) =
1
2
[
tr(A)2 − tr(A2)

]
.

Consequently, when A is 2× 2, traceless and skew-Hermitian, the modified Frobenius norm
becomes

‖A‖ =
√

1
2

tr(Āt A) =

√
1
2

tr(−A2) =

√
−1

2
tr(A2)

=

√
1
2
[tr(A)2 − tr(A2)] =

√
det A

whereby the second identity comes from the skew-Hermitian property and the fourth from
the assumption of A being traceless. Thus, we have shown that the determinant of 2× 2,
traceless, skew-Hermitian matrices defines a norm (squared). We have already seen that
λ−

3
2 ζλ is such a matrix when λ ∈ S1 so

‖λ− 3
2 ζλ‖2 = det(λ−

3
2 ζλ) = λ−2a(λ) for λ ∈ S1.

Now, let λ̃ ∈ S1 be a root of a(λ). Then the above formula yields

‖λ̃− 3
2 ζλ̃‖

2 = 0

and therefore, by separating points property of norms, ζλ also has the root λ̃. q.e.d.
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5 Polynomial Killing Fields

Now we want to introduce solutions of the sinh-Gordon equation of spectral genus g = 2.
They are parametrized by flows on the set of potentials which are induced by a particular
system of ordinary differential equations, the Lax equations. These so-called Polynomial
Killing fields hold symmetry features with which we acquainted ourselves in the last chapter
and we will see that the determinant function remains constant on the flows.

Definition 5.1.
Polynomial Killing fields are maps ζλ : R2 → P2, (x, y) 7→ ζλ(x, y) which solve the Lax equa-
tions

∂ζλ

∂x
= [ζλ, U(ζλ)]

∂ζλ

∂y
= [ζλ, V(ζλ)] (5.1)

with ζλ(0) = ζ0
λ ∈ P2 and

U(ζλ) :=
(

0 −γ−1

0 0

)
λ−1 +

(
α−ᾱ

2 −γ
γ ᾱ−α

2

)
+

(
0 0

γ−1 0

)
λ

=

(
α−ᾱ

2 −γ−1λ−1 − γ
γ + γ−1λ ᾱ−α

2

)
V(ζλ) :=

(
0 −γ−1

0 0

)
iλ−1 +

(
α+ᾱ

2 γ
γ − α+ᾱ

2

)
i +
(

0 0
−γ−1 0

)
iλ

= i
(

α+ᾱ
2 −γ−1λ−1 + γ

γ− γ−1λ − α+ᾱ
2

)
.

Obviously, the Lax equations (5.1) are a system of autonomous ordinary differential equa-
tions. Intuitively, these equations are well-defined since the product of the λ−1 coefficient of
U(ζλ) and the λ0 coefficient of ζλ equals zero regardless of the multiplication order. There-
fore, the right hand side defines a polynomial of degree four at most. As the product of the
λ coefficient of U(ζλ) and the λ3 coefficient of ζλ equals zero as well, we obtain third degree
polynomials. The same arguments hold for V(ζλ).
We have already seen that any ζλ ∈ P2 consists of a uniquely defined triplet

α = (ζλ)α ∈ C, β = (ζλ)β ∈ C , γ = (ζλ)γ ∈ R+.

Consequently, the prerequisite that ζλ is a map satisfying some differential equations can be
boiled down to some other uniquely defined differential equations on the maps α, β, γ. More
precisely, a Polynomial Killing induces a triple of complex functions

α : R2 → C, (x, y) 7→ (ζλ(x, y))α

β : R2 → C, (x, y) 7→ (ζλ(x, y))β

γ : R2 → R+, (x, y) 7→ (ζλ(x, y))γ

that need to satisfy a preferably manageable system of autonomous ordinary differential
equations. As in their standard form the Lax equations are rather unwieldy, this approach
is often beneficial. In our next step we will discern, what this system of equations in α, β, γ
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concretely looks like. To achieve this, we need to calculate the commutators on the right
hand side of (5.1) and compare the entries with the structure of ζλ. We obtain

ζλU(ζλ) =

(
αλ− ᾱλ2 −γ−1 + βλ− γλ2

γλ− β̄λ2 + γ−1λ3 −αλ + ᾱλ2

)(
α−ᾱ

2 −γ−1λ−1 − γ
γ + γ−1λ ᾱ−α

2

)
=

(
−1 − 1

2 ᾱγ−1 − 1
2 αγ−1

0 −1

)
+

(
−γ−2 + 1

2 α2 − 1
2 αᾱ + βγ 1

2 ᾱβ− 1
2 αβ− αγ + ᾱγ−1

− 1
2 αγ− 1

2 ᾱγ 1
2 α2 − 1

2 αᾱ + β̄γ−1 − γ2

)
λ

+

(
− 1

2 αᾱ + 1
2 ᾱ2 + βγ−1 − γ2 1

2 αγ + 1
2 ᾱγ

− 1
2 αβ̄ + 1

2 ᾱβ̄− αγ−1 + ᾱγ − 1
2 αᾱ + 1

2 ᾱ2 + β̄γ− γ−2

)
λ2

+

(
−1 0

1
2 αγ−1 + 1

2 ᾱγ−1 −1

)
λ3

as well as

U(ζλ)ζλ =

(
α−ᾱ

2 −γ−1λ−1 − γ
γ + γ−1λ ᾱ−α

2

)(
αλ− ᾱλ2 −γ−1 + βλ− γλ2

γλ− β̄λ2 + γ−1λ3 −αλ + ᾱλ2

)
=

(
−1 1

2 ᾱγ−1 + 1
2 αγ−1

0 −1

)
+

(
−γ2 + 1

2 α2 − 1
2 αᾱ + β̄γ−1 − 1

2 ᾱβ + 1
2 αβ + αγ− ᾱγ−1

1
2 αγ + 1

2 ᾱγ 1
2 α2 − 1

2 αᾱ + βγ− γ−2

)
λ

+

(
− 1

2 αᾱ + 1
2 ᾱ2 + β̄γ− γ−2 − 1

2 αγ− 1
2 ᾱγ

1
2 αβ̄− 1

2 ᾱβ̄ + αγ−1 − ᾱγ − 1
2 αᾱ + 1

2 ᾱ2 + βγ−1 − γ2

)
λ2

+

(
−1 0

− 1
2 αγ−1 − 1

2 ᾱγ−1 −1

)
λ3.

For the commutator’s computation, we can regard ζλ and U(ζλ) as linear mappings due to
their two-by-two matrix form. The derivative of a linear mapping equals the mapping itself,
so Definition 3.5 boils down to a subtraction of the latter matrix from the first one:

[ζλ, U(ζλ)] = ζλU(ζλ)−U(ζλ)ζλ

=

(
0 −ᾱγ−1 − αγ−1

0 0

)
+

(
γ2 + βγ− β̄γ−1 − γ−2 −αβ + ᾱβ− 2αγ + 2ᾱγ−1

−αγ− ᾱγ −γ2 − βγ + β̄γ−1 + γ−2

)
λ

+

(
−γ2 + βγ−1 − β̄γ + γ−2 αγ + ᾱγ
−αβ̄ + ᾱβ̄− 2αγ−1 + 2ᾱγ γ2 − βγ−1 + β̄γ− γ−2

)
λ2

+

(
0 0

αγ−1 + ᾱγ−1 0

)
λ3.

In complete analogy, we conduct the same calculation in order to obtain the right hand side
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commutator of (5.1):

ζλV(ζλ) = i
(

αλ− ᾱλ2 −γ−1 + βλ− γλ2

γλ− β̄λ2 + γ−1λ3 −αλ + ᾱλ2

)(
α+ᾱ

2 −γ−1λ−1 + γ
γ− γ−1λ − α+ᾱ

2

)
=

(
−1 1

2 ᾱγ−1 − 1
2 αγ−1

0 −1

)
i

+

(
γ−2 + 1

2 α2 + 1
2 αᾱ + βγ − 1

2 ᾱβ− 1
2 αβ + αγ + ᾱγ−1

− 1
2 αγ + 1

2 ᾱγ 1
2 α2 + 1

2 αᾱ + β̄γ−1 + γ2

)
iλ

+

(
− 1

2 αᾱ− 1
2 ᾱ2 − βγ−1 − γ2 1

2 αγ− 1
2 ᾱγ

− 1
2 αβ̄− 1

2 ᾱβ̄ + αγ−1 + ᾱγ − 1
2 αᾱ− 1

2 ᾱ2 − β̄γ− γ−2

)
iλ2

+

(
1 0

1
2 αγ−1 − 1

2 ᾱγ−1 1

)
iλ3

and

V(ζλ)ζλ = i
(

α+ᾱ
2 −γ−1λ−1 + γ

γ− γ−1λ − α+ᾱ
2

)(
αλ− ᾱλ2 −γ−1 + βλ− γλ2

γλ− β̄λ2 + γ−1λ3 −αλ + ᾱλ2

)
=

(
−1 − 1

2 ᾱγ−1 + 1
2 αγ−1

0 −1

)
i

+

(
γ2 + 1

2 α2 + 1
2 αᾱ + β̄γ−1 1

2 ᾱβ + 1
2 αβ− αγ− ᾱγ−1

1
2 αγ− 1

2 ᾱγ 1
2 α2 + 1

2 αᾱ + βγ + γ−2

)
iλ

+

(
− 1

2 αᾱ− 1
2 ᾱ2 − β̄γ− γ−2 − 1

2 αγ + 1
2 ᾱγ

1
2 αβ̄ + 1

2 ᾱβ̄− αγ−1 − ᾱγ − 1
2 αᾱ− 1

2 ᾱ2 − βγ−1 − γ2

)
iλ2

+

(
1 0

− 1
2 αγ−1 + 1

2 ᾱγ−1 1

)
iλ3.

In total, we obtain

[ζλ, V(ζλ)] = ζλV(ζλ)−V(ζλ)ζλ

=

(
0 ᾱγ−1 − αγ−1

0 0

)
i

+

(
−γ2 + βγ− β̄γ−1 + γ−2 −αβ− ᾱβ + 2αγ + 2ᾱγ−1

−αγ + ᾱγ γ2 − βγ + β̄γ−1 − γ−2

)
iλ

+

(
−γ2 − βγ−1 + β̄γ + γ−2 αγ− ᾱγ
−αβ̄− ᾱβ̄ + 2αγ−1 + 2ᾱγ γ2 + βγ−1 − β̄γ− γ−2

)
iλ2

+

(
0 0

αγ−1 − ᾱγ−1 0

)
iλ3.

By comparing the entries of the commutators with those from ζλ we have justified the fol-
lowing

Lemma 5.2.
Let ζλ be a Polynomial Killing field. Then the entries α, β : R2 → C and γ : R2 → R+ satisfy the
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modified Lax equations:

∂α

∂x
= γ2 + βγ− β̄γ−1 − γ−2 ∂α

∂y
= i
(

γ−2 + βγ− β̄γ−1 − γ2
)

∂β

∂x
= −αβ + ᾱβ− 2αγ + 2ᾱγ−1 ∂β

∂y
= i
(
−αβ− ᾱβ + 2αγ + 2ᾱγ−1

)
∂γ

∂x
= −αγ− ᾱγ

∂γ

∂y
= i (ᾱγ− αγ) .

Proof.
The assertion is a direct consequence of the above commutators’ structure. q.e.d.

Remark 5.3.
Notice that

∂γ

∂x
= −αγ− ᾱγ = −2γ<(α) ∈ R

and

∂γ

∂y
= i (ᾱγ− αγ) = 2γ=(α) ∈ R.

A first application of the modified Lax equations comes across when analysing the role of the
determinant polynomial a(λ) with reference to the Lax equations. We will demonstrate that
a(λ) is a so-called integral of motion, which means a constant quantity along the trajectories
of the Lax equations.

Lemma 5.4.
The determinant polynomial a(λ) from (4.3) is an integral of motion with respect to the Lax equations.

Proof.
From (4.3), we recall that the coefficients of a(λ) are

a1 = −ᾱ2 − βγ−1 − β̄γ ∈ C

a2 = 2αᾱ + ββ̄ + γ2 + γ−2 ∈ R.

We calculate the derivatives by inserting the Lax equations and conclude that the coefficients
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remain constant.

∂a1

∂x
= −2ᾱ

∂ᾱ

∂x
− ∂β

∂x
γ−1 + βγ−2 ∂γ

∂x
− β̄

∂γ

∂x
− ∂β̄

∂x
γ

= −2ᾱ(γβ̄− γ−2 + γ2 − βγ−1)− (−αβ + ᾱβ− 2αγ + 2ᾱγ−1)γ−1

+ βγ−2(−αγ− ᾱγ)− β̄(−αγ− ᾱγ)− (−ᾱβ̄ + αβ̄− 2ᾱγ + 2αγ−1)γ

= −2ᾱβ̄γ + 2ᾱγ−2 − 2ᾱγ2 + 2ᾱβγ−1 + αβγ−1 − ᾱβγ−1 + 2α− 2ᾱγ−2

− αβγ−1 − ᾱβγ−1 + αβ̄γ + ᾱβ̄γ + ᾱβ̄γ− αβ̄γ + 2ᾱγ2 − 2α

= 0

∂a1

∂y
= −2ᾱ

∂ᾱ

∂y
− ∂β

∂y
γ−1 + βγ−2 ∂γ

∂y
− β̄

∂γ

∂y
− ∂β̄

∂y
γ

= −2ᾱ(i(−γ−2 − β̄γ + βγ−1 + γ2))− (i(−αβ− ᾱβ + 2αγ + 2ᾱγ−1))γ−1

+ βγ−2(i(ᾱγ− αγ))− β̄(i(ᾱγ− αγ))− (i(ᾱβ̄ + αβ̄− 2ᾱγ− 2αγ−1))γ

= 2iᾱβ̄γ + 2iᾱγ−2 − 2iᾱγ2 − 2iᾱβγ−1 − 2iα + iαβγ−1 + iᾱβγ−1 − 2iᾱγ−2

− iαβγ−1 + iᾱβγ−1 − iᾱβ̄γ + iαβ̄γ + 2iα− iαβ̄γ− iᾱβ̄γ + 2iᾱγ2

= 0

Therefore, the coefficient ā1 of course remains constant as well.

∂a2

∂x
= 2

∂α

∂x
ᾱ + 2α

∂ᾱ

∂x
+

∂β̄

∂x
β + β̄

∂β

∂x
+ 2γ

∂γ

∂x
− 2γ−3 ∂γ

∂x
= 2ᾱ(γ2 + βγ− β̄γ−1 − γ−2) + 2α(γ2 + β̄γ− βγ−1 − γ−2)

+ β(−ᾱβ̄ + αβ̄− 2ᾱγ + 2αγ−1) + β̄(−αβ + ᾱβ− 2αγ + 2ᾱγ−1)

+ 2γ(−αγ− ᾱγ)− 2γ−3(−αγ− ᾱγ)

= 2ᾱγ2 + 2ᾱβγ− 2ᾱβ̄γ−1 − 2ᾱγ−2 + 2αγ2 + 2αβ̄γ− 2αβγ−1

− 2αγ−2 − ᾱββ̄ + αββ̄− 2ᾱβγ + 2αβγ−1 − αββ̄ + ᾱββ̄

− 2αβ̄γ + 2ᾱβ̄γ−1 − 2αγ2 − 2ᾱγ2 + 2αγ−2 + 2ᾱγ−2

= 0

∂a2

∂y
= 2

∂α

∂y
ᾱ + 2α

∂ᾱ

∂y
+

∂β̄

∂y
β + β̄

∂β

∂y
+ 2γ

∂γ

∂y
− 2γ−3 ∂γ

∂y

= 2ᾱ(i(γ−2 + βγ− β̄γ−1 − γ2)) + 2α(i(−γ−2 − β̄γ + βγ−1 + γ2))

+ β(i(ᾱβ̄ + αβ̄− 2ᾱγ− 2αγ−1)) + β̄(i(−αβ− ᾱβ + 2αγ + 2ᾱγ−1))

+ 2γ(i(ᾱγ− αγ))− 2γ−3(i(ᾱγ− αγ))

= 2iᾱγ−2 + 2iᾱβγ− 2iᾱβ̄γ−1 − 2iᾱγ2 − 2iαγ−2 − 2iαβ̄γ

+ 2iαβγ−1 + 2iαγ2 + iᾱββ̄ + iαββ̄− 2iᾱβγ− 2iαβγ−1 − iαββ̄

− iᾱββ̄ + 2iαβ̄γ + 2ᾱβ̄γ−1 + 2iᾱγ2 − 2iαγ2 − 2iᾱγ−2 + 2iαγ−2

= 0.

q.e.d.
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The next issue to be solved is whether such a Polynomial Killing field exists at all. Inspired
by the Lax equations, we have a look at the continuously differentiable vector fields

E(ζλ) := [ζλ, U(ζλ)]

F(ζλ) := [ζλ, V(ζλ)].

As discussed in section 3, they induce local flows φE(x, ζλ), φF(y, ζλ) in P2, which satisfy the
respective parts of the Lax equations. Applying previous results, we obtain the following

Lemma 5.5.
The local flows φE(x) and φF(y) obtained by the Lax equations commute.

Proof.
According to Theorem 3.8 it suffices to show that the commutator of the vector fields E, F
disappears.

[E, F](ζλ) = E′F(ζλ)− F′E(ζλ)

= [F(ζλ), U(ζλ)] + [ζλ, U′(ζλ)(F(ζλ))]

− [E(ζλ), V(ζλ)]− [ζλ, V ′(ζλ)(E(ζλ))]

= [[ζλ, V(ζλ)], U(ζλ)] +

[
ζλ, U′(ζλ)

(
∂ζλ

∂y

)]
− [[ζλ, U(ζλ)], V(ζλ)]−

[
ζλ, V ′(ζλ)

(
∂ζλ

∂x

)]
= [[ζλ, V(ζλ)], U(ζλ)]− [[ζλ, U(ζλ)], V(ζλ)]

+

[
ζλ,

∂U(ζλ)

∂y

]
−
[

ζλ,
∂V(ζλ)

∂x

]
=

[
ζλ, [V(ζλ), U(ζλ)] +

∂U(ζλ)

∂y
− ∂V(ζλ)

∂x

]
The last equality is a quick calculation using the properties of the Lie bracket from Lemma
3.6. Jacobi-Identity and Antisymmetry yield

0 = [ζλ, [U(ζλ), V(ζλ)]] + [U(ζλ), [V(ζλ), ζλ]] + [V(ζλ), [ζλ, U(ζλ)]]

= [ζλ, [U(ζλ), V(ζλ)]]− [[V(ζλ), ζλ], U(ζλ)]− [[ζλ, U(ζλ)], V(ζλ)]

= −[ζλ, [V(ζλ), U(ζλ)]] + [[ζλ, V(ζλ)], U(ζλ)]− [[ζλ, U(ζλ)], V(ζλ)].

Thus, it remains to prove the fact that the last expression equals zero. With the Lax equations
from Lemma 5.2 we can explicitly state the differentiation terms

∂U(ζλ)

∂y
=

(
0 ∂γ

∂y γ−2

0 0

)
λ−1 +

 1
2

(
∂α
∂y −

∂ᾱ
∂y

)
− ∂γ

∂y
∂γ
∂y

1
2

(
− ∂α

∂y + ∂ᾱ
∂y

)+

(
0 0

− ∂γ
∂y γ−2 0

)
λ

=

(
0 iγ−1(ᾱ− α
0 0

)
λ−1

+

(
i(γ−2 − γ2 + 1

2 (β + β̄)(γ− γ−1)) −iγ(ᾱ− α)
iγ(ᾱ− α) i(γ2 − γ−2 + 1

2 (β + β̄)(γ−1 − γ))

)
+

(
0 0

iγ−1(α− ᾱ 0

)
λ
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and

∂V(ζλ)

∂x
= i
(

0 i ∂γ
∂x γ−2

0 0

)
λ−1 + i

 1
2

(
∂α
∂x + ∂ᾱ

∂x

)
∂γ
∂x

∂γ
∂x

1
2

(
− ∂α

∂x −
∂ᾱ
∂x

)+ i
(

0 0
∂γ
∂x γ−2 0

)
λ

= i
(

0 −γ−1(α + ᾱ)
0 0

)
λ−1

+ i
(

γ2 − γ−2 + 1
2 (β + β̄)(γ− γ−1) −γ(α + ᾱ)
−γ(α + ᾱ) γ−2 − γ2 + 1

2 (β + β̄)(γ−1 − γ)

)
+ i
(

0 0
−γ−1(α + ᾱ 0

)
λ.

Combining both results in

∂U(ζλ)

∂y
− ∂V(ζλ)

∂x
= i
(

0 2γ−1ᾱ
0 0

)
λ−1

+ i
(

2(γ−2 − γ2) 2γα
2γᾱ 2(γ2 − γ−2)

)
+ i
(

0 0
2γ−1α 0

)
λ.

Furthermore, [V(ζλ), U(ζλ)] needs to be calculated.

V(ζλ)U(ζλ) =

(
α+ᾱ

2 −γ−1λ−1 + γ
γ− γ−1λ − α+ᾱ

2

)
i
(

α−ᾱ
2 −γ−1λ−1 − γ

γ + γ−1λ ᾱ−α
2

)
= i
(
−1 −γ−1ᾱ
0 −1

)
λ−1

+ i
(

γ2 − γ−2 + 1
4 ((α + ᾱ)(α− ᾱ)) −γα

−γᾱ γ−2 − γ2 − 1
4 ((ᾱ + α)(ᾱ− α))

)
+ i
(

1 0
−γ−1α 1

)
λ

U(ζλ)V(ζλ) =

(
α−ᾱ

2 −γ−1λ−1 − γ
γ + γ−1λ ᾱ−α

2

)
i
(

α+ᾱ
2 −γ−1λ−1 + γ

γ− γ−1λ − α+ᾱ
2

)
= i
(
−1 γ−1ᾱ
0 −1

)
λ−1

+ i
(
−γ2 + γ−2 + 1

4 ((α + ᾱ)(α− ᾱ)) γα

γᾱ −γ−2 + γ2 − 1
4 ((ᾱ + α)(ᾱ− α))

)
+ i
(

1 0
γ−1α 1

)
λ
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So the commutator equals

[V(ζλ), U(ζλ)] = V(ζλ)U(ζλ)−U(ζλ)V(ζλ)

= i
(

0 −2γ−1ᾱ
0 0

)
λ−1

+ i
(

2(γ2 − γ−2) −2γα
−2γᾱ 2(γ−2 − γ2)

)
+ i
(

0 0
−2γ−1α 0

)
λ (5.2)

= −
(

∂U(ζλ)

∂y
− ∂V(ζλ)

∂x

)
.

All in all, we have demonstrated that

[V(ζλ), U(ζλ)] +
∂U(ζλ)

∂y
− ∂V(ζλ)

∂x
= 0 (5.3)

and therefore,
[E, F] = 0.

q.e.d.

Remark 5.6.
With other words, we have implicitly shown that the second partial derivatives commute
since

F′E(ζλ) = [
∂ζλ

∂x
, V(ζλ)] + [

∂, V(ζλ)

∂x
, ζλ] =

∂

∂x
[ζλ, V(ζλ)] =

∂2ζλ

∂x∂y

and analogously,

E′F(ζλ) =
∂2ζλ

∂y∂x
.

However this notation is rather symbolic because the expressions on the right hand side are
not well-defined yet (at this point we do not know if there exists a ζλ(x, y) that satisfies both
Lax equations).

Remark 5.7 (Link to sinh-Gordon equation).
Equation (5.3) is called Maurer-Cartan equation and we will quickly demonstrate that its va-
lidity is deduced from the sinh-Gordon equation. This motivates the analysis of potentials
and polynomial killing fields. We introduce a new coordinate

z := x + iy

and express the x, y-coordinates in terms of z

x =
1
2
(z + z̄) y = − i

2
(z− z̄).

The derivative with respect to the new coordinate z can then be specified using the chain
rule

∂

∂z
=

1
2

(
∂

∂x
− i

∂

∂y

)
∂

∂z̄
=

1
2

(
∂

∂x
+ i

∂

∂y

)
. (5.4)
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5. POLYNOMIAL KILLING FIELDS RICARDO PEÑA HOEPNER

It is essential to define the following variable

u := ln γ ⇔ eu = γ

and to calculate the derivative of u with respect to the new coordinate z using

∂u
∂x

=
1
γ

∂γ

∂x
= −(α + ᾱ)

∂u
∂y

=
1
γ

∂γ

∂y
= i(ᾱ− α).

Now we obtain with (5.4)

∂u
∂z

= −α
∂u
∂z̄

= −ᾱ.

Subsequently, we express the Maurer-Cartan equation in terms of u and derivatives of u with
respect to z, z̄ (which will be denoted uz, uz̄ for reasons of simplicity). First, the commutator
can be computed with the help of (5.2):

[V(ζλ), U(ζλ)] = i
(

2(e2u − e−2u) 2e−uuz̄λ−1 + 2euuz
2euuz̄ + 2e−uuzλ 2(e−2u − e2u)

)
. (5.5)

For the derivative terms, we rewrite the matrices U(ζλ), V(ζλ)

U(ζλ) =

(
α−ᾱ

2 −γ−1λ−1 − γ
γ + γ−1λ ᾱ−α

2

)
=

( 1
2 (uz̄ − uz) −e−uλ−1 − eu

eu + e−uλ 1
2 (uz − uz̄)

)
V(ζλ) = i

(
α+ᾱ

2 −γ−1λ−1 + γ
γ− γ−1λ − α+ᾱ

2

)
= i
(
− 1

2 (uz + uz̄) −e−uλ−1 + eu

eu − e−uλ 1
2 (uz + uz̄)

)
and use the formulas

∂

∂x
=

∂

∂z
+

∂

∂z̄
∂

∂y
= −i

(
∂

∂z̄
− ∂

∂z

)
in order to calculate

∂U(ζλ)

∂y
= −i

( 1
2 (uz̄z̄ − 2uz̄z + uzz) −λ−1e−u(uz − uz̄)− eu(uz̄ − uz)

eu(uz̄ − uz) + λe−u(uz − uz̄)
1
2 (−uz̄z̄ + 2uz̄z − uzz)

)
∂V(ζλ)

∂x
= i

(
− 1

2 (uz̄z̄ + 2uz̄z + uzz) λ−1e−u(uz + uz̄) + eu(uz̄ + uz)
eu(uz̄ + uz) + λe−u(uz + uz̄)

1
2 (uz̄z̄ + 2uz̄z + uzz)

)
.

This yields

∂V(ζλ)

∂x
− ∂U(ζλ)

∂y
= i
(

−2uz̄z 2λ−1e−uuz̄ + 2euuz
2euuz̄ + 2λe−uuz 2uz̄z

)
. (5.6)

Hence, the Maurer-Cartan equation is satisfied if and only if (5.5) equals (5.6) which reduces
to the condition

uz̄z = (e−2u − e2u) ⇔ uz̄z + sinh(2u) = 0

⇔ 1
4

∆u + sinh(2u) = 0
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where the last equivalence is due to

∆u =
∂2u
∂x2 +

∂2u
∂y2 = (uzz + 2uz̄z + uz̄z̄)− (uzz − 2uz̄z + uz̄z̄) = 4uz̄z.

If we choose z′ = 1
2 z (which implies uz̄′z′ = 4uz̄z) and conduct the same computations, the

Maurer-Cartan equation finally turns into the sinh-Gordon equation

∆u + sinh(2u) = 0.

In the next step we show that the local flows φE, φF are global. We already know that both
flows keep the determinant constant or, equivalently, that the flows stay in the starting
point’s levels set of the map

f : P2 →M2, ζλ 7→ a(λ). (5.7)

Instead of looking at the quite unmanageable mapping f itself, we will again benefit from
the one-to-one correspondence between P2 and C× C×R+. Thus, we can interpret f as a
mapping

f : C×C×R+ → C×R+,

α
β
γ

 7→ (
a1
a2

)
(5.8)

with a1, a2 from (4.3). Due to this correspondence, we will not distinguish between these two
interpretations anymore as it will be clear from the context, which mapping is meant.

Definition 5.8.
Level sets of the function f from (5.8) are called isospectral sets.
Given any a ∈ M2 we denote the respective isospectral set by I(a).

Proposition 5.9.
Fix a = λ4 + a1λ3 + a2λ2 + ā1λ + 1 ∈ M2. Then I(a) is compact.

Proof.
By Heine-Borel, it is sufficient to show closedness and boundedness.
Let π1, π2 be the projections on the first and second coefficient. The functions

f1 := π1 ◦ f , (α, β, γ) 7→ a1 = −ᾱ2 − βγ−1 − β̄γ

f2 := π2 ◦ f (α, β, γ) 7→ a2 = 2αᾱ + ββ̄ + γ2 + γ−2

are continuous, so the pre-images of closed sets are closed and consequently,

I(a) = f−1
1 (a1) ∩ f−1

2 (a2)

is closed. For boundedness, it suffices to prove that f−1
2 (a2) is bounded since the intersection

of a bounded set with any other set is bounded. By definition of f2,

f−1
2 (a2) ⊂ B

(
0,

√
ā2

2

)
× B

(
0,
√

ā2
)
× (0,

√
ā2)

holds true and as the set on the right hand side is bounded, so is the one on the left hand
side. q.e.d.
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Corollary 5.10.
Given any initial value (α0, β0, γ0) ∈ C×C×R+ the solutions of the modified Lax equations (5.2)
are global, i.e. well-defined for all (x, y) ∈ R2, and bounded.
Therefore, given any ζλ ∈ P2 we obtain a continuous, commutative group action

φ(x, y)(ζλ) := φF(y, φE(x, ζλ)) for (x, y) ∈ R2.

Furthermore, when a ∈ M2 and ζλ ∈ I(a) then φ(x, y)(ζλ) ∈ I(a) for all times (x, y) ∈ R2.

Proof.
Let ζ0

λ be the element in P2 that belongs to (α0, β0, γ0) ∈ C× C×R+ and a0(λ) ∈ M2 its
determinant polynomial. Obiously, the modified Lax equations (5.2) are of type

∂

∂x
(α, β, γ) = g(α, β, γ)

∂

∂y
(α, β, γ) = h(α, β, γ)

with functions
g, h : C×C×R+ → C×C×R

continuously differentiable. In particular, these mappings are locally Lipschitz continuous.
Furthermore, any solution’s orbit is contained in I(a0), which is compact by Proposition 5.9.
All in all, we can apply Theorem 2.10 and the first part of the assertion is provided.
For the second part, we consider the Lax equations in its original form (5.1). With the first
part, the local flows from Lemma 5.5 become global and commute. Clearly,

φ(0, 0)(ζλ) = ζλ.

The (two-dimensional) flow property (or compatibility condition) is a simple calculation
using commutativity in the third line:

φ(x2, y2)(φ(x1, y1)(ζλ)) = φF(y2, φE(x2, φ(x1, y1)(ζλ)))

= φF
(
y2, φE

(
x2, φF(y1, φE(x1, ζλ))

))
= φF

(
y2, φF

(
y1, φE(x2, φE(x1, ζλ))

))
= φF(y1 + y2, φE(x1 + x2, ζλ))

= φ(x1 + x2, y1 + y2)(ζλ).

It remains to show continuity of the map (x, y, ζλ) 7→ φ(x, y)(ζλ). We can rewrite this map-
ping by splitting it up into several maps

(x, y, ζλ) 7→ (y, x, ζλ)
id×φE7→ (y, φE(x, ζλ))

φF7→ φF(y, φE(x, ζλ)) = φ(x, y)(ζλ).

All of these mappings are continuous, so the combination is continuous as well.
The last statement is a direct consequence of Lemma 5.4. q.e.d.

Remark 5.11.
We will often call the group action φ(x, y)(ζλ) (two dimensional) flow although, strictly
speaking, a flow must have one-dimensional time paramter domain by definition - this is
here clearly not the case. Analogously, we will call the compatibility condition flow prop-
erty as already done above.
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6 Isospectral Sets

In the previous section we have already detected that the level sets of the function f from
(5.8) are compact. In this part, we will extend our analysis of the isospectral sets with respect
to structural features. First, we define the following subsets ofM2

M0
2 := {a ∈ M2 | λ−2a(λ) > 0 for λ ∈ S1} (6.1)

M1
2 := {a ∈ M2 | a has four pairwise distinct roots}. (6.2)

We will first confine ourselves to isospectral sets which originate from determinant polyno-
mials a ∈ M1

2. This very restricting scenario will be the basic starting point from which we
intend to gain similar results for determinant polynomials with differently positioned roots.

6.1 The classical case: a(λ) has four pairwise distinct roots

Take a ∈ M1
2. If there was a λ ∈ S1 such that λ−2a(λ) = 0, then this λ would be a root of a.

By reality condition (4.4), this root must be double, which contradicts the definition ofM1
2.

Therefore,

M1
2 ⊂M0

2 ⊂M2 (6.3)

holds. Obviously, these subsets are open because the roots of the elements of both subsets are
not located on the unit circle. Consequently, we can always move the roots within a certain
ε-neighbourhood ensuring that the resulting a remains in the respective subset (Figure 2a).

<

S1

(a) M1
2 is open as well

as M0
2 (completely anal-

ogous).

<

S1

(b) M2 is not open. Red
bullet points indicate the
roots of the counter ex-
ample.

Figure 2: ε-neighbourhoods (dashed circles) of given roots (blue points).

Crucially, the setM2 itself is not open: Consider an a ∈ M2 \M0
2, i.e. a determinant poly-

nomial having at least one double root on S1. Then any ε-environment contains elements
absent M2, namely the ones which result when pushing the roots away from the double
root towards opposite directions along S1 (Figure 2b).
A fairly useful result is provided in the following

Lemma 6.1.
Each of the three sets (6.3) is path-connected and the setM0

2 \M1
2 is one-dimensional.
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Proof.
The setM2 is convex (so in particular path-connected) since all conditions on its elements
a are linear. This finding and analogous argumentation yield path-connectedness of the
set M0

2. Nevertheless, it is not obvious to infer path- connectedness of M1
2 from path-

connectedness of M0
2 only because of (6.3). In general, subsets of path-connected sets do

not necessarily need to be path-connected since subsets may consist of two disjunct sub-
sets. However, our setting allows this conclusion, because the complement M0

2 \M1
2 has

co-dimension of at least two, i.e. is one-dimensional. Therefore, it is impossible that M1
2

looks like described above and thus, it inherits path-connectedness fromM0
2.

In order to complete the proof, we demonstrate the second part of the assertion, namely
one-dimensionality of the set M0

2 \ M1
2. Take an arbitrary element a ∈ M0

2 \ M1
2. The

polynomial a has at least one double root λ0 ∈ C. If λ0 ∈ S1, then

λ−2
0 a(λ0) = 0

which contradicts a ∈ M0
2. Hence, λ0 /∈ S1. But then, since λ0 is a double root, the reality

condition (4.4) demands λ̄−1
0 to be a double root of a as well, so

a(λ) = (λ− λ0)
2(λ− λ̄−1

0 )2.

Moreover, the condition a(0) = 1 is reflected in

(λ0λ̄−1
0 )2 = 1 ⇔

(
λ0

|λ0|

)2

=
λ0

λ̄0
∈ {−1, 1}

⇔ λ0

|λ0|
∈ {−1, 1, i,−i}

⇔ λ0 ∈ (R∪ iR) \ {0}.

Since λ0 /∈ S1 we obtain
λ0 ∈ (R∪ iR) \ {−1, 1,−i, i, 0}.

Assume, λ0 = ir with r ∈ R \ {−1, 0, 1} and λ̄−1
0 = r−1i respectively. Then

λ−2a(λ) = λ−2(λ− ri)2(λ− r−1i)2

= λ−2(λ2 − 2riλ− r2)(λ2 − 2r−1iλ− r−2)

= λ2 − (r + r−1)2iλ− (4 + r2 + r−2) + (r + r−1)2iλ−1 + λ−2.

If we insert λ = 1 ∈ S1 into this formula, we obtain

−(2 + r2 + r−2) < 0

which contradicts the condition that a ∈ M0
2. Since r was arbitrary, we directly obtain

λ0 ∈ R \ {−1, 0, 1}

and therefore,M0
2 \M1

2 has dimension of at most one. q.e.d.

Proposition 6.2.
Let a ∈ M1

2.
Then the isospectral set I(a) is a compact, two-dimensional submanifold of C×C×R+.
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Proof.
Compactness has already been proven. For the main assertion, we want to apply Corollary
2.5, thus, we need to show that any a ∈ M1

2 is a regular value of the function f from (5.8).
This is the case if and only if given any a ∈ M1

2 all ζλ ∈ I(a) are regular points, i.e. the
derivatives

d f ((α, β, γ)t) : C×C×R+ → C×R

map surjectively - which implies that they possess rank three.
Let a ∈ M1

2 and consider

ζλ =

(
αλ− ᾱλ2 −γ−1 + βλ− γλ2

γλ− β̄λ2 + γ−1λ3 −αλ + ᾱλ2

)
=

(
A(λ) B(λ)

λ C(λ) −A(λ)

)
∈ I(a). (6.4)

By Theorem 4.5 we know that ζλ has no roots (a root in ζλ leads to a double root in a which
is impossible by assumption). This fact will be the fundament of our argumentation. Instead
of looking at f in its original form, we rather consider the complexification

fc : C4 ×R+ → C2 ×R+,


α
ᾱ
β
β̄
γ

 7→
a1

ā1
a2

 =

 −ᾱ2 − βγ−1 − β̄γ
−α2 − β̄γ−1 − βγ

2αᾱ + ββ̄ + γ2 + γ−2

 (6.5)

and calculate the Jacobian matrix

J fc =

 0 −2ᾱ −γ−1 −γ (βγ−2 − β̄)
−2α 0 −γ −γ−1 (β̄γ−2 − β)
2ᾱ 2α β̄ β 2(γ− γ−3)

 . (6.6)

We need to demonstrate that J fc has full rank. First assume α 6= 0. Then the Jacobian can be
transformed via Gaussian elimination into

J fc =

−2α 0 −γ −γ−1 (β̄γ−2 − β)
0 −2ᾱ −γ−1 −γ (βγ−2 − β̄)
0 0 U V W


where

U = β̄− γα−1ᾱ− γ−1ᾱ−1α

= −α−1ᾱ(γ− ᾱ−1αβ̄ + (ᾱ−1α)2γ−1)

= −α−1ᾱ C(ᾱ−1α)

V = β− γ−1α−1ᾱ− γᾱ−1α

= α−1ᾱ(−γ−1 + ᾱ−1αβ− (ᾱ−1α)2γ)

= α−1ᾱ B(ᾱ−1α)

W = 2(γ− γ−3) + ᾱ−1α(βγ−2 − β̄) + α−1ᾱ(β̄γ−2 − β).

If the Jacobian J fc had no full rank, then U = V = W = 0. But then ζλ had a root in ᾱ−1α

which contradicts the assumption a ∈ M1
2. Therefore, J fc has full rank when α 6= 0.

37



SOLUTIONS OF THE SINH-GORDON EQUATION OF SPECTRAL GENUS TWO

If α = 0, A(λ) = 0 and consequently, ζλ is off-diagonal and has a root if and only if the
polynomials B(λ) and C(λ) have a common root. This is the case if and only if the resultant
res(B, C) equals zero. This argumentation and the insight that ζλ has no root leads to the
conclusion that the resultant must be nonzero

res(B, C) 6= 0.

Nevertheless, let us explicitly calculate the resultant as the determinant of the Sylvester ma-
trix (details can be found in Brieskorn [9]):

res(B, C) = det


−γ β −γ−1 0
0 −γ β −γ−1

γ−1 −β̄ γ 0
0 γ−1 −β̄ γ


= −γ(−γ3 − γ−1 β̄2 + γ−1 + γββ̄) + γ−1(γβ2 + γ−3 − γ−1 β̄β− γ)

= β2 + β̄2 − ββ̄(γ2 + γ−2) + γ4 + γ−4 − 2 (6.7)
6= 0.

The second equation is due to Laplace expansion with respect to the first column. Now we
focus again on the complexified Jacobian J fc . Since α = 0, the first two columns of (6.6)
disappear and we complete by showing that the determinant of the remaining 3× 3 matrix
is nonzero.

det J fc =

−γ−1 −γ (βγ−2 − β̄)
−γ −γ−1 (β̄γ−2 − β)
β̄ β 2(γ− γ−3)


= 2γ−2(γ− γ−3)− βγ(βγ−2 − β̄)− β̄γ(β̄γ−2 − β) + β̄γ−1(βγ−2 − β̄)

+ βγ−1(β̄γ−2 − β)− 2γ2(γ− γ−3)

= 2γ−1 − 2γ−5 − β2γ−1 + ββ̄γ− β̄2γ−1 + ββ̄γ + ββ̄γ−3 − β̄2γ−1

+ ββ̄γ−3 − β2γ−1 − 2γ3 + 2γ−1

= −2γ−1
(

β2 + β̄2 − ββ̄(γ2 + γ−2) + γ4 + γ−4 − 2
)

= −2γ−1 res(B, C).

Since the resultant is nonzero, so is the determinant of the Jacobian matrix and the assertion
is proved. With the second part of Corollary 2.5 and the original map f , we obtain that the
dimension of the submanifold equals

dim I(a) = 5− 3 = 2.

q.e.d.

Lemma 6.3.
Consider a ∈ M1

2 and let I(a) be its isospectral set. Fix a triplet (α, β, γ) ∈ C×C×R+ such that
ζλ ∈ I(a) is satisfied.
Then the right hand side terms of the Lax equations (5.1)

([ζλ, U(ζλ)], [ζλ, V(ζλ)])

form a basis of the tangent space of I(a) in ζλ.
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Proof.
With Theorem 2.7 (i) and Proposition 6.2 we immediately obtain that Tζλ

(I(a)) is a two-
dimensional R-vector space. Instead of looking at the quite unmanageable terms [ζλ, U(ζλ)]
and [ζλ, V(ζλ)] we rather consider the right hand side terms of the modified Lax equations
(5.2). Since f from (5.8) and I(a) satisfy the assumptions of Theorem 2.7 (ii) we know

Tζλ
(I(a)) = ker d f (ζλ),

so we are comfortably allowed to focus on the derivative’s kernel (which is explicitly calcu-
lable) rather than on the abstract tangent space. As in the proof of Proposition 6.2 we regard
the complexification fc from (6.5) instead of f . As seen in Lemma 5.2, the right hand side
terms [ζλ, U(ζλ)] and [ζλ, V(ζλ)] correspond to

∂x :=


γ2 + βγ− β̄γ−1 − γ−2

γ2 + β̄γ− βγ−1 − γ−2

−αβ + ᾱβ− 2αγ + 2ᾱγ−1

−ᾱβ̄ + αβ̄− 2ᾱγ + 2αγ−1

−αγ− ᾱγ

 ∂y := i


γ−2 + βγ− β̄γ−1 − γ2

−γ−2 − β̄γ + βγ−1 + γ2

−αβ− ᾱβ + 2αγ + 2ᾱγ−1

ᾱβ̄ + αβ̄− 2ᾱγ− 2αγ−1

ᾱγ− αγ


and the proof reduces to demonstrating the following two steps:

(a) ∂x and ∂y ∈ ker d fc((α, ᾱ, β, β̄, γ)t) and

(b) ∂x and ∂y are linearly independent.

The derivative d fc((α, ᾱ, β, β̄, γ)t) is given by the Jacobian matrix (6.6) and we obtain

J fc ∂x =

 0 −2ᾱ −γ−1 −γ (βγ−2 − β̄)
−2α 0 −γ −γ−1 (β̄γ−2 − β)
2ᾱ 2α β̄ β 2(γ− γ−3)




γ2 + βγ− β̄γ−1 − γ−2

γ2 + β̄γ− βγ−1 − γ−2

−αβ + ᾱβ− 2αγ + 2ᾱγ−1

−ᾱβ̄ + αβ̄− 2ᾱγ + 2αγ−1

−αγ− ᾱγ


=

 −2ᾱγ2 − 2ᾱβ̄γ + 2ᾱβγ−1 + 2ᾱγ−2 + αβγ−1 − ᾱβγ−1 + 2α− 2ᾱγ−2+
−2αγ2 − 2αβγ + 2αβ̄γ−1 + 2αγ−2 + αβγ− ᾱβγ + 2αγ2 − 2ᾱ+
+2ᾱγ2 + 2ᾱβγ− 2ᾱβ̄γ−1 − 2ᾱγ−2 + 2αγ2 + 2αβ̄γ− 2αβγ−1 − 2αγ−2 − αββ̄ + ᾱββ̄−

+ᾱβ̄γ− αβ̄γ + 2ᾱγ2 − 2α− αβγ−1 − ᾱβγ−1 + αβ̄γ + ᾱβ̄γ
+ᾱβ̄γ−1 − αβ̄γ−1 + 2ᾱ− 2αγ−2 − αβ̄γ−1 − ᾱβ̄γ−1 + αβγ + ᾱβγ
−2αβ̄γ + 2ᾱβ̄γ−1 − ᾱββ̄ + αββ̄− 2ᾱβγ + 2αβγ−1 − 2αγ2 − 2ᾱγ2 + 2αγ−2 + 2ᾱγ−2


=

0
0
0
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and

J fc ∂y =

 0 −2ᾱ −γ−1 −γ (βγ−2 − β̄)
−2α 0 −γ −γ−1 (β̄γ−2 − β)
2ᾱ 2α β̄ β 2(γ− γ−3)

 i


γ−2 + βγ− β̄γ−1 − γ2

−γ−2 − β̄γ + βγ−1 + γ2

−αβ− ᾱβ + 2αγ + 2ᾱγ−1

ᾱβ̄ + αβ̄− 2ᾱγ− 2αγ−1

ᾱγ− αγ


= i

 2ᾱγ−2 + 2ᾱβ̄γ− 2ᾱβγ−1 − 2ᾱγ2 + αβγ−1 + ᾱβγ−1 − 2α− 2ᾱγ−2−
−2αγ−2 − 2αβγ + 2αβ̄γ−1 + 2αγ2 + αβγ + ᾱβγ− 2αγ2 − 2ᾱ−
2ᾱγ−2 + 2ᾱβγ− 2ᾱβ̄γ−1 − 2ᾱγ2 − 2αγ−2 − 2αβ̄γ + 2αβγ−1 + 2αγ2 − αββ̄− ᾱββ̄+

−ᾱβ̄γ− αβ̄γ + 2ᾱγ2 + 2α + ᾱβγ−1 − αβγ−1 − ᾱβ̄γ + αβ̄γ
−ᾱβ̄γ−1 − αβ̄γ−1 + 2ᾱ + 2αγ−2 + ᾱβ̄γ−1 − αβ̄γ−1 − ᾱβγ + αβγ
+2αβ̄γ + 2ᾱβ̄γ−1 + ᾱββ̄ + αββ̄− 2ᾱβγ− 2αβγ−1 + 2ᾱγ2 − 2αγ2 − 2ᾱγ−2 + 2αγ−2


=

0
0
0

 .

Hence, part (a) is proven. For (b), we take the notation (6.4) from Proposition 6.2 and distin-
guish between the same two cases again. Thus, let first α 6= 0 and consider v, w ∈ C such
that

v∂x + w∂y = 0. (6.8)

We need to demonstrate that v = w = 0. To do so, we explicitly focus on the system of five
equations (6.8). The equation of the last component looks like

− αγv− ᾱγv + iᾱγw− iαγw = 0
⇔ − α(v + iw)− ᾱ(v− iw) = 0

⇔ v− iw = −αᾱ−1(v + iw). (6.9)

Analogously, the third equation from (6.8) provides (inserting (6.9) in the second implication)

− αβv + ᾱβv− 2αγv + 2ᾱγ−1v− iαβw− iᾱβw + 2iαγw + 2iᾱγ−1w = 0

⇒ (−αβ + 2ᾱγ−1)(v + iw) + (ᾱβ− 2αγ)(v− iw) = 0

⇒ − 2ᾱ
(
−γ−1 + β(αᾱ−1)− γ(αᾱ−1)2

)
(v + iw) = 0

⇒ (v + iw) B(αᾱ−1) = 0 (6.10)

and the fourth

− ᾱβ̄v + αβ̄v− 2ᾱγv + 2αγ−1v + iᾱβ̄w + iαβ̄w− 2iᾱγw− 2iαγ−1w = 0

⇒ (αβ̄− 2ᾱγ)(v + iw) + (2αγ−1 − ᾱβ̄)(v− iw) = 0

⇒ − 2ᾱ
(

γ− β̄(αᾱ−1) + γ−1(αᾱ−1)2
)
(v + iw) = 0

⇒ (v + iw)C(αᾱ−1) = 0 (6.11)
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with B, C from (6.4). If B(αᾱ−1) = C(αᾱ−1) = 0 then ζλ has a root in αᾱ−1 which contra-
dicts the assumption a ∈ M1

2. Therefore, at least one of them must be nonzero (by reality
condition we even receive that both must be nonzero), so

v + iw = 0

and by (6.9) also
v− iw = 0.

In total, we obtain

v =
1
2
((v + iw) + (v− iw)) = 0

and

w =
v + iw

i
= 0.

When α = 0, the last three entries of ∂x and ∂y equal zero and we can conduct the same
approach as in the last part of the proof of Proposition 6.2: Consider the 2× 2 matrix that
consists of the remaining nonzero parts of ∂x and ∂y and calculate its determinant. If it
happens to be nonzero, the vectors ∂x and ∂y are linearly independent.

det
(

γ2 + βγ− β̄γ−1 − γ−2 i(γ−2 + βγ− β̄γ−1 − γ2)
γ2 + β̄γ− βγ−1 − γ−2 i(−γ−2 − β̄γ + βγ−1 + γ2)

)
= i
(
(γ2 + βγ− β̄γ−1 − γ−2)(−γ−2 − β̄γ + βγ−1 + γ2)

−(γ−2 + βγ− β̄γ−1 − γ2)(γ2 + β̄γ− βγ−1 − γ−2)
)

= i
(
−1− β̄γ3 + βγ + γ4 − βγ−1 − ββ̄γ2 + β2 + βγ3 + β̄γ−3 + β̄2 − ββ̄γ−2 − β̄γ

+γ−4 + β̄γ−1 − βγ−3 − 1− 1− β̄γ−1 + βγ−3 + γ−4 − βγ3 − ββ̄γ2 + β2 + βγ−1

+β̄γ + β̄2 − ββ̄γ−2 − β̄γ−3 + γ4 + β̄γ3 − βγ− 1
)

= 2i
(

β2 + β̄2 − ββ̄(γ2 + γ−2) + γ4 + γ−4 − 2
)

= 2i res(B, C).

The last equality is due to our results in (6.7). The remaining argumentation goes strictly in
line with Proposition 6.2: Since a ∈ M1

2 by assumption, we obtain that ζλ has no roots, which
is equivalent to res(B, C) 6= 0 since α = 0. Consequently, the determinant is nonzero and the
proof is finished. q.e.d.

Definition 6.4.
Given a topological space V and two arbitrary points x, y ∈ V a path-component of V is an
equivalence class of V under the equivalence relation which makes x equivalent to y if there
is a path from x to y. Any path-component is contained in a connected component.

Remark 6.5.
Obviously, a connected component which is path connected is a path-component. This cri-
terion will be used in the following
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Lemma 6.6.
Let a ∈ M1

2 and ζλ ∈ I(a). Then the orbit of the global flow φ from Corollary 5.10

Aζλ
:= {φ(x, y)(ζλ) | (x, y) ∈ R2}

is a path-component in the isospectral set I(a).

Proof.
Since R2 is path-connected and

φζλ
: (x, y) 7→ φ(x, y)(ζλ)

is a continuous function, the sets Aζλ
are path-connected. Thus, it remains to show that

these sets are connected components. By using the same argument we obtain connectedness
of the considered set, so the question now is whether the maximality condition is satisfied,
i.e. whether there is no connected set containing Aζλ

. To do so, we demonstrate the fact that
Aζλ

is open and closed with respect to the subspace topology of I(a).
If openness is proven, we directly obtain closedness: Take any ζ̃λ from the complement
I(a) \ Aζλ

. Then the respective orbit satisfies

Aζ̃λ
∩ Aζλ

= ∅

and remains in the complement I(a) \ Aζλ
because if there were x1, x2, y1, y2 ∈ R such that

φ(x1, y1)(ζ̃λ) = φ(x2, y2)(ζλ)

then

ζ̃λ = φ(−x1,−y1)(φ(x1, y1)(ζ̃λ))

= φ(−x1,−y1)(φ(x2, y2)(ζλ))

= φ(x2 − x1, y2 − y1)(ζλ)

which implies ζ̃λ ∈ Aζλ
and contradicts the assumption. Thus, the complement can be

written as
I(a) \ Aζλ

=
⋃

ζ̃λ∈I(a)\Aζλ

Aζ̃λ

and since the sets Aζ̃λ
are open in I(a) by assumption, the entire complement is open in I(a)

as an infinite union of open sets. In particular, Aζλ
is closed in I(a).

To complete the proof, we need to demonstrate openness of the sets Aζλ
with respect to

the subspace topology of I(a). We look at the restriction of the function f from (5.8) on
U := f−1(M1

2):

f̃ := f
∣∣
U : U ⊂ C×C×R+ → C×R+,

α
β
γ

 7→ (
a1
a2

)
.

Take an arbitrary ζ̃λ ∈ Aζλ
with φζλ

(x̃, ỹ) = ζ̃λ and det ζ̃λ = λa(λ). We need to demonstrate
that there exists a neighbourhood of ζ̃λ in Aζλ

which is open in I(a). Without loss of general-
ity, we can assume ζ̃λ = ζλ and x̃ = ỹ = 0 since Aζ̃λ

= Aζλ
(or use an appropriate coordinate

transfer). We define the space
Xζλ

:= ker d f̃ (ζλ)
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and as stated in the proof of Lemma 6.3 we know that

dim(Xζλ
) = dim(ker d f (ζλ)) = dim(Tζλ

(I(a))) = 2.

By Basis Extension Theorem we obtain an orthogonal complement Yζλ
with dim(Yζλ

) = 3
and Xζλ

∩Yζλ
= ∅ such that

Xζλ
⊕Yζλ

∼= R5.

Thus, we can consider U as a subset of Xζλ
⊕ Yζλ

and we denote the Xζλ
, Yζλ

components of
ζλ by ζλ = (ζX, ζY). As shown in the proof of Proposition 6.2, the determinant polynomial a
is a regular value, so ζλ ∈ I(a) is a regular point, which means that, by construction of Xζλ

and Yζλ
, the partial derivative

d f̃Y(ζλ) : Yζλ
→ C×R ∈ L(Yζλ

, R3)

is invertible and we can apply the Implicit Function Theorem A.2 in ζλ. Hence, there are
open sets U′ ⊂ Xζλ

containing ζX and U′′ ⊂ Yζλ
comprising ζY as well as a continuously

differentiable function
g : U′ → U′′

such that
ζ ′λ = (ζ ′X, ζ ′Y) ∈ (U′ ×U′′) ∩ I(a)⇔ ζ ′X ∈ U′ and ζ ′Y = g(ζ ′X).

Consider now the projected flow with respect to the Xζλ
-coordinate

φX
ζλ

: R2 → Xζλ
, (x, y) 7→

(
φζλ

(x, y)
)

X

and examine the conditions of the Inverse Function Theorem A.1 in the point (0, 0):
φX

ζλ
= πX ◦ φζλ

where πX is the projection with respect to the Xζλ
-coordinate. The global flow

φζλ
is partially differentiable by assumption and the partial derivatives are continuous. Thus,

the flow is continuously differentiable as well as the projection (as a linear map between
finite dimensional vector spaces) and consequently, the entire function φX

ζλ
is continuously

differentiable. Furthermore, by Lemma 6.3 we know that the right hand side terms of the
Lax equations form a basis of Tζλ

(I(a)) = ker d f̃ (ζλ) = Xζλ
and hence, the derivative

dφζλ
(0, 0) : R2 → Xζλ

, (x, y) 7→ x [ζλ, U(ζλ)] + y [ζλ, V(ζλ)]

is an isomorphism. In addition, the projection πX is a linear map, so dπX(ζλ) = πX, and acts
on Xζλ

as the identity. Putting all together yields

dφX
ζλ
(0, 0) = dπX(ζλ) ◦ dφζλ

(0, 0) = πX ◦ dφζλ
(0, 0)︸ ︷︷ ︸
∈Xζλ

= dφζλ
(0, 0).

Since the right hand side is an isomorphism, so is the left hand side and all assumptions of
the Inverse Function Theorem are satisfied. We obtain an open neigbourhood U0 ⊂ R2 from
(0, 0) such that

O := φX
ζλ
(U0) ⊂ Xζλ

contains ζλ and the restriction
φX

ζλ

∣∣
U0

: U0 → O
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is a diffeomorphism. By making U0 sufficiently small we can assume

O ⊂ U′.

Then the set
Ω := O0 ×U′′

is open and consequently,

{φζλ
(x, y) | (x, y) ∈ U0} = Ω ∩ I(a) (6.12)

is open with respect to the subspace topology of I(a) and a neigbourhood of ζλ that lies in
Aζλ

. q.e.d.

Remark 6.7.
At first glance, one could think that the usage of the Implicit Function Theorem in the last
proof was redundant and that it is possible to start directly with Inverse Function Theorem.
Unfortunately, this approach would be wrong, the proof needs to be conducted in its full
length. The last equality (6.12) is only guaranteed by the Implicit Function Theorem, because
in general, just ”⊂” holds true. Given any (x, y) ∈ U0 there exists one unique φζλ

(x, y) =
ζ̃λ = (ζ̃X, ζ̃Y) on the left hand side, whereas on the right hand side there might be another
element ζ ′λ = (ζ̃X, ζ ′Y) besides ζ̃λ with ζ̃Y 6= ζ ′Y. The Implicit Function Theorem ensures
that any element on the right hand side is uniquely defined by its Xζλ

-coordinate, so it is
impossible that both ζ̃λ and ζ ′λ are contained at the same time.

Theorem 6.8.
Let a ∈ M1

2 with roots (λ1, λ̄−1
1 , λ2, λ̄−1

2 ) pairwise distinct. Then the flows φ act transitively on
I(a).

Proof.
Due to Lemma 6.6, the isospectral set I(a) consists of possibly several path-components of
the form

Aζλ
= {ζ̃λ(x, y) = φ(x, y)(ζλ) | (x, y) ∈ R2}

with an appropriate ζλ ∈ I(a). We need to demonstrate that, indeed, the entire isospectral
set is described by exactly one of these Aζλ

. The proof of Lemma 6.6 has shown that Aζλ
is

open and closed in I(a). By Proposition 5.9, the isospectral set I(a) is compact and therefore,
Aζλ

itself is compact as a closed subset of a compact set. Consequently, the restriction of the
corresponding flows α(φ(x, y)), β(φ(x, y)), γ(φ(x, y)) on Aζλ

have compact images thanks to
the continuity of the mappings. We focus on

γ
∣∣

Aζλ

: Aζλ
→ R+, φ(x, y)(ζλ) 7→ γ(φ(x, y)(ζλ))

with compact image
im(γ

∣∣
Aζλ

) ⊂ R+.

Compact subsets of R possess a maximum value, so there is at least one ζ∗λ ∈ Aζλ
such that

γ(ζ∗λ) ≥ γ(ζ ′λ) for all ζ ′λ ∈ Aζλ
.

44



6. ISOSPECTRAL SETS RICARDO PEÑA HOEPNER

So far, we have demonstrated that every path-component of I(a) has a local maximum of
the continuous function

γ
∣∣

I(a) : ζλ → γ(ζλ).

Hence, we are interested in finding local maxima of this map. The structure for the rest of the
proof is the following. We will see that there exists exactly one local maximum (which then
must be ζ∗λ). Consequently, any two path-components of I(a) have at least ζ∗λ as a common
element and therefore, must be identical and we have proven the assertion. To show this,
we first need to consider the critical points of γ. Notice that

ζλ =

(
0 B(λ)

λC(λ) 0

)
⇔ ∂γ

∂x
=

∂γ

∂y
= 0. (6.13)

This is a direct consequence of the respective modified Lax equations (5.2)

∂γ

∂x
= −γ(α + ᾱ)

∂γ

∂y
= −iγ(α− ᾱ)

and the form of the diagonal elements

A(λ) = αλ− ᾱλ2 = λ(α− ᾱλ)

because

A(λ) = 0 for all λ ∈ C ⇔ α = 0 ⇔ ∂γ

∂x
=

∂γ

∂y
= 0.

The last equivalence holds since the condition α + ᾱ = 0 implies α ∈ iR and α − ᾱ = 0
means α ∈ R such that in total α = 0. This relationship along with the reality condition (4.2)
restricts the set of local maxima candidates on four different elements of I(a): Either B has
both roots inside the unit circle or both outside or one inside and one outside (Figure 3). In

<

S1

(a)

<

S1

(b)

<

S1

(c)

<

S1

(d)

Figure 3: Possible off-diagonal elements in I(a) given the roots of the determi-
nant polynomial a. Blue ones belong to the upper right hand side entry B(λ),
red ones to the lower left hand side entry C(λ).

the last case, there are only two scenarios imaginable, since due to the reality condition both
roots must be part of different root groups (λi, λ̄−1

i ), i = 1, 2.
Since γ(ζ∗λ) > 0 for any ζ ′λ ∈ P2 and the logarithm function is strictly monotonous we will
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consider log γ than γ for reasons of simplicity in the upcoming computations. We calculate
the Hessian matrixH(log γ) using the formulas of the modified Lax equations (5.2):

∂

∂x
log γ = −α− ᾱ

∂2

∂x2 log γ = −(−2γ−2 + (β + β̄)γ− (β + β̄)γ−1 + 2γ2)

= (γ−1 − γ)
(

2(γ + γ−1) + (β + β̄)
)

.

Analogously, the derivatives with respect to the y-component yield

∂

∂y
log γ = i(ᾱ− α)

∂2

∂y2 log γ = i
(
−i(γ−2 + β̄γ− βγ−1 − γ2)− i(γ−2 + βγ− β̄γ−1 − γ2)

)
= 2γ−2 + (β + β̄)γ− (β + β̄)γ−1 − 2γ2

= (γ−1 − γ)
(

2(γ + γ−1)− (β + β̄)
)

.

The mixed partial derivatives must be identical by Lemma 5.5, so we obtain

∂2

∂x∂y
log γ = i(−γ−2 + β̄γ− βγ−1 + γ2 + γ−2 − βγ + β̄γ−1 − γ2)

= i(β̄− β)(γ + γ−1)

∂2

∂y∂x
log γ = i(β̄− β)(γ + γ−1).

In order to figure out which elements of the four possibilites above define local maxima, we
need to know the definite quadratic form of the Hessian H(log γ). Due to its favourable
symmetric, two-by-two form we know that both eigenvalues are real numbers. We will
determine their sign by examining the determinant and the trace:

det (H(log γ)) =
∂

∂x
log γ

∂

∂y
log γ− (

∂2

∂x∂y
log γ)2

= (γ− γ−1)2
(

4(γ + γ−1)2 − (β + β̄)2
)
+ (β̄− β)2(γ + γ−1)2

= 4(γ2 − γ−2)2 + 4β̄2 + 4β2 − 4ββ̄(γ + γ−2). (6.14)

In the last equation we used that

(γ− γ−1)2(γ + γ−1)2 = (γ2 − γ−2)2

and

(γ + γ−1)2(β̄− β)2 = (γ2 + 2 + γ−2)(β̄2 − 2β̄β + β2)

= β̄2γ2 − 2β̄βγ2 + β2γ2 + 2β̄2 − 4β̄β + 2β2 + β̄2γ−2 − 2β̄βγ−2 + β2γ−2

(γ− γ−1)2(β + β̄)2 = (γ2 − 2 + γ−2)(β2 + 2β̄β + β̄2)

= β2γ2 + 2β̄βγ2 + β̄2γ2 − 2β2 − 4β̄β− 2β̄2 + β2γ−2 + 2β̄βγ−2 + β̄2γ−2
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which yields

(γ + γ−1)2(β̄− β)2 − (γ− γ−1)2(β + β̄)2 = 4β̄2 + 4β2 − 4ββ̄(γ2 + γ−2).

The trace of the Hessian looks like

tr (H(log γ)) =
∂2

∂x2 log γ +
∂2

∂y2 log γ

= 4(γ−2 − γ2). (6.15)

Both terms, the determinant and the trace, are quite unmanageable and besides, they do
not provide any information about the location of the roots of B(λ). Therefore, we need to
substitute β and γ by expressions that only depend on the roots λ1, λ2. Since the product of
the roots equals one, we immediately obtain

λ1λ2 ∈ R \ {0}.

Thus, when writing λ1 and λ2 in polar coordinates, they have the following form

λ1 = r1eiϕ λ2 = r2e−iϕ

where r1, r2 ∈ R, ϕ ∈ [0, 2π]. We compare both representations of the off-diagonal entry
B(λ)

B(λ) = −γλ2 + βλ− γ−1

B(λ) = −γ(λ− λ1)(λ− λ2)

= −γλ2 + γ(λ1 + λ2)λ− γλ1λ2

and obtain

γλ1λ2 = −γ−1 ⇔ γ =
1√

λ1λ2
=

1√
r1r2

as well as

β = γ(λ1 + λ2) =
λ1 + λ2√

r1r2
=

√
r1

r2
eiϕ +

√
r2

r1
e−iϕ.

Furthermore, we can compute some of the expressions which appear in the determinant
term:

β2 =
r1

r2
ei2ϕ + 2 +

r2

r1
e−i2ϕ

ββ̄ =

(√
r1

r2
eiϕ +

√
r2

r1
e−iϕ

)(√
r1

r2
e−iϕ +

√
r2

r1
eiϕ
)

=
r1

r2
+ 2 cos(2ϕ) +

r2

r1
.
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Now we insert our findings in the determinant (6.14) and the trace (6.15)

tr (H(log γ)) = 4
(

r1r2 −
1

r1r2

)
det (H(log γ)) = 4

[(
1

r1r2
− r1r2

)2

+ 4 + 2
(

r1

r2
+

r2

r1

)
cos(2ϕ)−

−
(

1
r1r2

+ r1r2

)(
r1

r2
+

r2

r1
+ 2 cos(2ϕ)

)]
= 4

[(
1

r1r2
+ r1r2

)2

+ 2
(

r1

r2
+

r2

r1
− 1

r1r2
− r1r2

)
cos(2ϕ)−

−
(

1
r1r2

+ r1r2

)(
r1

r2
+

r2

r1
+

)]
= 4

[(
1

r1r2
+ r1r2

)(
− r1

r2
− r2

r1
+

1
r1r2

+ r1r2

)
+2
(

r1

r2
+

r2

r1
− 1

r1r2
− r1r2

)
cos(2ϕ)

]
= 4

(
1

r1r2
+ r1r2 −

r1

r2
− r2

r1

)
︸ ︷︷ ︸

M

(
1

r1r2
+ r1r2 − 2 cos(2ϕ)

)
.︸ ︷︷ ︸

N

The determinant’s sign is defined by the components M and N. Since the function

g : R+ → R+, x 7→ x +
1
x

satisfies
g(x) ≥ 2 for all x ∈ R+

and additionally,
2 cos(2ϕ) ≤ 2 for all ϕ ∈ [0, 2π]

holds, we immediately receive

N = g(r1r2)− 2 cos(2ϕ) ≥ 0

and the determinant’s sign only depends on M. The function g strictly decreases on (0, 1],
increases on [1, ∞) and satisfies

g(x) = g(x−1) for all x ∈ R+.

Now we analyze which values of M are assumed in each of the four cases from Figure 3.

Cases 1 and 2:
If the roots of B(λ) are both outside or both inside the unit circle, then r1, r2 > 1 or r1, r2 < 1
and consequently,

r1r2, r2
1, r2

2 > 1 or
1

r1r2
,

1
r2

1
,

1
r2

2
> 1
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holds. Therefore,

r1r2 >
r1r2

r2
2

=
r1

r2
and r1r2 >

r1r2

r2
1

=
r2

r1

or

1
r1r2

>
1

r1r2
1
r2

1

=
r1

r2
and

1
r1r2

>
1

r1r2
1
r2

2

=
r2

r1
.

Strict monotonicity of g yields

M = g(r1r2)− g
(

r1

r2

)
> 0

or

M = g
(

1
r1r2

)
− g

(
r1

r2

)
> 0.

This means that the determinant of the Hessian is positive in both cases which implies that
both eigenvalues of the Hessian have the same sign.

Cases 3 and 4:
If the roots of B(λ) are outside and inside the unit circle, then r1 > 1 > r2 or r2 > 1 > r1 and
consequently,

r1

r2
> 1, r2

2 < 1,
1
r2

1
< 1 or

r2

r1
> 1, r2

1 < 1,
1
r2

2
< 1

holds. Therefore,

r1

r2
>

r1

r2
r2

2 = r1r2 and
r1

r2
>

r1

r2

1
r2

1
=

1
r1r2

or

r2

r1
>

r2

r1
r2

1 = r1r2 and
r2

r1
>

r2

r1

1
r2

2
=

1
r1r2

.

Strict monotonicity of g yields

M = g(r1r2)− g
(

r1

r2

)
< 0

or

M = g (r1r2)− g
(

r2

r1

)
< 0.

This means that the determinant of the Hessian is negative in cases 3 and 4 which implies
that both eigenvalues have different signs and the Hessian is indefinite. It follows that these
two cases describe saddle points and can be excluded as extremum candidates.

Consequently, we focus on cases 1 and 2 and take the trace of the Hessian into consideration

tr (H(log γ)) = 4g̃(r1r2)

49



SOLUTIONS OF THE SINH-GORDON EQUATION OF SPECTRAL GENUS TWO

with
g̃ : R+ → R, x 7→ x− 1

x
.

This function g̃ is strictly increasing with

lim
x→−∞

g̃(x) = −∞ and lim
x→∞

g̃(x) = ∞

and root in x = 1. Therefore, the trace is negative when B(λ) has both roots inside the unit
circle. This implies that both eigenvalues are negative, so the Hessian is negative-definite
and this element maximizes γ. Analogously, the other element in which B(λ) has roots out-
side the unit circle minimizes γ. Since there are no other extremum-candidates left, we have
demonstrated that there is exactly one maximizing element ζ∗λ (shown in the first picture of
Figure 3) and with the above argumentation, we have proven the assertion. q.e.d.

Remark 6.9.
We can find the sinh-Gordon equation in the trace expression (6.15) by substituting

u := ln(γ).

This yields

∆u + 8 sinh(2u) = 0

After a suitable change of coordinates (as conducted in the end of Remark 5.7) we obtain the
sinh-Gordon equation in its well-known form

∆u + sinh(2u) = 0.

The last theorem is quite spectacular and entails the question whether it is possible to obtain
a similar result when a /∈ M1

2. We will see that the answer is yes, although the rationale of
this assertion is not obvious at all at first glance. If a has at least one double root, we cannot
apply the Implicit Function Theorem and the entire argumentation of the last pages breaks
down. Consequently, we need a new or modified approach and we distinguish between the
only remaining scenarios.

a) a has exactly one double root on S1.

b) a has two double roots on S1 (of course, the case that a has a quadruple root is included).

c) a has two different double roots which are swapped by the mapping λ 7→ λ̄−1.

6.2 Case a): The polynomial a(λ) has exactly one double root on S1

In this case, the determinant polynomial is of shape

a(λ) = (λ− λ1)
2(λ− λ2)(λ− λ̄−1

2 )

with λ1 ∈ S1. By Theorem 4.5 we immediately obtain that any ζλ ∈ I(a) has the root λ1.
This suggests to divide ζλ by λ1 with the hope of bringing ζλ in a form which resembles the
standard case.

ζ̃λ =
1

λ− λ1
ζλ (6.16)
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and

det
(
ζ̃λ

)
= λ

1
(λ− λ1)2 a(λ) = λã(λ). (6.17)

Unfortunately, ã(λ) does in general not own any symmetry-property comparable to the ones
of Theorem 4.3. However, notice that ζ̃λ is a matrix polynomial of degree two as well as the
respective determinant polynomial ã(λ) is of degree two and has two different roots. This
motivates us to analyze Polynomial Killing Fields of spectral genus g = 1, although yet it
remains unclear how a relationship to ζ̃λ could be established.

Definition 6.10 (Potentials).
The set of potentials is the following set of quadratic polynomials with matrix-valued coeffi-
cients:

P1 :=
{

ξλ =

(
0 β̂−1

0 0

)
+

(
iα̂ β̂

−β̂ −iα̂

)
λ +

(
0 0
−β̂−1 0

)
λ2
∣∣∣∣ α̂ ∈ R, β̂ ∈ R−

}
.

Every ξλ ∈ P1 can be compactly written as

ξλ =

(
iα̂λ β̂−1 + β̂λ

−β̂λ− β̂−1λ2 −iα̂λ

)
and satisfies the reality condition

λ2 ξ
t
1
λ̄
= λ2

(
−iα̂λ−1 −β̂λ−1 − β̂−1λ−2

β̂−1 + β̂λ−1 iα̂λ−1

)
= −ξλ.

The determinant equals

det (ξλ) = α̂2λ2 + (β̂−1 + β̂λ)(β̂λ + β̂−1λ2)

= α̂2λ2 + λ + (β̂2 + β̂−2)λ2 + λ3

= λ
(
λ2 + (α̂2 + β̂2 + β̂−2)λ + 1

)
= λa1(λ)

where

a1(λ) = λ2 + (α̂2 + β̂2 + β̂−2)λ + 1 (6.18)

and we state

Lemma 6.11.
The following sets are the same:

M1 : = {a1 ∈ C2[λ] | λa1(λ) = det(ξλ) for a ξλ ∈ P1}
= {a1 ∈ C2[λ] | a(0) = 1, λ2a(λ̄−1) = a(λ), λ−1a(λ) ≥ 0 for λ ∈ S1}.

Proof.
This proof can be conducted in complete analogy to Theorem 4.3 and will just be sketched.
For the forward implication, we use the reality condition of ξλ as it was done before and
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notice the fact that λ−1ξλ is traceless and skew-Hermitian for λ ∈ S1. For the converse direc-
tion, we choose α = 0 and by the first and second property of a, the determinant polynomial
must be of the form

a(λ) = (λ− λ1)(λ− λ−1
1 )

with λ1 ∈ R. We denote by B and λC the off-diagonal entries of our future ξλ, choose

B(λ) = β̂(λ− λ1)

C(λ) = −β̂−1(λ− λ−1
1 )

and check by comparison of the coefficients that

β̂ =
1

i
√

λ1

must hold. To prove β̂ ∈ R− it suffices to demonstrate λ1 < 0. Since

λ−1a(λ) = λ− (λ1 + λ−1
1 ) + λ−1 ≥ 0 for all λ ∈ S1,

selecting λ = i ∈ S1 yields
λ1 + λ−1

1 ≤ 0

which directly implies λ1 < 0 because λ1 is a real, nonzero number. q.e.d.

Lemma 6.12.
Let ξλ ∈ P1 and det(ξλ) = λa1(λ) with a1 ∈ M1.
If λ̃ ∈ C is a root of ξλ then λ̃ is a double root of the determinant polynomial a.
Conversely, if λ̃ ∈ S1 is a root of a(λ), then λ̃ is a root of ξλ.

Proof.
This proof is completely analogous to the one of Theorem 4.5 with λ−1ξλ being traceless and
skew-Hermitian for λ ∈ S1. q.e.d.

As before, we define

M0
1 := {a ∈ M1 | λ−1a(λ) > 0 for λ ∈ S1}

M1
1 := {a ∈ M1 | a has two distinct roots}

with
M1

1 ⊂M0
1 ⊂M1.

In analogy to (5.8) we define the function

f1 : R×R+ → R+,
(

α̂

β̂

)
7→ α̂2 + β̂2 + β̂−2 (6.19)

and notice the pleasant fact

∇ f
(

α̂

β̂

)
=

(
2α̂

2β̂− 2β̂−3

)
= 0⇔ α̂ = 0 and β̂4 = 1

⇔ α̂ = 0 and β̂−2 = β2

⇔ α̂ = 0 and there is λ̃ ∈ C such that

λ̃β̂ + β̂−1 = 0 and λ̃β̂−1 + β̂ = 0
⇔ ξλ̃ = 0.

This relationship tremendously facilitates the proof of the upcoming
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Theorem 6.13.
Let a ∈ M1

1. Then the isospectral set I(a) is a compact, one-dimensional submanifold of R×R−.

Proof.
As in Proposition 6.2 we want to prove that a ∈ M1

1 is a regular value. Due to Lemma 6.12
any ξλ ∈ I(a) has no roots at all and consequently, the above relation yields

d f1(ξλ) 6= 0 for all ξλ ∈ I(a).

Therefore, the linear mapping d f1(ξλ) is of full rank one and by Corollary (2.5), I(a) is a
submanifold of dimension 2− 1 = 1. Compactness can be proven analogously to the way it
was done in Proposition 5.9. q.e.d.

Definition 6.14.
Polynomial Killing fields are maps ξλ : R2 → P1, (x̂, ŷ) 7→ ξλ(x̂, ŷ) which solve the Lax equa-
tions

∂ξλ

∂x̂
= [ξλ, U1(ξλ)]

∂ξλ

∂ŷ
= [ξλ, V1(ξλ)] (6.20)

with ξλ(0) = ξλ ∈ P1 and

U1(ξλ) :=
(

0 β̂−1

0 0

)
λ−1 +

(
iα̂ β̂

−β̂ −iα̂

)
+

(
0 0
−β̂−1 0

)
λ = λ−1ξλ

=

(
iα̂ β̂−1λ−1 + β̂

−β̂− β̂−1λ −iα̂

)
V1(ξλ) :=

(
0 β̂−1

0 0

)
iλ−1 +

(
0 −β̂

−β̂ 0

)
i +
(

0 0
β̂−1 0

)
iλ

= i
(

0 β̂−1λ−1 − β̂

−β̂ + β̂−1λ 0

)
.

As before, we are interested in finding a more explicit representation of the Lax equations:

[ξλ, U1(ξλ)] = ξλU1(ξλ)−U1(ξλ)ξλ

= λ−1ξλξλ − λ−1ξλξλ

= 0.

Furthermore,

ξλV1(ξλ) =

(
iα̂λ β̂−1 + β̂λ

−β̂λ− β̂−1λ2 −iα̂λ

)
i
(

0 β̂−1λ−1 − β̂

−β̂ + β̂−1λ 0

)
= i
(
(−1 + β̂−2λ− β̂2λ + λ2) (iα̂β̂−1 − iα̂β̂λ)

(iα̂β̂λ− iα̂β̂−1λ2) (−1 + β̂2λ− β̂−2λ + λ2)

)
V1(ξλ)ξλ =

(
0 β̂−1λ−1 − β̂

−β̂ + β̂−1λ 0

)
i
(

iα̂λ β̂−1 + β̂λ

−β̂λ− β̂−1λ2 −iα̂λ

)
= i
(
(−1− β̂−2λ + β̂2λ + λ2) (−iα̂β̂−1 + iα̂β̂λ)

(−iα̂β̂λ + iα̂β̂−1λ2) (−1− β̂2λ + β̂−2λ + λ2)

)
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holds and consequently, we obtain

[ξλ, V1(ξλ)] = ξλV1(ξλ)−V1(ξλ)ξλ

= i
(

(2β̂−2λ− 2β̂2λ) (2iα̂β̂−1 − 2iα̂β̂λ)
(2iα̂β̂λ− 2iα̂β̂−1λ2) (2β̂2λ− 2β̂−2λ)

)
=

(
0 −2α̂β̂−1

0 0

)
+

(
2i(β̂−2 − β̂2) 2α̂β̂

−2α̂β̂ −2i(β̂−2 − β̂2)

)
λ +

(
0 0

−2α̂β̂−1 0

)
λ2,

which directly proves

Lemma 6.15.
Let ξλ be a Polynomial Killing field. Then the entries α̂ : R2 → R and β̂ : R2 → R− satisfy the
modified Lax equations:

∂α̂

∂x̂
= 0

∂α̂

∂ŷ
= 2(β̂−2 − β̂2)

∂β̂

∂x̂
= 0

∂β̂

∂ŷ
= 2α̂β̂.

Hence, we obtain a one-dimensional local flow φ(ŷ)(ξλ).

Lemma 6.16.
The determinant polynomial a(λ) from (6.18) is an integral of motion with respect to the Lax equa-
tions.

Proof.
Consider the coefficient z = α̂2 + β̂2 + β̂−2 and calculate the derivative using the modified
Lax equations

∂z
∂ŷ

= 2α̂
∂α̂

∂ŷ
+ 2β̂

∂β̂

∂ŷ
− 2β̂−3 ∂β̂

∂ŷ
= 4α̂β̂−2 − 4α̂β̂2 + 4α̂β̂2 − 4α̂β̂−2 = 0.

q.e.d.

If we combine Theorem 6.13 and Lemma 6.16 we directly obtain that the local flow φ(ŷ) is
global by means of Theorem 2.10.

Lemma 6.17.
Let a1 ∈ M1

1, I(a1) its isospectral set and fix a tuple (α̂, β̂) ∈ R×R− such that the corresponding
ξλ satisfies ξλ ∈ I(a1). Then the nonzero right hand side of the Lax equations

[ξλ, V1(ξλ)]

forms a basis of the tangent space of I(a1) in ξλ.

Proof.
With Theorem 2.7 (i) we immediately obtain that Tξλ

(I(a1)) is a one-dimensional R-vector
space because I(a1) is a one-dimensional submanifold. Since f1 from (6.19) and I(a1) satisfy
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the assumptions of Theorem 2.7 (ii) we look at the kernel of d f1 rather than at the tangent
space itself and consider the right hand side terms of the modified Lax equations

∂y :=
(

2β̂−2 − 2β̂2

2α̂β̂

)
.

It remains to prove that ∂y ∈ ker d f1((α̂, β̂)t). Simple computation yields

d f1((α̂, β̂)t)∂y =

(
2α̂

2β̂− 2β̂−3

)t (2β̂−2 − 2β̂2

2α̂β̂

)
= 4α̂β̂−2 − 4α̂β̂2 + 4α̂β̂2 − 4α̂β̂−2 = 0.

q.e.d.

In analogy to Lemma 6.6 we state

Lemma 6.18.
Let a ∈ M1

1 and ξλ ∈ I(a). Then the orbit of the global flow φ

Aξλ
:= {φ(ŷ)(ξλ) | ŷ ∈ R}

is a path-component in the isospectral set I(a).

Proof.
The arguments seen in Lemma 6.6 hold true in this scenario as well. Again, the main work is
composed of proving openness of the set Aξλ

with respect to the subspace topology of I(a).
We consider the restriction of function f1 from (6.19) on U := f−1

1 (M1
1):

f̃1 := f1
∣∣
U : U ⊂ R×R− → R+,

(
α̂

β̂

)
7→ α̂2 + β̂2 + β̂−2.

Then we define vector spaces Xξλ
:= ker d f̃1(ξλ) and Yξλ

via the Basis Extension Theorem
such that

Xξλ
⊕Yξλ

∼= R2.

Subsequently, we can apply the Implicit Function Theorem and the Inverse Function Theo-
rem to deduce the assertion. For details check Lemma 6.6. q.e.d.

Finally, we state the main result for spectral genus g = 1:

Theorem 6.19.
Let a ∈ M1

1 with distinct roots λ1, λ−1
1 ∈ R. Then the flow φ acts transitively on I(a).

Proof.
Since things are less complex under these circumstances, we will present a new proof instead
of adapting the one from Theorem 6.8. First, we will show that I(a) is path-connected. Then
the assertion directly follows with Lemma 6.18. Again, we denote by

z = α̂2 + β̂2 + β̂−2
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the λ-coefficient of the determinant polynomial a1(λ) from (6.18). Notice that z ≥ 2 since
β̂2 + β̂−2 ≥ 2 and α̂2 ≥ 0. The condition that α̂ ∈ R can be transformed into a requirement
for β̂ via

α̂ = ±
√

z− β̂2 − β̂−2 ∈ R⇔ z− β̂2 − β̂−2 ≥ 0

⇔ β̂4 − zβ̂2 + 1 ≤ 0

⇔ (β̂2 − 1
2

z)2 − 1
4

z2 + 1 ≤ 0

⇔
∣∣β̂2 − 1

2
z
∣∣ ≤ √1

4
z2 − 1

where the last equivalence is valid due to the fact that z ≥ 2. The last expression is equivalent
to

β̂2 ∈
[

z
2
−
√

1
4

z2 − 1,
z
2
+

√
1
4

z2 − 1

]
.

In order to have β̂ ∈ R− we infer
β̂ ∈ Pz := [v, w]

with constants v = v(z), w = w(z) ∈ R, v ≤ w. Thus, given any β̂ ∈ Pz, the above equiva-
lence yields two possible α̂:

α̂1(β̂) =
√

z− β̂2 − β̂−2

α̂2(β̂) = −
√

z− β̂2 − β̂−2.

Since both mappings α̂1, α̂2 : Pz → R are continuous in β̂ and as the graph of a continuous
mapping is path-connected, we have shown that the isospectral set consists of at most two
path-components. If we now choose β̂ ∈ ∂Pz we obtain α̂1(β̂) = α̂2(β̂) by construction, so
both graphs have a common element. Therefore, the isospectral set is path-connected.

β

α

−3

−2

−1

1

I(a6)

P6P11

I(a11)
3 =
√

11− 2

2 =
√

6− 2

Figure 4: Level sets for z = 6, 11

q.e.d.
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Remark 6.20.
In this proof we have explicitly calculated the function g whose existence is abstractly stated
in the Implicit Function Theorem.

Now we return to our initial problem. The interesting question is whether ζ̃λ from (6.16) can
be associated - possibly after a certain transformation - with an element of P1. Moreover,
if the answer is yes, is this transformation stable on Polynomial Killing fields? With other
words, does a transformed Polynomial Killing field of spectral genus g = 2 solve the (modi-
fied) Lax equations (6.20) of spectral genus g = 1 and vice versa? For the first question, we
want to construct a continuous bijection of the form

ζ̂λ := u
(

w 0
0 w−1

)
ζ̃vλ

(
w−1 0

0 w

)
(6.21)

with suitable u, v, w ∈ S1 such that ζ̂λ ∈ P1. First, assume α 6= 0. Then the root satisfies

λ1 = αᾱ−1 ∈ S1

and we denote the entries of ζλ in multiplicative form by comparing the coefficients with
(4.1) and using the relatity condition (4.2):

C(λ) = γ−1
(

λ− αᾱ−1
) (

λ− γ2ᾱα−1
)

B(λ) = −λ2C(λ̄−1) = −λ2γ−1
(

λ−1 − γ2αᾱ−1
) (

λ−1 − ᾱα−1
)

= −γ−1
(

1− γ2αᾱ−1λ
) (

1− ᾱα−1λ
)

= −γ−1γ2αᾱ−1ᾱα−1
(

γ−2α−1ᾱ− λ
) (

ᾱ−1α− λ
)

= −γ
(

λ− γ−2ᾱα−1
) (

λ− αᾱ−1
)

.

By construction, both entries coincide with the structure (4.1). Thereafter we can explicitly
compute

ζ̃λ =
(

λ− αᾱ−1
)−1

ζλ =

(
λᾱ −γ

(
λ− γ−2ᾱα−1)

λγ−1 (λ− γ2ᾱα−1) −λᾱ

)
and specify (6.21)

ζ̂λ = u
(

vᾱλ −w2γ
(
vλ− γ−2ᾱα−1)

w−2vγ−1λ
(
vλ− γ2ᾱα−1) −vᾱλ

)
=

(
0 uw2γ−1ᾱα−1

0 0

)
+

(
uvᾱ −uvw2γ

−uvw−2γᾱα−1 −uvᾱ

)
λ +

(
0 0

uv2w−2γ−1 0

)
λ2.

In order to obtain ζ̂λ ∈ P1, the following conditions must hold:

(i) uw2γ−1ᾱα−1 = −uv2w−2γ−1 ⇔ w4ᾱα−1 = −v2

(ii) −u−1v−1w−2γ−1 = uw2γ−1ᾱα−1 ⇔ u2vw4ᾱα−1 = −1

(iii) −uvw2γ = uvw−2γᾱα−1 ⇔ w4αᾱ−1 = −1
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(iv) uvᾱ ∈ iR

(v) −uvw2γ ∈ R−.

The values

u = i
(

ᾱα−1
)− 3

2
= i
(
λ̄1
)− 3

2 ∈ S1 (6.22)

v = −ᾱα−1 = −λ̄1 ∈ S1 (6.23)

w =
(
−ᾱα−1

) 1
4
=
(
−λ̄1

) 1
4 ∈ S1 (6.24)

are deduced by (i)-(iii). Furthermore, they satisfy equations (iv) and (v)

uvᾱ = −i
(

ᾱα−1
)− 1

2
ᾱ = −i|α| ∈ iR

−uvw2γ = i
(

ᾱα−1
)− 1

2
(
−ᾱα−1

) 1
2

γ = −γ ∈ R−.

Hence, we conclude

ζ̂λ =

(
0 −γ−1

0 0

)
+

(
−i|α| −γ

γ i|α|

)
λ +

(
0 0

γ−1 0

)
λ2 ∈ P1.

When α = 0 we conduct the same computations with an abstract λ1 ∈ S1 and find the same
u, v, w ∈ S1 as well as the same ζ̂λ (but off-diagonal since α = 0).

The structure of the bijection (6.21) makes clear that ζ̂λ has a root if and only if ζ̃λ has a root.
By assumption and construction, ζ̃λ has no root and therefore, ζ̂λ has no root either.

Now we want to check whether a Polynomial Killing field of spectral genus g = 2 is mapped
on a Polynomial Killing field of spectral genus g = 1 under the transformation (6.21). For
reasons of simplicity, we show the reverse assertion, thus, we start from a Polynomial Killing
field ξλ(x̂, ŷ) of spectral genus g = 1 which has no roots and consider the inverse transfor-
mation

ξ̂λ = u−1(λ− λ1)

(
w−1 0

0 w

)
ξv−1λ

(
w 0
0 w−1

)
(6.25)

=

(
−iλ−

3
2

1 λ + iλ−
1
2

1

)(
−iα̂λ1λ −iλ

1
2
1 β̂−1 + iλ

3
2
1 β̂λ

iλ
1
2
1 β̂λ− iλ

3
2
1 β̂−1λ2 iα̂λ1λ

)

=

(
−α̂λ

− 1
2

1 λ2 + α̂λ
1
2
1 λ β̂λ2 − (λ1 β̂ + λ−1

1 β̂−1)λ + β̂−1

−β̂−1λ3 + (λ−1
1 β̂ + λ1 β̂−1)λ2 − β̂λ α̂λ

− 1
2

1 λ2 − α̂λ
1
2
1 λ

)

=

(
0 β̂−1

0 0

)
+

(
α̂
√

λ1 −β̂λ1 − β̂−1λ̄1

−β̂ −α̂
√

λ1

)
λ +

(
−α̂
√

λ̄1 β̂

β̂λ̄1 + β̂−1λ1 α̂
√

λ̄1

)
λ2 +

(
0 0
−β̂−1 0

)
λ3

We receive an embedding Z from the two-dimensional setP1 to the three-dimensional subset
Z(P1) ⊂ P2 which is parametrised by (α̂, β̂, λ1). From the form of ξ̂λ we can see Z as a
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mapping  α̂

β̂
λ1

 7→
α

β
γ

 =

 α̂
√

λ1
−β̂λ1 − β̂−1λ̄1

−β̂

 .

We need to investigate the modified Lax equations from Lemma 5.2 of the transformed ξ̂λ.
Unfortunately, the Lax equations of spectral genus g = 1 refer to coordinates (x̂, ŷ) whereas
the equations of spectral genus g = 2 consider coordinates (x, y). These coordinates are
generally not the same. Thus, converting the Lax equations of both spectral genus into each
other requires a change of coordinates. We will see that this change occurs with a rotation.
In order to make a transformed Polynomial Killing field from initial spectral genus g = 1
comparable with one of spectral genus g = 2, we translate the modified Lax equations from
Lemma 5.2, which are equations in α, β, γ with coordinates (x, y), into equations in α̂, β̂, λ1
with coordinates (x, y) using the embedding Z.
The first transformation is fairly simple

∂β̂

∂x
= −∂γ

∂x
= αγ + ᾱγ = −α̂β̂(

√
λ1 +

√
λ̄1).

For the other one, we consider

∂β

∂x
= −αβ + ᾱβ− 2αγ + 2ᾱγ−1

= −α̂
√

λ1(−β̂λ1 − β̂−1λ̄1) + α̂
√

λ̄1(−β̂λ1 − β̂−1λ̄1) + 2α̂
√

λ1 β̂− 2α̂
√

λ̄1 β̂−1

=

(√
λ1 +

√
λ3

1

)
α̂β̂−

(√
λ̄1 +

√
λ̄3

1

)
α̂β̂−1

as well as

∂β

∂x
= −∂λ1

∂x
β̂− ∂β̂

∂x
λ1 −

∂λ̄1

∂x
β̂−1 +

∂β̂

∂x
λ̄1 β̂−2

= −∂λ1

∂x
β̂− ∂λ̄1

∂x
β̂−1 +

(√
λ1 +

√
λ3

1

)
α̂β̂−

(√
λ̄1 +

√
λ̄3

1

)
α̂β̂−1.

Combining both results yields
∂λ1

∂x
β̂ +

∂λ̄1

∂x
β̂−1 = 0

which implies (provided β̂ 6= −1)

∂λ1

∂x
=

∂λ̄1

∂x
= 0.

The case that β̂ = −1 will be discussed after this analysis. Finally, we have

∂α

∂x
= γ2 + βγ− β̄γ−1 − γ−2

= β̂2 − (−β̂λ1 − β̂−1λ̄1)β̂ + (−β̂λ̄1 − β̂−1λ1)β̂−1 − β̄−2

= λ1
(

β̂2 − β̂−2)+ (β̂2 − β̂−2)
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as well as

∂α

∂x
=

α̂

2
√

λ1

∂λ1

∂x
+
√

λ1
∂α̂

∂x
=
√

λ1
∂α̂

∂x

and consequently,
∂α̂

∂x
=
(

β̂2 − β̂−2) (√λ1 +
√

λ̄1

)
holds. It remains to analyze the case in which β̂ = −1 in the calculation of ∂λ1

∂x . Here we
cannot directly infer

∂λ1

∂x
= 0

so we stop examining this equation and focus on the derivative of α. With the same calcula-
tion, we obtain the equation

λ1
(

β̂2 − β̂−2)+ (β̂2 − β̂−2) = α̂
∂
√

λ1

∂x
+
√

λ1
∂α̂

∂x
.

Multiplication of both sides with
√

λ̄1 yields

√
λ1
(

β̂2 − β̂−2)+ (β̂2 − β̂−2)√λ̄1 = α̂
√

λ̄1
∂
√

λ1

∂x
+

∂α̂

∂x
.

The left hand side is real as it is the sum of a complex number and its complex conjugate and
thus, the right hand side must be real as well. For the next finding, we denote

√
λ1 in polar

coordinates: √
λ1 = eiϕ ⇒ ∂

√
λ1

∂x
=

∂

∂x
eiϕ = ieiφ

(
∂

∂x
φ

)
⇒
√

λ̄1
∂
√

λ1

∂x
= e−iϕ

(
∂

∂x
eiϕ
)
= i
(

∂

∂x
φ

)
∈ iR.

Therefore, the right hand side is real if and only if

α̂ = 0 or
∂
√

λ1

∂x
=

1
2
√

λ1

∂λ1

∂x
= 0

⇔ α̂ = 0 or
∂λ1

∂x
= 0.

In the first case, α̂ = 0 and β̂ = −1. But then, ξ̂λ has a root in λ = 1 which is excluded by
assumption. This is why we conclude with the same result as for β̂ 6= −1, namely

∂λ1

∂x
= 0.

Now we conduct the same computations in complete analogy with respect to the y-coordinate:

∂β̂

∂y
= −∂γ

∂y
= −i (ᾱγ− αγ) = iα̂β̂

(√
λ̄1 −

√
λ1

)
.
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Furthermore, we have the equations

∂β

∂y
= i
(
−αβ− ᾱβ + 2αγ + 2ᾱγ−1

)
= i
(

α̂
√

λ1(β̂λ1 + β̂−1λ̄1) + α̂
√

λ̄1(β̂λ1 + β̂−1λ̄1)− 2α̂
√

λ1 β̂− 2α̂
√

λ̄1 β̂−1
)

=

(√
λ3

1 −
√

λ1

)
iα̂β̂ +

(√
λ̄3

1 −
√

λ̄1

)
iα̂β̂−1

and
∂β

∂y
= −∂λ1

∂y
β̂− ∂β̂

∂y
λ1 −

∂λ̄1

∂y
β̂−1 +

∂β̂

∂y
λ̄1 β̂−2

= −∂λ1

∂y
β̂− ∂λ̄1

∂y
β̂−1 +

(√
λ3

1 −
√

λ1

)
iα̂β̂ +

(√
λ̄3

1 −
√

λ̄1

)
iα̂β̂−1

which implies
∂λ1

∂y
β̂ +

∂λ̄1

∂y
β̂−1 = 0.

So if β̂ 6= −1 holds, then
∂λ1

∂y
=

∂λ̄1

∂y
= 0

is valid. With an analogous argument as above, one can show that in case of β̂ = −1 we still
infer the same result. The last equation yields

∂α

∂y
= i
(

γ−2 + βγ− β̄γ−1 − γ2
)

= i
(

β̂−2 + (β̂λ1 + β̂−1λ̄1)β̂− (β̂λ̄1 + β̂−1λ1)β̂−1 − β̂2
)

= iλ1
(

β2 − β−2)− i
(

β2 − β−2)
as well as

∂α

∂y
=
√

λ1
∂α̂

∂y

and therefore,
∂α̂

∂y
= i
(√

λ1 −
√

λ̄1

) (
β2 − β−2) .

All in all, we have proven the following

Lemma 6.21.
Let a1 ∈ M1

1 and ξλ(x̂, ŷ) ∈ I(a1) a Polynomial Killing field of spectral genus one. If the transfor-
mation ξ̂λ from (6.25) is a Polynomial Killing field of spectral genus two, then it satisfies the following
Lax equations (5.2)

∂α̂

∂x
=
(

β̂2 − β̂−2) (√λ1 +
√

λ̄1

) ∂α̂

∂y
= i
(√

λ1 −
√

λ̄1

) (
β2 − β−2)

∂β̂

∂x
= −α̂β̂(

√
λ1 +

√
λ̄1)

∂β̂

∂y
= iα̂β̂

(√
λ̄1 −

√
λ1

)
∂λ1

∂x
= 0

∂λ1

∂y
= 0.
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Theorem 6.22.
Consider a(λ) ∈ M2 which has exactly one double root on S1. Then the isospectral set I(a) is a
one-dimensional compact subset of C×C×R+ and the flows φ act transitively on I(a).

Proof.
It suffices to prove that the transformation (6.25) defines a one-to-one relationship between
the flows φ and the flow φ̂ up to rotations in the coordinates. Then the claim directly follows
with our spectral g = 1 analysis, in particular with Theorem 6.19. Due to our preconsider-
ations, it remains to demonstrate that the Lax equations from Lemma 6.21 with respect to
the coordinates (x, y) are obtained by a rotation of the Lax equations from Lemma 6.15 with
respect to the coordinates (x̂, ŷ). This means, we show that there exists a ϕ ∈ [0, 2π] such
that (

cos(ϕ) sin(ϕ)
− sin(ϕ) cos(ϕ)

)( ∂α̂
∂x̂
∂α̂
∂ŷ

)
=

(
∂α̂
∂x
∂α̂
∂y

)
(6.26)

and (
cos(ϕ) sin(ϕ)
− sin(ϕ) cos(ϕ)

)( ∂β̂
∂x̂
∂β̂
∂ŷ

)
=

(
∂β̂
∂x
∂β̂
∂y

)
. (6.27)

Remember from Lemma 6.15 that

∂α̂

∂x̂
= 0

∂α̂

∂ŷ
= 2(β̂−2 − β̂2)

∂β̂

∂x̂
= 0

∂β̂

∂ŷ
= 2α̂β̂.

From (6.27) we obtain the equations

sin(ϕ) = −1
2

(√
λ1 +

√
λ̄1

)
= −<(

√
λ1)

cos(ϕ) = −i
1
2

(√
λ1 −

√
λ̄1

)
= =(

√
λ1).

In order to understand, how ϕ is exactly described, we use the following formula

eiϕ = cos(ϕ) + i sin(ϕ) = =(
√

λ1)− i<(
√

λ1) = i
√

λ1.

Therefore, ϕ is the angle of the complex number i
√

λ1 and in particular, ϕ only depends on
λ1. We need to check whether ϕ satisfies the equations (6.26).

sin(ϕ)
∂α̂

∂ŷ
= −1

2

(√
λ1 +

√
λ̄1

)
2(β̂−2 − β̂2) =

∂α̂

∂x

cos(ϕ)
∂α̂

∂ŷ
= −i

1
2

(√
λ1 −

√
λ̄1

)
2(β̂−2 − β̂2) =

∂α̂

∂y
.

It results that the coordinates (x, y) are obtained by a rotation of the coordinates (x̂, ŷ)
about the angle ϕ and hence, the transformation (6.25) is stable on Polynomial Killing fields.

q.e.d.
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6.3 Case b): The polynomial a(λ) has two double roots on S1

Theorem 6.23.
Consider a(λ) ∈ M2 with two double roots λ1, λ2 ∈ S1 (possibly λ1 = λ2). Then the isospectral
set I(a) consists of one point.

Proof.
We use the same technique as in the previous subsection. The determinant polynomial a(λ)
must be of shape

a(λ) = (λ− λ1)
2 (λ− λ2)

2

and furthermore,

λ2
1λ2

2 = 1 ⇒ λ2
2 = λ̄2

1

⇒ λ2 = ±λ̄1.

Therefore, ζλ ∈ I(a) has two roots λ1,±λ̄1 which implies that α = 0 and ζλ is off-diagonal.
In analogy to the previous discussions of the transformation (6.21) we know that the off-
diagonal entries of ζλ must be

B(λ) = −γ (λ− λ1)
(
λ− γ−2λ̄1

)
C(λ) = γ−1 (λ− λ1)

(
λ− γ2λ̄1

)
.

Consequently, in order to satisfy the above conditions,

γ = 1 ∈ R+ and λ2 = λ̄1

must hold and β is uniquely given by

β = λ1 + λ̄1 = 2<(λ1).

Hence, ζλ ∈ I(a) is uniquely defined by

ζλ =

[(
0 −1
0 0

)
+

(
0 0
1 0

)
λ

]
(λ− λ1)(λ− λ̄1).

q.e.d.

6.4 Case c): The polynomial a(λ) has two distinct double roots absent S1

Let a(λ) ∈ M2 with two distinct double roots (λ1, λ̄−1
1 ) absent the unit circle. Then the

isospectral set I(a) falls into two disjunct subsets

I(a) = {ζλ ∈ I(a) | ζλ1 6= 0}︸ ︷︷ ︸
Ka

∪ {ζλ ∈ I(a) | ζλ1 = 0}︸ ︷︷ ︸
La

.

Notice the fact that we can apply the same argumentation as in the proof of Lemma 6.1 and
conclude that

λ1 ∈ R \ {−1, 0, 1}.
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Thus, we can immediately indicate the determinant polynomial

a(λ) = (λ− λ1)
2(λ− λ−1

1 )2.

Without loss of generality, we will assume λ1 to be inside the unit circle for the rest of the
chapter, so

λ1 ∈ (−1, 1) \ {0}

(otherwise switch notation).
First, we consider ζ̃λ ∈ La. By Theorem 4.5 and the reality condition (4.2), ζ̃λ has single roots
λ1, λ−1

1 and is hence - in analogy to case b) - uniquely defined as

ζ̃λ =

[(
0 −1
0 0

)
+

(
0 0
1 0

)
λ

]
(λ− λ1)(λ− λ−1

1 ). (6.28)

In particular, La is a singleton. Now, we focus on Ka:

Lemma 6.24.
Let a(λ) ∈ M2 with two distinct double roots (λ1, λ−1

1 ), λ1 ∈ R \ {−1, 0, 1}. Then the set Ka is a
two-dimensional submanifold of C×C×R+.

Proof.
All ζλ ∈ Ka have no roots and one can demonstrate in complete analogy to the proof of
Proposition 6.2 that all elements of Ka are regular points. The only changing detail consists
of the domain of the function f

U :=
⋃
a

Ka =
⋃
a
(I(a) \ La).

This domain is an open set since the La is a singleton and the union is conducted over all
a having the features assumed in the Lemma. The claim directly follows from Corollary
2.5. q.e.d.

Remark 6.25.
Notice that Ka is not a compact set due to the above structure of the compact isospectral set
I(a).

Theorem 6.26.
Let a(λ) ∈ M2 with two distinct double roots (λ1, λ−1

1 ), λ1 ∈ R \ {−1, 0, 1}. The flows φ(x, y)
act transitively on both parts Ka, La of the isospectral set I(a).

Proof.
We need to verify that φ remains in the part of the isospectral set it originated from:

ζλ ∈ Ka ⇒ φ(x, y)(ζλ) ∈ Ka for all (x, y) ∈ R2.

This statement holds true because the pointwise view on Lax equations (5.1) makes clear
that whenever ζλ has a root in λ̃, the right hand side of the Lax equations equal zero in λ̃
and hence φ(x, y)(ζλ) has a root λ̃ for all times. In particular, if ζλ ∈ Ka and φ(x, y)(ζλ) /∈ Ka
we have φ(x, y)(ζλ) ∈ La and so

ζλ = φ(−x,−y) (φ(x, y)(ζλ)) ∈ La
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follows with the above argumentation. However, this contradicts the assumption. Conse-
quently, the flow φ remains in the singleton La for all times if and only if its starting point is
in La, so the flow φ acts transitively on La. For ζλ ∈ Ka we can conduct the same proofs as in
Lemma 6.3 and Lemma 6.6 due to the favourable fact that ζλ is rootless in order to receive
that the sets

Mζ := {φ(x, y)(ζλ) | (x, y) ∈ R2} with ζλ ∈ Ka

define path-components in Ka. By lack of compactness of Ka we consider the closure Mζ

instead of Mζ itself. Since I(a) is compact, the closure Mζ either equals the set Mζ itself or

Mζ = Mζ ∪ La.

The set Mζ is compact as a closed subset of the compact I(a). The rest of the proof leans
on the one from Theorem 6.8. The only deviation can be found in the number of possible
critical points, as there are only three different off-diagonal elements in I(a): The first with
B(λ) having a double root inside the unit circle, the second with B(λ) having a double root
outside the unit circle and the last with B(λ) having mixed roots. The latter element corre-
sponds to ζ̃λ from (6.28), is located in La and is a saddle point. In particular, the arguments
and computations of Theorem 6.8 show that there exists one unique maximizing element ζ∗λ
which is contained in every Mζ and does not equal ζ̃λ, so

ζ∗λ ∈ Mζ

and we conclude that Ka consists of exactly one path-component of the form Mζ . q.e.d.

Remark 6.27.
This is the shortest proof we have developed using the results of the previous sections. How-
ever, there is another possibility to prove the above theorem with a very nice geometric ar-
gument. Starting from the point that the sets Mζ form path-components of Ka, it remains to
prove that Ka is path-connected in order to demonstrate the assertion. However, we prove
the path-connectedness of I(a) and gain path-connectedness of Ka from the result that Ka is a
two-dimensional submanifold, as the subtraction of one element (ζ̃λ ∈ La) from I(a) cannot
destroy path-connectedness of the remaining two-dimensional set.
This will be done in two steps. First, one can show that given any element ζλ ∈ I(a) there
is a continuous path in I(a) connecting ζλ and an off-diagonal element by taking the con-
vex combination of the diagonal entries - the continuity condition makes the choice of the
off-diagonal entries unique. As mentioned above, there are only three types of off-diagonal
elements in I(a). Therefore, it remains to prove in the second step that these off-diagonal
elements are path-connected. In fact, the elements with B(λ) having a double root either in-
side or outside the unit circle are path-connected to the third type of mixed roots ζ̃λ from La.
This is the interesting part. There exists a diagonal entry A(λ)′ with resulting off-diagonal
entries B′, C′ such that B′C′ has a double root on S1, a single root inside and a single root
outside the unit circle. The resulting ζ ′λ is called bifurcation point. Given the off-diagonal ζλ

with B(λ) having both roots inside the unit circle, one can construct a continuous path in
I(a) to ζ ′λ as in the first step. At the bifurcation point, we switch the affiliation of the double
root from B′C′ such that the root that once belonged to Bt now belongs to Ct and vice versa.
Then we move the same root-path backwards (causing a new element-path!) and end up
in ζ̃λ ∈ La by construction (Figure 5). When ζλ is off-diagonal with B(λ) having both roots
outside the unit circle, C(λ) has both inside and we conduct the same analogue argument.
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<

= S1

(a) Initial situation

<

= S1

(b) Movement towards
bifurcation point

<

= S1

(c) Movement from bi-
furcation point

<

= S1

(d) Final situation

Figure 5: Path-connectedness of off-diagonal elements. Bullet
points of the same color belong to the same off-diagonal entry.

We sum up this section by stating

Corollary 6.28.
Let a ∈ M2.

1. If a has four pairwise distinct roots, the isospectral sets I(a) are two-dimensional compact
submanifolds of C× C×R+. The flows φ(x, y)(ζλ) for given ζλ ∈ I(a) act transitively on
the isospectral sets, i.e.

I(a) = {φ(x, y)(ζλ) | (x, y) ∈ R2}.

2. If a has one double root on S1 and two distinct single roots, the isospectral sets I(a) are one-
dimensional compact subsets of C×C×R+. The flows φ(x, y)(ζλ) for given ζλ ∈ I(a) again
act transitively on the isospectral sets.

3. If a has two double roots on S1, the isospectral set consists of one single element and the flows
φ(x, y)(ζλ) for given ζλ ∈ I(a) remain constant, i.e. they act transitively in a trivial way.

4. If a has two double roots λ1, λ̄−1
1 absent S1, the isospectral set falls into two distinct subsets

I(a) = {ζλ ∈ I(a) | ζλ1 6= 0}︸ ︷︷ ︸
Ka

∪ {ζλ ∈ I(a) | ζλ1 = ζλ̄−1
1

= 0}︸ ︷︷ ︸
La
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where Ka is a two-dimensional submanifold of C×C×R+ and La is a singleton.
On both parts of the level set the flows φ(x, y)(ζλ) act transitively for given ζλ ∈ I(a).
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7 Lattices of Periods

In the last section, we have determined the analytic properties of the isospectral sets in de-
pendence on the position of determinant polynomials’ roots. In the classical case as well as
in cases a) and b) (i.e. whenever a has no double roots absent the unit circle) the orbits

I(a) = {φ(x, y)(ζλ) | (x, y) ∈ R2}

are compact. We now focus on these determinant polynomials for the rest of this elaboration
and define

M̃2 := {a ∈ M2 | a has no double root absent S1}.

First of all, we define for given a ∈ M̃2 and initial value ζλ ∈ I(a) the set

Γa
ζ := {(x, y) ∈ R2 | φ(x, y)(ζλ) = ζλ}. (7.1)

The upcoming lemma states its algebraic structure.

Lemma 7.1.
Let a ∈ M̃2. The set Γa

ζ ⊂ R2 from (7.1) is an additive, abelian subgroup of R2.
In particular, Γa

ζ is a normal subgroup and R2/Γa
ζ is well-defined.

Proof.
Given (x1, y1), (x2, y2) ∈ Γζ , the flow property (compare Remark 5.11) of φ yields

φ(x1 + x2, y1 + y2)(ζλ) = φ(x1, y1)(φ(x2, y2)(ζλ)) = φ(x1, y1)(ζλ) = ζλ

and therefore,
(x1 + x2, y1 + y2) ∈ Γζ .

Furthermore, when (x, y) ∈ Γa
ζ , the additive inverse (−x,−y) is also contained in Γa

ζ due to

φ(−x,−y)(ζλ) = φ(−x,−y)(φ(x, y)(ζλ)) = ζλ.

Commutativity is obviously inherited from R2. q.e.d.

Now we want to understand that for fixed a ∈ M̃2 the subgroup Γa
ζ is independent of the

choice of the initial value ζλ ∈ I(a) due to the flow property of φ (which is a consequence of
the commutativity of the flows φE, φF as seen in Corollary 5.10) and hence, the index ′ζ ′ can
be omitted. To see this, let ζλ, ζ̃λ ∈ I(a). We need to demonstrate

Γa
ζ = Γa

ζ̃
.

We prove that any element of the left hand side is also contained in the right hand side
(the reverse direction runs analogously). Thus, we consider (x, y) ∈ Γζ and notice that by
transitivity of φ, there is an element (a, b) ∈ R2 such that

φ(a, b)(ζ̃λ) = ζλ.
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A quick computation yields

ζ̃λ = φ(−a,−b)(ζλ)

= φ(−a,−b)(φ(x, y)(ζλ))

= φ(−a,−b)(φ(x, y)(φ(a, b)(ζ̃λ)))

= φ(−a,−b)(φ(a, b)(φ(x, y)(ζ̃λ)))

= φ(x, y)(ζ̃λ)

which implies
(x, y) ∈ Γa

ζ̃

and applying the above argumentation we can denote Γa = Γa
ζ for any ζλ ∈ I(a).

From now on we will focus on a ∈ M1
2, i.e. on determinant polynomials with four pairwise

distinct roots. We will find out later that Γa defines a lattice under this assumption. However,
we need to clarify the concept of discrete subgroups in order to come to this conclusion.

Definition 7.2.
A subgroup Γ ⊂ Rn is called discrete if there exists an open set U ⊂ Rn containing zero such
that

U ∩ Γ = {0}.

Lemma 7.3.
Let a ∈ M1

2. The factor group R2/Γa is compact and the subgroup Γa ⊂ R2 from (7.1) is discrete.

Proof.
We consider the mapping

gζ : R2/Γa → I(a),
[(x, y)] 7→ φ(x, y)(ζλ)

where [(x, y)] = (x, y) + Γa is the equivalence class of (x, y). This map is well-defined since
all elements (x + a, y + b) ∈ [(x, y)] with (a, b) ∈ Γa satisfy

φ(x + a, y + b)(ζλ) = φ(x, y)(φ(a, b)(ζλ)) = φ(x, y)(ζλ)

due to the flow property. We will first prove that gζ is a bijection. Due to transitivity of the
flow φ we immediately obtain surjectivity. For injectivity, we consider two elements

[(x1, y1)] , [(x2, y2)] ∈ R2/Γa

with
φ(x1, y1)(ζλ) = φ(x2, y2)(ζλ)

and apply the flow property on the difference:

φ(x1 − x2, y1 − y2)(ζλ) = φ(−x2,−y2)(φ(x1, y1)(ζλ)) = ζλ.

Therefore, (x1 − x2, y1 − y2) ∈ Γa and since (x1, y1) = (x2, y2) + (x1 − x2, y1 − y2) we con-
clude

[(x1, y1)] = [(x2, y2)] .
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In the next step, we will demonstrate with the help of the Inverse Function Theorem A.1
that gζ is not only a bijection but also a local diffeomorphism and therefore, a global diffeo-
morphism. In order to confirm the assertions, we are comfortably allowed to consider the
mapping

φζ : (x, y) 7→ φ(x, y)(ζλ)

instead of gζ because any element of R2/Γa is a subset of R2. As in the proof of Lemma 6.6,
we directly obtain for any arbitrary (x, y) ∈ R2 with ζ̃λ = φ(x, y)(ζλ) that

dφζ(x, y) : R2 → Tζ̃λ
(I(a))

(x̃, ỹ) 7→ x̃[ζ̃λ, U(ζ̃λ)] + ỹ[ζ̃λ, V(ζ̃λ)]

is an isomorphism. Hence, there exists an open neighbourhood U0 ⊂ R2/Γa of [(x, y)] such
that V0 := gζ(U0) ⊂ I(a) is an open neighbourhood of ζ̃ and the restriction gζ

∣∣
U0

is a diffeo-
morphism. Since differentiability is a local property, we herewith receive diffeomorphy of
the entire mapping gζ . In particular, gζ owns a continuous inverse and consequently, com-
pactness of I(a) requires R2/Γa to be compact as well. Lastly, the application of the Inverse
Function Theorem A.1 on the specific element (0, 0) ∈ R2 yields the first claim, because two
diffeomorph open neighbourhoods (0, 0) ∈ U ⊂ R2 and ζλ ∈ V = φζ(U) exist. In particular,
the presence of two distinct elements in U which are mapped to ζλ is impossible and thus,

U ∩ Γa = {(0, 0)}.

q.e.d.

The following lemma states an interesting characterization of discrete subgroups in Rn.

Lemma 7.4 (Schmidt [8]).
The following statements are equivalent for a subgroup Γ 6= {0} of Rn:

i) Γ is discrete.

ii) All bounded subsets of Rn contain at most a finite number of elements in Γ.

iii) There exists an element in Γ \ {0} of minimal length.

iv) The intersection of Γ and any linear subspace B of Rn is a discrete subgroup of B.

v) Given ω ∈ Γ \ {0} the set Γ ∩Rω is a discrete subgroup of Rω.
If Γ * Rω, there exists an element in Γ \Rω with minimal distance to Rω.

vi) There is a finite number of linearly independent elements ω1, . . . , ωm ∈ Γ generating Γ.

Proof.
This proof originates Schmidt [8].
Let Γ 6= {0} be a discrete subgroup of Rn. Then there exists a number ε > 0 such that
B(0, ε) ∩ Γ = {0}. In particular, the difference of any two elements in Γ is either zero or has
a length bigger than ε. This implies for arbitrary x ∈ Rn that the ball B(x, ε

2 ) contains at
most one element of Γ. Consequently, if we consider any bounded subset A ⊂ Rn, then the
closure A is compact and owns a finite subcover of ε

2 -balls. Hence, ii) follows from i).
Furthermore, let a ∈ Γ 6= {0}. Obviously, there exists a bounded subset containing both zero
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and a. Due to ii) this subset possesses a finite number of elements in Γ \ {0}, one of which is
of shortest length, and iii) is proven.
Conversely, if there exists an element in Γ \ {0} of minimal length, there is an ε > 0 such that
B(0, ε) ∩ Γ = {0} and i) follows from iii).
As the intersection of an open neighbourhood of zero in Rn and any linear subspace B yields
an open neighbourhood of zero in B, iv) follows from i). In reverse, iv) implies i) since Rn is
a linear subspace of Rn.
Given i)-iv) we consider ω ∈ Γ \ {0}. Clearly, Rω is a linear subspace, so the first statement of
v) follows from iv). Furthermore, if Γ * Rω, for every x ∈ Rω there exists an integer n ∈ Z

such that x− nω ∈ B(0, ‖ω‖). Analogously, we can identify any element from Γ∩ (Rn \Rω)
whose distance to Rω is smaller than δ > 0 with an element from Γ in B(0, δ + ‖ω‖) having
the same distance to Rω. Therefore, we immediately obtain with ii) (applied on the bounded
set B(0, δ + ‖ω‖) with appropriate δ > 0) the existence of an element in Γ \ (Rω) having
minimal distance to Rω. Conversely, if v) holds true and ω ∈ Γ \ {0} there exists an ε > 0
such that all elements from (Γ \ {0}) ∩ Rω and Γ \ Rω have lengths bigger than ε. This
implies i).
Under the assumptions i)-v), we proof vi) inductively. Let ω1 be the shortest element of
Γ \ {0}. Then Γ ∩Rω1 = Zω1 holds because otherwise, there would exist a shorter element
in Rω1. We consider the orthogonal projection on the orthogonal complement of Rω1

P1 : Rn → Rn, x 7→ P1(x) = x− 〈ω1, x〉
〈ω1, ω1〉

ω1.

The kernel of P1 obviously equals Rω1. Due to v), the image P1(Γ) is a discrete subgroup
of Rn and Γ ∼= Zω1 ⊕ P1(Γ). We continue inductively and obtain linearly independent
elements ω1, . . . , ωm ∈ Γ which generate Γ. Conversely, if vi) holds true, there exist linearly
independent mappings l1, . . . , lm on Rn such that

ω = l1(ω)ω1 + · · ·+ lm(ω)ωm for all ω ∈ Γ.

Since the mappings l1, . . . , lm are bounded on bounded sets, we obtain ii). q.e.d.

The last two lemmata are quite powerful because they precisely describe the subgroup Γa

for a ∈ M̃2. Due to Lemma 7.4, the only discrete subgroups of R2 (and therefore candidates
for Γa) are the following ones:

i) Γa = {0}. In this case R2/Γa ∼= R2, which contradicts the compactness condition of
Lemma 7.3. Therefore, this scenario is impossible.

ii) Γa = ωZ, i.e. Γa is cyclic. Here, R2/Γa ∼= R× S1 and the compactness condition is hurt
again. This is also not feasible.

iii) Γa = ω1Z + ω2Z, where ω1, ω2 are linearly independent vectors of R2.
In this case,

R2/Γa ∼= (S1)2

is a compact torus.

Thus, we have proven that Γa is a so-called lattice.
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Definition 7.5.
Given n linearly independent vectors ω1, . . . , ωn ∈ Rn the (full-rank) lattice generated by
them is defined as the set { n

∑
k=1

akωk | ak ∈ Z

}
.

Furthermore, the set {∑n
k=1 rkωk | 0 ≤ rk ≤ 1} is called fundamental region of the lattice.

ω1

ω2

Figure 6: Example of a lattice in R2 with generators
ω1, ω2 and shaded fundamental region.

To sum up, we have proven the following

Proposition 7.6.
Let a ∈ M1

2. Then the set

Γa = {(x, y) ∈ R2 | φ(x, y)(ζλ) = ζλ}

does not depend on the choice of ζλ ∈ I(a) and defines a lattice in R2. In particular, there exist two
linearly independent generators ω1, ω2 ∈ R2 such that

Γ = ω1Z + ω2Z.

7.1 Isomorphy of Lattices

In the last subsection we have seen that any a ∈ M1
2 induces a lattice

Γa = ωa
1Z + ωa

2Z

where ωa
1, ωa

2 are complex, linearly independent generators. Of course, the choice of these
generators is not uniquely defined, so there might exist several different pairs of complex
numbers which all define the same lattice (Figure 7).
In order to make them unique up to sign, we consider for a given determinant polynomial
a ∈ M1

2 a pair of generators (ωa
1, ωa

2) where ωa
1 ∈ Γa \ {0} has minimal length and ωa

2 ∈
Γa \ (ωa

1Z) is also of shortest length. Such a pair exists indeed according to Lemma 7.4.
From now on, we will call this essential condition on the generators minimality condition.

Definition 7.7.
A rotation-dilation is a linear mapping C→ C consisting of the composition of a rotation and
the multiplication with a real number (dilation).
More precisely, a rotation-dilation maps ω 7→ aω for a given a ∈ C \ {0}.
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ω′1

ω2

ω1

ω2

Figure 7: Example of two different pairs of genera-
tors (ω1, ω2), (ω′1, ω2) producing the same lattice in R2.
(ω1, ω2) satisfies minimality condition.

Definition 7.8.
Let Γ, Γ′ ⊂ R2 be two lattices. We call them isomorphic if they originate from one another
through a rotation-dilation.

By means of the rotation-dilation

ω 7→ 1
ωa

1
ω

we can map the generator ωa
1 to ω̃a

1 = 1 and ωa
2 to ω̃a

2. We can assume

=(ω̃a
2) > 0 (7.2)

otherwise we consider −ω̃a
2 instead of ω̃a

2. This means, Γa is isomorphic to a lattice which is
generated by ω̃a

1 = 1 and some complex number in the upper half-plane. But we can even
specify its location. As ωa

2 has at least the same length as ωa
1 by assumption,

‖ω̃a
2‖ ≥ ‖ω̃a

1‖ = 1 (7.3)

so ω̃a
2 is outside the unit circle.

Moreover, if |<(ω̃a
2)| > 1

2 held true we could add a suitable integer multiple of 1 to ω̃a
2 with

the consequence that |<(ω̃a
2)| ≤ 1

2 and the imaginary part would remain unchanged. Hence,
total length could be reduced which contradicts the minimality condition. Therefore,

|<(ω̃a
2)| ≤

1
2

. (7.4)

Putting (7.2), (7.3) and (7.4) together yields the following

Proposition 7.9.
Let a ∈ M1

2 and Γa be the induced lattice with shortest generators (ωa
1, ωa

2) satisfying minimality
condition. Then Γa is isomorphic to a lattice whose generators are (1, τa) with

τa ∈ N1 :=
{

τ ∈H+
∣∣ ‖τ‖ ≥ 1 , |<(τ)| ≤ 1

2

}
.

Remark 7.10.
If two lattices are isomorphic they result from each other via a rotation-dilation as defined
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above. But crucially, this does not necessarily imply that both pairs of generators are ob-
tained by a rotation-dilation as well. This statement holds only true if we make the impor-
tant restriction on pairs of shortest lengths (minimality condition). In general, two lattices
are isomorphic if and only if their generators can be obtained by a Moebius transformation
from each other (Freitag, Busam [2], Proposition V.7.4). Notice that rotation-dilations are
contained in the set of Moebius transformations.
Therefore, one can also prove Proposition 7.9 considering an arbitrary pair of Γa generators
(ωa

1, ωa
2) using the theory of Moebius transformations. This was proven, for instance, in

Freitag, Busam [2], Propostion V.8.7.

Definition 7.11.
The set N1 is called modular figure and is sketched in Figure 8. It is a fundamental region for
the so called modular group SL(2, Z).

Remark 7.12.
The reference to the modular group SL(2, Z) comes from the fact that any element from
SL(2, Z) is in one-to-one correspondence with a Moebius transformation which transfers
generators of lattices into each other. For details, check Freitag, Busam [2], chapter V.7.

<

=

N1

Figure 8: The set N1.

If we identify for appropriate x, y ∈ R the following elements of N1

−1
2
+ iy ∼ 1

2
+ iy

−x + i
√

1− x ∼ x + i
√

1− x

with each other, then the spaceN1 parametrizes the equivalent classes of isomorphic lattices.
Hence, we can identify a determinant polynomial a ∈ M1

2 with an element from N1 due to
Proposition 7.9. To be more precise, the following mapping is well defined:

g : M1
2 → N1 (7.5)
a 7→ τa.
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Notation 1.
For the rest of this elaboration we denote

M2
2 := {a ∈ M2 | a has two double roots on S1}.

From now on, we discuss the following claims:

1. The mapping g is uniquely continuously extendable onM2
2 and onM2 \ (M0

2 ∪M2
2)

(the set of polynomials a having exactly one double root on S1).

2. The mapping g is surjective on this continuation.

We note that
M̃2 =M1

2 ∪M2
2 ∪ (M2 \ (M0

2 ∪M2
2)).

Before we get started, we need to familiarize ourselves with the concepts of frames and
monodromies since they will build the fundament of the above mentioned continuation. The
eigenvalues of the monodromies contain information about the periods which will enable us
to explicitly calculate the generators (whose existence is so far just abstractly proven) on the
continuation.

7.2 Frames and Monodromies

Throughout this subsection we assume a ∈ M1
2 and we have already seen that Γa from (7.1)

defines a lattice in R2. The double periodicity of the flows φ is reflected in the coefficients
(α, β, γ)(x, y) and therefore, the resulting U(ζλ), V(ζλ) are doubly periodic as well:

U((x, y) + ω1) = U(x, y) = U((x, y) + ω2)

V((x, y) + ω1) = V(x, y) = V((x, y) + ω2).

We now focus on the following system of ordinary differential equations

∂Fλ

∂x
= FλU

∂Fλ

∂y
= FλV Fλ(0, 0) = 1. (7.6)

The naturally arising question is whether there exists a kind of fundamental solution Fλ

which is unique and solves both equations as well as the initial condition. The answer is yes
as both equations satisfy the assumptions of Picard-Lindelöf Theorem 2.8 and the Maurer-
Cartan equation (5.3) forms an integrability condition. More precisely, we solve

∂Fλ(0, y)
∂y

= Fλ(0, y)V(0, y)

with initial condition
Fλ(0, 0) = 1.

Then, for fixed y0 we solve

∂Fλ(x, y0)

∂x
= Fλ(x, y0)U(x, y0)

with initial condition
Fλ(0, y0).
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Thus, we have defined a mapping Fλ(x, y). Obviously,

∂Fλ(x, y)
∂x

= Fλ(x, y)U(x, y)

holds true for all x, y. Due to the Maurer-Cartan equation (5.3) we have

∂2Fλ(x, y)
∂xy

=
∂2Fλ(x, y)

∂yx

which leads to

∂

∂x

(
∂Fλ(x, y)

∂y
− F(x, y)V(x, y)

)
=

∂2Fλ

∂y∂x
− ∂Fλ

∂x
V − Fλ

∂V
∂x

=
∂

∂y
(FλU)− FλUV − Fλ

∂V
∂x

=
∂Fλ

∂y
U + Fλ

(
∂

∂y
U −UV − ∂V

∂x

)
=

(
∂Fλ(x, y)

∂y
− F(x, y)V(x, y)

)
U(x, y).

Inserting the value x = 0 yields the initial condition

∂Fλ(0, y)
∂y

− F(0, y)V(0, y) = F(0, y)V(0, y)− F(0, y)V(0, y) = 0.

By Picard-Lindelöf, this solution equals zero for all values x, y and we conclude

∂Fλ(x, y)
∂y

= F(x, y)V(x, y).

Moreover, we define

Mi
λ := F(ωi), i = 1, 2 (7.7)

and consider
F̃i

λ := (Mi
λ)
−1Fλ((x, y) + ωi), i = 1, 2

which solves the following initial value problem:

∂F̃i
λ

∂x
= (Mi

λ)
−1Fλ((x, y) + ωi)U((x, y) + ωi) = F̃i

λU(x, y)

∂F̃i
λ

∂y
= (Mi

λ)
−1Fλ((x, y) + ωi)V((x, y) + ωi) = F̃i

λV(x, y)

F̃i
λ(0, 0) = 1.

By uniqueness of the fundamental solution Fλ, we immediately obtain Fλ = F̃i
λ, i = 1, 2 and

conclude

Fλ((x, y) + ωi) = Mi
λFλ(x, y), i = 1, 2. (7.8)
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Definition 7.13.
The fundamental solution Fλ from (7.6) is called frame and the matrices M1

λ, M2
λ from (7.7)

monodromies.

For reasons of simplicity, we will switch from real two-dimensional to complex notation and
rather write z = x + iy instead of (x, y) for the rest of this chapter.
First, we want to point out several pleasant features of these monodromies.

Lemma 7.14.
The monodromies Mi

λ, i = 1, 2 and the initial value of a Polynomial Killing field ζ0
λ := ζλ(0, 0)

commute pairwise.

Proof.
Let us recall condition (7.8):

Fλ(z + ω1) = M1
λFλ(z) for all z ∈ C

Fλ(z + ω2) = M2
λFλ(z) for all z ∈ C.

If we insert z = ω2 in the first equation and z = ω1 in the second, we receive

M1
λ M2

λ = M1
λFλ(ω2) = Fλ(ω1 + ω2) = M2

λFλ(ω1) = M2
λ M1

λ

which implies
[M1

λ, M2
λ] = 0.

For the commutators [Mi
λ, ζ0

λ], i = 1, 2 we need to understand that

ζλ(x, y) = F−1
λ ζ0

λFλ (7.9)

holds true. Then a quick computation yields

ζ0
λ = ζλ(ωi) = F−1

λ (ωi)ζ
0
λFλ(ωi) = (Mi

λ)
−1ζ0

λ Mi
λ

which implies
[Mi

λ, ζ0
λ] = 0, i = 1, 2.

Thus, it remains to verify (7.9). We define

ζ̃λ := F−1
λ ζ0

λFλ.

From F−1F = 1, one can quickly demonstrate that F−1 satisfies the following differential
equations

∂F−1

∂x
= −UF−1 ∂F−1

∂y
= −VF−1. (7.10)

Now we calculate the derivatives of ζ̃λ

∂ζ̃λ

∂x
=

∂F−1

∂x
ζ0

λF + F−1ζ0
λ

∂F
∂x

= ζ̃λU −Uζ̃λ = [ζ̃λ, U]

∂ζ̃λ

∂y
= [ζ̃λ, V].

Furthermore, ζ̃λ(0, 0) = ζ0
λ is valid. Due to uniqueness of the solutions of the Lax equations

(according to Picard-Lindelöf) ζλ = ζ̃λ must be valid and (7.9) is justified. q.e.d.
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Lemma 7.15.
The monodromies (7.7) satisfy det(Mi

λ) = 1.

Proof.
Applying Theorem A.3 one can show that a fundamental solution of a differential equation
F′(t) = A(t)F(t), F(0) = 1 with continuous mapping t 7→ A(t) satisfies det(F(0)) = 1 and

d
dt

det(F(t)) = tr(A(t))det(F(t))

⇒ d
dt

ln(det(F(t))) = tr(A(t))

⇒ ln(det(F(t))) =
∫ t

0
tr(A(s))ds

⇒ det(F(t)) = exp
(∫ t

0
tr(A(s))ds

)
.

In our specific case, we have either t = x and A = U for given y or t = y and A = V for
given x. Since U and V are both traceless, the fundamental solutions of each of the equations
(7.6) have determinant one. Consequently, from the discussion after (7.6) referring to the
construction of the frame Fλ, the assertion follows immediately. q.e.d.

Remark 7.16.
In accordance with the latter lemma, we will denote the eigenvalues of the matrices Mi

λ, i =
1, 2

µi
λ,

1
µi

λ

.

Furthermore, the eigenvalues of ζλ will be denoted νλ,−νλ (recall the fact that tr(ζλ) = 0).
We can put νλ in concrete terms:

0 = det(ζλ − νλ1) =
1
2
(
(tr(ζλ − νλ1))2 − tr((ζλ − νλ1)2)

)
=

1
2
(
4ν2 − (2ν2

λ − 2νλ tr(ζλ) + tr(ζ2
λ))
)

= ν2
λ −

1
2

tr(ζ2
λ)

= ν2
λ − det(ζλ).

Thus, we receive ν2
λ = det(ζλ) = λa(λ), so

νλ = ±
√

λa(λ).

Lemma 7.17.
Let a ∈ M1

2 and λ̃ an arbitrary root of a. Then the eigenvalues of the monodromies satisfy

µi
λ̃
= ±1, for i = 1, 2.

Proof.
Let ζλ ∈ I(a). Then ζλ̃ has eigenvalues νλ̃ = 0 and the Jordan normal form is

J = Q−1ζλ̃Q =

(
0 1
0 0

)
.
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(Theoretically, another candidate for J would be the matrix with zero entries, but then ζλ̃

would equal zero, so λ̃ would be a root for ζλ and hence, a double root for a which is impos-
sible by assumption.)
Due to Lemma 7.14

0 = [Mi
λ̃
, ζλ̃] = Q−1[Mi

λ̃
, ζλ̃]Q = [Q−1Mi

λ̃
Q, J]

is valid and if we denote Q−1Mi
λ̃

Q =

(
a b
c d

)
, the above equation becomes

0 =

(
−c a− d
0 c

)
which implies c = 0 and a = d. In particular, we have proven that there exist numbers αi, βi

Q−1Mi
λ̃

Q = αi1 + βi J ⇔ Mi
λ̃
= Q(αi1 + βi J)Q−1 = αi1 + βiζλ̃.

Lemma 7.15 yields

1 = det(Mi
λ̃
) = det(Q(αi1 + βi J)Q−1) = det(αi1 + βi J) = α2

i

and thus, αi = ±1. Then we directly obtain with det(Mi
λ̃
) = 1 and tr(Mi

λ̃
) = 2αi = ±2 the

assertion. q.e.d.

It will turn out that the figure ln(µi
λ) is of particular interest for us. With its help we will

find out that when a has multiple roots on the unit circle S1, we obtain a lattice structure on
a certain subset. In addition, we can then define the following polynomials bi(λ):

∂

∂λ
ln(µi

λ) =:
bi(λ)

λνλ
i = 1, 2. (7.11)

At this point, the benefit of the polynomials bi remains unclear and we cannot even see that
bi are indeed polynomials.

7.3 Example: The Vacuum Solution

As an example, we will explicitly compute the frame, monodromies, its eigenvalues and the
polynomials bi for the vacuum solution u ≡ 0. The symbol ≡ indicates that the respective
figure is constant in z (or, alternatively, in (x, y)). As in Remark 5.7 we define

u := ln γ ≡ 0

and infer
α = −∂u

∂z
≡ 0 γ = eu ≡ 1.

This means, we are in the setting of case b), in which the determinant polynomial a has
two double roots on S1 (the spectral genus g = 0 case). We notice that β is a real number
(not necessarily zero) which also remains constant in (x, y) (or z). In particular, the resulting
ζλ remains constant (as already shown in case b)). For calculating the frame Fλ, one could
conduct the procedure which was explained in the discussion of (7.6). Unfortunately, this
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method turns out to have considerably complex terms and calculations, so we are interested
in an alternative way exploiting the simple form of u. With the common formulas we can
compute

Uλ ≡
(

0 −(1 + λ−1)
1 + λ 0

)
Vλ ≡

(
0 i(1− λ−1)

i(1− λ) 0

)
.

Thus, the system of ordinary differential equations (7.6) is autonomous. Formula (5.5) from
Remark 5.7 yields

[Vλ, Uλ] = i
(

2(e2u − e−2u) 2e−uuz̄λ−1 + 2euuz
2euuz̄ + 2e−uuzλ 2(e−2u − e2u)

)
= 0

and consequently, the matrices Uλ, Vλ can be diagonalized simultaneously. Having calcu-
lated the diagonalizing matrix P as well as the respective diagonal matrices we can quickly
conclude what the frame Fλ looks like by taking advantage of the autonomy of the differen-
tial equations. Therefore, we first focus on the computation of P.

For the upcoming calculations, we substitute k :=
√

λ.

Eigenvalues and eigenvectors of Uλ:
For the eigenvalues δ and −δ we consider the characteristic equation

det(Uλ − δ1) = δ2 + λ + λ−1 + 2 = 0

and infer
δ1/2 = ±i

√
(1 + λ)(1 + λ−1) = ±i

√
λ−1(1 + λ)2 = ±i(k + k−1).

The eigenspace of δ1 := i(k + k−1) will be denoted EU
1 and results from

(Uλ − δ1)v1 =

(
−i(k + k−1) −(1 + k−2)

1 + k2 −i(k + k−1)

)
v1 = 0

⇒
(

1 + k2 −i(k + k−1)
0 0

)
v1 = 0

⇒ EU
1 =

〈(
i
k

)〉
.

The eigenspace of δ2 := −i(k + k−1) will be denoted EU
2 and follows from(

1 + k2 i(k + k−1)
0 0

)
v2 = 0

⇒ EU
2 =

〈(
−i
k

)〉
.

Eigenvalues and eigenvectors of Vλ:
For the eigenvalues ε and −ε, we analogously infer

ε1/2 = ±i
√
(1− λ)(1− λ−1) = ±(k−1 − k).
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The eigenspace of ε1 := k−1 − k will be denoted EV
1 and emerge from

(Vλ − ε1)w1 =

(
−(k−1 − k) i(1− k−2)

i(1− k2) −(k−1 − k)

)
w1 = 0

⇒
(

i(1− k2) −(k−1 − k)
0 0

)
w1 = 0

⇒ EV
1 =

〈(
−i
k

)〉
.

The eigenspace of ε2 := −(k−1 − k) will be denoted EU
2 and results from(

i(1− k2) (k−1 − k)
0 0

)
w2 = 0

⇒ EV
2 =

〈(
i
k

)〉
.

All in all, we obtain
EU

1 = EV
2 EU

2 = EV
1

and hence, the simultaneously diagonalizing matrix P is of shape

P :=
(

i −i
k k

)
P−1 =

1
2

(
−i k−1

i k−1

)
.

The emerging diagonal matrices are

∆U := P−1UλP =

(
δ1 0
0 δ2

)
=

(
i(k + k−1) 0

0 −i(k + k−1)

)
∆V := P−1VλP =

(
ε2 0
0 ε1

)
=

(
−(k−1 − k) 0

0 (k−1 − k)

)
.

Now we can directly specify the frame Fλ using theory of ordinary differential equations
as the the system (7.6) is autonomous. The generated complicated matrix exponent will be
tremendously simplified due to simultaneous diagonalization:

F(x, y) = exp(xUλ + yVλ)F(0, 0) = P exp(x∆U + y∆V)P−1

= P

(
eix(k+k−1)+y(k−1−k) 0

0 e−ix(k+k−1)−y(k−1−k)

)
P−1

=

(
cos(x(k + k−1)− iy(k−1 − k)) −k−1 sin(x(k + k−1)− iy(k−1 − k))
k sin(x(k + k−1)− iy(k−1 − k)) cos(x(k + k−1)− iy(k−1 − k))

)
.

Alternatively, in z, z̄-coordinates, we have:

F(z) = P

(
eikz+ik−1 z̄ 0

0 e−ikz−ik−1 z̄

)
P−1 (7.12)

=

(
cos(kz + k−1z̄) −k−1 sin(kz + k−1z̄)
k sin(kz + k−1z̄) cos(kz + k−1z̄)

)
. (7.13)
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Importantly, any z ∈ C defines a period due to u ≡ 0. Therefore, the expression of the frame
(7.13) also defines the monodromies. Clearly, their eigenvalues can be found in the diagonal
matrix of (7.12), which means

µz
λ = eikz+ik−1 z̄ ⇒ ln(µz

λ) = ikz + ik−1z̄. (7.14)

For the polynomials bz(λ), we need to specify the derivative of ln(µz
λ) with respect to λ as

well as the eigenvalues ν of ζλ. The derivative is a simple computation (with k =
√

λ)

∂

∂λ
ln(µz

λ) =
1

2
√

λ
iz− 1

2
√

λ3
iz̄.

We have already proven in Remark 7.16 that ν =
√

λa(λ) and by means of formula (4.3) we
obtain (recalling that β is real)

νλ =
√

λa(λ)

=
√

λ
√

λ4 − 2βλ3 + (β2 + 2)λ2 − 2βλ + 1

=
√

λ
√
(λ2 − βλ + 1)2

=
√

λ (λ2 − βλ + 1).

Putting all together with formula (7.11) yields

bz(λ) = λνλ
∂

∂λ
ln(µz

λ)

= λ
√

λ (λ2 − βλ + 1)
(

1
2
√

λ
iz− 1

2
√

λ3
iz̄
)

=
1
2

i(λ2 − βλ + 1) (zλ− z̄)

=

√
a(λ)
2

i (zλ− z̄) .

Remark 7.18.
We see that bz(0) = − 1

2 iz̄, i.e. the evaluation of b at the point λ = 0 equals the complex
conjugate of the period multiplied by some factor. This statment also holds true for b of
other spectral genus and demonstrates the value of the polynomial b.
Furthermore, one can prove that b satisfies a reality condition. In the case of the vacuum
solution, this can be verified quickly with the above explicit expression for b:

λ3b(λ̄−1) = λ3
(
−1

2
i
√

a(λ̄−1)(z̄λ−1 − z)
)

= λ3
(
−1

2
i
√

λ−4a(λ)(z̄λ−1 − z)
)

= b(λ).

Remark 7.19.
We deliberately avoided any terminology referring to lattices throughout the analysis of the
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vacuum solution. The reason is that we have proven the lattice property of Γa only for
a ∈ M1

2. In the situation of the vacuum solution, a has two double points on S1 and thus,
we know from our findings in case b):

Γa = {(x, y) ∈ R2 | φ(x, y)(ζλ) = ζλ} = R2.

This is clearly no lattice as any complex number z ∈ C defines a period. However, we
will see that we can associate a lattice to determinant polynomials with multiple roots on
S1, namely the limit of lattices belonging to polynomials of M1

2. This is highly non-trivial
because it is not clear that the limit of lattices is well-defined and that it is indeed at lattice
itself. This problem is investigated in the remaining chapter.

7.4 Limits of Lattices: The polynomial a(λ) has two double roots on S1.

We return to our interesting mapping

g : M1
2 → N1

a 7→ τa

from (7.5). As mentioned before, we have the following goals:

1. The mapping g is uniquely continuously extendable onM2
2 and onM2 \ (M0

2 ∪M2
2)

(the set of polynomials a having exactly one double root on S1).

2. The mapping g is surjective on this continuation.

The main work behind these numbers will consist of the association of an appropriate lattice
to determinant polynomials having multiple roots on the unit sphere. We will analyze the
cases a ∈ M2

2 andM2 \ (M0
2 ∪M2

2) separately. For a ∈ M2
2 we have noticed in the analysis

of the vacuum solution that the first point is highly non-trivial due to the apparent lack of a
lattice structure (Γa = R2 = C). We face the same problem when a has exactly one double
root on S1. However, we will find out that the set of M1

2 period-limits forms a uniquely
defined lattice and we will explicitly state the continuation of g in this situation. This is
sufficient to prove 1. and 2. for a ∈ M2

2. ForM2 \ (M0
2 ∪M2

2) we will use common findings
from elliptic theory and merely give a numerical intuition that 2. holds true.
Sticking to this plan, we first consider a ∈ M2

2. The idea is to approximate a by a sequence
(an)n∈N ∈ M1

2 and transfer well-known properties of the sequence to its limit with the help
of the quantity ln(µi

λ). In this way, we will understand how the set of period limits explicitly
looks like.

Lemma 7.20.
Let a ∈ M2

2 and (an)n∈N ∈ M1
2 be a sequence converging against a with bounded associated se-

quence of periods (ωm
1 , ωm

2 )m∈N. Then there exists a subsequence (am)m∈N ∈ M1
2 with the following

properties:

i) The associated sequence of periods (ωm
1 , ωm

2 )m∈N converges.

ii) The associated sequence of monodromies (Mi
m)m∈N converges.

iii) The associated sequence of eigenvalues (µi
m)m∈N converges.
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Proof.
For reasons of clarity, we will omit the index λ during this proof, although a great part of the
mentioned quantities do still depend on λ.
Due to boundedness of the associated sequence of periods (ωm

1 , ωm
2 )m∈N, there exists a sub-

sequence indexed by k ∈ N such that (ωk
1, ωk

2)k∈N converges. The limit is denoted by
(ω1, ω2). Now we choose for every ak an arbitrary, but fixed initial value ζk

0 ∈ I(ak) and con-
sider the sequence (ζk

0)k∈N. Since convergence implies boundedness, the sequence (ak)k∈N

must be bounded, in particular the polynomial-coefficients must be bounded and therefore -
in analogy to the compactness proof of Proposition 5.9 - the sequence (αk, βk, γk)k∈N must be
bounded. Hence, there exists a convergent subsequence indexed by l ∈N. To sum up, so far
we have found a subsequence (al)l∈N ∈ M1

2 such that the associated sequence (ωl
1, ωl

2)l∈N

converges against (ω1, ω2) and (ζ l
0)l∈N converges against ζ0 ∈ I(a).

In the next step, we focus on the sequence (ζ l)l∈N of Polynomial Killing fields that results
from the sequence of initial values (ζ l

0)l∈N. In order to prove its convergence, we check the
conditions of Arzela-Ascoli Theorem A.4:

1. By assumption, the sequence of periods is bounded, so there exists a real number R > 0
such that

‖ωl
i‖ ≤ R for all l ∈N, i = 1, 2.

We shift the center of the fundamental region’s parallelogram to zero and determine
its maximal expansion:

‖ω1 + ω2‖
2

≤ ‖ω1‖
2

+
ω2‖

2
≤ R

‖ω1 −ω2‖
2

≤ ‖ω1‖
2

+
ω2‖

2
≤ R.

Therefore, we can regard (ζ l)l∈N as a sequence in C(K, R2) where K = B(0, R), because
all fundamental regions of Γal are contained in K.

2. Let (x, y) ∈ K be fixed. In complete analogy to the above argumentation, the con-
vergence of (al)l∈N ∈ M1

2 implies boundedness of the polynomial coefficients inde-
pendent of the choice of sequence and hence, uniformly boundedness of the sequence
(αl(x, y), βl(x, y), γl(x, y))l∈N with upper bound independent of l or (x, y). In particu-
lar, the sequence (ζ l(x, y))l∈N is bounded.

3. For equicontinuity, we apply the same argumentation as in 2. and infer that the right
hand side of the Lax equations (5.1) is uniformly bounded, i.e. the partial derivatives
of ζ l , l ∈ N are uniformly bounded. With help of the Boundedness Theorem one can
prove that any upper bound of the derivatives is a Lipschitz constant on the convex set
B(0, K) and furthermore, the Lipschitz constant is common (due to uniformly bound-
edness). Consequently, the sequence (ζ l)l∈N is equicontinuous in all points (x, y) ∈ K.

Arzela-Ascoli provides a subsequence (am)m∈N ∈ M1
2 indexed by m ∈ N such that all pre-

viously associated sequences converge as well as the sequence of Polynomial Killing fields
(ζm)m∈N. Its limit will be denoted by ζ(x, y) and solves the Lax equations due to the Vari-
ation of Parameters A.5 applied in x- and y-direction. This implies the convergence of the
respective entries

(αm(x, y), βm(x, y), γm(x, y))→ (α(x, y), β(x, y), γ(x, y)) for m→ ∞
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and these, in turn, entail for the right hand side matrices of the Lax equations (5.1)

Um → U and Vm → V for m→ ∞.

Thanks to the powerful Variation of Parameters Theorem A.5, the solutions of the equations

∂Fm

∂x
= FmU

∂Fm

∂y
= FmV Fm(0, 0) = 1 (7.15)

depend continuously on the right hand sides on compact sets. By regarding K = B(0, R) as
in 1. of Arzela-Ascoli, we infer for the frames

Fm(x, y)→ F(x, y) for m→ ∞.

This implies convergence of the monodromies

lim
m→∞

Mi
m = lim

m→∞
Fm(wm

i ) = F(wi) = Mi for i = 1, 2.

The second equality might be a bit confusing at first glance as we consider two sequences at
once, but it holds true due to the following observation: Let an be an arbitrary sequence in Rd

and bn another one which converges against b ∈ Rd. Then they have the same limit b if and
only if the sequence bn − an converges against zero since we can denote an = bn + (an − bn).
In our case, we have an = Fm(wm

i ) and bn = Fm(wi) with limit b = F(ωi) so we need to verify
that Fm(wm

i )− Fm(wi) converges against zero. This holds true as (Fm)m∈N is equicontinuous
(by completely analogous argumentation as conducted in the third part of Arzela-Ascoli
Theorem application above). Finally, we have

µi
m → µi for m→ ∞.

q.e.d.

The previous lemma is quite powerful. Given a ∈ M2
2 with roots λ0, λ̄0 ∈ S1, there can

always be found a sequence (an)n∈N ∈ M1
2 converging against a (Figure 9).

<

S1

Figure 9:M1
2-sequence (gray) converging

against a given element ofM2
2 (black).

In accordance with Lemma 7.20, there is a subsequence such that the periods (ωm
1 , ωm

2 )m∈N

converge with limit (ω1, ω2) and the associated sequence of (λ-dependent) monodromy
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eigenvalues (µi
m)m∈N converge against µi

λ. From the latter property and Lemma 7.17 we
can infer after inserting for λ the respective roots

µi
λ0

= ±1, i = 1, 2

µi
λ̄0

= ±1, i = 1, 2

which implies

ln(µi
λ0
) ∈ iπZ, i = 1, 2.

ln(µi
λ̄0
) ∈ iπZ, i = 1, 2.

At this point the quantity ln(µi
λ0
) displays its importance. Due to our computations in (7.14),

we precisely know what it looks like and conclude with k =
√

λ0

ikωj + ik−1ω̄j ∈ iπZ

ik−1ωj + ikω̄j ∈ iπZ, j = 1, 2.

The limits of periods satisfy two simple conditions defining a lattice and both conditions
are generated by the figure ln(µi

λ0
). More precisely, even though there is no lattice struc-

ture given when a ∈ M2
2, we have proven - under the condition of an inducing a bounded

sequence of periods - that the set of limits of periods is contained in the following lattice

Γ̃a := {ω ∈ C | kω + k−1ω̄ ∈ πZ, k−1ω + kω̄ ∈ πZ} ⊂ Γa = C

with k =
√

λ0 and λ0 being a double root of a. It remains to demonstrate that the set of
limits of periods is not only contained in but really equals Γ̃a. Moreover, the boundedness
hypothesis needs to be eliminated. However, we will refer to Hauswirth et al. [7] at this
point so that we can see this as a

Fact 1.
For given a ∈ M2 we define k :=

√
λ and focus on a sliced set G consisting of the unit ball

{k ∈ C | |k| < 1} with extracted line segments connecting k∗ and (k̄∗)−1 with a((k∗)2) = 0.

i) v2
λ = λa(λ) defines a holomorphic function k 7→ νk on G which is unique up to sign.

ii) The expression b(λ)
λνλ

can be integrated as a quotient of holomorphic functions. We define

h(k) :=
∫ b(k2)

k2νk
2kdk = 2

∫ b(k2)

kνk
dk

on G and the condition h(−k) = −h(k) specifies the integration constant.

iii) νk and k as well as the polynomial b(k2) are continuously extendable on the roots of a.

iv) h(k) is continuously extendable on the roots of a.

A complex number w is a period if and only if h(k∗) ∈ iπZ for all k∗ satisfying a((k∗)2) = 0
(Hauswirth et al. [7], Corollary 5.9, Definition 5.10).
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Remark 7.21.
In our case, we have

hj(k) = 2
∫ b(k2)

kνk
dk =

∫
i(ωj − k−2ω̄j)dk = ikωj + ik−1ω̄j + const. j = 1, 2.

The condition hj(−k) = −h(k) implies const. = 0. Furthermore, the polynomial a has two
double roots λ0 and λ−1

0 on S1 and therefore, we define k∗1 :=
√

λ0 and k∗2 := 1
k∗1

.Hence, the
requirement h(k∗) ∈ iπZ leads to (abbreviating k = k∗1)

ikωj + ik−1ω̄j ∈ iπZ

ik−1ωj + ikω̄j ∈ iπZ, j = 1, 2.

as in Γ̃a.

Remark 7.22.
The function ln(µλ) can be considered as the extension of the function h.

Before we start to focus on the mapping g again, we compute the generators (ω1, ω2) of Γ̃a.
We need to solve the following system of equations:

kω1 + k−1ω̄1 = π

k−1ω1 + kω̄1 = 0

kω2 + k−1ω̄2 = 0

k−1ω2 + kω̄2 = π.

The solutions are

ω1 =
π

k− k−3 (7.16)

ω2 =
π

k3 − k−1 = k−2ω1 = λ−1
0 ω1.

Obviously, these computations are only valid for λ0 /∈ {−1, 1}, i.e. when a has no quadruple
roots but two distinct double roots on S1. Now we can define the mapping g from (7.5)
on M2

2 by taking Γ̃a rather than Γa into consideration and proceed as usual: We take two
generators of Γ̃a satisfying minimality condition, transfer the shortest to one via rotation-
dilation and define τa as the remaining generator in N1.
We will now examine how τa concretely looks like. If the generators ω1, ω2 from (7.16) satisfy
minimality condition, i.e. if they are of shortest length, we transfer any of them to one via
rotation-dilation (since both ω1 and ω2 have the same length), for example ω2. In this case
we obtain

τa =
ω1

ω2
= λ0 ∈ S1.

However, this τa does only result when the generators ω1, ω2 from (7.16) satisfy the mini-
mality condition. We will now transform this condition into a restriction on λ0 by having a
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closer look at Figure 7. Minimality condition is satisfied if and only if

‖ω2‖
!
≤ ‖ω2 −ω1‖ = ‖(1− λ0)ω2‖ = ‖1− λ0‖‖ω2‖

⇔ 1
!
≤ (<(1− λ0))

2 + (=(1− λ0))
2

⇔ 1
!
≤ (1−<(λ0))

2 + (=(λ0))
2

⇔ 1
!
≤ 1− 2<(λ0) +<(λ0)

2 + (=(λ0))
2

⇔ 1
!
≤ 2− 2<(λ0)

⇔ <(λ0)
!
≤ 1

2

and analogously,

‖ω2‖
!
≤ ‖ω2 + ω1‖ = ‖(1 + λ0)ω2‖ = ‖1 + λ0‖‖ω2‖

⇔ − 1
2

!
≤ <(λ0).

Hence, ω1 and ω2 satisfy minimality condition if and only if |<(λ0)| ≤ 1
2 and in this case,

we obtain
τa = λ0 ∈ S1.

When |<(λ0)| > 1
2 either ω2 − ω1 or ω1 + ω2 is a shorter generator and needs to be trans-

ferred to 1 via rotation-dilation.
If ω2 − ω1 is the shortest generator, we consider the generators (ω1, ω2 − ω1) (of course,
one could also regard (ω2, ω2 − ω1)) and execute the respective rotation-dilation carrying
ω2 −ω1 to 1. Then, we obtain

τa =
ω1

ω2 −ω1
=

ω1
ω2

1− ω1
ω2

=
λ0

1− λ0
.

In order to substantiate the geometrical location of τa, we substitute ω1
ω2

= λ0 = eiϕ and
compute

τa =
eiϕ

1− eiϕ =
eiϕ(1− e−iϕ)

(1− eiϕ)(1− e−iϕ)

=
eiϕ − 1

2− eiϕ − e−iϕ

=
cos(ϕ) + i sin(ϕ)− 1

2(1− cos(ϕ))

= −1
2
+ i

sin(ϕ)

2(1− cos(ϕ))
.

This means that τa has real part of− 1
2 and the absolute value of the imaginary part explodes

when ϕ approaches 0 or 2π (Figure 10 (a)). With other words,

|=(τa)| → ∞ when <(λ0) ↑ 1.
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If ω1 + ω2 is the shortest generator, we demonstrate analogously

τa =
ω1

ω1 + ω2
=

ω1
ω2

ω1
ω2

+ 1
=

λ0

1 + λ0
=

1
2
+ i

sin(ϕ)

2(1 + cos(ϕ))

and conclude that τa has real part 1
2 in this case as well as exploding absolute imaginary part

whenever ϕ approaches π or −π (Figure 10 (b)) or alternatively,

|=(τa)| → ∞ when <(λ0) ↓ −1.

π
3

π

5π
3

2π

√
3

2

−
√

3
2

(a) The function sin(ϕ)
2(1−cos(ϕ))

.

2π
3

− 2π
3

π−π

√
3

2

−
√

3
2

(b) The function sin(ϕ)
2(1+cos(ϕ))

.

Figure 10: Plot of the imaginary values of τa in dependence of ϕ.

Finally, we will make some symmetry observations. We are allowed to restrict

λ0 ∈ S1 ∩H+

instead of λ0 ∈ S1 with H+ := {ω ∈ C | =(ω) > 0} because if we consider λ1 ∈ S1 ∩H−

with corresponding τ1 and λ2 := λ̄1 ∈ S1 ∩H+ with τ2 then one can verify with the above
formulas for τa that

τ1 = τ̄2

holds. In particular, the mapping λ0 7→ τa is invariant under complex conjugation (which
implies axis-symmetry to the real line) and the restriction is justified. Furthermore, the case
of a ∈ M2

2 owning quadruple roots is excluded since ±1 /∈H+.

Remark 7.23.
Additionally, we could even restrict

λ0 ∈ S1 ∩Q1

where Q1 := {ω ∈ C | <(ω) ≥ 0, =(ω) > 0} is the first quadrant of the complex plane
because if we consider λ1 ∈ S1 ∩Q3 from the third quadrant with corresponding τ1 and
λ2 := −λ1 ∈ S1 ∩Q1 with τ2 then one can verify with the above formulas for τa that

τ1 = −τ2

holds. In particular, the mapping λ0 7→ τa is invariant under sign changes (which implies
point-symmetry to zero) and the restriction is justified.
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To sum up, we have explicitly calculated the continuous extension ofM1
2-lattices to polyno-

mials having two double roots on S1:

Theorem 7.24.
Let a ∈ M2

2 with double roots λ0, λ̄0 ∈ S1 and λ0 ∈ S1 ∩H+. For the associated lattice of period
limits

Γ̃a := {ω ∈ C | kω + k−1ω̄ ∈ πZ, k−1ω + kω̄ ∈ πZ}
with k =

√
λ0 at least one of the generator pairs (ω1, ω2), (ω1, ω2−ω1) and (ω1, ω1 +ω2) satisfies

minimality condition whereby

ω1 =
π

k− k−3 ω2 =
π

k3 − k−1 = k−2ω1 = λ−1
0 ω1.

Furthermore, the mapping g from (7.5) can be extended onM2
2:

g : M2
2 → ∂N1

a 7→ τa

where

τa =


λ0 for |<(λ0)| ≤ 1

2
λ0

1−λ0
for <(λ0) >

1
2

λ0
1+λ0

for <(λ0) < − 1
2

as shown in Figure 11.

<

=

N1

Figure 11: Roots λ0 ∈ S1 ∩H+ and resulting
τa are sketched in the same color.

Remark 7.25.
Due to our preconsiderations, the continuation onM2

2 of the mapping g from Theorem 7.24
is obviously surjective on ∂N1.

Remark 7.26.
Heuristically spoken, the case in which a has a quadruple root corresponds to the limit of
the above mapping g where the absolute imaginary part equals infinity.
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7.5 Limits of Lattices: The polynomial a(λ) has one double root on S1.

We remember from Figure 1 that a is under the assumptions of this subsection uniquely
defined by a radius r > 0 and an angle ϕ:

a(λ) = (λ− reiϕ)(λ− r−1eiϕ)(λ− e−iϕ)2.

Similar to the previous subsection, we are interested in explicitly calculating the generators
of the continuously extended lattice in this M2 \ (M0

2 ∪M2
2) case. To do so, we need to

figure out how ln(µi
λ) looks like. It is well known, that ln(µ1

λ) can be expressed by a simple
function. Therefore, we make the following ansatz:

ln(µ1
λ) =

αi(1− e−iϕ)νλ

λ(λ− e−iϕ)
, α ∈ R

where
ν2

λ = λa(λ).

Obviously, we have by construction

ln(µ1
reiϕ) = ln(µ1

r−1eiϕ) = 0

as ν equals zero for these λ values. Before we calculate the period ω1 by making use of the
polynomial b we specify the parameter α, which is (up to sign) uniquely defined by r and ϕ.
The condition

ln(µ1
e−iϕ) = iπ

from Fact 1 boils down to

π2 = α2eiϕ(1− e−iϕ)2(e−iϕ − reiϕ)(e−iϕ − r−1eiϕ)

= α2eiϕ(1− 2e−iϕ + e−2iϕ)(e−2iϕ − r− r−1 + e2iϕ)

= α2(eiϕ − 2 + e−iϕ)(e−2iϕ − r− r−1 + e2iϕ)

= α2 (2 cos(ϕ)− 2)︸ ︷︷ ︸
≤ 0

(2 cos(2ϕ)− (r + r−1))︸ ︷︷ ︸
≤ 0

and therefore,

α = ± π√
(2 cos(ϕ)− 2)(2 cos(2ϕ)− (r + r−1))

∈ R. (7.17)

In order to compute the polynomial b(λ), we need to derive ln(µ1
λ) with respect to λ:

∂

∂λ
ln(µ1

λ) =
αi(1− e−iϕ)(a + λ ∂a

∂λ )

2νλλ(λ− e−iϕ)
− αi(1− e−iϕ)νλ(λ− e−iϕ + λ)

λ2(λ− e−iϕ)2

=
αi(1− e−iϕ)

2νλλ

(
a + λ ∂a

∂λ

λ− e−iϕ −
2a(2λ− e−iϕ)

(λ− e−iϕ)2

)
.

The derivative of a with respect to λ equals

∂a
∂λ

= (λ− r−1eiϕ)(λ− e−iϕ)2 + (λ− reiϕ)(λ− e−iϕ)2 + 2(λ− reiϕ)(λ− r−1eiϕ)(λ− e−iϕ)
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and hence,

a + λ ∂a
∂λ

λ− e−iϕ = (λ− reiϕ)(λ− r−1eiϕ)(λ− e−iϕ) + λ(λ− r−1eiϕ)(λ− e−iϕ)

+ λ(λ− reiϕ)(λ− e−iϕ) + 2λ(λ− reiϕ)(λ− r−1eiϕ)

= 5λ3 − (3e−iϕ + 4(r−1 + r)eiϕ)λ2 + (2(r−1 + r) + 3e2iϕ)λ− eiϕ

as well as

2a(2λ− e−iϕ)

(λ− e−iϕ)2 = 2(2λ− e−iϕ)(λ− reiϕ)(λ− r−1eiϕ)

= 4λ3 − (4(r−1 + r)eiϕ + 2e−iϕ)λ2 + (4e2iϕ + 2(r−1 + r))− 2eiϕ.

Thus, we conclude

∂

∂λ
ln(µ1

λ) =
αi(1− e−iϕ)

2νλλ
(λ3 − e−iϕλ2 − e2iϕλ + eiϕ)

which implies

b1(λ) = λνλ
∂

∂λ
ln(µ1

λ)

= − i
2

α(e−iϕ − 1)(λ3 − e−iϕλ2 − e2iϕλ + eiϕ).

Remark 7.27.
Again, the polynomial b1 satisfies the reality condition

λ3b1(λ̄−1) = λ3 i
2

α(eiϕ − 1)(λ−3 − eiϕλ−2 − e−2iϕλ−1 + e−iϕ) = b1(λ).

Finally, as we have seen in Remark 7.18, the period ω1 can be obtained from b1 via

b1(0) = −
i
2

ω̄1.

This means

ω1 = α(1− e−iϕ) = αe−i ϕ
2 (ei ϕ

2 − e−i ϕ
2 ) = 2iαe−i ϕ

2 sin(
ϕ

2
) (7.18)

with α from (7.17).

For the second period ω2, the approach is more difficult. It uses theory of elliptic functions,
computations become more complex as well as less explicit. The upcoming concepts origi-
nate from Kilian et al. [12] (p.7ff.). As stated in this paper, we can make the following ansatz

ln(µ2
λ) = s1 ln(µ1

λ) + s2 f (λ)

where s1, s2 are appropriate coefficients and f is a particular elliptic function which has been
investigated in Kilian et al. [12]. The coefficients s1, s2 can be computed immediately in
accordance with the conditions from Fact 1

iπ !
= ln(µ2

reiϕ) = ln(µ2
r−1eiϕ) = s2

93



SOLUTIONS OF THE SINH-GORDON EQUATION OF SPECTRAL GENUS TWO

as
f (r−1eiϕ) = f (reiϕ) = 1

and hence,

0 !
= ln(µe−iϕ) = s1iπ + iπ f (e−iϕ) ⇒ s1 = − f (e−iϕ).

Putting all together yields

ln(µ2
λ) = − f (e−iϕ) ln(µ1

λ) + iπ f (λ). (7.19)

In order to calculate the polynomial b2(λ), we consider the derivative of f with respect to λ̂
as stated in Kilian et al. [12], p.9:

∂ f
∂λ̂

=
2E′ − rK′(λ̂ + λ̂−1)

4πν̂iλ̂
(7.20)

The functions E, K are complete elliptic integrals

K(r) :=
∫ 1

0

dx√
(1− x2)(1− r2x2)

E(r) :=
∫ 1

0

√
1− r2x2

1− x2 dx

with derivatives

K′ = K′(r) = K(
√

1− r2) E′ = E′(r) = E(
√

1− r2)

for 0 ≤ r ≤ 1. Unfortunately, the coordinates λ̂ and λ do not coincide and thus, neither do ν̂
and νλ. From the mentioned paper it becomes clear that

λ = eiϕλ̂ ⇔ λ̂ = e−iϕλ. (7.21)

Furthermore, the relationship (Kilian et al. [12], p.7)

ν̂2 =
1
4
(λ̂− r)(λ̂−1 − r)

= − r
4

λ̂−1(λ̂− r)(λ̂− r−1)

= − r
4

e−iϕλ−1(λ− reiϕ)(λ− r−1eiϕ)

yields

ν2
λ = λ(λ− reiϕ)(λ− r−1eiϕ)(λ− e−iϕ)2

= −4
r

eiϕλ2(λ− e−iϕ)2ν̂2

and hence,

νλ =
2i√

r
ei ϕ

2 λ(λ− e−iϕ)ν̂ ⇔ ν̂ = − i
√

r
2

e−i ϕ
2 λ−1(λ− e−iϕ)−1νλ. (7.22)
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Finally, with
∂ f
∂λ

=
∂ f
∂λ̂

∂λ̂

∂λ
=

∂ f
∂λ̂

e−iϕ

we obtain from (7.20) with inserted transformations (7.21) and (7.22)

∂ f
∂λ

= e−iϕ 2E′ − rK′(e−iϕλ + eiϕλ−1)

2π
√

re−i 3
2 ϕ(λ− e−iϕ)−1νλ

.

Now we can compute the polynomial b2(λ) with (7.19)

b2(λ) = λνλ
∂

∂λ
ln(µ2

λ)

= − f (e−iϕ)b1(λ) + iπλνλe−iϕ 2E′ − rK′(e−iϕλ + eiϕλ−1)

2π
√

re−i 3
2 ϕ(λ− e−iϕ)−1νλ

= − f (e−iϕ)b1(λ) +
i
2

e−iϕ
(

2√
r

E′ei 3
2 ϕ(λ− e−iϕ)λ−

√
rK′ei 3

2 ϕ(λ− e−iϕ)(e−iϕλ + eiϕλ−1)λ

)
= − f (e−iϕ)b1(λ) +

i
2

e−i ϕ
2

(
2√
r

E′(eiϕλ− 1)λ−
√

rK′(λ3 − e−iϕλ2 + e2iϕλ− eiϕ
)

.

Remark 7.28.
One can quickly check that b2(λ) satisfies the reality condition

λ3 b2(λ̄−1) = b2(λ)

if and only if
f (e−iϕ) = f (e−iϕ)

i.e. f (e−iϕ) is a real number (which is true due to the analysis of Kilian et al.[12]).

Due to
− i

2
ω̄2 = b2(0) = − f (e−iϕ)b1(0)−

i
2
(−
√

rK′ei ϕ
2 )

we conclude

ω2 = − f (e−iϕ)ω1 −
√

rK′e−i ϕ
2 . (7.23)

The periods ω1, ω2 from (7.18) and (7.23) can be transferred continuously into the ones from
(7.16) for r → 1. Therefore, we are allowed to denote τa as the following quotient:

τa =
ω2

ω1
= − f (e−iϕ)−

√
rK′e−i ϕ

2 ω−1
1

= − f (e−iϕ) + i
√

rK′

2α sin( ϕ
2 )

.

In particular, we obtain <(τa) = − f (e−iϕ) as well as =(τa) =
√

rK′

2α sin( ϕ
2 )

.

We need to specify the elliptic function f on the unit sphere and thus, the real part, in order
to investigate the behaviour of τa. As it turns out to be very complicated to express this
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function in terms of (r, λ) coordinates, we want to figure out which new coordinates might
be suitable and transform the problem into these new coordinates. We start again with the
common formula from Kilian et al. [12], p.7:

ν̂2 =
1
4
(λ̂− r)(λ̂−1 − r)

= −rλ̂−1(λ̂− r)(λ̂− r−1)

The set of all (λ̂, ν̂) satisfying this equation defines an elliptic curve C/Γ. We are interested
in constituting this relationship in the following form

(P ′)2 = 4P3 − g2P − g3

where g2 = g2(r) and g3 = g3(r) do only depend on r. Hence, we compute(
i4
√

r−1ν̂λ̂
)2

= 4λ̂(λ̂− r)(λ̂− r−1)

= 4(λ̂3 − (r + r−1)λ̂2 + λ̂)

= 4
(

λ̂− 1
3
(r + r−1)

)3

−
(

4
3
(r + r−1)2 − 4

)(
λ̂− 1

3
(r + r−1)

)
−
(

8
27

(r + r−1)3 − 4
3
(r + r−1)

)
.

Therefore, we can state

g2(r) :=
4
3
(r + r−1)2 − 4

g3(r) :=
8
27

(r + r−1)3 − 4
3
(r + r−1)

as well as

P = λ̂− 1
3
(r + r−1) (7.24)

P ′ = i4
√

r−1ν̂λ̂. (7.25)

From theory of elliptic functions (Freitag et al.[2]) we know that there exists a biholomorphic
mapping

C×/Γ→ C, z 7→ (P ,P ′).

It will turn out to be beneficial to calculate with the coordinates (r, z) rather than (r, λ). Thus,
we now want to transfer the old coordinates to the new ones before calculating f .
We consider the double root λ0 = e−iϕ of the determinant polynomial a. We have already
seen in (7.21) that

λ̂0 = e−iϕe−iϕ = e−2iϕ

and with (7.24) we infer

m(r, z) := P(z) + 1
3
(r + r−1) = e−2iϕ.
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This gives us a relationship between r, z and ϕ. We now want to express the imaginary part
of τa in terms of (r, z). Using the addition theorem 1− cos(ϕ) = 2 sin2( ϕ

2 ) we can simplify

2α sin
( ϕ

2

)
=

2π sin( ϕ
2 )√

(2 cos(ϕ)− 2)(2 cos(2ϕ)− (r + r−1))

=
2π sin( ϕ

2 )√
−4 sin2( ϕ

2 )(2 cos(2ϕ)− (r + r−1))

=
π√

((r + r−1)− 2 cos(2ϕ))

which leads to

=(τ) = 1
π

√
rK′
√
((r + r−1)− 2 cos(2ϕ))

=
1
π

√
rK′
√
((r + r−1)− e−2iϕ − e2iϕ)

=
1
π

√
rK′
√
((r + r−1)−m(r, z)− 1

m(r, z)
.

For the real part, we now focus on the elliptic function f . The Weierstrass P-function P is
doubly periodic with half-periods ω, ω′ ∈ C. We define

η := ζ(ω) η′ := ζ(ω′)

where ζ is the Weierstrass’ Zeta function. Due to elliptic theory, f must be of shape

f (r, z) = α(ζ(z) + ζ(z + ω′)) + βz + γ

for appropriate α, β, γ ∈ C as well as satisfy the following conditions:

1. f (r,−z) = − f (r, z) for all z ∈ C

2. f (r, z + 2ω)− f (r, z) = 2 for all z ∈ C

3. f (r, z + 2ω′)− f (r, z) = 0 for all z ∈ C.

These properties make the parameters α, β, γ unique. To see this, we make use of the follow-
ing

Fact 2.
The Weierstrass’ Zeta function has the following characteristics:

• It is an odd function of its argument, i.e. ζ(−z) = −ζ(z).

• ζ(z + 2ω) = ζ(z) + 2η as well as ζ(z + 2ω′) = ζ(z) + 2η′.

• It satisfies Legendre’s relation: ηω′ − η′ω = 1
2 πi.

For details, check Bateman [13], p. 329.
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Hence, condition 1 yields

0 = f (r,−z) + f (r, z)
= α(ζ(−z + ω′) + ζ(z + ω′)) + 2γ

= α(ζ(−z−ω′ + 2ω′) + ζ(z + ω′)) + 2γ

= α(−ζ(z + ω′) + 2η′ + ζ(z + ω′)) + 2γ

= 2αη′ + 2γ

which implies

γ = −αη′.

Furthermore, condition 2 transforms into

2 = f (r, z + 2ω)− f (r, z)
= α(ζ(z + 2ω) + ζ(z + 2ω + ω′)− ζ(z)− ζ(z + ω′)) + 2βω

= α(ζ(z) + 2η + ζ(z + ω′) + 2η − ζ(z)− ζ(z + ω′)) + 2βω

= 4αη + 2βω

and analogously, condition 3 yields

0 = f (r, z + 2ω′)− f (r, z)
= 4αη′ + 2βω′.

Thus, we need to solve the following system of equations

γ = −αη′

1 = 2αη + βω

0 = 2αη′ + βω′.

The solution is

α =
ω′

iπ
β = −2η′

iπ
γ = −ω′

iπ
η′

because the third equation enforces β = −2 αη′

ω′ so the second turns into

1 = 2αη − 2
αη′

ω′
ω = 2

α

ω′
(ηω′ − η′ω) =

iπα

ω′

due to Legendre’s relation. Putting all together yields

f (r, z) =
ω′

iπ
(ζ(z) + ζ(z + ω′)− η′)− 2η′

iπ
z.

Finally, we have seen that we are only interested in evaluating the function f at the unit
sphere, i.e in the quantity f (e−iϕ), with respect to (r, λ) coordinates. This condition needs to
be transfomed into (r, z) coordinates as well. The idea is to regard the unit sphere as a fixed
point set of a particular antiholomorphic involution in (λ, ν) and then express the involution
as well as the corresponding fixed point set in terms of z.
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Definition 7.29.
Given a domain A, an involution is a function j : A→ A which is its own inverse: j ◦ j = id.

From elliptic theory we know Γ = Z2ω + Z2ω′ where ω ∈ R and ω′ ∈ iR are half-periods.
We transfer involutions on the spectral genus g = 1 curve (in (λ, ν) coordinates) to the torus
(with z coordinates):

ν2 = λ(λ− r)(λ− r−1) = λa(λ) ↔ C/Γ.

We know z = 0 corresponds to (λ, ν) = (∞, ∞).

• First, we consider the antiholomorphic involution

j : (λ, ν) 7→ (λ̄, ν̄) ↔ j : z 7→ z̄.

We investigate its fixed points both in the coordinates (λ, ν) and z. On the curve the
fixed points are characterized by the conditions λ, ν ∈ R which are equivalent to

λ ∈ [0, r−1] ∪ [r, ∞].

Thus, the fixed point set corresponds to the lines

I := [0, r−1] I I := [r, ∞].

On the torus, the fixed points satisfy

z mod Γ
= z̄ ⇔ z− z̄ mod Γ

= 0 ⇔ z ∈ R∪ (ω′ + R)

because ω ∈ R and ω′ ∈ iR. Due to the fact that z = 0 corresponds to (∞, ∞), the roots
of the curve satisfy

(r, 0), (∞, ∞) ∈ I (0, 0), (r−1, 0) ∈ I I.

• Now we consider the holomorphic involution

k : (λ, ν) 7→ (λ−1, λ−2ν) ↔ k : z 7→ z + ω′

which transforms the following roots into each other

(r, 0)↔ (r−1, 0)
(0, 0)↔ (∞, ∞).

Hence, the respective lines I and I I are transformed into each other.

• Finally, the composition of j, k yields the following antiholomorphic involution

l : (λ, ν) 7→ (λ̄−1, λ̄−2ν̄) ↔ l : z 7→ z̄ + ω′.

Its fixed points on the curve are characterized by the conditions

λ = λ̄−1 ⇔ λ ∈ S1
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as well as

λ̄2ν = ν̄

⇔ λ̄2ν2 = |ν|2

⇔ λ−2ν2 = λ−2λ̄−2|ν|2 = |ν|2.

This equation holds true for all λ ∈ S1 due to the following argumentation: As a(λ) =
(λ − r)(λ − r−1) is an element of M1 we have λ−2ν2 = λ−1a(λ) ≥ 0 for λ ∈ S1

and hence, the left and the right hand sides are nonnegative real numbers of the same
length. In particular, they must be identical, because

0 ≤
∣∣λ−2ν2 − |ν|2

∣∣ ≤ ∣∣|λ−2ν2| − |ν|2
∣∣ = 0.

Therefore, the set of fixed points equals the unit sphere in λ. A fixed point in z coordi-
nates satisfies

z mod Γ
= z̄ + ω′

⇒ z− z̄ mod Γ
= ω′

⇒ i=(z) mod Γ
=

ω′

2
or

3ω′

2

and hence, the fixed point set of the torus equals I I I ∪ IV where

I I I := (R +
ω′

2
) IV := (R +

3ω′

2
).

Due to this analysis of involutions we have figured out to which set in z coordinates the unit
sphere in λ coordinates corresponds:

S1 in λ ↔ (R +
ω′

2
) ∪ (R +

3ω′

2
) in z.

Figure 12 summarizes the above findings.

I

I I

I I

I I I

IV

(ω−ω′, r−1)

(ω + ω′, r−1)
(ω′, 0)

(0, ∞)

(−ω′, 0)

(ω, r)

Figure 12: Fixed point sets I, I I, I I I, IV on the torus
C/Γ of the involutions j and l in z coordinates with cor-
responding λ values, denoted (z, λ).
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All in all, we obtain for z ∈ C with =(z) ∈ {ω′

2 , 3ω′

2 }

<(τa) = − f (r, z) = −ω′

iπ
(ζ(z) + ζ(z + ω′)− η′) +

2η′

iπ
z

=(τa) =
1
π

√
rK′
√
((r + r−1)−m(r, z)− 1

m(r, z)

where m(r, z) = P(z) + 1
3 (r + r−1) = e−2iϕ. We conduct a parametric plot of τa using Math-

ematica in Figure 13. Its algorithm can be found in section B.

Figure 13: Parametric plots of τ for increasing r > 1.

Figure 13 suggests that τa is continuously moving upwards in N1 with increasing r and the
described arc will be successively compressed until it resembles a horizontal line. Hereby, we
should not forget that τa is the quotient of the two shortest generators and the ϕ-thresholds
(or z-thresholds) at which τa turns into a vertical line (probably in dependence on r) are
missed to be figured out. Finally, we conclude that g mapsM2 \ (M0

2 ∪M2
2) surjectively on

N1.
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8 Conclusion

In this section we will outline the most important findings of this work and conclude by
suggesting possible future research.

We have seen that every continuously differentiable vector field defines a local flow. The
commutator of two vector fields is a vector field itself and disappears if and only if the cor-
responding local flows commute.

All potentials ζλ ∈ P2 satisfy the reality condition λ3 ζ
t
1/λ̄ = −ζλ which is bequested on

the determinant polynomial a(λ) = λ4a(λ̄−1). Furthermore, every root of ζλ is a double root
of a(λ) and every root of a(λ) from the unit sphere must be double and is also a root of ζλ.

Polynomial Killing fields are maps ζλ : R2 → P2 which solve the Lax equations

∂ζλ

∂x
= [ζλ, U(ζλ)]

∂ζλ

∂y
= [ζλ, V(ζλ)].

These equations can be transformed into a system of ordinary differential equations in de-
pendence on the matrix entries of the potentials. Crucially, the determinant polynomial
forms an integral of motion with respect to the resulting flows. This implies the globality of
these flows as their orbits are contained in compact isospectral sets.

If the determinant polynomial a has four pairwise distinct roots, the isospectral sets are two-
dimensional compact submanifolds and the flows act transitively on them. If a has at least
one double point on S1 we can divide a by this root and reduce the situation to the spectral
genus g = 1 or g = 0 case. Hence, the flows act transitively on the isospectral sets as well.
When a has two double roots absent the unit sphere, the isospectral set falls into a singleton
and a non-compact set and on both parts the flows act transitively.

If a has four pairwise distinct roots, it induces a lattice

Γa = {(x, y) ∈ R2 | φ(x, y)(ζλ) = ζλ}

which is isomorphic to a lattice with generators (1, τa) where τa is contained in the fun-
damental region N1 of the SL(2, Z) group. The mapping g which transfers such an a to
the generator τa can be continuously extended on those a having multiple roots on the unit
sphere. In this context, we have shown that the limit ofM1

2− lattices is well-defined and is
a lattice itself.

When a has two double roots on S1, g maps surjectively on ∂N1. Furthermore, we have
seen a numerical motivation that the mapping is probably surjective on N1 when a has one
double root on S1. This has to be verified analytically. To do so, the minimality condition
needs to be transformed into conditions in the new coordinate z.

Having done this, one could probably obtain surjectivity of the original mapping g onM1
2

(without boundary). As it is already surjective on the boundary, an application of the
Whitham deformation may lead to this conclusion.
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A Basic Theorems

Theorem A.1 (Inverse Function Theorem).
Let V, W finite-dimensional, normed K-vector spaces, U ⊂ V an open subset and f : U → W a
continuously differentiable mapping. If the differential d f (x0) ∈ L(V, W) in x0 ∈ U is invertible,
then there is an open subset U′ ⊂ U containing x0 such that O := f (U′) ⊂ W contains f (x0) and
the restriction

f
∣∣
U′ : U′ → O

is a diffeomorphism.

Proof.
The inverse function is constructed using Banach Fixed-Point Theorem and the Boundedness
Theorem. Details can be studied in Königsberger [1]. q.e.d.

Theorem A.2 (Implicit Function Theorem).
Let V, W, Z be finite-dimensional, normed K-vector spaces with dim V = dim W. Furthermore,
let U ⊂ Z × V be an open subset containing an element (a0, b0) and f : U → W a continuously
differentiable function with f (a0, b0) = c0 ∈ W. When the linear mapping ∂ f

∂b (a0, b0) ∈ L(V, W)
is invertible, then there exist open sets U′ ⊂ Z containing a0, U′′ ⊂ V containing b0 as well as a
continuously differentiable mapping

g : U′ → U′′

such that
f (a, g(a)) = c0 for all a ∈ U′.

With other words, given c0 ∈ W, all solutions (a, b) ∈ U′ ×U′′ of the equation f (a, b) = c0 are
contained in the graph of the function g:

f (a, b) = c0, (a, b) ∈ U′ ×U′′ ⇔ b = g(a), a ∈ U′.

Proof.
Consider the mapping

F : U → Z×W, (a, b) 7→ (a, f (a, b))

and apply the Inverse Function Theorem A.1. For details, check Königsberger [1]. q.e.d.

Theorem A.3 (Trace and Determinant of Fundamental Solutions).
Let A : I → Kn×n be a continuous mapping from the open interval I to K-valued n× n matrices.
Then the fundamental solution

F : I → Kn×n with
dF
dt

= A(t)F(t) and F(t0) = 1

also satisfies
d
dt

det(F(t)) = tr(A(t))det(F(t)) with det(F(t0)) = 1.

In particular, det(F(t)) has no roots on I and F(t) is invertible for all t ∈ I.
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Proof.
Statement and proof of this theorem originate from Schmidt [10]. The determinant
det : Kn×n → K is a polynomial in the respective matrix’ entries and therefore analytic. One
calculates the derivative of a matrix B in direction of the matrix AB and uses the chain rule
for F. For details, check Schmidt [10], p.23. q.e.d.

Theorem A.4 (Arzela-Ascoli).
Let K be a compact metric space and V be a finite-dimensional Banach space. A sequence ( fn)n∈N in
C(K, V) owns a convergent subsequence if

i) for any x ∈ K the sequence ( fn(x))n∈N is bounded and

ii) for any x ∈ K the sequence ( fn)n∈N is equicontinuous, i.e. for any x ∈ K and any ε > 0 there
exists an δ > 0 such that

x′ ∈ B(x, δ) ⊂ K ⇒ fn(x′) ∈ B( fn(x), ε) ⊂ V for all n ∈N.

Proof.
Statement and proof of this theorem originate from Schmidt [10]. First, one proves that
the sequence ( fn)n∈N is even equicontinuous on K. Afterwards, a subsequence (gn)n∈N is
constructed inductively which turns out to be Cauchy and hence, convergent. For details,
check Schmidt [10], p.23. q.e.d.

Theorem A.5 (Variation of Parameters).
Let [α, β] ⊂ R be a compact interval and V a Banach space. Then the mapping

C([α, β],L(V))× C([α, β], V)× [α, β]×V → C([α, β], V)

(A, b, t0, u0) 7→ u

with u being the unique solution of the initial value problem

u′(t) = A(t)u(t) + b(t) with u(t0) = u0

is continuous. The restriction of this mapping on fixed t0 depends analytically from A, b and u0. For
each (A, b, t0) ∈ C([α, β],L(V)) × C([α, β], V) × [α, β] the respective restriction of the mapping
is an affine isomorphism from u0 ∈ V to the set of solutions of the differential equation u′(t) =
A(t)u(t) + b(t).

Proof.
Statement and proof of this theorem originate from Schmidt [10]. Instead of considering the
abstract solution u one denotes its integral form and modifies the above mapping respec-
tively. This mapping turns out to be Lipschitz for fixed equation parameters which is the
basis for all claims in the statement. For details, check Schmidt [10], p.16. q.e.d.
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B Mathematica Algorithm of Figure 13

g2[r ]:=4/3 ∗ (r + 1/r)∧2− 4g2[r ]:=4/3 ∗ (r + 1/r)∧2− 4g2[r ]:=4/3 ∗ (r + 1/r)∧2− 4

g3[r ]:=1/3 ∗ g2[r](r + 1/r)− 4/27 ∗ (r + 1/r)∧3g3[r ]:=1/3 ∗ g2[r](r + 1/r)− 4/27 ∗ (r + 1/r)∧3g3[r ]:=1/3 ∗ g2[r](r + 1/r)− 4/27 ∗ (r + 1/r)∧3

period[r ]:=WeierstrassHalfPeriods[{g2[r], g3[r]}].{1, 0}period[r ]:=WeierstrassHalfPeriods[{g2[r], g3[r]}].{1, 0}period[r ]:=WeierstrassHalfPeriods[{g2[r], g3[r]}].{1, 0}

periodp[r ]:=WeierstrassHalfPeriods[{g2[r], g3[r]}].{0, 1}periodp[r ]:=WeierstrassHalfPeriods[{g2[r], g3[r]}].{0, 1}periodp[r ]:=WeierstrassHalfPeriods[{g2[r], g3[r]}].{0, 1}

eta[r ]:=WeierstrassZeta[period[r], {g2[r], g3[r]}]eta[r ]:=WeierstrassZeta[period[r], {g2[r], g3[r]}]eta[r ]:=WeierstrassZeta[period[r], {g2[r], g3[r]}]

etap[r ]:=WeierstrassZeta[periodp[r], {g2[r], g3[r]}]etap[r ]:=WeierstrassZeta[periodp[r], {g2[r], g3[r]}]etap[r ]:=WeierstrassZeta[periodp[r], {g2[r], g3[r]}]

beta[r ]:=− 2 ∗ eta[r]/(Pi ∗ I)beta[r ]:=− 2 ∗ eta[r]/(Pi ∗ I)beta[r ]:=− 2 ∗ eta[r]/(Pi ∗ I)

betap[r ]:=− 2 ∗ etap[r]/(Pi ∗ I)betap[r ]:=− 2 ∗ etap[r]/(Pi ∗ I)betap[r ]:=− 2 ∗ etap[r]/(Pi ∗ I)

alpha[r ]:=period[r]/(Pi ∗ I)alpha[r ]:=period[r]/(Pi ∗ I)alpha[r ]:=period[r]/(Pi ∗ I)

alphap[r ]:=periodp[r]/(Pi ∗ I)alphap[r ]:=periodp[r]/(Pi ∗ I)alphap[r ]:=periodp[r]/(Pi ∗ I)

f [r , z ]:=f [r , z ]:=f [r , z ]:=

alpha[r]∗alpha[r]∗alpha[r]∗

(WeierstrassZeta[z, {g2[r], g3[r]}]+(WeierstrassZeta[z, {g2[r], g3[r]}]+(WeierstrassZeta[z, {g2[r], g3[r]}]+

WeierstrassZeta[z + period[r], {g2[r], g3[r]}]− eta[r]) + beta[r] ∗ zWeierstrassZeta[z + period[r], {g2[r], g3[r]}]− eta[r]) + beta[r] ∗ zWeierstrassZeta[z + period[r], {g2[r], g3[r]}]− eta[r]) + beta[r] ∗ z

fp[r , z ]:=fp[r , z ]:=fp[r , z ]:=

alphap[r]∗alphap[r]∗alphap[r]∗

(WeierstrassZeta[z, {g2[r], g3[r]}]+(WeierstrassZeta[z, {g2[r], g3[r]}]+(WeierstrassZeta[z, {g2[r], g3[r]}]+

WeierstrassZeta[z + periodp[r], {g2[r], g3[r]}]− etap[r]) + betap[r] ∗ zWeierstrassZeta[z + periodp[r], {g2[r], g3[r]}]− etap[r]) + betap[r] ∗ zWeierstrassZeta[z + periodp[r], {g2[r], g3[r]}]− etap[r]) + betap[r] ∗ z

Realteil[r , z ]:=− f [r, z]Realteil[r , z ]:=− f [r, z]Realteil[r , z ]:=− f [r, z]

Realteilp[r , z ]:=− fp[r, z]Realteilp[r , z ]:=− fp[r, z]Realteilp[r , z ]:=− fp[r, z]

Realteiltau[r , z ]:=Re[Realteil[r, 1/2 ∗ period[r] + z]]Realteiltau[r , z ]:=Re[Realteil[r, 1/2 ∗ period[r] + z]]Realteiltau[r , z ]:=Re[Realteil[r, 1/2 ∗ period[r] + z]]

Realteiltaup[r , z ]:=Re[Realteilp[r, z + 1/2 ∗ periodp[r]]]Realteiltaup[r , z ]:=Re[Realteilp[r, z + 1/2 ∗ periodp[r]]]Realteiltaup[r , z ]:=Re[Realteilp[r, z + 1/2 ∗ periodp[r]]]
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m[r , z ]:=WeierstrassP[z, {g2[r], g3[r]}] + 1/3 ∗ (r + 1/r)m[r , z ]:=WeierstrassP[z, {g2[r], g3[r]}] + 1/3 ∗ (r + 1/r)m[r , z ]:=WeierstrassP[z, {g2[r], g3[r]}] + 1/3 ∗ (r + 1/r)

Kp[r ]:=EllipticK[Sqrt[1− r∧2]]Kp[r ]:=EllipticK[Sqrt[1− r∧2]]Kp[r ]:=EllipticK[Sqrt[1− r∧2]]

Imaginarteil[r , z ]:=(1/Pi) ∗Kp[r] ∗ Sqrt[r] ∗ Sqrt[r + 1/r−m[r, z]− 1/(m[r, z])]Imaginarteil[r , z ]:=(1/Pi) ∗Kp[r] ∗ Sqrt[r] ∗ Sqrt[r + 1/r−m[r, z]− 1/(m[r, z])]Imaginarteil[r , z ]:=(1/Pi) ∗Kp[r] ∗ Sqrt[r] ∗ Sqrt[r + 1/r−m[r, z]− 1/(m[r, z])]

Imaginarteiltau[r , z ]:=Re[Imaginarteil[r, 1/2 ∗ period[r] + z]]Imaginarteiltau[r , z ]:=Re[Imaginarteil[r, 1/2 ∗ period[r] + z]]Imaginarteiltau[r , z ]:=Re[Imaginarteil[r, 1/2 ∗ period[r] + z]]

Imaginarteiltaup[r , z ]:=Re[Imaginarteil[r, z + 1/2 ∗ periodp[r]]]Imaginarteiltaup[r , z ]:=Re[Imaginarteil[r, z + 1/2 ∗ periodp[r]]]Imaginarteiltaup[r , z ]:=Re[Imaginarteil[r, z + 1/2 ∗ periodp[r]]]

Plot[Realteiltau[z]Plot[Realteiltau[z]Plot[Realteiltau[z]

ParametricPlot[{{Realteiltaup[0.01, z], Imaginarteiltaup[0.01, z]},ParametricPlot[{{Realteiltaup[0.01, z], Imaginarteiltaup[0.01, z]},ParametricPlot[{{Realteiltaup[0.01, z], Imaginarteiltaup[0.01, z]},

{Realteiltaup[0.02, z], Imaginarteiltaup[0.02, z]},{Realteiltaup[0.02, z], Imaginarteiltaup[0.02, z]},{Realteiltaup[0.02, z], Imaginarteiltaup[0.02, z]},

{Realteiltaup[0.03, z], Imaginarteiltaup[0.03, z]},{Realteiltaup[0.03, z], Imaginarteiltaup[0.03, z]},{Realteiltaup[0.03, z], Imaginarteiltaup[0.03, z]},

{Realteiltaup[0.05, z], Imaginarteiltaup[0.05, z]},{Realteiltaup[0.05, z], Imaginarteiltaup[0.05, z]},{Realteiltaup[0.05, z], Imaginarteiltaup[0.05, z]},

{Realteiltaup[0.1, z], Imaginarteiltaup[0.1, z]},{Realteiltaup[0.1, z], Imaginarteiltaup[0.1, z]},{Realteiltaup[0.1, z], Imaginarteiltaup[0.1, z]},

{Realteiltaup[0.2, z], Imaginarteiltaup[0.2, z]},{Realteiltaup[0.2, z], Imaginarteiltaup[0.2, z]},{Realteiltaup[0.2, z], Imaginarteiltaup[0.2, z]},

{Realteiltaup[0.4, z], Imaginarteiltaup[0.4, z]},{Realteiltaup[0.4, z], Imaginarteiltaup[0.4, z]},{Realteiltaup[0.4, z], Imaginarteiltaup[0.4, z]},

{Realteiltau[0.9, z], Imaginarteiltau[0.9, z]},{Realteiltau[0.9, z], Imaginarteiltau[0.9, z]},{Realteiltau[0.9, z], Imaginarteiltau[0.9, z]},

{Realteiltau[0.9999, z], Imaginarteiltau[0.9999, z]}}, {z,−4, 4},{Realteiltau[0.9999, z], Imaginarteiltau[0.9999, z]}}, {z,−4, 4},{Realteiltau[0.9999, z], Imaginarteiltau[0.9999, z]}}, {z,−4, 4},

PlotRange→ {{−1.1, 1.1}, {−.1, 2.3}},PlotRange→ {{−1.1, 1.1}, {−.1, 2.3}},PlotRange→ {{−1.1, 1.1}, {−.1, 2.3}},

Epilog→ {Dashed, Line[{{0.5, 0}, {0.5, 2.3}}], Line[{{−0.5, 0}, {−0.5, 2.3}}],Epilog→ {Dashed, Line[{{0.5, 0}, {0.5, 2.3}}], Line[{{−0.5, 0}, {−0.5, 2.3}}],Epilog→ {Dashed, Line[{{0.5, 0}, {0.5, 2.3}}], Line[{{−0.5, 0}, {−0.5, 2.3}}],

Line[{{1, 0}, {1, 2.3}}], Line[{{−1, 0}, {−1, 2.3}}]}]Line[{{1, 0}, {1, 2.3}}], Line[{{−1, 0}, {−1, 2.3}}]}]Line[{{1, 0}, {1, 2.3}}], Line[{{−1, 0}, {−1, 2.3}}]}]
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