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1 Introduction

One of the problems of differential geometry is to determine the structure and clas-
sification of constant mean curvature (CMC) surfaces in three dimensional manifolds.
Common models used for those manifolds are the Euclidian Space R3, the 3-sphere S3

and the 3-hyperbolic space H3.

It is well known that some nonlinear differential equations, which have been studied
extensively during the last twenty five years by means of the inverse scattering method,
were first obtained in the framework of surface theory. One of the most famous equations
of this kind is the sinh-Gordon equation

uzz + sinh(u) = 0

, as it coincides with the Gauss-Codazzi system for surfaces of constant positive Gaussian
curvature in the classic 3-spaces. The integrability of these equations, i.e. the zero cur-
vature representations with spectral parameter, made it possible to develop the theory
of exact solutions for the sinh-Gordon equation, which was then successfully applied to
surface theory.

The solution of nonlinear equations as the sinh-Gordon equation is connected to Riemann
surface theory via spectral theory of operators used in the inverse scattering method. The
link between the theory of spectral theory of operators, the solution of the sinh-Gordon
equation and Riemann surface theory is made through to the zero curvature condition.
By this connection, the solution of the sinh-Gordon equations obtains the role as poten-
tial of the operators.

The operators define a special eigenvalue problem, which can be interpreted as hyper-
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Chapter 1. Introduction

elliptic curve, the so-called spectral curve. This makes it possible to solve the problem
with Riemann surface theory and the allied theory of theta-functions. This leads to the
Baker-Akhiezer functions, functions with special properties on Riemann surfaces uniquely
existing on them. The crucial point is that those Baker-Akhiezer functions also solve the
special eigenvalue problem and are therefore the solution to the main problem. The
Baker-Akhiezer functions can be constructed from theta-functions and one retrieves an
explicit formula for the solution of the sinh-Gordon equation.

One is then in the situation to retrieve explicit formulas for the frame and immersion of
a surface, (as this was for example conducted in [6]).Once the frame for a CMC surface
is identified there exists the Sym-Bobenko formula for R3,H3, S3 which makes it possible
to retrieve a formula for the immersion without integration.

The latter is one of two main parts of the thesis. Publications studying this field are
highly elaborated and difficult to understand even for a graduate student. The source of
the theory of integrable systems had its development in Russia and a lot of publications
being more specific and explaining are therefore not in English. Although there exist
quite a few publications in English, they are mostly very brief, requiring the knowledge
of many mathematics areas and not carrying out calculations. Consequently, the thesis
tries to overcome this lack in literature, choosing a more intuitive approach and providind
the reader with most of the calculations in detail.

Figure 1.1: Cutaway view of the twisty torus

In this thesis we are especially interested in CMC tori in 3-spaces, which leads to the
introduction of the concept of monodromy, emerging from the periodicty of the frame.
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Studying CMC tori means, that we are interested in double periodic solutions of the
sinh-Gordon equation. The one to one correspondence between the solution of the sinh-
Gordon equation and hyperelliptic curves, i.e. vica versa one can obtain solutions of the
sinh-Gordon equation from hyperelliptics curves as well es the sinh-Gordon equations
defines one, offers a naturally way to study CMC tori via spectral curves. Equivalently
one has to impose a supplementary condition on the monodromy of the immersion to
retrieve immersions of CMC tori which leads back to the Sym Bobenko formula. The
link to the spectral curve makes it possible to study, which data of the spectral curve
need to be specified additionally to result in CMC tori. The second main purpose of this
thesis is to describe by which data the spectral curve of a CMC torus is described in the
3-hyperbolic space. Deformations on the spectral curve can be described by a system of
ordinary differential equations after having introduced a deformation parameter. In this
way, a one-parameter family of spectral curves is obtained for every given spectral curve.
Determining the spectral data of CMC tori in H3 as well as identifying the ordinary
differentials equations describing the corresponding deformation has as far as we know
nobody done before.

Figure 1.2: The twisty torus in R3

The thesis is structured as follows. In Chapter 2 we concentrate on classical surface
theory. We review the basic concepts such as the Gauss map, the fundamental forms,
and the shape operator. We introduce different definitions of curvature and define what
we understand by constant mean curvature. We are then ready to answer the question
of when an immersion is uniquely defined. We show that an immersion exists up to
rigid motion uniquely if some functions satisfy a pair of equations, the Gausss-Codazzi
equations. The immersion can be described by a so-called Lax pair, which satisfies the
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Chapter 1. Introduction

zero curvature condition. We start by constructing the Lax pair in terms of 3×3-matrices
and rework them in 2 × 2-matrices for the Euclidean and the 3-hyperbolic space. We
show that, regardless of which of both spaces that the integrability condition reduces to
the sinh-Gordon equation.

Figure 1.3: Cylinder in H3

In the third Chapter we give a brief introduction to Riemann surface theory as it is
needed in Chapter 4 to derive an explicit solution of the sinh-Gordon equation and in
Chapter 5 to study the spectral curve and its deformations. Because Riemann surface
theory is only used as tool here, the overview given will be brief, concentrating on the
necessary. As we mostly need theory about hyperelliptic curves, we will treat this case
explictly in this chapter in preparation for the following chapters. In the second section
of this chapter we introduce theta-functions which we will use in the next chapter.

In Chapter 4 we study solutions of nonlinear differential equations like the sinh-Gordon
equation. In a first step we connect the sinh-Gordon equation to the spectral theory
of operators. The connection between the operators and the spectral curve is then es-
tablished via the eigenvalue problem of those operators and properties they fulfill. We
reduce the problem of solving the sinh-Gordon equation to finding a special function on
the spectral curve, the Baker-Akhiezer function. We are then in the situation to derive an
explicit formula for the solution of the sinh-Gordon equation in terms of theta-functions
introduced in the chapter before.
In Chapter 5 we turn our attention to the specific case of CMC tori, i.e. we impose
a special closing condition on our immersion, which is equivalent to requiring the sinh-
Gordon solution to be double periodic. We will introduce the concept of monodromy and
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Figure 1.4: Delauny surface in H3

choose a slightly different, but equivalent, representation of the spectral curve. We study
the closing condition of the immersion via the monodromy and the spectral curve and
are then in the situation to manifest which conditions must be imposed on the spectral
curve to be a CMC torus in the 3-hyperbolic space, the so called spectral data. This
representation then allows us to study deformations and represent them by a system of
ordinary differential equations.

Chapter 6 gives a summary about the different chapter of this thesis as well as the
results. We highlight the main concepts used explaining our motivation for the chosen
proceeding. Last but not least we provide some possible interesting directions on further
research.
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2 Classical surface theory

In this chapter we give an overview over classical surface theory. We begin with a brief
introduction to the topic and revise concepts such as the Gauss map, the first and second
fundamental forms, as well as the Weingarten Map, and the Gauss and mean curvature.
In a next step we identify, which functions uniquely determine an immersion and derive
the equations which have to be satisfied by those functions. We then derive explicitly
those terms for the surfaces in R3 and H3. The goal of this chapter is to show that
describing surfaces, or to be precise family of immersions, in R3 and H3 is reduced to the
famous sinh-Gordon equation, which is well known in the theory of integrable systems.
In this chapter we follow closely the works of [53], [54], [55] and [25], but try to carry out
most of the calculations in detail.

2.1 Surface theory

In this section we recall basic concepts of elementary differential geometry. We derive
the concepts in general with the purpose of using them for the Euclidean space R3 as
well as the 3-hyperbolic space H3. We therefore assume that M lies in a 4-dimensional
Riemann or Lorentzian manifold with metric 〈·, ·〉M .

Definition 2.1. (Immersion) We consider U ⊂ R2, a non-empty set with the following
properties: For each point p ∈ U there exists an open neighborhood U ⊂ M around p
and an open neighborhood V of p in M and a differentiable map f : U −→M such that
the following hold:

i. f : U −→ V is a homeomorphism,

ii. f(U) = V ,

iii. (df)p : U −→M is injective for all p ∈ U .

15



Chapter 2. Classical surface theory

Then f is an immersion.

The last requirement is equivalent to the linear codependency of the vectors

fx(p) =
∂f

∂x
(p) fy(p) =

∂f

∂y
(p).

Definition 2.2. (Tangent plane) A vector v ∈ R3 is tangent to the surface M at p ∈M
if there is a curve α : (−ε, ε) −→M with α(0) = p and α′(0) = v. The set of all tangent
vectors to M at a point p will be denoted with TpM and is called the tangent plane of
M at the point p.

For a parameterization f : R2 ⊃ U −→ M with p ∈ f(U) ⊂ M , we have TpM =

(df)f−1(p)(R2). Consequently, one sees that TpM is a linear plane of R3 which is the
tangent plane of M at p. Furthermore, if the parameterization f of M covers p and
q = f−1(p), then (df)q(R2) does not depend on f and (fx(q), fy(q)) is a basis of TpM .

After having introduced the tangent plane, we can give a definition of how an immersion
can be described:

Definition 2.3. (Immersion) Let f : U ⊂ R2 −→ M be a smooth mapping, with
differential dfp : TpU −→ Tf(p)M . If the differential dfp is injective for all p ∈ U then f
is an immersion.

Definition 2.4. Let f : U −→M be an immersion. If f is also a homeomorphism from
U onto f(U) then f is an embedding.

Remark 2.5. From now on we presume that f is an immersion if not otherwise stated.

Remark 2.6. We can write f in terms of its components

f(x, y) = (a(x, y), b(x, y), c(x, y))

and say that f is differentiable if a, b, and c are differentiable. The map f will be called
parameterization of M and its variables x, y local coordinates of M .

Definition 2.7. (First fundamental form) Let f : U −→M be an immersion and p ∈ U .
The first fundamental form is the metric induced by an immersion

〈v, w〉M = 〈df(v), df(w)〉M (2.1)
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2.1 Surface theory

for any two vectors v, w ∈ TpU with 〈·, ·〉M the metric of M .

This means that the metric is pulled back by df .

Remark 2.8. For the sake of notional brevity we will omit the subscript M at the
metric since it will be clear which metric is meant. In the next section it will be standard
Euclidean metric as from the next remark, and the metric of the 3-hyperbolic space will
be introduced in the corresponding section.

Remark 2.9. The standard metric 〈·, ·〉 of R3 is defined as

〈v, w〉p =
∑

i,j=1,...,3

viwjgij

with gij = 〈 ∂∂xi , ∂
∂xj
〉.

Since (x, y) is a standard coordinate system on R2 and f is an immersion, a basis for
TpU can always be chosen as

fx =
∂f

∂x
|p, fy =

∂f

∂y
|p.

The first fundamental form with respect to the standard coordinate system is then rep-
resented by

g =

(
E F

F G

)
,

where

E = 〈∂f
∂x
,
∂f

∂x
〉 = 〈fx, fx〉,
F = 〈fx, fy〉,
G = 〈fy, fy〉,

or short
gij = 〈fi, fj〉.

Remark 2.10. f is an immersion if and only if the determinant of the first fundamental
form is positive.

17



Chapter 2. Classical surface theory

Remark 2.11. In the next section it will be explained that in our case one can always
choose coordinates (x, y) on U such that the metric becomes "conformal" which implies
F = 0 and E = G = 4e2u.

After having defined what to understand as a surface, we are now able to study the
geometry of a surface which will lead to the concepts of curvature: Intuitively, this is
connected to the question of how the tangent plane varies from a point to another on
the surface. The Gaussian curvature is an intrinsic value as it is only determined by
the first fundamental form g. One of the main focuses will be on the mean curvature.
This is in comparison to the Gaussian curvature an extrinsic value and depends on the
way the surface is immersed in the corresponding space. For the purpose of studying the
curvature we introduce the following:

Definition 2.12. (Normal field) If N(p)⊥TpM, ∀p ∈ U we call N normal field of M . If
in addition |N, (p)| = 1 ∀p ∈ U we call it unit normal field N .

Remark 2.13. Let f : U −→M be a parameterization of the surface. At each p ∈ U the
vectors fx(p), fy(p) form a basis of the tangent plane Tf(p)M . The unit normal vector
N in M is therefore given by

Nf (p) =
fx(p)× fy(p)
|fx(p)× fy(p)| .

Remark 2.14. The map N : M −→ S2 with |N | = 1 maps to the unit sphere. Since
|N(p)|2 = 1, ∀p ∈ U we have N(M) ⊂ S2 so that each unit normal field N on M can
be thought of as a map from M to the sphere S2. The map is called Gauss map. One
obtains an explicit description of N from various descriptions of M . N , or to be more
specific dN , will play a central role for studying the shape of a surface.

Definition 2.15. (Frame) We define for the surface f : U −→ R3 (fx, fy, N) as frame.

Using the unit normal vector N we can now define the second fundamental form:

Definition 2.16. (Second fundamental form) The bilinear form

IIp : TpM × TpM −→ R p ∈ U

18



2.1 Surface theory

defined by
IIp(v, w) = −〈(dN)p(v), w〉 = 〈N(v), dw〉 v, w ∈ TpM (2.2)

is the second fundamental form.

With f : U −→ M an immersion and (x, y) a standard coordinate system on R2 the
components of IIp with respect to the standard coordinate system are given by

b =

(
l m

m n

)
, (2.3)

where

l = 〈−∂N
∂x

,
∂f

∂x
〉 = 〈−Nx, fx〉 = 〈N, fxx〉,
m = 〈−Nx, fy〉 = 〈N, fxy〉,
n = 〈−Ny, fy〉 = 〈N, fyy〉,

or in short
lij = 〈−Ni, fj〉 = 〈N, fij〉. (2.4)

Definition 2.17. (Weingarten map) The differential of the Gauss map at each point of
the surface is an endomorphism of the tangent plane at this point. The map

−dN : TpM −→ TpM

is called Weingarten map (or shape operator).

We are now able to examine the connection between the first and second fundamental
form and the Weingarten map.

Theorem 2.18. The matrix of −dN : TpM −→ TpM is represented by

(gij)−1(lij) =
1

EG− F 2

(
G −F
−F E

) (
l m

m n
.

)
(2.5)

Proof. We can use the following: Let (v1, . . . , vn) be basis for a vector space V with an
inner product 〈·, ·〉. If A is the matrix of the linear transformation T : V −→ V with
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Chapter 2. Classical surface theory

respect to the basis
B = 〈Tvi, vj〉 C = 〈vi, vj〉,

then we have
A = (BC−1)t.

Setting A the matrix of −dN with respect to fx and fy and B = (gij) as well as C = (lij)

we get
A = (BC−1)t = C−1B

since B and C are symmetric.

We will now define the different types of curvature and establish their connection to the
fundamental forms:

Definition 2.19. (Principal, mean and Gauss curvature) Let κ1(p), κ2(p) be the princi-
pal curvature of a surface i.e. the eigenvalues of the Weingarten map.

We then set
K = κ1κ2 (2.6)

the Gauss curvature, and
H =

1
2
(κ1 + κ2) (2.7)

the mean curvature.

Definition 2.20. IfH = constant, the surface is called constant mean curvature surface,
and if H = 0, f is the immersion of a minimal surface.

So far all necessary tools have been derived and one can ask to what extent (gij), (lij)

determine f up to a proper Euclidean motion. In other words, we investigate which
quantities uniquely determine f . In particular we will be interested in constant mean
curvature surfaces. Eventually, we see that an immersion is uniquely determined by
u, the Hopf differential Q and the constant curvature H. We introduce a well known
formula, the Sym-Bobenko formula, which enables one to retrieve an exact formula for
the immersion having identified the frame. In a next step, we then extend one immersion
to a whole family of immersions by introducing a spectral parameter. We will do this

20



2.2 Surfaces in R3

for R3 and H3 in the following two sections. There are some similarities between R3

and H3 in the way of proceeding, but differences for the Sym-Bobenko formula for the
immersion, which we will see later is crucial.

2.2 Surfaces in R3

We start by computing the fundamental forms for the Euclidean space and then get to
the fundamental theorem of surface theory, which tells us when an immersion exists.
The immersion exists if u,Q,H satisfy a pair of equations, the Gauss-Codazzi equations.
Furthermore the theorem then tells us that, if f exists, it is uniquely determined up to
rigid motions. As a goal of this section, we will describe CMC surfaces in terms of linear
first order partial differential equations, the so-called Lax pair. This Lax pair defines the
frame of the surface. We will first formulate the Lax pair in terms of 3× 3-matrices, and
then rework the frame into 2× 2 matrices and introduce the Sym-Bobenko formula with
which one can retrieve an exact formula from the frame for an immersion without the
need of integration.

2.2.1 Conformal parameterization

First we choose suitable coordinates. Like an immersion can be described in different
parameterizations, one can also define domains in different local coordinates. Put differ-
ently, one can choose a more favorable representation (of many possible) for the surface
which we will call coordinate system. All coordinate systems describe the same geometry,
but some are better adapted to the geometry then others, which will lead us to conformal
metrics as mentioned in the section before.

Definition 2.21. (Conformal metric) A metric g is conformal if for an immersion

f : U −→ R3,

the vectors fx and fy are orthogonal and of equal positive length in R3 at every point
f(p).

If the dimension of a differentiable manifold is 2, as it is in our case, we have some special
properties. This is a consequence of the coordinate charts here being maps from R2, and
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Chapter 2. Classical surface theory

the fact that R2 can be thought of as the complex plane C ' R2. We thus identify R2

with C by the following isomorphism:

R −→ C(
x

y

)
7→ x+ iy

where (
a b

c d

)

is the matrix of the R-linear map.

Setting
Az = lz l = α+ iβ

yields
A(x, y) = (αx− βy, βx+ αy), (z = (x, y)).

With respect to the canonical basis 1(= (1, 0)) and i(= (0, 1)) the corresponding matrix
has the following representation

(
α −β
β α

)
(α, β ∈ R).

Setting
z = x+ iy z = x− iy

complexifies the coordinates of the surface.

This leads to the theory of Riemann surfaces, which contains the following important
result. It ensures that, in our case, it will always be possible to choose a conformal
environment.

Theorem 2.22. Let U be a 2-dimensional manifold with a family of coordinate charts
that determines a differentiable structure as above and a positive metric g. Then there
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2.2 Surfaces in R3

exists another family of coordinate charts which generates a complex structure, and with
respect to which the metric g is conformal.

We are now going to study the implications of such a conformal environment.

Let M be a smooth surface in R3:

M = f(U) with f : U ⊂ R2 −→ R3.

This makes M a differentiable manifold with charts. In every point p ∈ R2 we have
parameters (x, y) such that TpM = (∂f∂x ,

∂f
∂y ). Theorem 2.22 tells us, that we can choose

coordinates such that g is conformal.

If f is a conformal parameterization we have E = G and F = 0.

We set
〈fx, fx〉 = 4e2u

and thus have
〈fy, fy〉 = 〈fx, fx〉 = 4e2u, 〈fx, fy〉 = 0.

With z = x+iy and z = x−iy, a calculation shows that, in terms of complex coordinates,
this results in:

〈fx, fx〉 = 〈fz + fz, fz + fz〉
= 〈fz, fz〉+ 2〈fz, fz〉+ 〈fz, fz〉 = 4e2u

〈fy, fy〉 = 〈i(fz − fz), i(fz − fz)〉
= −(〈fz, fz〉 − 2〈fz, fz〉+ 〈fz, fz〉) = 4e2u.

Summation of 2.8 and 2.8 leads to

〈fz, fz〉 = 2e2u.
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Chapter 2. Classical surface theory

We also have

〈fx, fy〉 = 〈fz + fz, i(fz − fz)〉 = i〈fz, fz〉 − i〈fz, fz〉 = 0.

This leads us to
i(〈fz, fz〉 − 〈fz, fz〉) = 0 = 〈fz, fz〉+ 〈fz, fz〉

and we get
〈fz, fz〉 = 〈fz, fz〉 = 0.

2.2.2 Fundamental forms in R3

We are now ready to calculate the defined quantities of 2.1: fz, fz and the unit normal
N define a frame and we have

〈fz, N〉 = 〈fz,N〉 = 0 〈N,N〉 = 1 (2.8)

as fz, fz ⊥ N , and the length of N is equal to one.

Hence, the first fundamental form is given by

I = 4e2u
(

1 0

0 1

)
.

To get the second fundamental form one has to compute

l = 〈N, fxx〉,m = 〈N, fxy〉 and n = 〈N, fyy〉

as

II =

(
l m

m n

)
.
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2.2 Surfaces in R3

To investigate 〈fxx, N〉, 〈fyy, N〉 and 〈fxy, N〉 first compute

∂2

∂x2
=

∂2

∂z2
+ 2

∂

∂z∂z
+

∂2

∂z2

∂2

∂y2
= − ∂2

∂z2
+ 2

∂

∂z∂z
− ∂2

∂z2

∂2

∂x∂y
= i(

∂2

∂z2
− ∂2

∂z2 ).

We choose to set 〈fzz, N〉 = Q and 〈fzz, N〉 = 2He2u

〈fxx, N〉 = 〈fzz, N〉+ 2〈fzz,N 〉+ 〈fzz,N 〉 = Q+ 4He2u +Q

〈fyy, N〉 = −〈fzz, N〉+ 2〈fzz,N 〉 − 〈fzz,N 〉 = −Q+ 4He2u −Q
〈fxy, N〉 = i(〈fzz, N〉 − 〈fzz,N 〉) = i(Q−Q).

The second fundamental form then is of the form

II =

(
Q+ 4He2u +Q i(Q−Q)

i(Q−Q) −Q+ 4He2u −Q

)
.

In Section 2.1 we defined the Gauss and mean curvature which we will now determine
for this specific case. Let κi(i = 1, 2) be the eigenvalues of the Weingarten map and I
and II first and second fundamental forms.

We see that the mean curvature H is well defined

H =
1
2
(κ1 + κ2) =

1
2
tr(I−1II) =

1
8e2u

tr

(
Q+He2uQ i(Q−Q)

i(Q−Q) −Q+He2u−Q

)

=
1

8e2u
8He2u = H.
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Chapter 2. Classical surface theory

The Gauss curvature reads

K = κ1κ2 = det(I−1II) = H2 − 1
4
QQe−4u.

.

2.2.3 Lax pair in terms of 3× 3-matrices

We now formulate the first important result, identifying the Lax pair and the frame for
an immersion in terms of 3× 3-matrices:

Proposition 2.23. fz, fz and N satisfy the following equations:

Fz = UF, Fz = V F, with F = (fz, fz, N)T (2.9)

U =




2uz 0 Q

0 0 2He2u

−H −1
2e
−2uQ 0


 V =




0 0 2He2u

0 2uz Q

−1
2e
−2uQ −H 0


 . (2.10)

U and V are called the Lax pair.

Proof. If (e1, e2, e3) is an orthonormal Basis of R3 then the following holds:

∂f

∂x
= 〈∂f

∂x
, e1〉e1 + 〈∂f

∂x
, e2〉e2 + 〈∂f

∂x
, e3〉e3.

Taking into consideration that fx, fy and N is already an orthonormal basis, we obtain
the five equations:

fzz = 〈fzz, N〉N + 〈fzz, fz〉 fz2e2u
+ 〈fzz, fz〉 fz2e2u

fzz = 〈fzz, N〉N + 〈fzz, fz〉 fz2e2u
+ 〈fzz, fz〉 fz2e2u

fzz = 〈fzz, N〉N + 〈fzz, fz〉 fz2e2u
+ 〈fzz, fz〉 fz2e2u

Nz = 〈Nz, N〉N + 〈Nz, fz〉 fz2e2u
+ 〈Nz, fz〉 fz2e2u

Nz = 〈Nz, N〉N + 〈Nz, fz〉 fz2e2u
+ 〈Nz, fz〉 fz2e2u

.
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2.2 Surfaces in R3

We have 〈fzz, N〉 = Q.

With 〈fz, fz〉 = 0 we get

∂z〈fz, fz〉 = 2〈fzz, fz〉 = 0

〈fz, fz〉 = 2e2u

∂z〈fz, fz〉 = 〈fzz, fz〉+ 〈fz, fzz〉 = 4uze2u.

In sum we get

fzz = QN + 0 + 4uze2u
fz

2e2u
= QN + 2uzfz.

In the same way we can compute the other equations. Using

〈Nz, N〉 = 〈Nz, N〉 = 0

〈Nz, fz〉 = −〈fzz, N〉
〈Nz, fz〉 = −〈fzz, N〉
〈Nz, fz〉 = −〈fzz, N〉

yields to the so called Gauss-Weingarten equations

fzz = QN + 2uzfz

fzz = QN + 2uzfz

fzz = fzz = 2He2uN

Nz = −1
2
e−2uQfz −Hfz

Nz = −1
2
e−2uQfz −Hfz.

The Bonnet Theorem tells us that there exists an immersion f : U −→ R3 with a first
fundamental form I and second fundamental form II (with respect to coordinates x and
y) if and only if I and II satisfy a pair of equations called the Gauss-Codazzi equations.
Furthermore, the fundamental surface theorem tells us that when such an f exists, it is
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Chapter 2. Classical surface theory

uniquely determined by I and II up to rigid motions of R3.

The corresponding compatibility condition for the existence of a solution f , i.e.
fzz = fzz, are the Gauss-Codazzi equations

4uzz + 4H2e2u −QQe−2u = 0

Qz = 2Hze
2u

Qz = 2Hze
2u.

Remark 2.24. The Codazzi equation implies that H is constant if and only if Q is
holomorphic, since H is a real valued function.

The Gauss Codazzi equations are only written in terms of the functions u, H and Q and
hence determine whether f exists or not. We formulate this in a theorem.

Theorem 2.25. (Bonnet Theorem) Given a metric 4e2udzdz, a quadratic differential
Qdz2 and a function H satisfying the Gauss-Codazzi-equations, there exists an immersion

f : U ⊂ R2 −→ R3 (2.11)

with the fundamental forms of I and II.

The next well known theorem establishes which conditions has to be fulfilled by the Lax
pair U and V such that there exists a solution F to the system Fz = FU,Fz = FV .

Theorem 2.26. For U, V : C× C −→ slnC there exists a solution

F = F (z, w) : C× C −→ SLnC

of the Lax pair
Fz = FU, Fz = FV

for any initial condition F (0, 0) ∈ SLnC if and only if

Uz − V z + [U, V ] = 0 with [U, V ] = UV − V U. (2.12)

We can assume H to be constant. The Gauss-Codazzi equations still hold if we replace
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2.2 Surfaces in R3

Q with λ−2Q for any λ ∈ S1. λ is often referred to as spectral parameter. In this way
we obtain a 1-parameter family of surfaces f(z, z, λ) all with CMC H, the same metric,
and Hopf differential λ−2Q. f(z, z, λ) is called the associated family.

2.2.4 Lax pair in terms of 2× 2-matrices

We will now rework the 3× 3 frame into a 2× 2 frame. Define the Pauli matrices

σ1 =

(
0 1

1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0

0 1

)
.

with the 2× 2 identity matrix 1. The Pauli matrices can then be used to form a basis

{1,−iσ1,−iσ2,−iσ3}.

Identify R3 with su2, by identifying x1, x2, x3 ∈ R3 with the matrix

−x1
i

2
σ1 + x2

i

2
σ2 + x3

i

2
σ3 =

−i
2

(
−x3 x1 + ix2

x1 − ix2 x3

)
.

Let F = F (z, z, λ) ∈ SU2 be the matrix that rotates −iσ1
2 , −iσ2

2 and −iσ3
2 to the 2 × 2-

matrix forms of e1, e2 and N , respectively:

e1 = F
−iσ1

2
F−1, e2 = F

−iσ2

2
F−1 N = F

−iσ3

2
F−1.

Remark 2.27. Those relations determine F uniquely up to sign and F−1 is a rotation
of R3 as one can show that F ∈ SU2.

Define

U =

(
U11 U12

U21 U22

)
:= F−1Fz, V =

(
V11 V12

V21 V22

)
:= F−1Fz

and compute U and V in terms of u,H and Q.
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Making use of

e1 =
fx
|fx| =

fx
2eu

= F
1
2

(
0 −i
−i 0

)
F−1,

e2 =
fy
|fy| =

fy
2eu

= F
1
2

(
0 −1

−1 0

)
F−1

we get

fz = −ieuF
(

0 0

1 0

)
F−1, fz = −ieuF

(
0 1

0 0

)
F−1.

We now recover the entries of the matrices U and V . Differentiating fz with respect to
z leads to

fzz = uzfz + (−ieu)
(
Fz

(
0 0

1 0

)
F−1 + F

(
0 0

1 0

)
F−1
z

)

= uzfz + (−ieu)
(
FU

(
0 0

1 0

)
F−1 + F

(
0 0

1 0

)
U−1F−1

)

= uzfz + (−ieu)
(
F

(
−U21 2U11

0 U21

)
F−1

)
.

We differentiate fz with respect to z

fzz = uzfz + (−ieu)
(
Fz

(
0 1

0 0

)
F−1 +

(
0 1

0 0

)
F−1
z

)

= uzfz + (−ieu)
(
FV

(
0 1

0 0

)
F−1 +

(
0 1

0 0

)
V −1F−1

)

= uzfz + (−ieu)
(
F

(
V12 0

2V22 −V12

)
F−1

)
.

fzz = fzz then implies

uzfz + (−ieu)
(
F

(
−U21 2U11

0 U21

)
F−1

)
= uz fz + (−ieu)

(
F

(
V12 0

2V22 −V12

)
F−1

)

30



2.2 Surfaces in R3

⇐⇒ uzfz − uzfz = (−ieu)
(
F

(
V12 0

2V22 −V12

)
F−1 − F

(
−U21 2U11

0 U21

)
F−1

)

⇐⇒ uzfz − uzfz = (−ieu)
(
F

(
V12 + U21 −2U11

2V22 −V12 − U21

))
.

For uzfz − uzfz we get

uzfz − uzfz = (−ieu)
(
F

(
0 uz

−uz 0

))

= (−ieu)
(
F

(
V12 + U21 −2U11

2V22 −V12 − U21

))
.

Hence
U11 = −1

2
uz V22 =

1
2
uz, U21 = −V12.

To recover the next coefficients we compute fzz

fzz = uzfz + (−ieu)
(
Fz

(
0 0

1 0

)
F−1 + F

(
0 0

1 0

)
F−1
z

)

= uzfz + (−ieu)
(
FU

(
0 0

1 0

)
F−1 + F

(
0 0

1 0

)
U−1F−1

)

= uzfz + (−ieu)
(
F

(
U12 0

2U22 −U12

)
F−1

)
.

We know that fzz = 2uzfz + λ−2QN and with N = F −iσ3
2 F−1 this yields

uzfz + (−ieu)
(
F

(
U12 0

2U22 −U12

)
F−1

)
= 2uzfz + λ−2QN

⇐⇒ −uzfz + (−ieu)
(
F

(
U12 0

2U22 −U12

)
F−1

)
= λ−2QN

⇐⇒
(
F

(
U12 0

0 −U12

)
F−1

)
=

1
2

(
F

(
λ−2Qe−u 0

0 −λ−2Qe−u

)
F−1

)
.
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Hence
U12 =

1
2
λ−2Qe−u.

In the same way we then get V21 = −e−uλ2Q.

We know that

fzz = uzfz + (−ieu)
(
F

(
−U21 2U11

0 U21

)
F−1

)
.

With U11 = 1
2uz this reduces to

fzz = (−ieu)
(
F

(
−U21 0

0 U21

)
F−1

)
.

From N = F −iσ3
2 F−1 and fzz = 2He2uN we obtain

2He2uN = (−ieu)
(
F

(
−U21 0

0 U21

)
F−1

)

⇐⇒ F

((
Heu 0

0 −Heu

))
=

(
F

(
−U21 0

0 U21

)
F−1

)

and therefore U21 = −Heu. Similarly one finds V12 = Heu. In sum we have recovered U
and V .

U =
1
2

(
−uz e−uλ−2Q

−2Heu uz

)
V =

1
2

(
uz 2Heu

−e−uλ2Q −uz

)
.

U and V are the Lax pair in terms of 2× 2-matrices of the frame F . A computation of
the zero curvature condition show that the corresponding Gauss-Codazzi equations reads

4uzz − e−uQQ+ 4H2e2u, Qz = 2Hze
2u.]

Given a frame F we then know fz, fz and would expect to need to integrate in order to
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2.2 Surfaces in R3

find f . The Sym-Bobenko formula

f(z, z, λ) =
1

2H

[
F

(
i 0

0 −i

)
F−1 − iλ(∂λ)F−1)

]
(2.13)

provides a formula for the immersion f in dependence of F .

Remark 2.28. This formula avoids integration, using the derivative of F with respect
to the spectral parameter λ. Another advantage is that the Sym-Bobenko formula gives
a meaning for understanding special immersions and under which conditions they will
be well defined. We come back to this in Chapter 5.

We summarize the latest results in a Lemma.

Lemma 2.29. The CMC H surfaces f(z, z, λ) with H 6= 0 as in the 3× 3 case and the
surfaces derived from the Sym-Bobenko formula differ only by rigid motion of R3. Thus
the Sym-Bobenko formula produces the associated family of any CMC H surface from a
frame F solving

Fz = FU , Fz = FV with

U =
1
2

(
−uz e−uλ−2Q

−2Heu uz

)
, V =

1
2

(
uz 2Heu

−e−uλ2Q −uz

)
. (2.14)

Conversely, for any u and Q satisfying the Gauss-Codazzi equations

4uzz −QQe−2u + 4H2e2u = 0, Qz = 2Hze
2u, (2.15)

and any solution F of U and V satisfying 2.14 such that F ∈ SU2 for all λ ∈ S1, f
defined by the Sym-Bobenko formula is a conformal CMC H immersion into R3 with
metric 4e2u(dx2 + dy2) and Hopf differential λ−2Q.

The proof of the lemma can be found in [25].

Remark 2.30. Another formula is given for example in [18] where one has to integrate in
terms of Baker-Akhiezer functions (see Chapter 4 for more information on Baker-Akhiezer
functions).
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Chapter 2. Classical surface theory

Figure 2.1: Two-Lobed Bubbleton with round cylinder ends in R3

2.3 The sinh-Gordon equation and CMC tori

We give a brief summary of the results obtained so far. Let f : U ⊂ C2 −→ R3 be an
immersion. The surface f(z, z) with (z, z) ∈ U is uniquely defined up to rigid motion by
the first and second fundamental forms. Let N(z, z) be the normal vector field at each
point of the surface f(z, z). Then the triple (fz, fz, N) defines a basis TpM , where M
is the surface parameterized by f(z, z) and p a point in M . The motion of the basis on
M is characterized by the Gauss-Weingarten equations. The compatibility condition of
these equations are the well known Gauss-Mainardi-Codazzi equations which are coupled
to nonlinear differential equations for the coefficients of the first and second fundamental
forms, respectively. As we will see in this section, these equations reduce to a single
system of an integrable equation, the sinh-Gordon equation.

From now on we focus on tori with constant mean curvature (CMC) and set, with-
out loss of generality, H = 1

2 . As Q is of finiteness Q = const.. We fix a conformal
coordinate with Q = eiϕ, where ϕ = const. ∈ R.

A simple computation shows that the Gauss-Codazzi equations transform to the sinh-
Gordon equation

2uzz + (e2u − e−2u) = 2uzz + sinh(2u) = 0. (2.16)

We now consider a lattice Λ in C. It can be written as

Λ = {aω1 + bω2|a, b ∈ Z, ω1, ω2 ∈ C}.
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2.3 The sinh-Gordon equation and CMC tori

We compute the conditions for deciding periodic points ω1 and ω2 for which the resulting
finite type CMC surfaces f will close to become a torus

f(z) = f(z + ω1) = f(z + ω2).

The immersion f will then be well defined on the torus C \ Λ .

Note that this arguments holds for R3 as well as H3 and S3. The difference between
the three spaces is due to the closing condition which is derived from the different Sym-
Bobenko formulas for the three spaces.

Figure 2.2: The Wente torus in R3

Regarding CMC tori we have the following result:

Proposition 2.31. CMC tori do not have umbilical points.

Proof. Q(z) is an elliptic function without any singularities as Q(z)(dz)2 is holomorphic.
Hence Q(z) = const. Q(z) is not zero, otherwise it would follow from the Hopf theorem
that the surface is a sphere. We therefore have Q = const. 6= 0 which proves the
proposition.

In the next section we will apply the concepts and formulas derived so far for the hyper-
bolic 3-space, not changing much compared to the R3 case. We proceed exactly the same
way and will see that in H3, eventually the Gauss-Codazzi equations also transform to
the sinh Gordon equation. The periodicity arguments for CMC toris in H3 are the same
as in R3, but will lead to different closing conditions due to the different formula for the
immersion in terms of the frame.
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2.4 Surfaces in H3

2.4.1 The model for the hyperbolic 3-space

We begin this section by introducing the hyperbolic 3-space and then proceed in the
same way as for R3.

The hyperbolic 3-space can be described by various models, each one with its own ad-
vantages. We will identify H3 with the Minkowski 4-space R3,1 and its Lorentzian metric

{(x0, x1, x2, x3 ∈ R3,1|x2
0 −

3∑

j=1

x2
j = 1, x0 > 0}. (2.17)

We call this the Minkowski model for hyperbolic 3-space. Although the metric gR3,1 is
Lorentzian and therefore not positive definite, the restriction g to the upper sheet is
actually positive definite, so H3 is a Riemannian manifold.

The isometry group of H3 can be described using the special orthogonal group

O+(3, 1) = {A = (aij)4i,j=1 ∈ O(3, 1)|a44 > 0} (2.18)

of R3,1.

The isometry of R3,1 for each A ∈ O+(3, 1) is the map

~x ∈ R3,1 =⇒ (A~xt)t ∈ R3,1,

which preserves the Minkowski model for H3.

The above definition for the Minkowski model for hyperbolic 3-space does not imme-
diately imply that it has all required properties. The following lemma tells us that the
Minkowski model for the 3-hyperbolic space is indeed the true 3-hyperbolic space.

Lemma 2.32. The Minkowski model H3 for the 3-hyperbolic space is a simple connected
3-dimensional Riemann manifold.

For the proof the reader may refer to [25].
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2.4 Surfaces in H3

The only difference int the computation of the values is that one uses the metric gR3,1 ,
which we will denote by {·, ·}, instead of using the standard metric of R3.

As was stated before, it is no problem here to fix a conformal parameterization. Then

{f, f} = −1.

By definition of the tangent space TH3, by definition of the normal N and the confor-
mality of f and because of {f, f} = −1 we have

{N, f} = {N, fz} = {N, fz}
= {fz, fz} = {fz, fz} = {f, fz} = {f, fz} = 0

{N,N} = 1

{fz, fz} = 2e2u.

We set
Q = {fzz, N}.

2.4.2 Lax pair in terms of 4× 4-matrices

As before we fix a frame with the orthonormal basis f, fx, fy, N .
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Proposition 2.33. f, fz, fz and N fulfill the equations.

Fz = FU , Fz = FV, with F = (f, fz, fz, N)T (2.19)

U =




0 1 0 0

0 2uz 0 Q

2e2u 0 0 2He2u

0 −H −1
2Qe

−2u 0




(2.20)

V =




0 0 1 0

2e2u 0 0 2He2u

0 2uz 0 Q

0 −1
2Qe

−2u −H 0



. (2.21)

Proof. We use the same argument as before:

fz = {fz, f}f + {fz, fz} fz
2e2u

+ {fz, fz} fz
2e2u

+ {fz, N}N

fz = {fz, f}f + {fz, fz} fz
2e2u

+ {fz, fz} fz
2e2u

+ {fzz, N}N

fzz = {fzz, f}f + {fzz, fz} fz
2e2u

+ {fzz, fz} fz
2e2u

+ {fzz, N}N

fzz = {fzz, f}f + {fzz, fz} fz
2e2u

+ {fzz, fz} fz
2e2u

+ {fzz, N}N

fzz = {fzz, f}f + {fzz, fz} fz
2e2u

+ {fzz, fz} fz
2e2u

+ {fzz, N}N

Nz = {Nz, f}f + {Nz, fz} fz
2e2u

+ {Nz, fz} fz
2e2u

+ {Nz, N}N

Nz = {Nz, f}f + {Nz, fz} fz
2e2u

+ {Nz, fz} fz
2e2u

+ {Nz, N}N.

38



2.4 Surfaces in H3

The following holds:

{fz, fz} = {fz, fz} = {N,F} = {N,Fz} = {N,Fz} = 0

{fz, fz} = 2e2u

{fz, N} = {fz, N} = 0

{N,N} = 1

{fzz, N} = Q

{fzz, N} = 2He2u.

Examining fzz:

{fzz, f} = 0 as ∂z{f, fz} = {f, fzz}+ {fz, fz} = 0

{fzz, fz} = 0 as ∂z{fz, fz} = {fzz, fz} = 0

{fzz, fz} = 4uze2u as 4uze2u = ∂z{fz, fz} = {fzz, fz}+ {fz, fzz} and {fz, fzz} = 0

{fzz, N} = Q

⇒ fzz = 2uzfz +QN.

For fzz compute:

{fzz, f} = 2e2u as 0 = ∂z{fz, f} = {fzz, f}+ {fz, fz} = 2e2u

{fzz, fz} = 0 as ∂z{fz, fz} = 2{fzz, fz} = 0

{fzz, fz} = 0 as ∂z{fz, fz} = s{fzz, fz} = 0

{fzz, N} = 2He2u

⇒ fzz = 2e2uf + 2He2uN.
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We now look at fzz:

{fzz, f} = 0 as ∂z{fz, f} = {fzz, f}+ {fz, fz} = 0

{fzz, fz} = 4uze2u as 4uze2u = ∂z{fzz, fz}+ {fz, fzz} and {fz, fzz} = 0

{fzz, fz} = 0 as ∂z{fz, fz} = {fzz, fz} = 0

{fzz, N} = Q

⇒ fzz = 2uzfz +QN.

For Nz and Nz one has:

{Nz, f} = {Nz, N} = {Nz, f} = {Nz, N} = 0

{Nzfz} = −{N, fzz} = −Q
{Nz, fz} = −2He2u

{Nz, fz} = −Q
{Nz, fz} = −2He2u

⇒ Nz = −1
2
e−2uQfz −Hfz

⇒ Nz = −1
2
e−2ufz −Hfz.

Summarizing the results yields:

fz = fz

fz = fz

fzz = 2uzfz +QN

fzz = 2e2uf + 2He2uN

Nz = −1
2
e−2uQfz −Hfz

fzz = 2e2uf + 2He2uN

fzz = 2uzfz +QN

Nz = −1
2
e−2ufz −Hfz

which concludes the proof.
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The compatibility condition is again

Uz − Vz + [U, V ] = 0.

As in R3, u,Q andH determine uniquely if the immersion f exists and the Gauss-Codazzi
equations reads

uzz − e2u(H2 − 1) +
1
4
QQe−2u = 0, Qz = 2Hze

2u.

Computing the compatibility equation leads to the latter Gauss-Codazzi equations.

2.4.3 Lax pair in terms of 2× 2-matrices

In the next step we rework in H3, U and V in 2×2 matrices with the help of the hermitian
matrix model.

Recall the following definitions: The group SL2C consists of all 2 × 2-matrices with
complex entries and determinant 1, with matrix multiplication as the group operation.
The vector space sl2C consists of all 2 × 2 complex matrices with trace 0, with the
vector space operations being matrix addition and scalar multiplication. SL2C is a 6-
dimensional Lie group and sl2C is the associated 6-dimensional Lie algebra, and thus the
tangent space of SL2C at the identity matrix.

SU2 is the subgroup of matrices F ∈ SL2C such that FF ∗ is the identity matrix, where
F ∗ = F

t. Equivalently,

F =

(
p −q
q p

)

for some p, q ∈ C with ‖p‖2 + ‖q‖2 = 1. SU2 is a 3-dimensional Lie subgroup.

Finally, we define Hermitian symmetric matrices as matrices of the form

(
a11 a12

a12 a22

)
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Chapter 2. Classical surface theory

where a12 ∈ C and a11, a22 ∈ R. Hermitian symmetric matrices with determinant 1 have
the additional condition that a11a22 − a12a12 = 1.

The Lorentz 4-space R3,1 can be mapped into the space of 2 × 2 Hermitian symmet-
ric matrices by

ψ : ~x = (x0, x1, x2, x3) −→ ψ(~x) =

(
x0 + x3 x1 + ix2

x1 − ix2 x0 − x3

)
.

For x ∈ R3 the metric in the Hermitian matrix form is given by {x, x} = −det(ψ(x)).
ψ maps the Minkowski model for H3 to the set of Hermitian symmetric matrices with
determinant 1.

Any Hermitian symmetric matrix with determinant 1 can be written as the product
FF

t for some F ∈ SL2C, and F is determined uniquely up to right-multiplication by
elements in SU2:

F, F̂ ∈ SL2C =⇒ FF
t = F̂ F̂

t

⇐⇒ F = F̂B, B ∈ SU2.

Therefore there Hermintian model H is given by

H = {FF ∗|F ∈ SL2C}, F ∗ := F
t

and H is given the metric such that ψ is an isometry from the Minkowski model of H3

to H.

There exists an F ∈ SL2C such that

f = FF
t
, e1 := Fσ1F

t
, e2 := Fσ2F

t
, N := Fσ3F

t

and it follows

fz = 2euF

(
0 0

1 0

)
F
t
, fz = 2euF

(
0 1

0 0

)
F
t
.
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As before define

U :=

(
U11 U12

U21 U22

)
, V :=

(
V11 V12

V21 V22

)
.

Start for instance by differentiating fz with respect to z:

fzz = uzfz + 2euFz

(
0 0

1 0

)
F
t + 2euF

(
0 0

1 0

)
F
t
z

= uzfz + 2euFV

(
0 0

1 0

)
F
t + 2euF

(
0 0

1 0

)
U
t
F
t

= uzfz + 2euF

(
V12 0

V22 + U11 U21

)
F
t
.

In the next step differentiate, fz with respect to z:

fzz = uzfz + 2euFz

(
0 1

0 0

)
F
t + 2euF

(
0 1

0 0

)
Fz

t

= uzfz + 2euFU

(
0 1

0 0

)
F
t + 2euF

(
0 1

0 0

)
V
t
F
t

= uzfz + 2euFU

(
V 21 U11 + V 22

0 U21

)
F
t
.

Since fzz = fzz we get

uzfz − uzfz = 2euFU

(
V 21 U11 + V 22

0 U21

)
F
t − 2euF

(
V12 0

V22 + U11 U21

)
F
t

⇐⇒ 2euF

(
0 −uz
uz 0

)
F
t = FU

(
V 21 − V12 U11 + V 22

−V22 − U11 U21 − U21

)
F
t
.

This implies

V 21 = V12, U21 = U21, U11 + V 22 = −uz, −V22 − U11 = uz.
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We know that fzz = 2euf + 2He2uN and with f = FF
t
, N = Fσ3F

t we get

fzz = 2euf + 2He2uN

= 2e2uF

(
1 +H 0

0 1−H

)
F
t
.

We then get

2e2uF

(
1 +H 0

0 1−H

)
F
t = uzfz + 2euFU

(
V 21 U11 + V 22

0 U21

)
F
t

⇐⇒ F

(
eu(1 +H) −uz

0 eu(1−H)

)
F
t =

(
V 21 U11 + V 22

0 U21

)
F
t

V12 = (1 +H)eu, U21 = (1−H)eu

U11 + V 22 = −uz.

Now differentiate fz with respect to z:

fzz = uzfz + 2euFz

(
0 0

1 0

)
F
t + 2euF

(
0 0

1 0

)
Fz

t

= uzfz + 2euFU

(
0 0

1 0

)
F
t + 2euF

(
0 0

1 0

)
V
t
F
t

= uzfz + 2euF

(
U12 0

U22 + V 11 V 21

)
F
t
.

With fzz = uzfz +QN and N = Fσ3F
t:

uzfz + 2euF

(
U12 0

U22 + V 11 V 21

)
F
t

= uzfz + F

(
Q 0

0 −Q

)
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we know that
U12 =

1
2
e−uQ, V21 = −1

2
e−uQ.

U and V are trace free because detF = 1. It follows that U11 = −U22 and V11 = −V22

and we have recovered U and V to be

U =
1
2

(
−uz e−uQ

2(1−H)eu uz

)
V =

1
2

(
uz 2(1 +H)eu

−e−uQ −uz

)
.

We can again summarize the collected information.

Theorem 2.34. Let
∑

be a simple connected domain in C with complex coordinate z.
Choose ψ ∈ R and q ∈ R \ {0}. Let u and Q solve

4uzz + e2u −QQe−2u = 0, Qz = 0

and let F = F (z, z, λ) be a solution of

Fz = FU, Fz = FV (2.22)

with

U =
1
2

(
uz −λ−1eu

λ−1Qe−u −uz

)
V =

1
2

(
−uz −λQe−u
λeu −uz

)
. (2.23)

Suppose that det(F ) = 1∀λ, z. Set F0 = F |λ=eq/2eiψ . Then define

f(z, z) = F̃ F̃ t, F̃ := F0

(
eq/4 0

0 e−q/4

)
, N = F̃ σ3F̃ t. (2.24)

f is a CMC H = coth(−q) surface in H3 with normal N.

The proof using the Sym-Bobenko formula and there is no need to integrate.

In Chapter 5 we work with a slightly other formula for the immersion, and therefore

want to get rid of the term

(
e
q
2 0

0 e
q
2

)
and therefore have to transform the Lax pair U
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and V . We make the following Ansatz with c ∈ R

U =
1
2

(
−uz e−uQ

λ−1ceu uz

)
V =

1
2

(
uz −λceu

−e−uQ −uz

)
.

Next step is to recover the Gauss-Codazzi equation. We therefore calculate the zero
curvature condition with the U and V from the Ansatz.

[U, V ] =
1
4

(
−e−2uQQ+ c2e2u −2uzeuQ

−2uze−uQ −c2e2u + e−uQQ

)
.

With Uz and Vz, in sum we get

Uz − Vz + [U, V ] = uzz +
1
4
e−2uQQ− 1

4
c2e2u = 0.

Comparing this to the original Gauss-Codazzi equation resulting from 2.4.3

uzz +
1
4
e−2uQQ− (H2 − 1)e2u = 0

yields

c2 = 4(H2 − 1)

⇔ c = 2
√
H2 − 1

Comparing the coefficients of

U =
1
2

(
−uz e−uQ

λ−12
√
H2 − 1eu uz

)

with

U =
1
2

(
−uz e−uQ

2(1−H)eu uz

)

we get

λ =
2
√
H2 − 1

2(1−H)
=

√
H + 1
H − 1

.
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We then define

Û =
1
2

(√
λ
−1

0

0
√
λ

)(
uz −λ−1eu

λ−1Qe−u −uz

)(√
λ 0

0
√
λ
−1

)
(2.25)

=
1
2

(
uz −λ−2eu

Qe−u −uz

)
(2.26)

V̂ =
1
2

(√
λ
−1

0

0
√
λ

)(
−uz −λQe−u
λeu uz

)(√
λ 0

0
√
λ
−1

)
(2.27)

=
1
2

(
−uz −Qe−u
λ2eu uz

)
(2.28)

F̂ =

(√
λ
−1

0

0
√
λ

)
F

(√
λ 0

0
√
λ
−1

)
. (2.29)

We calculate

f = F̂ F̂
t

(2.30)

= F̂

(
uz −λ2eu

Qe−u −uz

)(
uz −λ2eu

Qe−u −uz

)
F̂
t

(2.31)

= F

(√
λ
√
λ 0

0
√
λ
−1√

λ
−1

)
F̂
t
. (2.32)

With
λ0 = e

q
2 eiψ

we see that √
λ0

√
λ0 = e

q
4 .

This yields

f = F

(√
e
q
4 0

0 e
q
4

)
F̂
t
.

With

F = F̃ = F0

(
e
q
4 0

0 e−
q
4

)
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Chapter 2. Classical surface theory

we have
f = F̃ F̃

t
.

2.4.4 CMC tori in H3

To close this chapter we show that as mentioned before we can reduce in H3 the Gauss-
Codazzi equation as in R3 to the sinh-Gordon equation. Fixing the conformal coordinate
z by the condition Q = 2

√
H2 − 1eϕ, and plugging it in the Gauss-Codazzi equations,

we get

uzz + 2(H2 − 1)eu − 1
2
QQe−u

= uzz + 2(H2 − 1)eu − 1
2
4(H2 − 1)e−u

= uzz + 2(H2 − 1)sinh(u)

= 0.

The same arguments as in the as in the previous section apply to the 3-hyperbolic space:
In order to obtain a CMC torus we will have to look for double-periodic solutions of the
sinh-Gordon equation. We will be able to find analog conditions for the immersion to
close with respect to the lattice due to the Sym-Bobenko formula for an immersion in
the 3-hyperbolic space.

We do not need an explicit solution of the sinh-Gordon equation in order to study
closing conditions leading to a CMC torus in H3 or other 3-spaces and deformations.
Nevertheless, we will do it as there is a theory developed in the 70‘s in the course of
nonlinear differential equations integrable in an algebra-geometric sense. We will there-
fore need some theory of Riemann surface, especially hyperelliptic ones. We will see
that with theta-functions one will be able to get exact solutions in terms of Riemann
theta-functions in connection with algebraic/spectral curves.

But not only for that purpose we need Riemann surface theory and, once again, hy-
perelliptic curves in particular. In Chapter 5 we will study the closing conditions and
deformations and will come back again to Riemann surface theory. As we are only in-
troducing basic Riemann theory, we will skip most of the proofs which are stated in
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standard books dealing with Riemann surface theory (see for example [19] or [23]).
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3 Riemann surface theory and
theta-functions

Before proceeding with the explanation of how to obtain solutions of the sinh-Gordon
equation, we include for reasons of completeness a chapter about classical Riemann sur-
face theory and theta-functions. For the reasons stated above we will only hthe theory
in brief. For more extensive theory see for example [19], [23] and for algebraic curves
in particular we recommend [45]. We will put an emphasis on hyperelliptic curves as
preparation for the next Chapters.

3.1 Riemann surface theory

3.1.1 Basics

Definition 3.1. (Riemann surface) A Riemann surface R is a connected one-dimensional
analytic manifold, that is a two-real dimensional connected manifold with a complex
structure on it.

Remark 3.2. The complex structure implies that for each point p ∈ R there is a home-
omorphism ϕ : U −→ V of some neighborhood p ∈ U onto an open subset V ⊂ C with
holomorphic transition function ϕ ◦ ϕ̄. ϕ will be referred to as local parameter.

A nontrivial example of a Riemann surface is given by an algebraic curve:

Definition 3.3. (Algebraic curve) An algebraic curve C is a subset in C2

C = {(µ, λ) ∈ C2|P (µ, λ) = 0, P (µ, λ) =
N∑

i=1

M∑

j=1

pijµ
iλj , pij 6= 0∀i, j}. (3.1)
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Chapter 3. Riemann surface theory and theta-functions

Definition 3.4. (non-singular) A curve C is called non-singular if

gradCP|P=0 =
(
∂P

∂µ
,
∂P

∂λ

)

|P=0

6= 0.

A complex-analytic structure on the algebraic curve is introduced as follows: The vari-
able λ is taken as a local parameter in the neighborhood of the points where ∂P

∂µ 6= 0 and
the variable µ is a local parameter in the neighborhood of the points where ∂P

∂λ 6= 0.

It turns out that all compact Riemann surfaces Ĉ can be described as compactifica-
tions of algebraic curves C. The mapping defines a holomorphic covering Ĉ −→ C̄. If
N is the degree of the polynomial P (µ, λ) in µ

P (µ, λ) = µNpN (λ) + µN−1pN−1(λ) + ...+ p0(λ)

where all pi(λ) are polynomials, then λ : Ĉ −→ C̄ is an N -sheeted covering. We call Ĉ
the Riemann surface of the curve C.

In the case of the hyperelliptic curve

µ2 =
N∏

j=1

(λ− λj) N ∈ N, λj ∈ C, λj 6= λk j, k = 1, ..., N, (3.2)

we assume them to be compactified by joining points at infinity. For a hyperellitptic
curve there are thus two points at infinity if N = 2g + 1, and one such point when
N = 2g + 2.

In the first case we have the points ∞+ and ∞−. These points are distinguished by
the condition

P ≡ (µ, λ)→∞± ⇐⇒ λ→∞, µ ∼ ±λg

with a local parameter in the neighborhood of both points given by the homeomorphism
(λ, µ)→ 1

λ .
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In the N = 2g + 2-case, the point ∞ is distinguished by the condition

P ≡ (µ, λ)→∞⇐⇒ λ→∞, µ ∼ λ g+1
2

and the local parameter in its neighborhood is
√
λ.

Remark 3.5. The curve is non-singular if for all points λj 6= λi holds.

The local parameterization in the neighborhoods of the points (µ0, λ0) with λ0 6= λj∀j
is defined by the homeomorphism (µ, λ) −→ λ and in the neighborhood of each (0, λj)

by (µ, λ) −→√
λ− λj .

A function which is defined on the hyperelliptic curve and is holomorphic in a neigh-
borhood of (µ0, λ0) with λ0 = λj , can be represented by a convergent Taylor series in
integral powers of the variable

√
λ− λj .

Theorem 3.6. Any compact Riemann surface is homeomorphic to a sphere with g han-
dles.

Definition 3.7. (Genus) g ∈ N is called genus of the Riemann surface.

Remark 3.8. For the hyperlliptic curves 4.10 with N = 2g+1 or N = 2g+2, the genus
is equal to g.

Definition 3.9. (Holomorphic, meromorphic) A mapping

f : M −→ N

between Riemann surfaces M.N is called holomorphic if for every local parameter (U, z)

on M and every local parameter (V,w) on N with U ∩ f−1(V ) 6= 0 the mapping

w ◦ f ◦ z−1 : z(U ∩ f−1(V ))) −→ w(V )

is holomorphic.

A holomorphic mapping into C̄ = C ∪∞ is called a meromorphic function.
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Remark 3.10. Non-constant holomorphic mappings of Riemann surfaces are called holo-
morphic coverings. The general properties of holomorphic coverings imply that the mero-
morphic function f takes every value c ∈ C̄ the same finite number of times (counting
multiplicities).

Lemma 3.11. The following three assertions are equivalent:

i. The Riemann surface R is given by 4.10.

ii. There is a meromorphic function on R that defines a two-sheeted covering of C̄.

iii. There is a function on R that has its unique singularity (a second-order pole) at
some point P0.

Definition 3.12. (Branch point) Let f : M −→ N be a holomorphic covering between to
Riemman surfaces. A point P ∈M is called branch point of f if it has no neighborhood
P ∈ V such that f |V is injective. A covering without branch points is called unramified.

Remark 3.13. One can characterize the branch points of a holomorphic covering f as
the points with multiplicity k > 1. The number bf (P ) = k − 1 is called branch number
of f at P ∈M .

There exists m ∈ N such that every Q ∈ N is assumed by f exactly m times, counting
multiplicities. That is

∑

P∈f−1(Q)

(bf (P ) + 1) = m, bf = k − 1, (3.3)

so k is the multiplicity of the point. The number m is called degree of f and the covering
f is called m-sheeted covering.

Proposition 3.14. A non-constant meromorphic function on a compact Riemann sur-
face assumes every one of its value in C̄ m times where m is the number of its poles
(counting multiplicities).

We return to the case of a hyperelliptic curve
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µ2 =
N∏

j=1

(λ− λj) N ∈ N, λj ∈ C, λj 6= λk j, k = 1, ..., N.

The compactifications Ĉ of the special case of a hyperelliptic curve C is a two-sheeted
covering of the extended complex plane λ : Ĉ −→ C̄. The branch points of this covering
are

(0, λi), i = 1, ..., N and ∞ for N = 2g + 1

(0, λi), i = 1, ..., N for N = 2g + 2

with branch numbers bλ = 1 at these points.

Remark 3.15. The hyperelliptic curves obey a holomorphic involution

h : (µ, λ) −→ (−µ, λ),

which interchanges the sheets of the covering λ : Ĉ −→ C̄. The branch points of the
covering are fixed points of h. The factor Ĉ/h is therefore a Riemann sphere. The
covering Ĉ −→ Ĉ/h = C̄ is ramified at the points λ = ±λn.

Definition 3.16. (Canonical basis of cycles) A homology basis of cycles

a1, b1, ..., ag, bg

of a compact Riemann surface of genus g with the following intersection numbers

ai ◦ bj = δij ai ◦ aj = bi ◦ bj = 0, i, j = 1, ..., g

is called canonical basis of cycles.

Remark 3.17. The canonical intersection means that one can take different loops such
that there is no intersection between the loops ai and aj or bj with i 6= j, while ai and
bi intersect at only one point p. At p, the tangent vectors ai‘ and bi‘ form a positively
oriented basis of the tangent space at p.
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3.1.2 Abelian differentials

Our next review of classical Riemann surface theory is concerned with Abelian differ-
entials. The main goal is to construct functions on compact Riemann surfaces with
prescribed analytical properties (for example meromorphic functions with prescribed sin-
gularities). Therefore we introduce Abelain differentials which are easier to handle as
those functions and are a basic concept to investigate and construct such functions.

Definition 3.18. (0-form, 1-form and 2-form) Let (z, z) be a local coordinate on the
compact Riemann surface. If there are functions

f(z, z), p(z, z), q(z, z), s(z, z)

with

f = f(z, z)

ω = p(z, z)dz + q(z, z)dz

S = s(z, z)dz ∧ dz,

being invariant under coordinate changes, then the function f is called a 0-form, ω a
1-form and S a 2-form on the Riemann surface (where dz ∧ dz denotes the exterior
product).

Remark 3.19. One can integrate as follows:

i. 0-forms over a finite set {Pα}{α} of points Pα ∈ R:
∑
α

f(pα).

2. 1-forms over paths γ: ∫

γ
ω.

3. 2-forms over finite unions of domains D:
∫

D
S.
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Remark 3.20. Due to the invariance under coordinate changes, the differential operator
d which transforms a k-form in a (k + 1)-form is defined by

df = fzdz + fzdz

dω = (qz − pz)dz ∧ dz
dS = 0.

Definition 3.21. (Closed and exact differential) A differential df is called exact. A
differential ω with dω = 0 is called closed.

Remark 3.22. One can easily check that every exact form is closed.

Definition 3.23. (Period of a differential) Let γ1, ..., γn be a canonical basis of the
Riemann surface. Periods of ω are defined by

Λi =
∫

γi

ω.

Remark 3.24. For any closed curve γ,
∫
γ ω =

∑
niΛi holds.

Definition 3.25. (Abelian differential of the first kind) A differential ω on a Riemann
surface is called Abelian differential of the first kind if in any local chart, it is represented
as

ω = pdz + qdz = h(z)dz,

where h(z) is holomorphic.

Remark 3.26. Abelian differentials of the first kind form a complex vector spaceH(R,C).
Its dimension is equal to the genus of the Riemann surface.

Theorem 3.27. Let R be a Riemann surface described by a hyperelliptic curve 4.10. The
differentials

ωj =
λj−1dλ

µ

form a basis of holomorphic differentials.
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Remark 3.28. If all a-periods of the holomorphic differential ω are zero, then ω ≡ 0.
Then the matrix of a-periods

Aij =
∫

ai

ω

of any basis ωj , j = 1, ...g of H(R,C) is invertible. We can therefore normalize the basis
as follows: Let aj , bj , j = 1, ..., g be a canonical basis of H(R,C). Then

∫

aj

ωk = 2πiδjk, k = 1, ..., g.

Definition 3.29. (Abelian (meromorphic) differential , Abelian integral) A differential
Ω is called Abelian or meromorphic differential if in any local chart it is of the form

Ω = g(z)dz.

The integral ∫ P

P0

Ω

is called Abelian integral.

Definition 3.30. (Abelian differential of the second kind) An Abelian differential with
singularities is called Abelian differential of the second kind if the residues are equal to
zero at all singular points.

Remark 3.31. Abelian differentials are usually divided into three kinds: holomorphic
differentials (first kind), meromorphic differentials with residues equal to zero at all sin-
gular points (second kind), and meromorphic differentials of the general form (third
kind).

Theorem 3.32. Let R be a Riemann surface of genus g. Then

i. The dimension of the space of differential holomorphic on R is equal to g.

ii. For any finite set of points Pj ∈ R there exists a holomorphic Abelian differential
homomorphic on R \ {Pj} with poles at the points Pj.
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Remark 3.33. Abelian differentials of the second kind have only one singularity of the
form

Ω(N)
R =

(
1

zN+1
+O(1)

)
dz.

This implies for the corresponding Abelian integral

∫ P

Ω(N)
R = − 1

NzN
+O(1) P −→ R.

Remark 3.34. Abelian differentials of the second kind can be normalized as follows:
∫

aj

Ω(N)
R = 0.

They are called normalized Abelian differentials of the second kind.

Before we return to the case of a hyperelliptic curve 4.10, we describe the Abelian differ-
entials of the second kind in more detail:

Let R = (µR, λR), Q = (µQ, λQ) denote the coordinates of two points with λR 6= ∞,
λQ 6=∞. If R is not a branch point to get a proper singularity, we multiply dλ

µ by 1
λ−λR

n

and cancel the singularity at the point πR = (−µR, λR) by multiplication by a linear
function µ.

The differentials of the second kind

Ω(N)
R =

µ+ µ
[N ]
R

(λ− λR)
dλ

2µ
µR 6= 0

where
µ

[N ]
R = µ+

∂µ

∂λ
|R (λ− λR) + ...+

1
N !

∂Nµ

∂NλN
|R (λ− λR)N

have singularities of the form

((z−N−1) + o(−N−1))dz

with z = λ− λR.
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If R is a branch point µR = 0, the singularity is the same. The form of the differentials
is then

Ω(N)
R =

dλ

2(λ− λR)nµ

√√√√
N∏

i=1,i 6=R
(λR − λi) for N = 2n− 1

Ω(N)
R =

dλ

2(λ− λR)n
for N = 2n− 2.

Definition 3.35. (Period matrix of a Riemann surface) Let aj , bj , j = 1, ..., g be a canon-
ical homology basis of the Riemann surface and ωk, k = 1, ..., g the basis of H1(R,C).
The matrix

Bij =
∫

bi

ωj

is called period matrix of the Riemann surface.

Remark 3.36. In the case of normalized Abelian differentials of the second kind the
periods are equal to ∫

bj

Ω(N)
R =

1
N
αN−1,j .

Definition 3.37. (Jacobian variety) The complex torus

Jac(R) = Cg/Λ with

Λ = {2πiN +BM,N,M ∈ Rg}

is called Jacobian variety, where Λ is the lattice generated by the periods of R.

Definition 3.38. (Abel map) Let ω = (ω1, ..., ωg) be the canonical basis of holomorphic
differentials and P0 ∈ R. The map

A : R −→ Jac(R), (3.4)

A(P ) =
∫ P

P0

ω (3.5)

is called the Abel map.

Proposition 3.39. Given a compact Riemann surface with a canonical basis of cycles
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3.1 Riemann surface theory

a1, b1, ..., ag, bg, there exist unique 2g harmonic differentials h1, ..., h2g with

∫

aj

hi =
∫

bj

hg+i = δij ,

∫

ag+i

hg+1 =
∫

bj

hi = 0, i = 1, ..., g.

3.1.3 Divisor and Abels theorem

When analyzing functions and differentials on Riemann surfaces, one characterizes them
in terms of their zeros and poles. It is convenient to consider formal sums of points on
R which leads to theory of divisors.

Definition 3.40. (Divisor and degree) The formal linear combination

D =
N∑

j=1

njPj , nj ∈ R, Pj ∈ R

is called divisor on the Riemann surface R.

The sum

deg(D) =
N∑

j=1

nj

is called the degree of D.

Definition 3.41. (Divisor of a meromorphic function) Let f be a meromorphic function
on the Riemann surface R, Pi, i = 1, ...,M its zeros with multiplicities pi, and Qj , j =

1, .., N the poles with multiplicities qj . The divisor of f is defined as

D = (f) = p1P1 + ...+ pMPM − q1Q1 − ...− qMQM .

A divisor is called principle if there exists a function f such that (f) = D.

Remark 3.42. If a divisor is principle, then the function f has exactly the zeros and
poles prescribed by the divisor. If R is a compact Riemann surface then a divisor is
principle if and only if deg(D) = 0.

The divisor of an Abelian differential is well defined.
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Chapter 3. Riemann surface theory and theta-functions

Definition 3.43. (Divisor of an Abelian differential) The divisor of an Abelian differen-
tial Ω is

(Ω) =
∑

P∈R
N(P )P

where N(P ) is the order of the point P of Ω.

Definition 3.44. (Abel map for divisors) The Abel map for a divisor is defined naturally
by

A(D) =
N∑

j=1

nj

∫ P

P0

ω.

Remark 3.45. If the divisor is principal (i.e. deg(D) = 0), then A(D) is independent
of P0

D = P1 + ...+ PN −Q1 − ...−QM

A(D) =
N∑

j=1

∫ Pi

Qi

ω.

Theorem 3.46. (Abel theorem) The divisor D is principal if and only if

1. deg(D) = 0

2. A(D) ≡ 0.

3.1.4 Riemann Roch theorem

We now investigate the problem of describing the vector space of meromorphic functions
with prescribed poles. Consider the vector space

L(D) = {f meromorphic function on R|(f) ≥ D or f ≡ 0}

with dimension
l(D) = dimL(D).

Similarly, we define the corresponding vector space of differentials

H(D) = {Ω Abelian differential on R|(Ω ≥ 0 or Ω ≡ 0)}
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3.2 Theta-functions

with dimension
h(D) = dimH(D).

Theorem 3.47. (Riemann Roch) Let R be a compact Riemann surface of genus g and
D divisor on R. Then

l(−D) = deg(D)− g + 1 + h(D) (3.6)

Remark 3.48. The Riemann-Roch theorem gives exactly the number of linearly inde-
pendent meromorphic functions with prescribed zeros and poles on a Riemann surface.

We will once more investigate in detail the case of a hyperelliptic Riemann surface and
we will see that a hyperelliptic Riemann surface is the same as a hyperelliptic curve. We
first define the hyperelliptic Riemann surface.

Definition 3.49. (Hyperellitptic Riemann surface) A compact Riemann surface R of
genus g ≥ 2 is called hyperelliptic if there exists a positive divisor (i.e.

∑
j nj ≥ 0) on R

with deg(D) = 2.

Remark 3.50. In other words, R is hyperellitptic if and only if there exists a non-
constant meromorphic function Λ on R with precisely two poles counting multiplicities.
If this is the case, R defines a two-sheeted covering of the complex sphere

Λ : R −→ C̄.

One can prove that this covering is unique up to fractional linear transformations. All
branch points have branch number 1 and they are all Weierstrass points.

Proposition 3.51. The definition of a hyperelliptic Riemann surface is equivalent to
the definition of a hyperelliptic curve (4.10).

Proposition 3.52. Any Riemann surface of genus 2 is hyperelliptic.

3.2 Theta-functions

We now introduce theta-functions and some properties of them, as we will need them in
the following chapter.
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Chapter 3. Riemann surface theory and theta-functions

Definition 3.53. (Riemann matrix) A symmetric g × g-matrix B = Bjk with negative
definite real part Re(B) = (Re(Bjk)) is called Riemann Matrix.

Definition 3.54. (Theta function) Let B be a Riemann Matrix. The Riemann theta-
function is then defined by its multi-dimensional Fourier series

θz,N =
∑

m∈Zg
exp{1

2
〈BN,N〉+ 〈N, z〉}

with z = (z1, ..., zg) ∈ Cg a complex vector, the diamond brackets denoting the Euclidean
scalar product, and

〈N, z〉 =
g∑

i=1

Nizi

〈BN,N〉 =
g∑

j,i=1

BijNiNj ,

with N = (N1, ..., Ng) integer vectors.

Remark 3.55. The theta-function shifted by 2πi obeys the following transformation
law

θ(z + 2φiN) = θ(z), .

We immediately get the following transformation law too:

θ(z + 2πiN +BM) = exp

(
−1

2
〈BM,M〉 − 〈M, z〉

)
θ(z). (3.7)

This follows from the simple calculation

θ(z + 2πiN +BM)

= θ(z +BM)

=
∑

m∈Zg
exp(

1
2
B〈m+M,m+M〉

+ 〈z,m+M〉 − 〈m,M〉 − 1
2
〈BM,M〉)

=
∑

m∈Zg
exp

(
−1

2
〈BM,M〉 − 〈z,M〉

)
θ(z).
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3.2 Theta-functions

Lemma 3.56. The θ-function is analytic.

Proof. The summation in 3.54 is taken over the lattice of integer vectorsN = (N1, ..., Ng).
The general term of this series depends only on the symmetric part of the matrix B. We
can estimate

Re({BN,N}) ≤ −b{N,N}, b > 0,

where −b is the largest eigenvalue of the matrix ReB. Hence the theta-function is
absolutely convergent, uniformly on compact sets, and θ is analytic.

We will now construct a function F from the theta-function which will be useful later
on. We can then make a statement about the roots of this constructed function. It is a
Lemma which is widely used to solve the so called Jacobian inversion problem.

Lemma 3.57. Let e = (e1, ..., eg) ∈ Cg be a fixed arbitrary vector. D = P1 + ...+ Pg a
non-special divisor. Then the function

F (P ) = θ(A(P )− e)

is single-valued and analytic on the cut surface of R and has exactly g zeros at P1, ..., Pg.

The proof of this theorem can be found for example in [45].

Remark 3.58. Under analytic continuation along a-cycles and b-cycles on the Riemann
surface, the map F (P ) is transformed

MakF (P ) = F (P )

MbkF (P ) = exp

(
−1

2
Bkk −

∫ P

P0

ωk + ek

)
F (P ),

where M denotes the monodromy.

Remark 3.59. One can show that either F (P ) vanishes identically on R or it has exactly
g zeros (counting multiplicities).

We have so far introduced the basic theory we need to proceed. In the next chapter
we will put this together with the theory of integrable systems and spectral theory of
differential commuting operators in order to solve the sinh-Gordon equation. We have
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Chapter 3. Riemann surface theory and theta-functions

now all ingredients to construct the solution of the sinh-Gordon equation. We begin
reviewing the theory of integrable systems by means of the inverse scattering method,
a technique used to recover solutions of nonlinear equations by the spectral data of
operators.
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4 The sinh-Gordon equation

As was shown in the previous chapter, the solution of the integration of the Gauss-
Weingarten equations and the compatibility condition, the zero curvature condition, is
related to the sinh-Gordon equation. In generalizing the connection of nonlinear differ-
ential equations and a system of linear differential operators with their zero curvature
condition, a powerful machinery involving many areas of mathematics began to emerge
in the 70´s to solve such nonlinear differential equations.

There is only little literature giving simple access to this subject. Most published work
are articles in scientific journals, short and difficult to understand, or even only available
in Russian. What makes it difficult to get an access to this field is not only that it is
connected with many particularly mathematical areas, but also that there is no really
generalized method for approaching different nonlinear differential equations. One has
thus to decide from case to case which approach to choose. That is why we began with
an introduction to the basic concepts in the previous chapter, and is the reason why this
chapter tries to get by with as less theory involved in integrable systems as possible and
to derive a more intuitive approach. However, we will not be able to completely avoid
some theory on spectral theory, differential commuting operators and integrable systems.

We omit an extended literature review, as there exists a large body of interdependent and
dependent literature regarding the field of integrable systems, and it would be beyound
the scope of this thesis to x-ray the different approaches from different areas of math-
ematics and physics engaged in this field. Note that most of the literature which was
responsible for new approaches to nonlinear differential equations was published between
1970 and 1995. We will summerize the main developments and proceedings limiting our
review to a selected number of key publications. The interested reader is referred to [17],
[38], [36], [39], [14], [13],[6], [5], [2] and the most elaborate work [3]. For a brief and
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Chapter 4. The sinh-Gordon equation

general overview with many examples we propose [16].

The solution of nonlinear equations, like the sinh-Gordon equation, is connected to Rie-
mann surfaces (algebraic curves) via spectral theory of linear operators used in the inverse
scattering method. This was for example done by Dubrovin Matveev Novikov in [17].
Krichever extended this approach without spectral theory [36], [37] and [41] for example.
The connection between solutions of nonlinear equations of a certain type and Riemann
surfaces is commonly formulated in an algebro-geometric language.

The next sections illustrate that we can link the solution u of the sinh-Gordon equa-
tion to operators fulfilling the zero curvature condition. By this connection the solution
u will take the role as potential of the operator and will be connected to some eigenvalue
problem of the operator.

Until the end of 1973 there were practically no examples where the spectrum and the
eigenfunctions of such operators could be explicitly computed in terms of some special
functions. There were also no effective methods for finding the coefficients of operators
on the basis of spectral data. In 1974 the situation changed with the class of finite zone
periodic and quasiperiodic potentials of the Schrödinger operator. It was then when dif-
ferent studies showed the complex connection between the spectral theory of operators
with periodic coefficients, algebraic geometry, the theory of finite-dimensional completely
integrable systems and the theory of nonlinear equations (see [38] for an extended review).

Almost all nonlinear equations integrable by the method of inverse scattering are as-
sociated with the spectral theory of matrix linear differential operators, which frequently
are not even self-adjoint. The spectral properties of (non-self-adjoint) operators with
periodic coefficients is connected to a Riemann surface: The corresponding Riemann
surfaces of the spectrum of the associated matrix linear operators turn out to be plane,
nonsingular real algebraic curves. An important improvement was the discovery of the
possibility of applying the spectral theory of matrix operators to the problem of the clas-
sification of plane real curves.

The crucial role is played by the function which is the simulations solution of two linear
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operators and has on the Riemann surface essential singularities at prescribed points.
The form of the singularities depends on the order of the operator. This function is
then constructed by using theory of Abelian integrals. In our case, we will see that this
function with prescribed properties turns out to be the Baker-Akhiezer function, which
is then used to construct solutions of the sinh-Gordon equation. With this method, one
obtains explicit formulas in terms of theta-functions for the sinh-Gordon equation.

In general, in the inverse scattering transformation there are four key steps in the solution
method: First one sets up an appropriate linear scattering (eigenvalue) problem in the
space variable where the solution of the nonlinear evolution equations plays the role of
the potential. As a next step one chooses the time dependence of the eigenfunctions in
such a way that the eigenvalues remain time invariant as the potential evolves according
to the equation. The third step consists in solving the direct scattering problem at initial
time and determining the time dependence of the scattering data. Then solve the in-
verse scattering problem at later times by knowing the discrete eigenvalues corresponding
to the bound states and the time dependence of the other scattering data reconstruct
the potential. In the final step, the solution can be written in terms of linear integral
equations from which one can compute the solution to the evolution equation all the time.

As we have seen, studying CMC tori in R3 or H3 is related to double-periodic solutions
of the sinh-Gordon equation. We will establish the connection between two commuting
differential operators (our Lax pair) and the sinh-Gordon equation. It can be shown
that, starting from this, we arrive at one stationary t-evolution and two corresponding
stationary equations. Due to the special properties associated, a special eigenvalue prob-
lem which in turn defines the so called spectral curve, a Riemann surface, arises. We
will then introduce the Baker-Akhiezer function and show that it exactly solves the spe-
cial eigenvalue problem. The Baker-Akhiezer function is determined by a specific set of
properties and one can show that under those it is uniquely determined on a Riemann
surface. Baker-Akhiezer functions can be constructed in terms of theta-functions which
we introduced earlier. With the help of the Baker-Akhiezer function we are then in the
situation to solve the sinh-Gordon equation and get a formula in terms of the theta-
function. Now one is able to retrieve exact formulas for the frame and the immersion.
This was done in [6] and [5] for R3, H3, and S3.
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Chapter 4. The sinh-Gordon equation

4.1 Lax pair and finite gap solutions

The sinh-Gordon equation has an appealing: In contrast to many other nonlinear differ-
ential equations, all real smooth-double periodic solutions are automatically finite gap
here [49]. This is a consequence of the observation that all isospectral flows from the
corresponding hierarchy are zero eigenfunctions of the linearized problem. Two linear
operators are called isospectral if they have the same spectrum. Roughly speaking, they
are supposed to have the same sets of eigenvalues when those are counted with multi-
plicity. The linearized system may have only finite-dimensional space of double periodic
zero eigenfunctions. This means that the hierarchy contains only finitely many linearly
independent flows at this point. It follows that the spectral curve has finite genus.

Proposition 4.1. Equation 2.16 is the compatibility condition for

Uz − Vz + [U, V ] = 0 (4.1)

for a system of two linear differential equations

Ψz = UΨ , Ψz = VΨ, (4.2)

(4.3)

U =
1
2

(
−uz −iν
−iν uz

)
, V =

1
2νi

(
0 e−u

eu 0

)
(4.4)

with an auxiliary parameter ν.

Proof. Computing Uz − Vz + [U, V ] = 0 shows that

Uz − Vz + [U, V ]

=

(
−1

2uzz + 1
4(e−u + eu) 0

0 1
2 + 1

4(eu − e−u)

)

=

(
0 0

0 0

)
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4.2 Higher commuting flows

In order to satisfy the last equation, the following must hold:

−1
2
uzz +

1
4
(e−u + eu) =

1
2
uzz +

1
4
(eu − e−u) = 0

⇐⇒ uzz + sinh(u) = 0.

Remark 4.2. U and V are the Lax pair. The modern developments of integrable systems
rely on the notion of Lax pairs, see [42] for their origin. In general, there does not exist
an algorithm how to construct them. However, Zakharov and Shabat provide a general
method to construct the Lax pair depending on a spectral parameter and fulfilling a
special form of the Lax equation (see for example [1]).

Remark 4.3. The pair U, V satisfies the following reductions:

Ψ(ν) ⇒
(

1 0

0 −1

)
Ψ(ν)

Ψ(ν) ⇒
(

0 e−
u
2

e
u
2 0

)
Ψ(ν−1),

which means that both sides are solutions of the system 4.2.

4.2 Higher commuting flows

Equation 2.16 is integrable and has infinite conservation laws which determine commut-
ing “higher” flows. For an extended review on how to introduce higher flows see [43]. We
only give a short outline closely following [5].

Let z = z1, where we then consider an infinite series of new variables z2, ..., zn, ....Then
Ψ satisfies an infinite series of differential equations

ΨznUnΨ.

Un is a matrix polynomial of degree 2n − 1. The coefficients of Un are derivatives of
uz, uzz, ..., u

n
z of polynomial nature. The exact form of Un is not of interest here. The
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second reduction implies
Ψzn = VnΨ.

Vn is a matrix polynomial of degree 2n− 1. We use the normalization

Vn(ν =∞) = 0,

and putting ν = 0 in
Un(ν) = RznR

−1 +RVn(ν−1)R−1

with

R =

(
e−

u
2

e
u
2 0

)
,

we obtain the higher sinh-Gordon equation

uzn = Pn(uz, ..., unz )

with Pn coefficients in Un.

If we now take real variables xn, yn with (zn = xn+iyn), we obtain a nonsingular solution
u(x1, y1, ..., xn, yn) of all higher sinh-Gordon equations. The higher flows commute and
therefore the set of solutions with respect to some flow uti = 0, where ti denotes higher
times, is invariant with respect to other flows including x, y flows. Those solutions are
called finite gap solutions.

Theorem 4.4. All nonsingular double-periodic solutions of 2.16 are stationary solutions
of a higher elliptic sinh-Gordon flow.

Proof. Looking at the partial derivatives

vi =
∂

∂ti
u(t1, ...),

we have
(∂z∂z + coshu)vi = 0.
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4.3 The associated problem

The vi are linearly dependent as the set of eigenfunctions of

(∂z∂z + coshu)vi = 0

on the torus is discrete. Higher times t exists with respect to which u(t1, ...) is stationary
ut = 0 and hence u is of finite gap type.

4.3 The associated problem

We now present the simplest ideas of the method of finite-zone integration application
to matrix operators of second order.

Let u(z, z) be the finite gap solution of the equation 2.16 which is stationary with respect
to higher time t as sketched in the previous section. The t-evolution of the Ψ-function is
determined by the polynomial W (v) of degree 2N − 1 in both v and 1/v,

Ψt = WΨ, (4.5)

with the corresponding stationary equations

−Wz + [U,W ] = 0, −Wz + [V,W ] = 0. (4.6)

Theorem 4.5. The corresponding stationary equations 4.6 are equivalent to finding a
solution Ψ of the special eigenvalue problem

WΨ = µΨ, Ψz = UΨ, Ψz = VΨ. (4.7)

Proof. Let W,U, V be a solution of 4.7. Furthermore,

Ψ 6= 0, µz = µz = 0

for a higher time z, z. Since Wz + [W,U ] = 0 is isospectral, the eigenvalues of W are
time independent.
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Chapter 4. The sinh-Gordon equation

Derive the derivate of WΨ = µΨ with respect to z, z:

WzΨ +WΨz = µzΨ + µΨz,

WzΨ +WΨz = µzΨ + µΨz.

The following then holds

⇐⇒ WzΨ +WUΨ = µzΨ + µUΨ, WzΨ +WVΨ = µzΨ + µVΨ

⇐⇒ WzΨ +WUΨ = µzΨ + UWΨ, WzΨ +WVΨ = µzΨ + VWΨ

⇐⇒ WzΨ +WUΨ− UWΨ = µzΨ, WzΨ +WVΨ− VWΨ = µzΨ
Ψ6=0,µz ,µz=0⇐⇒ Wz +WU − UW = 0, Wz +WV − VW = 0

⇐⇒ Wz + [W,U ] = 0 Wz + [W,V ] = 0

⇐⇒ −Wz + [U,W ] = 0 −Wz + [V,W ] = 0.

Remark 4.6. The common eigenfunctions Ψ of U and V determine the 2-dimensional
holomorphic bundle over a Riemann manifold R.

The goal of this method is to determine the analytical properties of the eigenvector Ψ

and see how much of W can then be reconstructed from these information. For any
two pair of commuting ordinary differential operators, there exists an algebraic relation
which determines an algebraic curve, the so called spectral curve:

Lemma 4.7. The eigenvalue problem Wψ = µψ defines a hyperelliptic curve and there-
fore a Riemann surface R.

Proof. U and V as in 4.2 are traceless. Consequently, one can always fix W to be
traceless. The characteristic polynomial of W is given by

det(W (v)− µ1) = 0).
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4.4 The Baker-Akhiezer function

For a traceless matrix we have

det(A+B) = det(A) + det(B).

We get

det(W (v)− µ1) = det(W (v))− det(µ1)

⇐⇒ det(W (v)) = µ2,

which is called the spectral curve.

The spectral curve is the characteristic equation for the eigenvalues of the Lax matrix.
SinceWz+[W,U ] = 0 is isospectral, the eigenvalues ofW are time independent and so is
the spectral curve. Hence, at any point of the spectral curve there exists an eigenvector
ofW with eigenvalue µ. This defines an analytic line bundle on the curve with prescribed
chern class. Chern classes are characteristic classes. They are topological invariants as-
sociated to vector bundles on a smooth manifold. A bundle is a topological construction
which makes precise the idea of a family of vector spaces parameterized by another space.

The spectral curve is the characteristic equation for the eigenvalues of W . One can
then reconstruct the eigenvalue by the properties of the spectral curve. In particular, the
information is contained in the divisor of the spectral curve poles. The spectral curve
det(W (v)) = µ2 possess because of the reduction

σ3W (−ν)σ3 = W (ν)

(see [6]) the involution
π : (ν, µ) −→ (−ν, µ).

4.4 The Baker-Akhiezer function

We will now give a general definition of the Baker-Akhiezer function and see that it solves
4.7, i.e. we construct a matrix of the Baker-Akhiezer function. In a next step, we then
state a special definition of the Baker-Akhiezer function, which solves the sinh-Gordon
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equation. It is the same as the general definition, except that we have its vector valued
2-point version, and that we have a special condition as we are in the situation of an
hyperelliptic Riemann surface, i.g. we have some additional restrictions on the function
being single-valued.

Baker-Akhiezer functions are special functions with essential singularities on Riemann
surfaces. They provide a very natural parameterization of eigenvectors of the linear
system.

Definition 4.8. (Baker-Akhiezer function) An n-point Baker-Akhiezer function ψ on R
of genus g corresponding to Q, to the local parameter z = 1

k at Q, to the polynomial
q(k) and divisor D, is a function ψ(P ) such that:

i. ψ(P ) is meromorphic on R outside the points Pα (i.e. except P = Q) and has on
R�Q poles only at the points P1, ..., Pg of D (this means (ψ) +D ≥ 0).

ii. ψ(P )e−q(k) is analytic in a neighborhood P = Q.

Instead of ii. we can also say that ψ(P ) has at P = Q an essential singularity of the
form ψ(P ) ∼ ceq(k).

Remark 4.9. From pure algebro-geometric arguments it follows that there exists a
unique function ψ with the prescribed properties. We come back to this in the next
section.

Remark 4.10. The Baker-Akhiezer function is determined by its algebraic properties
with respect to the variable Q. It is defined up to multiplicative constant with the
following set of parameters:

i. R a compact Riemann surface of genus g.

ii. P∞ ∈ R a marked fixed point.

iii. A fixed choice of local parameters p = k−1 near P∞ with k −→∞ as P −→ P∞.

iv. Q(k) a polynomial.

v. D = P1 + ...+ Pg a non-special divisor on R.
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4.5 Explicit formula

Through the equivalence of a set of solutions we have seen that the sinh-Gordon equation
generates a spectral curve of the form

µ2 = λ−2n+1
2g∑

i=1

(λ− λi), g = 2n− 1, or g = 2n− 2

of genus g with contour L fixing the branch
√
λ on R \ L.

We will now state the corresponding vector valued definition of the Baker-Akhiezer func-
tion:

Definition 4.11. Let D = P1, ..., Pg be a positive divisor of degree g on R. The vector
valued Baker Akhiezer function ψ = (ψ1, ψ2)T associated to the solution of the sinh-
Gordon equation is analytic on R and

i. ψ is meromorphic on R \ {λ = 0,∞}, its polar divisor is non-special of degree g
and does not depend on z, z. Or, equivalently, ψ has on R \ {λ = 0,∞} poles only
at the points P1, ..., Pg of D.

ii. The functions ψ and
√
λψ2 are one-valued on R.

iii ψ has essential singularities of the kind

ψ1,2 = (1 +O(1))exp
(
− i

2
z
√
λ

)
, λ→∞, (4.8)

ψ1,2 = O(1)exp
(
− i

2
√
λ
z

)
, λ→∞. (4.9)

The Baker-Akhiezer function is uniquely defined by its analytic properties and can be
explicitly constructed by theta-functions and Abelian integrals which is done in the next
section.

4.5 Explicit formula

We now turn our attention to the problem of a formula for the Baker-Akhiezer function.
We begin with the introduction of the necessary tools to derive the formula and then
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claim that it fulfills the above definitions and therefore solves the problems associated
with the sinh-Gordon equation. We will return to the functions and theorems of the
previous chapter.

Now consider the Riemann Surface of the hyperelliptic curve, defined by

µ2 = λ−2n+1
4n−2∏

i=1

(λ− λi) ;λ = µ2. (4.10)

Remark 4.12. C −→ C/π, π : (λ, µ) −→ (λ,−µ) is a double cover. C is a hyperelliptic
curve of genus 2n − 1 where λ = 0,∞ are branch points. The points ∞± denote the
points of the surface with µ→ ±ν2n−1, ν →∞ and O± the two points with ν = 0. The
involution interchanges them: ∞+ π←→∞−, O+ π←→ O−.

Remark 4.13. We assume C not to be singular. One can show (see [5]) that the singular
case does not lead to CMC tori.

Let be C a hyperellitptic Riemann Surface of genus g as in 4.10 with branch points
λ = 0,∞ and let L be a contour defining a one-valued branch of the function

√
λ on

C \ L.

Set a canonical basis of cycles
an, bn, n = 1, ..., g

chosen such that
L = a1 + ...+ ag.

A contour L fixes the sheet of the covering that contains ∞ and O+ C \ L. On C \ L,
there is singled out a one-valued branch of the function ν, two valued on C, and a local
parameter λ at the points λ = 0,∞ ∈ C are chosen so that

√
λ = v, λ→ 0,∞.

The normalized holomorphic Abelian differentials define a period matrix

Bmn =
∫

δm

dun.
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4.5 Explicit formula

By normalized we mean as usual
∫

am

dun = 2πiδnm.

Define the theta-function, as introduced earlier as

θ(z) =
∑

z∈Zg
exp

(
1
2
〈BM,M〉+ 〈z,M〉

)
, z ∈ Cg,

periodic with periods iπZg.

We introduce differentials Ω1,Ω2 of the second kind, normalized by
∫

an

dΩi = 0, i = 1, 2, n = 1, ..., g,

with singularities of the following form:

dΩ1 → d
√
λ, λ→∞, (4.11)

dΩ2 → −d
√
λ

λ
, λ→ 0. (4.12)

Remark 4.14. Note that any Abelian differential of the second kind (or third kind)
with zero a-periods or with all purely imaginary cyclic periods, is uniquely defined by its
principal parts at singular points.

Set their periods to

Un =
∫

bm

dΩ1, Vn =
∫

bn

dΩ2.

Lemma 4.15. The BA-function is given by the following formulas:

ψ1 =
θ(u+ Ω)θ(D)
θ(u+D)θ(Ω)

exp{− i
2
(Ω1z + Ω2z)} (4.13)

ψ2 =
θ(u+ Ω + ∆)θ(D)
θ(u+D)θ(Ω + ∆)

exp{− i
2
(Ω1z + Ω2z)} (4.14)
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Chapter 4. The sinh-Gordon equation

where

Ω = − i
2
(Uz + V z) +D

U = (U1, ..., Ug),

V = (V1, ..., Vg)

∆ = πi(1, ..., 1)

Ωi =
∫ P

∞
dΩi

u =
∫ P

∞
du, P = (λ, µ) ∈ X

is the Abel map and
D ∈ Cg

is arbitrary such that θ(u+D) has D as a null divisor.

Proof. We have to check that all the properties of 4.11 are fulfilled and that the defined
function is unique:

i. ψ1,2 is meromorphic on R \ λ = 0,∞, which follows directly from the property that θ
is an analytic function 3.56. From 3.57 it follows that θ(u + D) has zeros at P1, ..., Pg.
Obviously, these are the poles of ψ1,2.

ii. This requirement is equivalent to the property that ψ1 has no jump on L and that
ψ2 changes sign when its arguments crosses sign. Put differently, ψ1 has to be invariant
when the point P goes around an arbitrary cycle γ and ψ2 changes sign. We denote by
Mγ the monodromy operator that corresponds to the cycle γ being traversed.

We first examine ψ1. Changing path of integration we have

− i
2
(Ω1z + Ω2z) → − i

2
(Ω1z + Ω2z)

(
〈M,− i

2
(Uz + V z)〉

)

u → u+ 2πiN +BM

where M = (m1, ...,mg) and N = (n1, ..., ng).
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4.5 Explicit formula

We compute

Mγ [ψ1]

=
θ(u+ 2πiN +BM + Ω)θ(D)
θ(u+ 2πiN +BM +D)θ(Ω)

exp

(
− i

2
(Ω1z + Ω2z)

)
exp

(
〈M,− i

2
(Uz + V z)〉

)

=
exp

(−1
2〈B,M〉 − 〈M,u+ Ω〉)

exp
(−1

2〈B,M〉 − 〈M,u+D〉)exp
(
〈M,− i

2
(Uz + V z)〉

)
ψ1

=
exp (−〈M,u〉 − 〈M,Ω〉)
exp (−〈M,u〉 − 〈M,D〉)exp

(
〈M,− i

2
(Uz + V z)〉

)
ψ1

=
exp (−〈M,Ω〉)
exp (−〈M,D〉)exp

(
〈M,− i

2
(Uz + V z)〉

)
ψ1

=
exp

(−〈M,− i
2 (Uz + V z) +D〉)

exp (−〈M,D〉) exp

(
〈M,− i

2
(Uz + V z)〉

)
ψ1

= ψ1.

Regarding ψ2, we have for changing the path of integration

− i
2
(Ω1z + Ω2z) → − i

2
(Ω1z + Ω2z)

(
〈M,− i

2
(Uz + V z)〉

)

u → u+ 2πiBM

where M = (1, 0, ..., 0).

Calculate

Mγ [ψ2]

=
θ(u+ Ω + ∆ + 2πiBM)θ(D)
θ(u+ 2πiBM +D)θ(Ω + ∆)

exp

(
− i

2
(Ω1z + Ω2z)

(
〈M,− i

2
(Uz + V z)〉

))

=
exp

(−1
2〈2πiB,M〉 − 〈M,u+ Ω + ∆〉)

exp
(−1

2〈2πiB,M〉 − 〈M,u+D〉) exp

(
〈M,− i

2
(Uz + V z)〉

)
ψ2

=
exp (−〈M,Ω + ∆〉)
exp (−〈M,D〉) exp

(
〈M,− i

2
(Uz + V z)〉

)
ψ2

= exp (−〈M,∆〉)ψ2

= −ψ2.

81



Chapter 4. The sinh-Gordon equation

iii. This follows directly from the chosen normalization of ψ1,2 and 4.11.

It remains to be shown that ψ1,2 is unique: Suppose now there exists another Baker-
Akhiezer function ψ. From the definition of the Baker-Akhiezer function it follows that
the ratio ψ1,2/ψ is a meromorphic function on C, which is equal to one at the puncture
and with the only possible poles at the zeros of the function ψ. According to 3.57, the
zeros of ψ are zeros of the function θ(u+Ω). Hence, ψ has g zeros. The simplest form of
the Riemann-Roch theorem implies that a function on a Riemann surface with at most
g poles at a generic set of points is a constant. Therefore, ψ1,2 = ψ and the existence
and uniqueness of the Baker-Akhiezer function is proved.

Proposition 4.16. The solution of 2.16 is given by

u = 2ln
θ(Ω)

Ω + ∆
. (4.15)

Proof. Let Ĉ be the Riemann surface which is a two-sheeted covering of C 4.10. The
hyperelliptic curve C consisting of two sheets of Ĉ is defined as above. There exists an
involution π : Ĉ −→ Ĉ, interchanging the sheets of the covering and hence chose Ψ to be

Ψ =

(
ψ1 ψ∗1
ψ2 ψ∗2

,

)
(4.16)

the solution of 4.2. We have

Ψz = VΨ

⇔
(
ψ1z ψ∗1z
ψ2z ψ∗2z

)
=

1
2vi

(
0 e−u

eu 0

)(
ψ1 ψ∗1
ψ2 ψ∗2

)

=

(
e−uψ2 e−uψ∗2
euψ1 euψ∗1

)
.
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4.5 Explicit formula

For instance, we can take

ψ1z = euψ2

⇐⇒ eu =
ψ2

ψ1z

⇐⇒ u = ln(
ψ2

ψ1z
).

We now take into consideration that
∫ 0

∞
du = ∆,

∫ 0

∞
dΩi = 0

and hence compute

ψ2

ψ1z
=

θ(Ω)θ(D)
θ(u+D)θ(Ω + ∆)

θ(u+D)θ(Ω)
θ(u+ Ω) + θ(D)

=
θ2(Ω)

θ2(u+ Ω)

=⇒ u = ln

(
θ2(Ω)

θ2(u+ Ω)

)

= 2ln
(

θ(Ω)
θ(u+ Ω)

)
.

We can now connect the Baker-Akhiezer function with the original problem:

Lemma 4.17. The vector valued Baker-Akhiezer function is a solution for 4.7.

Proof. For this proof it suffices to consider the matrix Ψ(z, z, λ) with the vectors ψ(z, z, λ), Pj =

(λ, µj) as columns. This matrix depends on the numbering of the columns (i.e. of the
points Pj). The matrices

(∂zΨΨ)−1, (∂zΨΨ)−1, Ψµ̂Ψ−1

are well defined, as they do not depend on the numbering. µ̂ is a diagonal matrix equal to
µ̂ij = −iδij . By virtue of the analytic properties of ψ, the matrices are rational functions
of λ and are denoted by U, V,W respectively.

Remark 4.18. All real-valued solutions of 2.16 are given by 4.14. For the proof see for
example [5].
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Chapter 4. The sinh-Gordon equation

We summarize the results accomplished so far: We showed that the sinh-Gordon equation
is equivalent to the solution of 4.6, differential equations of a pair of operators satisfying
the zero-curvature condition. We approached the problem from two sides. On the one
hand, we showed that 4.6 corresponds to an eigenvalue problem of the form 4.7, and de-
fines a spectral curve. On the other hand, we defined the Baker-Akhiezer function, which
is uniquely determined on an algebraic curve. The Baker-Akhiezer function also solves
4.7, which concludes that finding the Baker-Akhiezer function solves the sinh-Gordon
equation. Therefore we have shown that solving problem 4.5 and determining the Baker-
Akhiezer function is evidently the same.

We are not going to derive the detailed formula for the immersions in R3,H3, as this
was done in [6] and [5] already.

We will now turn our attention to CMC tori in H3 and we study by which spectral
data they are uniquely determined and how to obtain deformations. Very similar results
for deformations of CMC tori in R3, S3 were obtained in [31], [32] and [33], and we closely
follow those works in the proceeding.
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5 Deformations

Soon after the development of finite gap integration of nonlinear differential equations by
Novikov [1974], Dubrovin et al. [1976], Its and Matveev [1975], Lax [1975], and McKean
[1975], there were already new ideas linked to that new method: The spectral data of the
Lax pair characterizing the associated Lax-type operators consist of a Riemann surface
(algebraic curve or also called spectral curve), equipped with a selected set of points
(divisor of points, infinities). In the finite gap case, this Riemann surface has finite
genus and the number of selected points is also finite. As was shown before the aglebro-
geometric approach in particular allows one to write down explicit solutions in terms of
theta-functions. But the problem is not solved by simply retrieving exact formulas. It is
often necessary to select geometrically relevant classes of solutions corresponding to the
source problem: For instance solutions satisfying a certain reality condition, or regular
solutions, or bounded solutions. To solve this problem one must deal with the following
questions:

Problem 1: How to select solutions that are real? Problem 2: How to select real nonsin-
gular solutions? Problem 3: How select periodic solutions with a given period (or also
quasi-periodic solutions)?

In the previous chapters we derived the link between CMC tori and the sinh-Gordon
equation. We observed that CMC tori are connected to a spectral curve via spectral
theory of commuting differential operators. In this chapter we want to look more closely
at the periodicity of solutions of the sinh-Gordon equation. We want to specify the data
of the spectral curve which need to be fulfilled in order to abtain CMC tori in the 3-
hyperbolic space. We will introduce the concept of monodromy and also use another
description of the spectral curve (compared to the one of the chapter before). This new
description will be equivalent to the spectral curve introduced in the chapter before.
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Chapter 5. Deformations

The imposed periodicity conditions are a result of the so called closing conditions of the
monodromy, or to be specific, the closing conditions derivable from the Sym Bobenko
formula. In a first part we will introduce the monodromy and derive some useful prop-
erties.

The second part of the chapter will deal with the question of how to encode the spectral
curve with additional functions to obtain a solution of the sinh-Gordon equation to a set
of complex numbers. We will call this set the spectral data. This representation of the
spectral curve will allow us to define a deformation on the spectral curve and represent
this deformation by a system of ordinary differential equations. In the proceeding we
closely follow [32], [33] and [31].

5.1 Spectral curve, monodromy and closing condition

5.1.1 The closing condition

Recall from the first chapter that for F = F (z, z, λ) being a solution of

Fz = FU, Fz = FV (5.1)

with

U =
1
2

(
uz −λ−2eu

Qe−u −uz

)
V =

1
2

(
−uz −Qe−u
λ2eu uz

)
(5.2)

and

det(F ) = 1, ∀λ, z
λ0 = e

q
2 eiψ

λ =
√

1 +H√
H − 1

we have with

f = FF
t
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5.1 Spectral curve, monodromy and closing condition

that f is the immersion of a CMC surface (Note that for the sake of brevity we omitteed
here the hat).

As the solution of the sinh-Gordon equation u is double periodic, so are U and V .
We then define:

Definition 5.1. (Monodromy) Let τi=1,2 be the two periods. We call M1,M2 for which

F (τi=1,2 + z, τ i=1,2 + z, λ) = Mi=1,2(λ)F (z, z, λ)

the Monodromies of Fλ.

Remark 5.2. The monodromy C∗ −→ SL2(C), λ −→ Mλ is a holomorphic map with
essential singularities at λ = 0,∞. By construction the monodromy takes values in SU2

for |λ| = 1.

Theorem 5.3. Let F be a unitary frame as in 5.1 with monodromy Mτ (λ). Then the
closing conditions is given by Mτ (λ0) = Mτ ( 1

λ0
) = ±1.

Proof. The proof follows directly from the Sym-Bobenko formula: As F ∈ SL2(C) we
have F̄ tλ = F−1

1
λ̄

.

f(z, z, λ) = Fλ0F̄
T
λ0

⇐⇒ f(z, z, λ) = Fλ0F
−1
λ1

λ1 = λ̄0
−1
.

As the frame F is periodic so is f

=⇒ f(z + τ, z + τ , λ) = Mτ (λ0)Fλ0F
−1
λ1
M−1
τ (λ1)

= Mτ (λ0)f(z)M−1
τ (λ1)

=⇒Mτ (λ0) = Mτ (λ1) = ±1.

The additional restriction on the monodromy thus ensures that the immersion closes to
become a torus.
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Chapter 5. Deformations

Definition 5.4. Let τi=1,2 be the periods andM1(λ),M2(λ) the monodromies of Fλ with
corresponding eigenvalues µ1, µ2. Then the spectral curve of the CMC torus is given by

∑

f

= {(λ, µ1, µ2) : det(µ11−M1(λ)) = det(µ21−M2(λ)) = 0}. (5.3)

Remark 5.5. This description of CMC tori differs slightly from the one we used before.
The description used before is related to polynomial Killing fields and is equivalent to
the one used here, see for example [32].

5.1.2 Properties of the monodromy

In the propositions below we will derive some important properties of the monodromy.
The argument is always the same: If (Udz + V dz) fulfills a certain property, then both
F and M do as well as dF = (Udz + V dz)F .

Proposition 5.6. The monodromy satisfies

M(
1
λ

) = (M t(λ))−1. (5.4)

Proof. We have to show that with

U =
1
2

(
uz −λ−2eu

Qe−u −uz

)
, V =

1
2

(
−uz −Qe−u
λ2eu uz

)
,

(Udz + V z)(
1
λ

) = −(Udz + V dz)
t
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5.1 Spectral curve, monodromy and closing condition

holds. We compute

(Udz + V dz)(
1
λ

) =

(
uzdz − uzdz −λ2

eudz −Qe−udz
Qe−udz + λ

−2
eudz −uzdz + uzdz

)

(Udz + V dz)(λ) =

(
uzdz − uzdz −λ2

eudz −Qe−udz
Qe−udzλ−2

eudz −uzdz + uzdz

)

−(Udz + V dz)
t
(λ) =

(
−uzdz + uzdz Qe−udz + λ

2
eudz

−λ2
eudz −Qe−udz uzdz − uzdz

)
.

As dF = (Udz + V dz)F−1, we have

F (
1
λ

) = (F t)−1(λ).

The same then holds for the monodromy.

Remark 5.7. Consequently, M is of the form

M(λ) =

(
a(λ) b(λ)

−b( 1
λ
) a( 1

λ
)

)
.

Remark 5.8. We set
M∗(λ) = (M(

1
λ

))t−1 . (5.5)

Proposition 5.9. Define

e =

(
0 −1

1 0

)
∈ SU(2).

Then
eM(λ)e−1 = M(λ)t

−1

holds.

Proof. Using the proposition before we have to show that

e(Udz + V dz)(λ)e−1 = (Udz + V dz)(
1
λ

)
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Chapter 5. Deformations

holds:

e(Udz + V dz)(λ)e−1 =

(
−uzdz + uzdz

1
λeuQdz + λeudz

− eu

λ dz − λ
euQdz uzdz − uzdz

)−1

(Udz + V dz)(
1
λ

)
det(Udz+V dz)=1︷︸︸︷

=


 uzdz − uzdz −λ2eudz −Qe−udz
Qe−udz + λ−2eudz −uzdz + uzdz


 .

Proposition 5.10. Set

e =

(
0 −1

1 0

)
∈ SU(2).

Then
eM(λ−1)e−1 = M(λ)

holds.

Proof. We have to show that

e(overline(Udz + V dz)(
1
λ

)e−1 = (Udz + V dz)(λ)

holds

(Udz + V dz)(
1
λ

) =

(
uzdz − uzdz −λ2eudz −Qe−udz

Qe−udz + λ−2eudz −uzdz + uzdz

)

e(Udz + V dz)(
1
λ

)e−1 =

(
−uzdz + uzdz −Qe−udz − λ−2eudz

λ2eudz +Qe−udz uzdz − uzdz

)
.

5.2 Conditions on the H3 spectral curve

In the previous section we carried out the concepts and tools we will need for this section.
We will now study which spectral data determine a CMC torus in the hyperbolic 3-space.
In a first part, we will prove some propositions for later use. Note that most of the proofs
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5.2 Conditions on the H3 spectral curve

follow from the properties of the monodromy, which are in turn determined by the closing
condition derived from the Sym Bobenko formula.

Proposition 5.11. Let C be an hyperelliptic Riemann surface with branch points over
λ = 0(y+) and λ = ∞(y−) and Mi=1,2, the monodromy as in 5.3. Then the surface C
has one holomorphic involution and two anti-holomorphic involutions:

σ : (λ, µ1, µ2) −→ (λ,
1
µ1

,
1
µ2

)

η : (λ, µ1, µ2) −→ (
1
λ
, µ1, µ2)

ρ : (λ,_1, µ2 −→ (
1
λ
,

1
µ1

,
1
µ2

)

with ρ = η ◦ σ = σ ◦ η such that η has no fixpoints, and η(y+) = y−.

Proof. The existence of these three involutions follows immediately from 5.11, 5.12 and
5.13. Obviously ρ = η ◦ σ = σ ◦ η holds as well η(y+) = y−.

To complete the proof we have to check that η has no fixpoints:

Let ν be an eigenvector of M . If ν is an eigenvector of M(λ) then ν is an eigenvec-
tor of M( 1

λ
) because

det(µ1−M(λ)) = det(µ1− eM(
1
λ

))

= det(e(µ1−M(
1
λ

))e−1)

= det(µ1−M(
1
λ

))

= 0.

We further have
M(

1
λ

)ν = M(
1
λ

)ν = µν = µv = 1.

With
M(

1
λ

) = eM(λ)e−1
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Chapter 5. Deformations

we get

M(
1
λ

)ν = µν

⇐⇒ eM(λ)e−1ν = µν

⇐⇒M(λ)eν = µeν

and see that eν is an eigenvector of Mλ. If η had fix points, the eigenvectors of M would
not be linearly independent, so

eν = γν ˆ|2

=⇒ e2ν = γeν = γγν

=⇒ γγ = −1.

Since this is a contradiction the two eigenvectors are linearly independent and η has no
fixpoints.

Proposition 5.12. Let C be an hyperelliptic Riemann surface with branch points over
λ = 0(y+), and λ = ∞(y−) and Mi=1,2 the monodromy as in 5.3. Then there exist two
non-zero holomorphic functions µ1, µ2 on C \ {y+, y−} for i = 1, 2, with

σ ∗ µi = µ−1
i , η ∗ µ̄i = µi, ρ ∗ µ̄i = µ−1

i .
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Proof. With the help of 5.11, 5.12 and 5.13 we compute:

P (
1
λ
, µ) = det(µ1−M(

1
λ

)) = det(µ1−M∗(λ))

= det(µ1−M(λ)) = P (µ, λ)

P (λ,
1
µ

) = det(
1
µ
1−M(λ)) = det(

1
µ
1−M t−1

(λ))

= det(
1
µ
1−M t(λ)) = det(µ2 1

µ
1−M t(λ)µ2) = P (λ, µ)

P (
1
λ
,
1
µ

) = det(
1
µ
1−M(

1
λ

)) = det(
1
µ
1−M∗(λ))

= det(
1
µ
1−M(λ)) = P (λ, µ).

Proposition 5.13. Let C be an hyperelliptic Riemann surface with branch points over
λ = 0(y+), and λ =∞(y−) and Mi=1,2 the monodromy as in 5.3. Then the forms dlnµi
are meromorphic differentials of the second kind with double poles at y±. The singular
parts of these two differentials are linearly independent at y+ and y− .

Proof. From the theory of ordinary differential equations (the so called fundamental
solution) we get that

F (z0 + τi=1,2, λ) = Mτi=1,2(λ)F (z0, λ).

Since we know from the previous chapter that the Baker-Akhiezer function is uniquely
defined, we have

F (z0 + τi=1,2, λ) = µF (z0, λ).

Replacing F (z0 + τi=1,2, λ) by Mτi=1,2(λ)F (z0, λ) we get

Mτi=1,2(λ)F (z0, λ) = µF (z0, λ),

and observe that the Baker-Akhiezer function is an eigenfunction ofM with eigenvalue µ.
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Chapter 5. Deformations

We consider Ω to be defined as in 4.15. Since

Ω(z + τi=1,2, z + τ i=1,2) = Ω(z, z) + 2πiN,

and the transformation law 3.7 of the θ-function, we get

F (z0 + τi=1,2, λ) = exp

(
− i

2
(Ω1τi=1,2 + Ω2τ i=1,2)

)
F (z0, λ).

Consequently, we obtain

µ1 = exp

(
− i

2
(Ω1τ1 + Ω2τ1)

)

µ2 = exp

(
− i

2
(Ω1τ2 + Ω2τ2)

)

or, equivalently,

ln µ1 = − i
2

(Ω1τ1 + Ω2τ1)

ln µ2 = − i
2

(Ω1τ2 + Ω2τ2) .

It now follows from the discussion of the previous chapter that

dln µi = − i
2

(dΩ1τi + dΩ2τ i) , i = 1, 2

fulfills the claimed properties.

Theorem 5.14. Let C be an hyperelliptic Riemann surface with branch points over
λ = 0(y+) and λ =∞(y−) and Mi=1,2 the monodromy as in 5.3. Let the conditions 5.11,
5.12 and 5.13 be valid. Additionally there are points with y1, σ(y1) = y2, y3, σ(y3) = y4

and ρ(y1) = y4, ρ(y2) = y3 such that µ = ±1. Then C is the spectral curve of an immersed
torus in H3.

Proof. From the previous chapter we know of the existence of a unique meromorphic
function with poles at the branch points 0 and ∞. By construction, it is ensured that
this function has the right behavior at the poles (see previous the chapter). From propo-
sition 5.13 we have that dln µi = − i

2 (dΩ1τi + dΩ2τ i) , i = 1, 2. Due to [19] one can
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show that an Abelian differential of the second kind with vanishing a-periods and exitsing
principal parts at their singularities is uniquely determined.

Set

Uk =
∫

bk

dΩ1, Vk =
∫

bk

dΩ2

as before. We then have
∫

bk

− i
2

(dΩ1τi + dΩ2τ i)

= − i
2
(τUk + τVk) ∈ 2πiZg.

Hence the solution is double periodic.

The additional restrictions on the points ensures that the closing condition holds. I.g.
for λ0 lying in the unit circle one may consider y1, y2 and for 1

λ0
= λ1 take the points

y3, y4 where then ρ interchanges y2, y3 and y1, y4. One can retrieve then the immersion
of a CMC torus via the Sym-Bobenko formula.

5.3 Spectral data describing CMC tori in H3

We shall now instigate the spectral curves of CMC tori in H3. We describe the spectral
curves of the periodic finite type sinh-Gordon solution by a hyperelliptic curve a and
a meromorphic differential on this curve b. Not all polynomials correspond to spectral
curves of periodic solutions of the sinh-Gordon equation. In the next section we will
investigate which ones do. Instead of working with λ, we now introduce the transformed
spectral parameter κ = i1−λ1+λ which will make our work easier. Let κ = ±i at y± with
σ ∗ κ = κ, ta ∗ κ = κ, ρ ∗ κ = κ. Define a(κ) by

a(κ) =
g∑

i=1

(κ− αi)(κ− αi), (5.6)
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with pairwise different branch points ai, i, ..., g ∈ {κ ∈ C : Im(κ) < 0}. This is equivalent
to ai, i, ..., g ∈ {λ ∈ C : |λ|〈1}. We have η ∗ a = a, ρ ∗ a = a. The hyperellitptic curve is
then described by

ν2 = (κ2 + 1)a(κ). (5.7)

Note that for Im(κ) = 0 a(κ) > 0 and η ∗ ν = −ν, ρ ∗ ν, σ ∗ ν = −ν. We now introduce
two polynomials with real coefficients bi,

bi(κ) =
1
πi
ν(κ2 + 1)

∂

∂κ
lnµi, i = 1, 2 (5.8)

of degree g + 1. As bi clearly satisfy

η ∗ bi = −bi, ordκ=±i =
g

2

we can write d ln(µ)i as

d ln(µi) = πi
bi(κ)

ν(κ2 + 1)
dκ. (5.9)

We still have a freedom in the choice. To overcome this we choose κ0 ∈ Cs, κ1 = κ0 and
take the unique κ corresponding to theorem 5.14. Then y1 and y2 = σ(y1) correspond to
the two points over κ = κ0 and y3 and y4 = σ(y3) to the two points over κ = κ1 = κ0.

Remark 5.15. We choose κ = κ1 = κ0 because we know that, for λ0, we have λ1 = 1/λ0.
κ = i1−λ1+λ implies

κ0 = i
1− λ0

1 + λ0

κ1 = i
1− 1

λ0

1 + 1
λ0

= i

λ0−1
λ0

λ0+1
λ0

= i
λ0 − 1
λ0 + 1

= κ0.

Summarizing the above conclusions, we can exactly formulate which data is sufficient to
describe a torus in H3.

96



5.4 Deformation on spectral data

Theorem 5.16. By the choice of the parameter κ,a(κ) and two polynomials bi(κ), i =

1, 2, as well as one point κ0 with κ1 = κ0, the resulting spectral curve is the spectral curve
of a torus in H3.

Proof. Follows from the observations before.

5.4 Deformation on spectral data

In this section, the set of data describing a CMC in tori in the 3-hyperbolic space is stud-
ied. We show that one is able to induce deformations on this spectral data and obtain a
one-parameter family of spectral curves for every given spectral curve. The deformation
can be represented by a system of ordinary linear differential equations which we retrieve
based on the results of the last section. With other words, the deformation is defined by
a system of ordinary differential equations on the spectral data. We follow closely the
work of [32], which established period preserving deformations of the spectral curve.

Recall from the last section that

d ln(µi) = πi
bi(κ)

ν(κ2 + 1)
dκ.

For the purpose of parameterizing families of spectral data of periodic finite type solu-
tions, we introduce the deformation parameter t. From now on we view all functions
derived before as functions of κ and t. From 5.14 we can conclude that ∂tlnµi is mero-
morphic on the the corresponding family with possible poles only at the branch points
of C. Or, equivalently at the zeros of a and at κ = ±i.

We make the Ansatz
∂t ln(µi) = πi

ci(κ)
ν

(5.10)

where ci are real polynomials of degree of at most g + 1.
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Now define the differential ω as

ω = ∂t ln(µ1)d ln(µ2)− ∂t ln(µ2)d ln(µ1)

= −π2 c1(κ)
ν

b2(κ)
ν(κ2 + 1)

dκ− c2(κ)
ν

b1(κ)
ν(κ2 + 1)

dκ

= −π2 c1(κ)b2(κ)− c2(κ)b1(κ)
ν2(κ2 + 1)

dκ.

Remark 5.17. For a similar, but more general, approach see [26].

ω is a meromorphic 1-form on Y of the form

ω v (κ− κ0)(κ+ κ0)
(κ2 + 1)2

dκ,

as ω has roots at κ = κ0 and κ = −κ0, and poles at κ = ±i.

Pulling those results together we obtain

−π2 c1(κ)b2(κ)− c2(κ)b1(κ)
ν2(κ2 + 1)

=
(κ− κ0)(κ+ κ0)

(κ2 + 1)2
. (5.11)

We now use the definition ν2(κ2 + 1)a(κ) and differentiate

∂t ln(µi) = πi
ci(κ)
ν

(5.10) with respect to κ (denoting differentiation with respect to κ by "′"):

∂2
tκln(µi) = πi

c′i(κ
2 + 1)a− 4κaci − 2ci(κ2a′)

ν3
(5.12)

= πi
(κ2 + 1)(ac′i − 2a′ci)− 4κaci

ν3
. (5.13)

We repeat this with

∂k ln(µi) = πi
bi(κ)

ν(κ2 + 1)

(5.9), but differentiate with respect to t (denoting this by “˙“):

∂2
κt ln(µi) = πi

2aḃi − ȧbi
ν3

.
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Since ∂2
tκ = ∂2

κt must hold to insure integrability, we have

2a(κ) ˙bi(κ)− bi(κ) ˙a(κ) = (κ2 + 1)(a(κ)c′i(κ)− 2a′(κ)ci(κ))− 4κa(κ)ci(κ). (5.14)

From 5.11 we get

c1(κ)b2(κ)− c1(κ)b2(κ) = − 1
π2

(κ− κ0)(κ+ κ0)a(κ). (5.15)

Finally we have to determine the requirements on κ̇(t), such that the closing conditions
are preserved during deformation, i.e.

∂t(ln(µi)(κj , t))|κj = ∂t ln(µi) + κ̇j∂κ ln(µi)|κj = 0.

With

∂t ln(µi) = π
ci(κ)
ν

and bi(κ) =
1
πi
ν(κ2 + 1)∂κ ln(µi)

we get

κ̇j = − ∂t ln(µi)
∂κ ln(µi)

|κ=κj = −(κ2
j + 1)

ci(κj)
bi(κj)

.

In order for the last expression to be well defined, we make the following proposition:

Proposition 5.18. The ratio ci(κ)
bi(κ)

is well defined as d ln(µi=1,2) have no common roots.

Proof. If d ln(µi=1,2) has no common roots, neither do bi=1,2. In this case ci=1,2 are
uniquely determined by (5.15), and ci admits a representation of the form

ci(κ, t) =
g+1∑

j=0

γi,jκ
j .

Let αj be a root of a, then 5.14 reads

biȧ = (κ2 + 1)2a′c

and, at this roots (5.15) becomes

c1(κ)b2(κ)− c1(κ)b2(κ) = 0.
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As bi=1,2 has no common roots, one ratio is well defined. Then, by (5.15), the other ratio
also must exist, and both must coincide.

We are now ready to formulate the last proposition based on the previous considerations,
close with a short proof.

Proposition 5.19. Let C be a spectral curve of a CMC torus in the 3-hyperbolic space.
The above deformation (5.14) and (5.15) is well defined if the differentials d ln(µi=1,2)

do not have any common roots.

Proof. In order to prove this proposition, we have to show that, given

(a, bi=1,2, κj=0,1),

the equations (5.14) and (5.15) uniquely determine

(ȧ, ḃi=1,2, ci=1,2).

We have already shown that if the differentials

d ln(µi=1,2)

have no common roots, the ratio
ci
bi

exists. Therefore
biȧ = (κ2 + 1)2a′ci

is also well defined and uniquely determines ȧ. Then ḃi=1,2 are also unambiguously
defined.

Hence we see that deformations are described by a system of ordinary differential equa-
tions.
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6 Conclusions and outlook

The thesis first started with an introduction to differential geometry. We revisited com-
monly known concepts and tools as the fundamental forms, Weingarten map, and the
different curvature concepts.

In particular we were interested in CMC surfaces and therefore set H as constant. A
surface is parameterized by an immersion and we saw that it is uniquely determined by
u, Q and H. The results were carried out for R3 as well as for H3. In both cases we
saw that the corresponding compatibility equation leads to the Gauss-Codazzi equations
and the immersion can be recovered by the Sym-Bobenko formula avoiding integration.
The concept of moving frames was introduced and we calculated the Lax pair in terms
of 3× 3-matrices as well as 2× 2-matrices for R3 and H3.

Although we reviewed commonly known results and concepts in Chapter 2, we tried
to prove most the of claimed results and not shorten any calculations with the intention
that a following thesis pursuing possible further research directions would not need a
great amount of time to get familiar with the area.

CMC surfaces in R3 and H3 are linked to the sinh-Gordon equation, which motivated
Chapter 4 were solutions of the sinh-Gordon were studied. Therefore Chapter 3 reviewing
Riemann surface theory and introducing theta-functions was included first. In Chapter
3 we started with reviewing basic Riemann surface theory and then introduced Abelian
differentials. In the next section we studied divisors and stated Abels theorem and the
Riemann Roch theorem. Having the concept of divisors one can determine the dimension
of meromorphic functions on a Riemann surface. We focused on regarding results on the
special case of hyperelliptic curves to facilitate the comprehension for Chapters 4 and 5.
Eventually, we presented the theta-function and reviewed all the important properties,
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especially the transformation laws that the theta-function obeys. We already introduced
a special constructed function and stated an important result regarding the zeros of this
functions, which we could then use in the next chapter.

With the necessary tools of Riemann surface theory and theta-functions, Chapter 4
investigated Baker-Akhiezer functions, spectral theory of operators, hyperelliptic curves
and the associated problems. In a first step it was shown that arriving at the stationary
equations of the commuting flows, one obtains a special eigenvalue problem and a hy-
perellitptic Riemann surface due to the characteristic polynom of the operator. In the
section of higher commuting flows we closely followed [6] and included it for the sake of
completeness. We reworked then the problem of finding the solution of the sinh-Gordon
equation from another side. Namely, we introduced the Baker-Akhiezer function, a func-
tion with special properties, which uniquely exists on the hyperelliptic Riemann surface.
Parallell, this Baker-Akhiezer function solves the special eigenvalue problem of the op-
erator and is therefore the tool to solve the sinh-Gordon equation. The Baker-Akhiezer
function is constructed by terms of theta-functions and we could prove that it has the re-
quired properties, introducing Abelian differentials. With the help of the Riemann-Roch
theorem we could prove the uniquely existenceof the Baker-Akhiezer function. Using
the transformation laws the theta-function obeys some of the properties of the Baker-
Akhiezer function could be proven as well. The right behavior at the singularities could
be reduced to the behavior of the Abelian differentials there. At the end we could de-
ducted an exact formula solving the sinh-Gordon equation closely following [6].

As mentioned in the introduction, Chapter 4 is related to the field of integrable sys-
tems, a highly sophisticated area. A lot of literature availabe is either in Russian or
very brief in terms of the lack of detailed calculations and explanations. This is why
we had chosen the most intuitive approach, modifying the approach of [6], and carrying
out mostly every prof as well as calculation. For a better understanding we gave a long
verbal introduction, trying to explain without formulas the approach chosen in general
solving nonlinear equations as well as our case of the sinh-Gordon equation.

The other main research direction of this thesis was given by the purpose of studying
CMC tori, leading to double-periodic solutions of the sinh-Gordon equation. Immersions
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of CMC tori obey a special closing condition in order to close to become a torus. We
therefore introduced the concept of monodromy, on which we imposed the closing con-
dition in H3 in order to retrieve a CMC torus from the Sym-Bobenko formula. We then
introduced a slightly different description of the spectral curve (compared to the previ-
ous chapter) and once more the research was reduced to the investigation of the spectral
curve. We included a section proposing useful properties of the monodromy. Afterwards
we turned our attention to the condition one has to impose on the spectral curve in order
to study CMC tori in H3. We could narrow this task down by four propositions5.11-
5.14. It is worth mentioning that the first three propositions, i.e. 5.11, 5.12 and 5.13
are the same for R3 and S3. Only proposition 5.14 differs in the three cases R3, S3,H3,
which is due to the differing Sym-Bobenko formulas. After we identified the constraints
to impose on the spectral curve we shifted our attention to the spectral data describing
the spectral curve. Following the Ansatz of [32] we saw that the spectral curve is de-
scribed, by a hyperelliptic curve, two meromorphic differentials and a spectral parameter.

Eventually, we were able to study deformations on the spectral data and showed how to
get a one-parameter family of spectral curves for every spectral curve. This was realized
by introducing a deformation parameter and a calculation then showed that deformations
can be represented by a system of ordinary differential equations on the spectral data.
From our knowledge this has not be done for H3 in this notation so far, a very similar
proceeding can be found in [32] for S3.

In a following work it would one could investigate a classification of CMC tori in H3

in the notation of this thesis as it was done for S3 in [32]. One could expect similar
results regarding onesighted embedded Alexandrov tori.
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