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Abstract. The aim of this thesis is to give answers to the questions raised by the direct and
the inverse problem of Fermi curves of the time-independent two-dimensional double-periodic
Schrödinger operator with finite type potential. Generally, the potential can be associated with a
complex curve – the Fermi curve – and a line bundle corresponding to the eigenfunctions on this
curve. Throughout this work, it is assumed that the potential is of finite type. In this scenario,
the associated curve is a Riemann surface and the line bundle corresponds to a divisor on this
curve. The advantage of Fermi curves of finite type is that their properties are easier to analyze
than the general kind. Usually, the set of finite type potentials is dense in the set of all potentials
that lead to a Schrödinger operator. Therefore, it can be expected that the properties of Fermi
curves of finite type transfer to the general case.
The direct problem is concerned with the properties of a Fermi curve with given finite type
potential. The inverse problem comprises three aspects: the reconstruction of a unique potential
from some given data, the determination of the isospectral set for a given potential and the
construction of the moduli space, i.e. the space which contains all possible potentials which belong
to a Schrödinger operator.
In the investigation of the direct problem, it is first shown that the Fermi curve is a one-dimensional
variety in C2 and the asymptotic behavior of this curve is studied. Moreover, an important sym-
metry of the Fermi curve is analyzed which is expressed in terms of a holomorphic involution on
this curve. It will become visible that only non-special divisors on the Fermi curve which have
a certain behavior under this involution are divisors corresponding to a double-periodic finite
type potential. During this procedure, a regular operator-valued 1-form is constructed which is
necessary to show that the divisor has the mentioned behavior under the involution. This behavior
can be correlated with the geometry of the Fermi curve by showing that the divisor can obey the
restrictions induced by the involution if and only if the latter has exactly two fixed points.
In the second part of this work, the inverse problem is analyzed. Hereby, we first illustrate which
kind of data defines a finite type potential uniquely. One datum of particular interest is – among
others – a compact Riemann surface with two marked points at infinity and another such datum
is a divisor. Both, the Riemann surface and the divisor, must be equipped with the symmetry
induced by the holomorphic involution. Only then can the given data yield the normalization of
a Fermi curve corresponding to the two-dimensional double-periodic Schrödinger operator with
unique finite type potential. Later in this thesis, it is illustrated that the isospectral set of a given
Fermi curve is parametrized by the Prym variety. This is the subset of the Jacobian variety whose
elements are antilinear under a holomorphic involution which is induced by the symmetry of the
Fermi curve. The main emphasis here is on real-valued potentials. When focusing on this case,
the Fermi curve is additionally equipped with a second symmetry in terms of an antiholomorphic
involution. The results from [Natanzon, 2004] are used to explain the structure of the real Prym
variety. This structure is analyzed with help of both types of involutions. The thesis concludes with
a discussion of whether the connected components of the real Prym variety contain special divisors.
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Zusammenfassung Ziel dieser Arbeit ist es, die Fragen, welche durch das direkte und das
inverse Problem von Fermikurven endlichen Typs des zeitunabhängingen, zweidimensionalen,
doppelperiodischen Schrödingeroperators aufgeworfen werden, zu beantworten. Im Allgemeinen
kann ein Potential einer komplexen Kurve – der Fermikurve – und einem Linienbündel, welches
den Eigenfunktionen auf dieser Kurve entspricht, zugeordnet werden. In dieser Arbeit wird
angenommen, dass das betrachtet Potential von endlichem Typ ist. In diesem Fall ist die zu
dem Potential gehörige Kurve eine Riemannsche Fläche und das Eigenbündel kann durch einen
Divisor auf dieser Kurve charakterisiert werden. Der Vorteil von Fermikurven endlichen Typs
ist, dass deren Eigenschaften einfacher zu analysieren sind als die Eigenschaften im Allgemeinen.
Normalerweise liegt die Menge der Potentiale endlichen Typs dicht in der Menge aller Potentiale,
die zu einem Schrödingeroperator gehören. Daher ist zu erwarten, dass sich Eigenschaften der
Fermikurven endlichen Typs auf den allgemeinen Fall übertragen. Das direkte Problem befasst
sich mit den Eigenschaften einer Fermikurve zu gegebem Potential endlichen Typs. Das inverse
Problem umfasst drei Aspekte: die Rekonstruktion eines eindeutigen Potentials aus gegebenen
Daten, der Bestimmung der Isospektralmenge für ein gegebenes Potential und der Konstruktion
des Modulraums. In der Untersuchung des direkten Problems wird zunächst gezeigt, dass die
Fermikurve eine eindimensionale Varietät in C2 ist und das asymptotische Verhalten dieser Kurve
wird untersucht. Außerdem wird eine Symmetrie der Fermikurve gezeigt, welche durch eine
holomorphe Involution ausgedrückt wird. Es wird gezeigt, dass nur nicht-spezielle Divisoren,
welche eine bestimmtes Verhalten unter dieser Involution haben, zu einem doppelperiodischen
Potential endlichen Typs gehören. In Zuge dieser Betrachtungen wird eine reguläre, operatorw-
ertige 1-Form konsturiert. Mit Hilfe dieser kann gezeigt wrden, dass der Divisor das erwähnte
Verhalten unter der Involution hat. Dieses Verhalten wird zu der Geometrie der Fermikurve in
Bezug gesetzt: es wirdindem gezeigt, dass der Divisor nur genau dann die durch die Involution
vorgegebene Symmetrie erfüllt, wenn die Involution genau zwei Fixpunkte hat. Im zweiten Teil
dieser Arbeit wird das inverse Problem betrachtet. Hierbei leiten wir zunächst die Daten her,
welche eine Fermikurve endlichen Typs eindeutig charakterisieren, Ein Datum von besonderem
Interesse ist eine kompakte Riemannsche Fläche mit zwei ausgezeichneten Punkten bei Unendlich
und ein anderes Datum ist ein Divisor. Sowohl die Riemannsche Fläche als auch der Divisor
müssen einer Symmetrie genügen, welche durch die holomorphe Involution induziert ist. Nur
dann können die gegebenen Daten die Normalisierung einer Fermikurve eines zweidimensionalen,
doppelperiodischen Schrödingeroperators mit einem Potential endlichen Typs sein. Es wird gezeigt,
dass die Prymvarietät die Isospektralmenge einer gegebenen Fermikurve parametrisiert. Dies ist die
Teilmenge der Jacobivarietät, deren Elemente antilinear unter einer holomorphen Involution sind,
welche der Symmetrie der Fermikurve entspringt. Der Schwerpunkt liegt hierbei auf reellwertigen
Potentialen. In diesem Fall genügt die Fermikurve zusätzlich einer zweiten Symmetrie, welche
durch eine antiholomorphe Involution ausgedrückt wird. Ergebnisse aus [Natanzon, 2004] werden
verwendet, um die Struktur der reellen Prymvarietät zu erläutern.
Diese Struktur wird mit Hilfe beider Involutionen untersucht. Die Arbeit endet mit einer Diskussion,
ob die Zusammenhangskomponenten der reellen Prymvarietät spezielle Divisoren enthalten.
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Introduction

The Schrödinger equation is one of the fundamental equations in quantum mechanics. It was
postulated for the first time by Erwin Schrödinger in 1926. This thesis analyzes the direct and
the inverse problem of the two-dimensional time-independent Schrödinger operator −4+u with
double-periodic finite type potential u for a fixed energy level. A more elaborate explanation of
what is meant by this will be given later in the introduction.
The inverse problem is of particular interest in physics which, as an empirical science, verifies
theoretical statements with help of data obtained from measurements. In order to describe the
inverse problem, it is necessary to know sufficient information about the structure of this data.
This can be done by considering the direct problem. In other words, considering the direct problem
can be seen as dealing with the question: “What shall I observe or measure to be able to determine
what phenomenom it is?”
In this work, the eigenvalue problem of the time-independent two-dimensional Schrödinger operator
−4+u with finite potential u ∈ C(R2/Γ ) is taken into account, where Γ is a two-dimensional,
positively orientated geometric lattice in R2. For (x, y) ∈ R2, the corresponding equation reads as

(−4+u(x, y))ψ(x, y) = λψ(x, y), (0.1)

where 4 is the Laplace differential operator. Furthermore, the eigenfunctions ψ are restricted to
functions that are quasiperiodic with respect to the same lattice Γ . That means for all (x, y) ∈ R2

and all γ ∈ Γ , there holds
ψ((x, y) + γ) = e2πι(k1x+k2y)ψ(x, y). (0.2)

In the phase e2πι(k1x+k2y), one can – encoded in the domain of the operator – note the parameter
k = (k1, k2) ∈ C2. Then the set of all k ∈ C2 for which a non-trivial ψ that obeys (0.1) with λ = 0
as well as (0.2) exists is called the Fermi curve F (u) of the potential u. F (u) is a variety in C2

which is invariant under translation by the dual lattice Γ ∗ of Γ . Due to this invariance, the actual
Fermi curve F (u)/Γ ∗ ⊂ C2/Γ ∗ can be found.
This thesis gives answers to questions which are raised by the so-called direct problem of the Fermi
curves for Schrödinger operators with finite type potential as well as some aspects of the inverse
problem.
The question that arises is: “What defines the property of a potential to be of finite type?”
The free Fermi curve F (0)/Γ ∗, i.e. the Fermi curve with zero-potential, consists of two complex
planes which intersect each other in infinitely many discrete double points k±ν indexed by ν ∈ Γ ∗.
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Introduction

All of these double points resolve in the normalization. This normalization – consisting of two
copies of C – can be compactified by adding two points Q± at infinity. Additionally, we will see
that the Fermi curve F (u)/Γ ∗ converges to F (0)/Γ ∗ asymptotically. We want to determine in
which cases the normalization of F (u)/Γ ∗ has two open ends as the normalization of F (0)/Γ ∗ so
that we can also compactify it by adding two points Q± at infinity. Herefore, we consider the
asymptotics of F (u)/Γ ∗ ⊂ C2/Γ ∗. Because Γ ∗ is a real two-dimensional lattice, it suffices to
consider the asymptotics for large imaginary part of [k] ∈ F (u)/Γ ∗. This is what we mean if we
say ‘far outside’. It will turn out that one has to distinguish between two parts ‘far outside’: small
open neighborhoods of the double points k±ν and a remainder which is bounded away from these
open neighborhoods. The Fermi curve contained in this remainder is a one-dimensional manifold
which means that this part is topologically the same as the free Fermi curve. We also want to
know how F (u)/Γ ∗ looks like inside of these open neighborhoods ‘far outside’. There are two
different cases: either F (u)/Γ ∗ has a double point which is close to k±ν and the normalization
of F (u)/Γ ∗ locally consists of two sheets or F (u)/Γ ∗ has a handle and the normalization locally
consists of only one sheet. In order to compactify the normalization of F (u)/Γ ∗ – as it is possible
in the free case – F (u)/Γ ∗ may only have finitely many handles. In this case, it is biholomorphic
to the normalization of F (0)/Γ ∗ in all parts ‘far outside’. Therefore, one property of a Fermi
curve of finite type is that in all small open neighborhoods of k±ν , the Fermi curve has only double
points which means the corresponding normalization has two open ends, and therefore can be
compactified. A second important property is that the lift of the eigenfunction to this compactified
normalization is a meromorphic function.
The general philosophy behind the restriction to finite type potentials is twofold: On the one hand,
one assumes that the class of finite type potentials is dense in the set of all potentials. On the
other hand, the class of finite type potentials is easier to handle than the general case because one
needs much less analysis. This allows to study some phenomenons regarding the Fermi curves of
finite type and the associated line bundle which should also hold in the general case, yet are easier
to analyze.
We want to point out that we only consider finite type potentials for one fixed energy level λ = 0.
In [Feldman et al., 1992], it is shown that besides trivial examples, there exists no real-valued
potential such that the curve corresponding to all energy levels, i.e. the Bloch variety, can be
compactified.
By the direct problem, we mean that we assume that a certain potential u is known, and therefore
we can employ the following approach: We study the asymptotic behavior of this curve for large
‖ Im(k)‖ as explained above and deduce some more properties concerning the geometric structure
of Fermi curves of finite type. Most important, we show the classical trisection of the Fermi curve
which was first shown in [Krichever, 1995] and can – for real valued potentials – also be found
in [Feldman et al., 2000, Sections 2.5 and 3.18]: A compact part which may contain arbitrary
singularities, and a part ‘far outside’ that decays again into two distinct parts: separated from the
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small open neighborhoods of the double points k±ν , the Fermi curve is a one-dimensional manifold
and in the neighborhoods of these double points, the two different shapes of the Fermi curve as
described above can occur.
The Fermi curve contains all parameters k which allow us to find a non-trivial solution of (0.1)
with λ = 0 obeing (0.2). Hence, it can be seen as kind of a ‘spectrum’ of fixed energy levels.
Accordingly, it is a natural question to ask: “How does the eigenspace behave at particular values
of this ‘spectrum’?” This eigenspace defines a line bundle on the Fermi curve. On Riemann
surfaces, each line bundle uniquely defines a divisor. However, the Fermi curve is a singular curve:
In this case, the line bundle can be associated with a so-called generalized divisor on the Fermi
curve. Generalized divisors are finitely generated subsheaves of the germs of the meromorphic
functions on F (u)/Γ ∗. A generalized divisor on a Riemann surface is always associated with a
classical divisor, so this is one appropriate possibility to define an analogon to divisors for singular
curves. The generalized divisor used in this thesis can be seen as the pole divisor of the normalized
eigenfunctions in the regular part of the Fermi curve.
We then define regular finite type potentials. These are finite type potentials for which we can use a
unique classical divisor instead of a generalized divisor. For these potentials, we also deduce several
properties which have to holds for the divisor of a normalized eigenfunction. Among others, we
explore a connection between a symmetry of the Fermi curve and the divisor which will be useful
when regarding the questions of the inverse problem. This symmetry of F (u)/Γ ∗ is given in terms
of a holomorphic involution σ acting on the Fermi curve. The connection is expressed in terms of a
linear equivalence D+σ(D) ' K+Q+ +Q−, where K is the canonical divisor on the compactified
normalization of F (u)/Γ ∗ and Q± are the two points which are added to the normalization such
that the latter is compact. These points are fixed points of the holomorphic involution. One
central part of this work is to show that the above linear equivalence can hold if and only if σ
has exactly the two fixed points Q+ and Q−. Besides that we show some additional properties of
D and analyze which extra conditions come into play if we assume that the given potential u is
real-valued. We also show that there are two meromorphic differentials with prescribed poles at Q±

which take the periodicity conditions with respect to Γ into account. All this will be explained in
more detail during the outline of this work hereinafter. After we have gathered enough information
in the direct problem, we address ourselves to the inverse problem.
In the inverse problem, the approach works just the other way around. Here, we assume that
so-called spectral data – a compact Riemann surface X with two marked points together with a
divisor D, a holomorphic involution σ and two meromorphic differentials with prescribed poles
and periods – is given and show under which conditions this data describes the normalization of a
Fermi curve corresponding to a unique potential u. We will see that we need to assume that the
divisor D obeys the above linear equivalence to be able to reconstruct a unique potential and a
unique eigenfunction of the Schrödinger operator corresponding to the given data. The inverse
problem classically decays into two distinct questions:
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1. The isospectral problem: A fixed potential u0 is given and one asks: “How to determine
all potentials u such that F (u) = F (u0)?” This question can be answered by finding a
description of all possible ways to deform the divisor corresponding to u0 so that the deformed
divisor on the same Fermi curve is still a divisor corresponding to an eigenfunction of the
Schrödinger operator.

2. The moduli problem: A Fermi curve F (u) is given and one asks: “How to describe all
possible deformations of this curve such that the resulting curve is still a Fermi curve to a
possibly different potential u than the given one?”

In this work, we give a first hint on how to answer the questions raised by the isospectral problem
for regular finite type potentials in the sense that we show that the so-called isospectral set –
mapped to the Jacobian of a given Fermi curve – is parametrized by the so-called Prym variety.
This is the subset of the Jacobian which is antisymmetric under σ. We focus on real-valued
potentials and construct the real part of the Prym variety in analogy to [Natanzon, 2004].
For our setting, the answer to the questions raised by the moduli problem is an application of
the deformation theory from the so-far unpublished paper [Carberry and Schmidt, 2017]. We
have explained the structure of this deformation theory in Appendix C to give a more complete
picture of the inverse problem, even though these are not results we worked out. As soon as
[Carberry and Schmidt, 2017] is published, we refer the reader to this paper for the corresponding
proofs. Additionally to the results from [Carberry and Schmidt, 2017], we explain one convenient
possibility how to apply this theory on finite type Fermi curves and add some minor details which
are important for the scenario considered in this work.

The main focus of this work is divided up into two parts: Part I comprises Chapters 2 to 4 and
answers the question raised by the direct problem as far as it is necessary for this work. Part II
envolves with the inverse problem and consists of Chapters 5 and 6.
Chapter 1 gives a brief introduction of the two-dimensional Schrödinger equation with periodic
potential as it is used in this work. We introduce two equivalent formulations of the quasiperi-
odicity condition of the Schrödinger operator: the formulation mentioned above, in which the
eigenfunctions have to be quasiperiodic with respect to Γ as in (0.2) and another formulation,
where the eigenfunctions are double-periodic with respect to Γ . To obtain double-periodicity of
the eigenfunctions, one has to modify the Laplacian as 4k := 4+ 4πι〈k,∇〉 − 4π2k2. Then the
Schrödinger operator reads as −4k +u. Both formulations are used in this work: The advantage
of the first formulation is that it can also be formulated for parameters [k] ∈ C2/Γ ∗ so that we
can consider the eigenfunctions as objects defined on all of F (u)/Γ ∗. This can be exploited later
in this work to define finite potentials u in such a way that the Fermi curve F (u)/Γ ∗ can uniquely
be associated to another curve which can be compactified by adding two points Q+ and Q− at
infinity – remember that the Fermi curve itself is generically not compactifiable.
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The second formulation is useful for the determination of the asymptotic behavior of the Schrödinger
equation: The periodicity of the eigenfunctions with respect to Γ enables us to apply Fourier
transformation to the Schrödinger operator − 4k +u. The Fourier transform of the modified
Laplacian depends on elements of the dual lattice Γ ∗. Translating k in some direction in which
the dual lattice is involved yields a way to gain insight into the behavior of the operator if the
imaginary part of k becomes infinitely large. Because of the translation invariance of F (u) under
the real two-dimensional lattice Γ ∗, it suffices to consider the asymptotics only for large imaginary
values of k. Afterwards, we define the Fermi curve of a Schrödinger operator as the set of points
[k] ∈ C2/Γ ∗ for which [k] is a possible parameter for the Schrödinger operator with fixed potential
u such that the kernel of this operator is non-empty. In the same breath, we also introduce the
Bloch variety of a Schrödinger operator. This is the set of points ([k], λ) ∈ C2/Γ ∗ ×C for which λ
is an eigenvalue for the Schrödinger operator and k is a possible parameter for this eigenvalue with
ψ 6≡ 0. It will become obvious at the end of Chapter 2 and the beginning of Section 3.3 why we
also consider this curve. We then show with help of the spectral projection that the Fermi curve is
a variety in C2/Γ ∗ and that the Bloch variety is a variety in C2/Γ ∗ × C. After this first glance at
which kind of object the Fermi curve is, we show the well-known fact that it has some symmetries
in terms of involutions. The first involution, which we call σ, holds for all Fermi curves and can
be seen as mirroring the Fermi curve at the origin of C2. The second involution, named τ1, only
exists on Fermi curves associated to real-valued potentials. It acts on F (u) as k 7→ −k̄. Both of
these symmetries turn out to be important in the remainder of this work. This is followed by a
brief discussion of two concrete examples of Fermi curves which we can determine explicitly: Fermi
curves with zero potential and Fermi curves with constant potential. Hereby, we orientate us on
[Feldman et al., 2000, Chapter 3.16]. The Fermi curve with zero potential becomes crucial when
considering the asymptotics of an arbitrary Fermi curve F (u) because it turns out that all Fermi
curves are converging to the free Fermi curve for large imaginary value of k. Moreover, we see in
this discussion that the free Fermi curve has the form of two complex planes which intersect each
other at infinitely many discrete double points. This already gives a broad hint that we have to
consider two different cases for the asymptotics: the part of the Fermi curve which is contained in
small open neighborhoods of these double points as well as the rest of the Fermi curve. Equipped
with the knowledge about the scenario we are in, we finish the first chapter by reformulating the
two questions raised by the inverse problem to illuminate them a bit more with respect to the
additional knowledge we have achieved in the first chapter.
In Chapter 2, we give an explicit analysis of the asymptotics for large imaginary values of k. We
first show some basic results concerning the regularity properties of the resolvent and consider
the behavior of the resolvent with help of Fourier transformation for large imaginary values of k.
The key to more insight into the asymptotic behaviour of the Fermi curve is a decomposition of
the Schrödinger operator in terms of its Fourier series for the asymptotic case. Away from the
Fermi curve, the resolvent is a regular operator which is not defined on the Fermi curve itself.
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However, the so-called reduced resolvent is also defined on the Fermi curve. This is the part of
the resolvent which describes the complement of the eigenvalues of the Fermi curve. We will see
that asymptotically, all but maximal two small eigenvalues are bounded away from zero. The
part of the resolvent corresponding to these two small eigenvalues is spanned by either one or
two Fourier modi of the corresponding Fourier series. It turns out that it suffices to consider the
one- respectively two-dimensional eigenspaces of these small eigenvalues – parametrized by k –
to describe the Fermi curve. We will see that in the generic case – i.e. away from the double
points k±ν – the eigenspace on the free Fermi curve is one-dimensional and the eigenspace at k±ν
is spanned by the two eigenfunctions correponding to the sheets of the free Fermi curve which
intersect in k±ν . For large ‖ Im(k)‖, the eigenspace of an arbitrary Fermi curve can be decomposed
in the eigenspace of the free Schrödinger equation and an error which describes the deviation from
a Fermi curve with continuous potential to the free Fermi curve. We are be able to show that
this error tends to zero in the limit of ‖ Im(k)‖ → ∞. This way to describe the asymptotics is
orientated on the methods used in [Klauer, 2011, Section 4.5] to describe the zero set which locally
and asymptotically describes the Fermi curve inside of small open neighborhoods of k±ν ∈ F (0)/Γ ∗.
A similar way to show the asymptotic behavior of the Fermi curve can also be found in [Feldman
et al., 2000, Sections 3.16 and 3.17]. Transferring these asymptotics to the Fermi curve in C2/Γ ∗

finally enables us to describe the partition of the Fermi curve into three parts: The first part is
compact and an one-dimensional variety in C2/Γ ∗. The second part ‘far outside’ looks like two
complex planes, where out of each plane a huge hole and infinitely many small holes are cut out.
The third part is contained in the infinitely many small holes that are cut out of the second part.
It comprises the parts of F (u)/Γ ∗ which are contained in small open neighborhoods of k±ν ‘far
outside’. We show that inside each of these small open neighborhoods, the Fermi curve might
either have an ordinary double point or a handle if ‖ Im k‖ is sufficiently large. In the wake of
this, we also make some statements about the number of connected components of the regular
parts of the Fermi curve and the Bloch variety as well as about the set of points contained in
these varieties which are branch points with respect to specific coverings or which correspond to
eigenvalues of higher order. These are necessary tools hereinafter to define finite type potentials
and to describe the line bundle on Fermi curves of finite type.
Chapter 3 is concerned with the eigenfunctions ψ of the Schrödinger operator with eigenvalue λ = 0.
In Section 3.1 we take into account that the Fermi curve is a singular curve and introduce so-called
generalized divisors, see [Hartshorne, 1986]. These are subsheaves of the sheaf of meromorphic
functions on the Fermi curve which are finitely generated submodules of the holomorphic functions
on the Fermi curve. This definition constitutes one possibility to generalize the concept of divisors
which is well-known on Riemann surfaces. We oriented this part of the thesis on the results in [Klein
et al., 2016]. Hereby, we also introduce regular differential forms on a singular curve X – defined as
in [Serre, 1988, Chapter IV §3] or [Rosenlicht, 1952] – as those meromorphic differential forms on
X whose products with all functions which are holomorphic in some neighborhood of any point of
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X have no residues at this point. These are the natural generalization of holomorphic differential
forms on Riemann surfaces for complex curves. Afterwards, a more tangible characterization for
such n-forms is given for hypersurfaces of dimension n. This is used frequently in the remainder of
this work and is taken from [Schmidt, 2002].
Equipped with the concept of generalized divisors on singular curves, we are able to define a
generalized divisor corresponding to a unique, normalized eigenfunction of the Schrödinger equation
in Section 3.2. At regular points of the Fermi curve, this corresponds to the pole divisor of the
unique eigenfunction which is normalized to 1 at the origin (x, y) = (0, 0).
In Section 3.3, we take a close look at the spectral projection on the Bloch variety. It is possible
to construct another projection from the spectral projection which can be restricted to the Fermi
curve. The latter is kind of a ‘modified spectral projection’ that enables us to show that there
exists a regular projection-valued 1-form ω on the Fermi curve. The regularity of this 1-form is the
main ingredient to show in the next chapter that the linear equivalence D+ σ(D) ' K +Q+ +Q−

holds for a divisor D which can be associated to the generalized divisor if u is a regular finite-type
potential. The existence of a similar 1-form is also shown in [Krichever, 1989, Chapter III] for
orthogonal lattices under the assumption that the Fermi curve is a Riemann surface.
The first task in Chapter 4 is to define finite type potentials. We motivate this by showing that the
normalization of the free Fermi curve F (0)/Γ ∗ can be compactified by adding two points at infinity.
Afterwards we define finite type potentials as potentials of such type that the normalization of
F (u)/Γ ∗ can also be compactified by adding two points Q± at infinity and that the lift of the
normalized eigenfunction to the normalization is a meromorphic function with finitely many poles.
In the course of this, we take another uniquely defined one-sheeted covering of the Fermi curve
into account. This is defined in [Klein et al., 2016] and denoted as the middleding of a singular
curve. It is the most desingularized one-sheeted covering of F (u)/Γ ∗ such that the lift of the
generalized divisor on the Fermi curve to this covering is still a generalized divisor. It turns
out that the property of a potential to be of finite type can be characterized with help of this
one-sheeted covering: finite type potentials are just the potentials for which the middleding can
be compactified. To show that the latter characterization is a feasible definition of finite type
potentials, the regular 1-form defined from the modified spectral projection comes into play for the
first time. Moreover, we show that the regular 1-form on F (u)/Γ ∗ can be lifted to a regular 1-form
ω on the middleding. After that, regular finite type potentials are defined as those potentials
u for which the middleding and the normalization of F (u)/Γ ∗ coincide. This allows to exploit
the advantages of both of these one-sheeted coverings of the Fermi curve: The normalization is
a Riemann surface, whereas the middleding is in general a singular curve. However, the sheaf
generated by the normalized eigenfunction does generically not define a generalized divisor on the
normalization, because it is not a finitely generated submodule of the holomorphic functions of
the normalization. It can be shown that the lift to the middleding of the generalized divisor on
F (u)/Γ ∗ corresponding to the normalized eigenfunction is again a generalized divisor. Therefore,
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if the middleding and the normalization are the same one-sheeted covering, this lift can uniquely
be associated to a classical divisor. Moreover, we are able to exploit the regularity properties we
have shown before for the lift of the differential ω to the middleding. Defining the generalized
divisor and deducing the definition for finite type potentials is one of the main tasks of this work.
We explore the properties of the eigendivisor D on the normalization of a Fermi curve which
corresponds to the Schrödinger operator with regular finite type potential. The first step in Section
4.2.1 is to show a relation already known, compare for example [Novikov and Veselov, 1984, Veselov,
1984, Novikov and Veselov, 1986], for which we could not find an explicit proof in the literature.
This property correlates the involution σ, i.e. the geometric structure of the Fermi curve, with the
eigendivisor: the linear equivalence D + σ(D) ' K +Q+ +Q− which we have already mentioned
above. In [Novikov and Veselov, 1984], it is remarked that I. R. Shafarevich and V. V. Shokurov
indicated that the linear equivalence shown in Section 4.2.1 can hold if and only if the involution σ
has exactly two fixed points. This is shown in Section 4.2.2 which is another central aspekt of this
work. To do so, one first has to take the quotient Xσ of X by the holomorphic involution σ into
account. This quotient space is a compact Riemann surface and πσ : X → Xσ is a two-sheeted
covering. We utilize this covering to construct a cycle basis of H1(X,Z) with respect to the
symmetries induced by σ out of a given cycle basis of H1(Xσ,Z). Secondly, we consider the images
of divisors D obeying D + σ(D) ' K +Q+ +Q− under the Abel map into the Jacobi variety of
X. In Appendix A, we give some more information relevant to the theory in the background of
the results presented here and also provide a brief introduction how our results can be seen in the
more general context which was given in [Mumford, 1971] about the Prym variety of a Riemann
surface which is equipped with a holomorphic involution. After that, we show in Section 4.2.3
that another symmetry for the divisors holds for real-valued potentials. In Section 4.2.4, we show
that the divisor of a finite type potential is non-special. Non-speciality is a property that assures
that the preimage in the set of positive divisors of degree g of a point x ∈ Jac(X) under the
Abel map is unique. Hereby, we use a slightly modified version in the definition of non-speciality
which also takes the marked points Q± into account. The reason to use this modified version
becomes obvious in Chapter 5. The last step in the observations on the eigendivisor in Section
4.2.5 then shows that the properties of the eigendivisor we have mentioned above still hold if we
normalize the eigenfunctions with respect to an arbitrary (x, y) ∈ R2. This is done with help of
the Krichever construction [Krichever, 1977], a method to define a double-periodic flow in R2 on
the normalization from a given Mittag Leffler distribution which appears again in Chapter 5. Last
but not least, we show in Section 4.3 that for every potential u, we can define two meromorphic
differentials on X from the parameter k and the lattice Γ as d(γ̂1k1 + γ̂2k2) and d(γ̌1k1 + γ̌2k2).
These differentials are uniquely defined by their poles on the compactified normalization X of
F (u)/Γ ∗ and their periods with respect to H1(X,Z). We will see that these differential forms are
holomorphic on X \ {Q+, Q−} and have poles of second order at Q±. Moreover, it will become
visible that the integrals of these 1-forms over elements of H1(X,Z) are integer. These differentials
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enable us in the inverse problem to define a map X → C2 so that the image of this map just equals
the Fermi curve.
The second part of the work is about the inverse problem. In Chapter 5, we assume that a rather
abstract set of data is given. From this, we reconstruct a unique potential of the Schrödinger
operator and its eigenfunctions in terms of Baker-Akhiezer functions [Krichever, 1977]. For the
more general case of a two-dimensional periodic Schrödinger operator with magnetic field, the
existence of a unique Baker Akhiezer function is shown in terms of θ-functions in [Dubrovin,
1981]. The set of data comprises a compact Riemann surface with two marked points Q+ and Q−

together with two meromorphic differentials with prescribed pole behavior at Q+ and Q− and
prescribed periods with respect to the first homology group of X, a holomorphic involution σ and
a divisor D which obeys D + σ(D) ' K +Q+ +Q−. Getting insight into which role this linear
equivalence plays in the reconstruction of the eigenfunction and the potential is another important
part of this work. We show that it is this linear equivalence which allows the reconstruction of
a unique Baker-Akhiezer function ψ and a unique potential u so that ψ is an eigenfunction of
−4+u with double-periodic u with respect to some 2-dimensional lattice Γ ⊂ R2 which is also
encoded in the given spectral data. Without this restriction on the divisor, the reconstructed
operator would additionally contain a magnet field. Moreover, the complex analytic properties of
the given differentials make it possible to tinker a unique map k : X → C2 such that the image
of this map equals the Fermi curve. Afterwards, we show that it is possible to reconstruct these
functions uniquely from the given data. We also state a restriction on the divisors in the spectral
data such that the reconstructed potential is real-valued.
The second part of the inverse problem in Chapter 6 answers some of the questions raised by
the isospectral problem. We show that the isospectral set is parametrized by the so-called Prym
variety corresponding to the normalization of a given Fermi curve with regular finite type potential.
Hereby, the focus is on real-valued potentials. One of the main parts of this work is to explain the
structure of the Prym variety for real-valued potentials. This work was done in order to be able
to use statements from [Natanzon, 2004], which were not proven with the necessary rigor in the
original manuscript. Our results of this can be found in Section 6.2 and the basis used for the
results shown there can be found in Appendix B. Since we consider these rather as ‘tools’ in the
background to fully understand the structure of the real Prym variety and because large parts of
the corresponding results in [Natanzon, 2004] were more or less correct – despite not being worked
out entirely – we attached these in the appendix.
Section 6.2 starts with the definition of so-called real curves (X, τ) as compact Riemann surfaces
which are endowed with an antiholomorphic involution τ . After characterizing the different types
of such real curves, we take a close look at the properties of holomorphic differential forms which
obey a certain transformation behavior with respect to the additional real structure. Hereby, we
make some existence statements which need the results from Appendix B: There, a 1-1-connection
between real Fuchsian groups and the existence of real spinors is shown. A real Fuchsian group is
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a Fuchsian group with an additional structure corresponding to the antiholomorphic involution
of X and real spinors are spinors which obey certain properties on the fixed point sets of τ on
X. The existence statements on holomorphic differential forms with certain properties on these
fixed point sets shown in Section 6.2.2 then derive from the existence theorems on the real spinors
introduced in Appendix B. Section 6.2.3 is concerned with giving complete proofs of the assertions
on M-curves from [Natanzon, 2004] because there large parts were missing. M-curves are real
curves on which the fixed point set of the antiholomorphic involution has the maximal number of
connected components.
In Section 6.2.4, we introduce the real part of the Jacobian variety as it was proposed in [Natanzon,
2004], characterize the connected components of the real part of the Prym variety and deter-
mine which connected component contains only non-singular divisors. Hereby, we noted that in
[Natanzon, 2004] an additional transformation behavior of the lattice to define the Jacobian as Cg

modulo this lattice is overlooked. Moreover, it is the main effort in this Section to understand
the characterization of the connected components of the real Jacobian since the corresponding
arguments are missing in [Natanzon, 2004].
Finally, we describe in Section 6.2.5 the real parts of the Prym variety. The results on their
structure can be deduced from the foregoing section by considering the quotient Xσ of a real curve
(X, τ) with holomorphic involution σ as a real curve. To this we can apply the results from the
previous parts of Section 6.2. Lifting the objects on Xσ obtained from these results to X makes
it possible to describe the real part of the Prym variety of X. To describe whether a connected
component of the real Prym variety contains images of non-special divisors obeying the linear
equivalence, a property called positive or negative definiteness is defined in [Natanzon, 2004]. We
modified it in a way that it fits to the setup and explain in detail why this modified definition is
necessary. This definition is then used to gain clarity about the existence of non-singular connected
components of the real Prym variety.
Concluding, we can say that this thesis considers many different aspects of the questions raised by
both, the direct and the inverse problem of finite type Fermi curves of the Schrödinger operator.
In the part about the direct problem all questions could be answered. Even though many results
of this part are considered as known in the common literature, we could not find any sources
which gather all this knowledge. For example in the second part of Chapter 2, beginning with
Section 2.3, some properties of the Fermi curve are presented rather detailed, which are necessary
for the rest of this work but for which we could not find the corresponding proofs. Moreover, we
also could not find a motivation why finite type potentials are assumed to exist and hope that the
discussion about the line bundle on the singular Fermi curve in Chapter 5 answers this question.
Also the way the Baker Akhiezer functions are determined in the literature we know uses more
complicated tools which are avoided in this work. In Chapter 5, we only use basic knowledge
on Riemann surface theory together with the Krichever construction [Krichever, 1977] to show
that a unique potential can be constructed from some given spectral data. Moreover, we could

xviii



Introduction

not find other sources than [Natanzon, 2004] to describe the real part of the Prym variety which
parametrizes the isospectral set. We hope that the way we presented this topic provides all the
necessary details to bring clarity in the properties of the real Prym variety of a finite type Fermi
curve and enables further research on the isospectral set for real-valued finite type potentials.
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1. The Schrödinger equation and Fermi
curves

1.1. The operators

The initial point of this work is the eigenvalue problem of the time-independent, two dimensional
Schrödinger operator −4+u. This reads as

(−4+u(x, y))ψ(x, y) = λψ(x, y), (1.1)

where (x, y) ∈ R2 and 4 = ∂2
x + ∂2

y is the usual Laplace differential operator. Furthermore, we
consider the potential u to be double-periodic and continuous and the solution ψ to be quasiperiodic
with respect to the same non-degenerate, positively orientated geometric lattice Γ ⊆ R2. This
lattice shall be generated by γ̂ and γ̌, where det(γ̂, γ̌) 6= 0. Then Γ is the discrete set

Γ := {γ = mγ̂ + nγ̌ | m,n ∈ Z} .

Without loss of generality, we assume that Γ is spanned by γ̂ := ( 1
0 ) and γ̌ into an arbitrary

direction linearly independent from γ̂. All other choices of generators (γ̂, γ̌) of Γ only differ from
this choice by a linear transformation. So for all (x, y) ∈ R2 and all γ ∈ Γ one has

u((x, y) + γ) = u(x, y) (1.2)

and
ψ((x, y) + γ) = e2πι〈k,γ〉ψ(x, y), (1.3)

where k ∈ C2 is some boundary condition and 〈·, ·〉 is the complex bilinear dot product which is
defined as

〈( x1
y1 ), ( x2

y2 )〉 = (x1y1 + x2y2) with ( x1
y1 ), ( x2

y2 ) ∈ C2.

As usual, we will denote equation (1.1) together with (1.2) and (1.3) as the two-dimensional
Schrödinger equation. The corresponding operator is the same as the one considered in [Klauer,
2011]. To keep this work self-contained, we will now introduce the used notation and objects.
Due to the quasiperiodicity, we take (x, y) ∈ R2 out of a fundamental domain of R2/Γ which is
defined as follows.
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1. The Schrödinger equation and Fermi curves

Definition 1.1 (Fundamental Domain). Let γ̂, γ̌ be a basis of Γ and p be an arbitrary point in
R2. Then the fundamental domain is the cell representing the action of Γ on R2 by

∆ := {(x, y) ∈ R2 | (x, y) = p+ tγ̂ + sγ̌ with (t, s) ∈ [0, 1]2}. (1.4)

If we pick out an element of ∆ to investigate the behavior of some functions nearby or at this
element, we always assume that the base point p is chosen in such a way that the picked out
element is in the interior of ∆.

In this work, we consider continuous potentials u ∈ C(R2/Γ ) := C(R2/Γ,C) and assume that the
eigenfunctions ψ are contained in L2(∆,C). Hereby, L2(∆,C) is the Banach space of L2-functions
which map from ∆ to C with

‖f‖2 :=
Å∫

∆
|f |2 dµ

ã1/2
<∞,

where dµ denotes the Lebesgue measure. Likewise L2(R2/Γ,C) is defined, where the integral
in the norm is also taken over some fundamental domain ∆. We do not distinguish between
measurable functions and equivalence classes with respect to the kernel of ‖ · ‖2. Furthermore,
we write L2(∆) := L2(∆,C) as well as L2(R2/Γ ) := L2(R2/Γ,C). We assume that the potential
u is either non-constant in both directions of Γ or constant. The case of a potential which is
non-constant in one direction can be reduced to the 1-dimensional Schrödinger operator.
The scalar λ ∈ C in (1.1) is the eigenvalue of −4+u with respect to an eigenfunction ψ(λ) 6≡ 0.
For fixed boundary condition k ∈ C2, the set of all possible eigenvalues λ in equation (1.1) is called
the spectrum of −4+u. Obviously, this set depends on k.
We denote by ⟪·, ·⟫ the bilinear form which is for f, g ∈ L2(∆) respectively f, g ∈ L2(R2/Γ ) defined
as

⟪f, g⟫ =
∫
∆
fg dµ. (1.5)

To obtain that −4+u is a closed, unbounded operator, one has to consider −4+u as an operator
which depends on k since the domain on which this operator is closed depends on k. In other
words: by varying k one obtains a family of differential operators with different domains. In
[Klauer, 2011, Section 3.1] is shown a way how to obtain a family of differential operators which is
equivalent to the two-dimensional Schrödinger equation and which also varies for different k, but
for which the domain remains the same, i.e. a way to modify the Schrödinger operator such that
an eigenfunction ψk of the modified operator is also periodic with respect to Γ . More precisely,
one can formulate the whole problem described above by (1.1), (1.2) and (1.3) equivalently on
R2/Γ by considering

(−4k +u)ψk = λψk, (1.6)
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1.1. The operators

where
4k := ∇2

k = 4+ 4πι〈∇, k〉 − 4π2k2 (1.7)

with ∇k := ∇+2πιk. The last equality sign in (1.7) follows since k does not depend on (x, y) ∈ R2,
and therefore 〈k,∇〉 = 〈∇, k〉. It is furthermore shown in [Klauer, 2011, Propositions 3.1.6 and
3.17] that for all k ∈ C2, the operator 4k is formally a normal operator which maps the space of
Γ -periodic functions to itself. The last statement holds since differential operators are local and
4k does not depend on (x, y) ∈ R2.
Note that the eigenfunction ψ(k, λ, (x, y)) depends on k ∈ C2, λ ∈ C as well as on (x, y) ∈ ∆.
For brevity, we omit the dependencies on the parameters which are either not important for the
respective considerations or for which it is clear from the context which values are taken into
account. We write for example ψ(k) if we are only interested in the dependence of this function
on k for arbitrary (x, y) and λ or if it is clear which values (x, y) and λ are taken into account.
Likewise, we write ψ(x, y), ψ(λ), ψ(k, λ) or ψ(k, (x, y)). In case that we are not interested in
any of the dependencies on k, (x, y) and λ we just write ψ. Analogous notation is used for the
eigenfunction ψk in the formulation of (1.6).
The next Lemma shows that the two mentioned formulations are indeed equivalent. It is partly
shown in [Klauer, 2011, Theorem 3.1.10, Lemma 4.2.2 and Proposition 4.2.4]:

Lemma 1.2. Equations (1.1), (1.2) and (1.3) are fulfilled by k, λ, ψ and u if and only if for
(x, y) ∈ R2 holds

(−4k +u(x, y))ψk(x, y) = λψk(x, y),

where ψk(x, y) = e−2πι〈k,(xy )〉ψ(k, (x, y)). Furthermore, ψk((x, y) + γ) = ψk(x, y) for all γ ∈ Γ and
ψk+κ(x, y) = e−2πι〈κ,(xy )〉ψk(x, y) for all κ ∈ Γ ∗.

Proof. Basically, the proof uses that 4e2πι〈k,(xy )〉ψ(x, y) = e2πι〈k,(xy )〉 4k ψ(x, y) and that the
multiplication with e2πι〈k,·〉 is bijective. The first equality follows by direct calculations. Therefore,

λψ(k, (x, y)) = (−4+u(x, y))ψ(k, (x, y))

= (−4+u(x, y))e2πι〈k,(xy )〉 e−2πι〈k,(xy )〉ψ(k, (x, y))︸ ︷︷ ︸
=ψk(x,y)

= e2πι〈k,(xy )〉(4k + u(x, y))ψk(x, y)

⇔ λψk(x, y) = (4k + u(x, y))ψk(x, y).

The periodicity of ψk with respect to Γ follows immediately from the quasiperiodicity (1.3) of ψ
with k ∈ C2:

ψk((x, y) + γ) = e−2πι〈k,(xy )+γ〉ψ((x, y) + γ) = e−2πι〈k,(xy )〉e−2πι〈k,γ〉 ψ(k, ((x, y) + γ))︸ ︷︷ ︸
=e2πι〈k,γ〉ψ(k,(x,y))

= e−2πι〈k,(xy )〉ψ(k, (x, y)) = ψk(x, y).
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1. The Schrödinger equation and Fermi curves

To see the quasiperiodicity with respect to Γ ∗, we use modified Wirtinger operators. In analogy
to (1.7), we modify the Wirtinger operators ∂ := 1

2 (∂x + ι∂y) and ∂̄ := 1
2 (∂x − ι∂y) by adding

boundary conditions k ∈ C2 as

∂k := ∂ + π(ιk1 + k2) and ∂̄k := ∂̄ + π(ιk1 − k2). (1.8)

Then for all k ∈ C2, there holds

∂̄k∂k = 1
4 ((∂x + ι∂y + 2π(ιk1 + k2))(∂x − ι∂y) + 2π(ιk1 − k2))

= 1
4
Ä
∂2
x + ∂2

y − 4π2(k2
1 + k2

2) + 4πι(k1∂x + k2∂y)
ä

= 1
4(4− 4π2k2 + 4πι〈k,∇〉) = 1

4 4k .

(1.9)

For k ∈ C2 and κ ∈ Γ ∗ it is

e−2πι〈κ,(xy )〉∂ke2πι〈κ,(xy )〉 = e−2πι〈κ,(xy )〉∂e2πι〈κ,(xy )〉 + π(ιk1 + k2)

= ∂π(ικ1 + κ2) + π(ιk1 + k2) = ∂k+κ

and likewise ∂̄k+κ = e−2πι〈κ,(xy )〉∂̄ke2πι〈κ,(xy )〉. Taking these two results together yields that

4k+κ = e−2πι〈κ,(xy )〉 4k e
2πι〈κ,(xy )〉

and thus ψk(k + κ, (x, y)) = e−2πι〈κ,(xy )〉ψk(k, (x, y)).

Corollary 1.3. For u ∈ C(R2/Γ ), let k ∈ C2 be such that there exists a non-trivial ψ ∈ L2(∆)
which solves (−4+u)ψ(k) = λψ(k) and obeys (1.3). Then for every κ ∈ Γ ∗, there exists a non-
trivial ψ(k + κ) ∈ L2(∆) which solves (−4+u)ψ(k + κ) = λψ(k + κ) and it is ψ(k + κ) = ψ(k).

Proof. The operator −4+u with boundary value k equals the operator −4+u with boundary
value k + κ and κ ∈ Γ ∗ since 〈κ, γ〉 ∈ Z for all γ ∈ Γ and κ ∈ Γ ∗. Therefore, the domains of these
two operators coincide. More precisely, Lemma 1.2 yields that

ψ(k + κ, (x, y)) = e2πι〈k+κ,(xy )〉ψk+κ(x, y) = e2πι〈κ,(xy )〉e2πι〈k,(xy )〉ψk(x, y) = e2πι〈κ,(xy )〉ψ(k, (x, y)).

From now on, we denote both formulations described above as the Schrödinger equation. We term
these viewpoints in the same way as it is done in the unpublished paper [Schmidt, 2002, Chapter
2] for the Dirac operator with periodic potentials. Corresponding to the two formulations of the
Schrödinger equation introduced above, the eigenfunctions can be characterized in two different
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1.1. The operators

ways. For this we first note that we can also find a one-dimensional representation of Γ with help
of the dual lattice Γ ∗ of Γ . This is defined by the scalar product representation of the linear forms

Γ ∗ := {κ ∈ R2 | 〈κ, γ〉 ∈ Z for all γ ∈ Γ}.

The generators of the dual lattice Γ ∗ are denoted by κ̂ and κ̌. With the generators γ̂ = ( 1
0 ) and γ̌

of Γ , we define them as

κ̂ := 1
γ̂1γ̌2 − γ̂2γ̌1

(
γ̌2

−γ̌1

)
=

Ñ
1
− γ̌1
γ̌2

é
and κ̌ := 1

γ̂1γ̌2 − γ̂2γ̌1

(
−γ̂2

γ̂1

)
=

Ñ
0
1
γ̌2

é
(1.10)

since the choice 〈κ̂, γ̂〉 = 〈κ̌, γ̌〉 = 1 and 〈κ̌, γ̂〉 = 〈κ̌, γ̂〉 = 0 is natural for the generators of Γ ∗ in
our eyes. So Γ ∗ is also a two-dimensional real lattice. Hereby, γ̂1γ̌2 − γ̂2γ̌1 = γ̌2 6= 0 holds because
Γ is a two-dimensional lattice. For an arbitrary k ∈ C2, a one-dimensional representation of Γ is
given by the map γ 7→ e2πi〈k,γ〉 ∈ C \ {0} in GL(C) with k ∈ C2. The representations for k 6= k′

are equal if k − k′ ∈ Γ ∗ since then one has

e2πι〈k,γ〉 = e2πι〈k−(k−k′),γ〉 = e2πι〈k′,γ〉.

So the set of all one-dimensional representations of Γ can be identified with C2/Γ ∗. Let [k] ∈ C2/Γ ∗

be the equivalence class defined by {k̃ ∈ C2 | ∃κ ∈ Γ ∗ : k̃ = k + κ}. Then every [k] ∈ C2/Γ ∗

induces a line bundle on the torus R2/Γ with cocycles e2πi〈k,(xy )〉 whose sections are functions
ψ on R2 which fulfill the same quasiperiodicity condition (1.3) on the boundary of ∆ as the
eigenfunctions of the Schrödinger operator (1.1) with Γ -periodic potential u.

Definition 1.4. The formulation of Schrödinger equation (1.1) with u ∈ C(R2/Γ ) and quasiperi-
odicity of the eigenfunctions (1.3) we denote as the fundamental domain formulation.

Note that this formulation of the Schrödinger equation (1.1) is invariant under translations
of k 7→ k + κ, where κ ∈ Γ ∗: For κ ∈ Γ ∗ and γ ∈ Γ one has e2πι〈k+κ,γ〉 = e2πι〈k,γ〉, so the
quasiperiodicity condition (1.3) does not change under this shift and also neither the Schrödinger
equation (1.1) nor the periodicity of the potential (1.2) are effected by it. The periodicity of the
eigenfunctions with respect to Γ ∗ is shown in Corollary 1.3. Ergo, one can consider equivalence
classes [k] ∈ C2/Γ ∗ where [k] = [k′] if and only if k−k′ ∈ Γ ∗. As before, we omit the dependency on
[k] of the eigenfunctions and write ψ instead of ψ([k]) if it is not necessary to take this dependency
into account.
The other viewpoint, i.e. considering −4k +u with eigenfunctions that are periodic with respect to
Γ , has the advantage that the eigenfunctions ψk are in some sense ‘global’ since they exist on the
whole torus R2/Γ . In this formulation, Lemma 1.2 shows that the eigenfunctions are quasiperiodic
with respect to Γ ∗ and periodic with respect to Γ .
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1. The Schrödinger equation and Fermi curves

Definition 1.5. The functions e−2πι〈k,(xy )〉 are global, non-vanishing sections on the torus R2/Γ

of the line bundle at [k] ∈ C2/Γ ∗. Since a line bundle is trivial if and only if it has a nowhere
vanishing section, these functions are called trivializations. One can describe the sections ψk by
ψk = e−2πι〈k,(xy )〉ψ which are usual functions multiplied with these trivializations. However, in
general e2πι〈k,(xy )〉 6= e2πι〈k+κ,(xy )〉 for κ ∈ Γ ∗, so the trivializations are different for each k ∈ C2

and the sections have to obey the following quasiperiodicity condition with respect to Γ ∗:

ψk(k + κ, (x, y)) = e−2πι〈κ,(xy )〉ψk(k, (x, y)) for κ ∈ Γ ∗.

It is shown in Lemma 1.2 that ψk(k, (x, y)) obeys these two conditions. We will use the trivialization
formulation when the asymptotic behavior of the Fermi curve is considered, i.e. for k ∈ C2 with
large imaginary value. In the other parts of this work the fundamental domain formulation is used.
This is because then it is possible to consider the Fermi curve as a subset of C2/Γ ∗.
Later on, we will also make use of the transpose of the Schrödinger operators of −4k +u and
−4+u. Therefore, this operator is introduced here. Obviously, −4k +u : L2(R2/Γ )→ L2(R2/Γ )
as well as −4+u : L2(∆)→ L2(∆) are linear and bounded operators for u ∈ C(R2/Γ,C). The
dual space of L2(R2/Γ ) is again L2(R2/Γ ) and the dual space of L2(∆) is L2(∆). Then the
adjoint or transposed operator (−4k +u)T : L2(R2/Γ ) → L2(R2/Γ ) of −4k +u is defined as
follows: We consider for every g ∈ L2(R2/Γ,C) the map

L2(R2/Γ )→ C, f 7→ ⟪g, (−4k +u)f⟫.

This map defines a continuous, linear functional on L2(R2/Γ ). So by the Riesz-Fischer Theorem
[Reed and Simon, 1980, Theorem II.4], for every g ∈ L2(R2/Γ ), there exists a unique element
h ∈ L2(R2/Γ ) such that for all f ∈ L2(R2/Γ )

⟪g, (−4k +u)f⟫ = ⟪h, f⟫.

Then (−4k +u)T g = h defines the transposed Schrödinger operator. Likewise the transposed
operator (− 4 +u)T of − 4 +u is defined with the only difference that for fixed k, the dual
space of {ψ(k, ·) ∈ L2(∆) | ψ(k, (x+ y) + γ) = e2πι〈k,(xy )〉ψ(k, (x, y))} is given by {ϕ ∈ L2(∆) |
ϕk(k, (x+ y) + γ) = e−2πι〈k,(xy )〉ϕ(k, (x, y))} since then the product ϕψ is periodic with respect to
Γ , and so one can apply partial integration to obtain ⟪∇ϕ(k, ·), ψ(k, ·)⟫ = −⟪ϕ(k, ·),∇ψ(k, ·)⟫.
Next, the exact form of (−4k +u)T is determined.

Lemma 1.6. The transpose of the Schrödinger operator (1.6) equals −4−k +u with eigenfunction
ϕk. If ψk is in the kernel of −4k +u, then ψ−k is in the kernel of (4k + u)T .

Proof. At first, we note that u(x, y) ∈ C, so ut(x, y) = u(x, y). The same holds for λ ∈ C.
To determine the transposed operator of − 4k +u consider first the transposed operator of
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1.2. The Bloch variety and the Fermi curve

∇k = ∇+ 2πιk. For ψk ∈ L2(R2/Γ ) and ϕk ∈ L2(R2/Γ ) it is

⟪∇kϕk, ψk⟫ =
∫
∆

(∇+ 2πιk)ϕk · ψk dµ =
∫
∆
ϕk · (−∇+ 2πιk)ψk dµ.

The second equality sign follows by partial integration, where the term evaluated at the boundary
of ∆ is zero since ψk and ϕk are assumed to be periodic on R2 with respect to the lattice Γ . So
∇Tk := −∇+ 2πik. This implies for the transposed Laplacian with boundary conditions

4T
k = (∇Tk )2 = ∇Tk · ∇Tk = (−∇+ 2πik)(−∇+ 2πik)

= 4− 4πik · ∇ − 4πk2 = 4−k.

Let (−4k +u)ψk(k, ·) = 0. Then (−4−k +u)ψk(−k, ·) = 0.

1.2. The Bloch variety and the Fermi curve

Definition 1.7. For the Schrödinger equation (1.6), the Bloch variety of the Schrödinger operator
−4k +u is defined as

B(u)/Γ ∗ := {([k], λ) ∈ C2/Γ ∗ × C | (k, λ) ∈ B(u)}, (1.11)

where

B(u) := {(k, λ) ∈ C2 × C | There is a ψk ∈ L2(R2/Γ ) \ {0} such that (−4k +u)ψk = λψk}.

B(u) is invariant under translations by κ ∈ Γ ∗ as we will see below in Lemma 1.8. So strictly
speaking, the Bloch variety is defined as in (1.11). However, both B(u) and B(u)/Γ ∗ are denoted
as the Bloch variety. If it is not clear from the context which version is used, this will be mentioned
explicitly. The subset of one eigenvalue λ in (1.11) is

Fλ(u) := {k ∈ C2 | There is a ψk ∈ L2(R2/Γ ) \ {0} such that (−4k +u)ψk = λψk}.

Fλ(u) is called the Fermi curve to the eigenvalue λ. Since changing the fixed value λ by adding
a constant only changes the potential u by subtracting a constant, we consider the Fermi curve
belonging to λ = 0 in the sequel and call it F (u). In case we are only interested in [k] ∈ C2/Γ ∗,
F (u)/Γ ∗ is considered which is the actual Fermi curve. Both, F (u) and F (u)/Γ ∗, are denoted as
the Fermi curve. We point out which one is meant if necessary.

The following Lemma is taken from [Klauer, 2011, Lemma 4.3.1]. It justifies why it is possible to
consider B(u)/Γ ∗ respectively F (u)/Γ ∗. Since the proof is so short and essential, the basic steps
are repeated here.
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1. The Schrödinger equation and Fermi curves

Lemma 1.8. For all u ∈ L2(R/Γ ) and for all κ ∈ Γ ∗, the Bloch variety B(u) and the Fermi
curve F (u) are invariant under transformations k 7→ k + κ.

Sketch of the proof. Let k ∈ B(u). Then there exists an eigenfunction ψk ∈ L2(R2/Γ ) with ψk 6≡ 0
and an eigenvalue λ ∈ C such that (1.6) holds. Multiplying (1.6) from the left side by e−2πι〈κ,(xy )〉

yields

−e−2πι〈κ,(xy )〉 4k e
2πι〈κ,(xy )〉e−2πι〈κ,(xy )〉ψk + u(x, y)e−2πι〈κ,(xy )〉ψk = λe−2πι〈κ,(xy )〉ψk.

Due to (1.9), this yields that the transformation k 7→ k + κ induces nothing but a transformation
of the eigenfunction and does not influence the Bloch variety B(u). Obviously, the same arguments
apply for F (u).

Next, we show that for u ∈ C(R2/Γ,C), the resolvent

Res(λ, k, u) := (−4k +u− λ)−1 (1.12)

of the Schrödinger operator −4k +u is a compact operator from L2(R2/Γ ) to L2(R2/Γ ). The
set of compact operators on a Banach space V to a Banach space W are denote as K(V,W ) and
for V = W as K(V ). To show this, some basics about Fourier transformation is used. Hereby,
let `2(Γ ∗) := `2(Γ ∗,C) be the space of all square summable sequences with values in C. More
precisely, let ω be the space of all sequences in C. Then

`2(Γ ∗) := {(xκ)κ∈Γ ∗ ∈ ω |
∑
κ∈Γ ∗

|xκ|2 <∞}

which is a Banach space when it is equipped with ‖(xn)n∈N‖`2(Γ ) := ∑∞
n=1 |xn|2. The two spaces

L2(R2/Γ ) and `2(Γ ∗) can be related. An examples which enlightens this connection is given by
the map

R2 → C, x 7→ e2πι〈κ,x〉

for κ ∈ C2. If κ ∈ Γ ∗, then this function is periodic with respect to Γ and one can consider it as a
function on R2/Γ . With the fundamental domain ∆ of R2/Γ , we define the Fourier transform as

F : L2(R2/Γ )→ `2(Γ ∗), f 7→
Ç
κ 7→ 1

Vol(∆)

∫
∆
e−2πι〈κ,x〉f(x) dx

å
.

We call f̂ := F(f). Vice versa, the Fourier Inversion Theorem [Reed and Simon, 1975, Theorem
IX.1] yields that the inverse Fourier transform for sequences in `2(Γ ∗) is defined as

F−1 : `2(Γ ∗)→ L2(R2/Γ ), f̂ 7→
(
x 7→

∑
κ∈Γ ∗

e2πι〈κ,x〉f̂(κ)
)
,
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1.2. The Bloch variety and the Fermi curve

where F−1(f̂)(x) is called the Fourier series of f̂ . Furthermore, deriving a function in L2(R2/Γ )
is a multiplication operator in `2(Γ ∗), i.e. for a multi-index α one has ‘∂αf = (2πικ)αf̂ .

Definition 1.9. We denote by F : L2(R2/Γ ) → `2(Γ ∗) the Fourier transform and by F−1 :
`2(Γ ∗) → L2(R2/Γ ) the inverse Fourier transform. Let O : L2(R2/Γ ) → L2(R2/Γ ) be an
operator. We then define the Fourier transform Ô of O as

Ô : `2(Γ ∗)→ `2(Γ ∗), ψ̂k 7→ F(OF−1(ψ̂k)).

Vice versa, for Ô : `2(Γ ∗)→ `2(Γ ∗), the inverse Fourier transform O is defined as

O : L2(R2/Γ )→ L2(R2/Γ ), ψk 7→ F−1(ÔF(ψk)).

The Fourier transform will be very useful in the first two chapters of this work. We first use it
here to show the following theorem.

Theorem 1.10. Let u0 ∈ C(R2/Γ,C). For every c > 0 and every open bounded subset K ∈ C2,
there exists a λ > 0 such that (k, u) 7→ (− 4k +u + λ)−1 defines a map K × Bc(u0, ‖ · ‖∞) →
K(L2(R2/Γ )) which is holomorphic in k and u. Furthermore, there also exists an open bounded
subset W containing λ0 such that the map

λ 7→ (λ−4k + u)−1

is a boundedly invertible and holomorphic for (λ, u, k) ∈W × U ×K.

Proof. It is
(−4k +u+ λ)−1 = (−4k +λ)−1(1+ u(−4k +λ)−1)−1.

For f ∈ L2(R2/Γ ), one has due to Parseval’s identity [Reed and Simon, 1980, Theorem II.6]

‖(−4k +λ)−1f‖L2(R2/Γ ) = ‖ ¤�(−4k +λ)−1f‖`2(Γ ∗) =

Ñ∑
κ∈Γ ∗

∣∣∣∣∣ f̂(κ)
λ+ 4π(k + κ)2

∣∣∣∣∣
2
é1/2

. (1.13)

Since ‖(k + κ)2‖ → ∞ for ‖κ‖ → ∞ and k ∈ K, the infimum of Re(k + κ2) for κ ∈ Γ ∗ and k ∈ K
exists. We choose λ ∈ R such that

λ > − inf
κ∈Γ ∗
k∈K

4πRe(k + κ)2.

Then λ+ 4πRe(k + κ)2 > 0 for all κ ∈ Γ ∗. Using again Parseval’s identity yields

‖(−4k +λ)−1f‖L2(R2/Γ ) ≤
1

λ+ infκ∈Γ ∗(4π(k + κ)2)︸ ︷︷ ︸
<∞

‖f‖L2(R2/Γ ).
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1. The Schrödinger equation and Fermi curves

Choosing λ additionally in such a way that λ > − inf
κ∈Γ ∗
k∈K

4πRe(k + κ)2 + c gives then

‖(−4k +λ)−1f‖L2(R2/Γ ) <
1

c+ 4π‖ Im(k + κ)2‖
‖f‖L2(R2/Γ ) ≤ c−1‖f‖L2(R2/Γ ).

Together with Hölder’s inequality we obtain from this that

‖u(−4k +λ)−1f‖L2(R2/Γ ) = ‖u‖L∞(R2/Γ,C)‖(−4k +λ)−1f‖L2(R2/Γ )

< c‖(−4k +λ)−1f‖L2(R2/Γ ) < ‖f‖L2(R2/Γ ).

Accordingly, by Neumann’s Theorem (1+ u(−4k +λ)−1)−1 converges and thus

‖(−4k +u+ λ)−1f‖L2(R2/Γ ) ≤ C‖f‖L2(R2/Γ ).

So for λ sufficiently large, (−4k +u+ λ)−1 is a bounded operator from L2(R2/Γ ) to L2(R2/Γ ).
The compactness of this operator can be shown as follows: Fourier transforming (−4k +λ)−1,
compare Definition 1.9, yields that¤�(−4k +λ)−1 =

∑
κ∈Γ ∗

1
λ+ 4π(k + κ)2

is a multiplication operator which can be written as the limit of finite range operators which
is compact, compare [Reed and Simon, 1980, Theorem VI.13]. Since F−1 is bounded and the
composition of a compact operator with a bounded operator is again compact, (−4k +λ)−1 is a
compact operator. Because the operator (1+ u(−4k +λ)−1)−1 is bounded, the same arguments
apply to (−4k +u+ λ)−1 and show that this is also a compact operator. To see that the map

K ×Bc(u0)→ K(L2(R2/Γ )), (k, u) 7→ (−4k +u+ λ)−1

is holomorphic in u ∈ Bc(u0), the Neumann series is used again. We have seen before that
(1+ u(−4k +λ)−1)−1 = ∑∞

n=0(u(−4k +λ)−1)n converges for our choice of λ. So

(−4k +u+ λ)−1 = (−4k +λ)−1(1+ u(−4k +λ)−1)−1 =
∞∑
n=0

(−4k +λ)−1(−u(−4k +λ)−1)n.

(1.14)
The last term can be read as the Taylor series of (−4k +λ+ u)−1 with respect to u at u0 = 0
and thus this operator is holomorphic in u. Holomorphy in k can also be seen in equation (1.14):
By definition of 4k in (1.7), this is a holomorphic operator in k. So it follows from (1.13) that
(−4k +λ)−1 is for λ > 0 sufficiently large holomorphic in k since Ÿ�−4k +λ is the uniform limit
of functions holomorphic in k. Because the inverse Fourier transform is complex linear, also
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1.2. The Bloch variety and the Fermi curve

−4k +u = F−1(Ÿ�−4k +λ) is holomorphic. So (−4k +λ)−1(u(−4k +λ)−1)n is holomorphic in
k for each n ∈ N0, and therefore the right hand side of (1.14) is the uniform limit of functions
holomorphic in k which is holomorphic in k. Due to the Riesz-Schauder Theorem [Reed and Simon,
1980, Theorem VI.15], the spectrum of (λ0 +4k − u)−1 contains at most the accumulation point
zero. The other points are eigenvalues of finite order. Therefore, the set

S(k, u) := {λ ∈ C \ {λ0} | (λ0 − λ)−1 is in the spectrum of (λ0 −4k + u)−1}

is discrete. For λ ∈ C\(S(k, u)∪{λ0}), the value (λ0−λ)−1 is in the resolvent set of (λ0−4k+u)−1.
So (λ0 − λ)−1 − (λ0 −4k + u)−1 is boundedly invertible. Moreover,

(λ0 − λ)−1(λ0 −4k + u)−1 Ä(λ0 − λ)−1 − (λ0 −4k + u)−1ä−1 =

=
ÄÄ

(λ0 − λ)−1 − (λ0 −4k + u)−1ä (λ0 − λ)(λ0 −4k + u)
ä−1 =

= (λ0 −4k + u− (λ0 − λ)−1) = (λ−4k + u)−1.

For this reason, the map (u, k, λ)→ (λ−4k+u)−1 is defined on {(u, k, λ) ∈ U×K×Bε(λ0) | λ 6∈
S(k, u)∪{λ0}} and the eigenvalue λ0 is an isolated pole of the resolvent map (1.12). Consequently,
for λ0 sufficiently large, there exists an open neighborhood W of λ0 such that for all λ ∈W the
above considerations we have made for λ0 also hold for λ. Holomorphy in λ one sees with help of
the resolvent equation for fixed (k0, u0) and by using the continuity of the resolvent Res in λ on
Bε(λ0), i.e.

Res(λ, k0, u0)− Res(µ, k0, u0) = (λ− µ)Res(λ, k0, u0)Res(µ, k0, u0).

Next, we want to show that the Bloch variety can be considered as a two-dimensional subvariety
of C3 and the Fermi curve as a subvariety of C2. The following definitions and statements are
taken from [Gunning and Rossi, 1965, Chapter II].

Definition 1.11 ([Gunning and Rossi, 1965, Definition II.1]). Let U be a domain in C2. V ⊂ U
is a holomorphic subvariety if for every z ∈ U , there is a neighborhood Uz of z and finitely many
functions f1, . . . , fm which are holomorphic on Uz such that

V ∩ Uz = {x ∈ Uz | f1(x) = · · · = fm(x) = 0}.

Theorem 1.12 ([Gunning and Rossi, 1965, Theorem II.3]). Let F be a collection of functions
which are holomorphic on an open set U ⊂ Cn. Then V (F ) := {x ∈ U | f(x) = 0 for all f ∈ F}
is a subvariety of U .

Definition 1.13. A holomorphic variety is a second-countable Hausdorff topological space V for
which there exists a covering by open subsets Vα and homeomorphisms Fα : Vα → Wα between
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1. The Schrödinger equation and Fermi curves

the subsets Vα ⊂ V and holomorphic subvarieties Wα of open sets Uα ⊆ Cnα such that for each
nonempty intersection Vα ∩ Vβ, the decomposition

Fα ◦ F−1
β : Fβ(Vα ∩ Vβ)→ Fα(Vα ∩ Vβ)

is a biholomorphic map.

Since these are the only kind of varieties considered in this work, the add-on holomorphic is
left away in the sequel. To show that B(u) is a variety consisting of subvarieties in C3 and
that F (u) is a variety consisting of subvarieties in C2, the fact that the resolvent is a compact
operator on L2(R2/Γ ) is used. From this we deduce a representation for the Bloch variety B(u)
as well as for the Fermi curve F (u) as zero sets of functions which are holomorphic in (k, λ)
respectively holomorphic in k. The base to show this is the next theorem which can also be found
in [Klauer, 2011, Theorem 4.1.3]. However, the fact that F (u) is a variety in C2 is essential for
the considerations in this work. Accordingly, the proof given in [Klauer, 2011, Theorem 4.1.3] is
repeated here, where some details are emphasized differently since a different viewpoint than the
one in [Klauer, 2011] is necessary in the sequel.

Theorem 1.14. [[Klauer, 2011], Theorem. 4.1.3] Let u0 ∈ C(R2/Γ,C), k0 ∈ C2 and λ0 ∈ C2

such that (u0, k0, λ0) ∈ (u0, B(u0)), i.e. there exists a ψk ∈ L2(R2/Γ ) which is not identically zero
such that

(−4k0 +u0)ψk = λ0ψk.

Then there are open neighborhoods U ⊂ C(R2/Γ ), K ⊂ C2 and Bε(λ0) ⊂ C with ε > 0 of u0, k0

and λ0 such that for all (u, k, λ) ∈ U × K × Bε(λ0), there exists a finite-dimensional subspace
Σ(u, k) of L2(R2/Γ ) independent of λ which is invariant under the Schrödinger operator (−4k+u)
with dimΣ(u, k) = dimΣ(u0, k0). Furthermore, the intersection of the graph of the map u 7→ B(u)
with U ×K ×Bε(λ0) is the zero locus of the determinant

(u, k, λ) 7→ det(λ+4k − u)|Σ(u,k).

This map is holomorphic in k, λ and u.

Proof. It follows from Theorem 1.10 that there are bounded open neighborhoods U ⊂ C(R2/Γ ) of
u0 and K ⊂ C2 of k0 such that there exists a fixed λ1 > 0 for which the resolvent (λ1 +4k − u)−1

is contained in K(L2(R2/Γ )) for all (u, k) ∈ U ×K. Moreover, the proof of this theorem gives
that λ0 is an isolated pole of the resolvent (λ−4k0 + u0)−1. Let ε > 0 be so small that Bε(λ0)
contains no other eigenvalue of −4k0 +u0. The Nagumo Theorem [Nagumo and Yamaguchi, 1993,
Article 22] yields that

Pu0(k0) := 1
2πι

∮
|ξ|=ε

(λ0 + ξ +4k0 − u0)−1 dξ
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1.2. The Bloch variety and the Fermi curve

is a projector on the generalized eigenspaces corresponding to λ0 of the Schrödinger operator
−4k0 +u0 which is invariant under this operator. The derivation of this generalized eigenprojection
can for example be found in [Kato, 1980, Section II.1.4]. It projects on the sum of the eigenspaces
belonging to the sheets meeting in (k0, λ0). This situation is roughly depicted in Figure 1.1 as a
projection from C3 to R2 for two sheets meeting at (k0, λ0) with fixed potential u0. Moreover, it is

Figure 1.1.: Sketch of an example: two different sheets around (k0, λ0, u0) running together,
where the picture in C3 is projected to R2 and neglected the open neighborhood of
u0.

known from Theorem 1.10 that the resolvent is compact if λ is not an eigenvalue of −4k0 +u0 and
that the eigenvalues of −4k0 +u0 are discrete. So for a closed curve around λ0 ∈ Spec(−4k0 +u0)
with sufficiently small diameter such that this curve contains no eigenvalue of −4k0 +u0, also
Pu0(k0) is compact and the image Σ(u0, k0) of Pu0(k0) is finite-dimensional. Therefore, one can
choose a basis f1, . . . , fm of Σ(u0, k0) ⊂ L2(R2/Γ ). Likewise one can define the spectral projection
P Tu0(k0) for the transposed operator (− 4 +u0)T for λ0, where the image of this projection is
called ΣT (u0, k0) ⊂ L2(R2/Γ ). By the same arguments as for −4−k +u, one can choose a basis
g1, . . . , gm of the corresponding space ΣT (u0, k0). We choose g1, . . . , gm such that they yield a
dual basis of f1, . . . , fm, i.e. such that ⟪gi, fj⟫ = δij . P Tu0(k0) is the transposed operator of Pu0(k0).
Since Pu0(k0) is a projection on Σ(u0, k0), one has Pu0(k0)|Σ(u0,k0) = 1Σ(u0,k0). So

⟪gi, fj⟫ = ⟪gi, Pu0(k0)fj⟫ = ⟪gi, Pu0(k0)2fj⟫ = ⟪P Tu0(k0, λ0)gi, Pu0(k0)fj⟫

and the matrix
Ä
⟪Pu0(k0)T gi, Pu0(k0)fj⟫

äm
i,j=1

is regular. Moreover, the map (−4k0 +u0)Pu0(k0) :
Σ(u0, k0)→ Σ(u0, k0) is linear and Σ(u0, k0) is finite-dimensional. Accordingly, the invariance of
Pu0(k0) under −4k0 +u0 yields that there exists a matrix (Aij(u0, k0, λ0)mi,j=1 of −4k0 +u0 such
that for all l, i = 1, . . . ,m

⟪gl, (λ0 −4k0 + u0)fi⟫ =
m∑
j=1

Aij⟪gl, fi⟫.
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1. The Schrödinger equation and Fermi curves

However, this matrix is build with respect to fixed u0, k0 and λ0, so it does not depend on k, u
or λ. In the next step, this will be changed by constructing a matrix from this which depends
holomorphically on k and λ and continuously on u. To do so, remember first that by Theorem
1.10 one can choose a bounded, open neighborhood K of k0 and a bounded open neighborhood U
of u0 such that the resolvent is holomorphic with respect to k and u on these neighborhoods for
all λ0 which are in the resolvent set of −4k0 +u0. Let moreover ε > 0 be so small that Bε(λ0)
contains no other eigenvalue of −4k +u . Then for all (u, k) ∈ U ×K, the same arguments as
above apply to the operators

Pu(k) := 1
2πι

∮
|ξ|=ε

(λ0 + ξ −4k + u)−1 dξ.

These Pu(k, λ0) are also projectors which are invariant under (−4k +u) and of constant rank and
they map onto finite-dimensional subspaces Σ(u, k).
Let us chooseK and ε > 0 such that (K×∂Bε(λ0))∩B(u) = ∅ for all u ∈ U . Additionally, we choose
K×Bε(λ0) sufficiently small such that also the matrix defined by

Ä
(⟪Pu(k)T gi, Pu(k)fj⟫)i,j=1...,m

ä
is regular, i.e. the determinant, which is a continuous map in λ, does not equal zero. We denote
the finite-dimensional subspace Σ(u, k) in the neighborhood K ×Bε(λ0) of (k0, λ0) as the space
which is spanned by Pu(k)fi for i = 1, . . . ,m. We have chosen K and ε > 0 such that K×∂Bε(λ0),
i.e. the paths of integration over the resolvent for k ∈ K and u ∈ U , does not intersect any
singularity of the resolvent. Thus, by Theorem 1.10, Pu(k) is holomorphic in k ∈ K and u ∈ U
since the resolvent is holomorphic. Because the finite-dimensional subspaces Σ(u, k) are invariant
under λ +4k − u, one can represent λ +4k − u in the basis of Σ(u, k) given by (Pu(k)fi)mi=1
and the corresponding dual basis is given by

Ä
Pu(k)T gi

äm
i=1. This yields a matrix representation

A(u, k, λ) of λ+4k − u which is holomorphic in k and u. For all l, i = 1, . . . ,m, there holds

⟪P Tu (k)gl, (λ−4k + u)Pu(k)fi⟫ =
m∑
j=1

Aij(u, k, λ)⟪P Tu (k)gl, Pu(k)fi⟫,

where Aij are the entries of the matrix A(u, k, λ). The matrix A(u, k, λ) defined like this is singular
if and only if the triple (u, k, λ) is in the graph of u 7→ B(u) since then λ−4k + u = 0. Because
(⟪P Tu (k, λ)gi, Pu(k)fj⟫)mi,j=1 is regular, this implies that det(A(u, k, λ)) = 0 if and only if the triple
(u, k, λ) is in the graph of u 7→ B(u). Furthermore, det(A(u, k, λ)) is obviously holomorphic in
λ ∈ Bε(λ0) and also holomorphic in k ∈ K and u ∈ U since A(u, k, λ) is .

So it is possible to find local matrix representations for the operator λ +4k − u on the Bloch
variety as well as for the Schrödinger operator −4k +u on the Fermi curve. From now on, saying
“the Bloch variety can locally be considered as the zero set of a holomorphic function” shall
mean that for fixed u ∈ C(R2/Γ ), there exists a (k0, λ0) ∈ B(u) and a small open neighborhood
Uk0 ×Bε(λ0) ⊂ C2 × C containing (k0, λ0) so that on this open neighborhood, the representation
of the Bloch variety as in the the above proof holds. Likewise we also speak of local considerations
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on B(u)/Γ ∗ or on the Fermi curve F (u)/Γ ∗ respectively F (u).
The next two Corollaries follows immediately from Theorem 1.12.

Corollary 1.15. B(u) and F (u) are holomorphic varieties in the sense of Definition 1.13, where
B(u) is locally defined as a holomorphic subvariety of C3 and F (u) is locally defined as a holomor-
phic subvariety of C2 in the sense of Definition 1.11.

Proof. That B(u) is a holomorphic subvariety of C3 and F (u) a holomorphic subvariety of C2

follows directly from the proof of Theorem 1.14 since both can be represented locally as the zero
set of a holomorphic function in (k, λ) ∈ C3 respectively in k ∈ C2. We show that B(u) is also a
holomorphic variety. The proof for F (u) then follows by setting λ = 0. Let V,W ⊂ C3 be open
subsets such that B(u)∩V ∩W 6= ∅. Let (k0, λ0) be a point in this intersection set. Then the spectral
projection at this point again yields a matrix A(u, k, λ) such that det(A(u, k, λ)) = 0 describes
B(u) on this intersection set. If dimΣ(u0, k0) is smaller than the corresponding dimensions on
U and V , the spectral projection only projects on the sheets of B(u) contained in a small open
neighborhood of (k0, λ0) contained in U ∩ V . Restricting the definition of the spectral projection
on U as well as of the spectral projection V on Σ(u0, k0) yields that these spectral projections,
via which we have defined A(u, k, λ), coincide on this eventually smaller subspace since it is in
both case defined through the basis elements which span Σ(u0, k0). For this reason, the zero sets
describing B(u) on U respectively V coincide on U ∩ V .

Corollary 1.16. Under the assumptions in Theorem 1.14, the operator λ+4k − u can locally
around (k0, λ0), i.e. for (k, λ) ∈ K×Bε(λ0), be represented as an m×m-matrix A(u, k, λ) depending
holomorphically on k and λ, where m is the dimension of the generalized eigenspace at (k0, u0).
The transposed Schrödinger operator (λ+4−k − u)T introduced in Lemma 1.6, can locally around
(−k0, λ0) be represented as the m×m-matrix AT (u, k, λ).

Proof. The first part of the corollary is clear from the proof of Theorem 1.14. The second part is
also easy to see by simple linear algebra. We use the notation from the proof of Theorem 1.14. By
the same arguments as in the foregoing proof, one has

(λ+4−k + u)T gl =
m∑
j=1

Bljgj ,

where g1, . . . , gm is the basis of ΣT (u, k). This leads to a matrix B(u, k, λ) with coefficients Bij .
However, we also know that

⟪(λ+4−k − u)TP Tu (k)gl, Pu(k)fi⟫ = ⟪P Tu (k)g`, (λ+4k − u)Pu(k)fi⟫

=
m∑
j=1

Aji⟪P Tu (k)gl, Pu(k)fi⟫

for i, l = 1, . . . ,m. Therefore, B(u, k, λ) = AT (u, k, λ).
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1. The Schrödinger equation and Fermi curves

1.3. Involutions

In this section, some symmetry of the Fermi curve are shown which will be crucial in this work.
More precisely, it is shown that there is a holomorphic involution σ on F (u). This involution
will turn out to be a very important property of the Fermi curve for the remainder of this work.
Furthermore, in case that the potential u is real-valued, the reality condition can be expressed
in terms of an antiholomorphic involution τ1 on F (u). That means a Fermi curve with complex-
valued potential has one involution and a Fermi curve with real-valued potential three since the
composition of the τ1 and σ is also an involution. This will be important in Section 6.2.

Lemma 1.17. (a) For u ∈ C(R2/Γ,C), one has (− 4k +u)T = − 4−k +u which induces a
holomorphic involution σ : C2 → C2, k 7→ −k such that F (u) is invariant under σ. If ψk is in
the kernel of −4k +u, then σ∗ψk is an element in the kernel of (−4−k +u)T .

(b) For u ∈ C(R2/Γ,R), there are two antiholomorphic involutions τ1 : C2 → C2, k 7→ −k̄ and
τ2 : C2 → C2, k 7→ k̄ such that the Fermi curve is invariant under these involutions.

(i) If ψk is an element in the kernel of −4k +u, then τ∗1 ψ̄k is an element in the kernel of
−4−k̄ +u. This involution is indicated by (−4k +u) = −4−k̄ +u.

(ii) The hermitian Schrödinger operator (− 4k +u)∗ = − 4k̄ +u induces the involution
τ2 := σ ◦ τ1 = τ1 ◦ σ. If ψk is an element in the kernel of −4k +u, then ϕ = τ∗2 ψ̄k is an
element in the kernel of −4k̄ +u.

(iii) If the antiholomorphic involution τ1 : C2 → C2 leaves F (u) invariant and additionally
τ∗1 ψ̄k = c(k)ψk for all ψk which are in the kernel of −4k +u with k ∈ F (u) and c(k) 6= 0,
then u is real-valued.

Proof. (a) At first, we note that u(x, y) ∈ C, so uT (x, y) = u(x, y), and therefore also F (u) =
F (uT ). It is shown in Lemma 1.6 that 4T

k = 4−k, so (−4k +u)T leads to the same Fermi
curve as −4k +u only with different boundary values for the eigenfunctions. Applying σ to
the Schrödinger equation yields that

0 = σ∗((4k + u)ψk) = (4k + u)Tσ∗ψk = (4−k + u)c(k)ψk

with c(k) 6= 0. So σ∗ψk(k, ·) = c(k)ψk(−k, ·).

(b) For determining the complex conjugated operator, consider

∇k = ∇+ 2πιk = ∇+ 2πιk = ∇− 2πιk = ∇−k

Therefore, the complex conjugate of the Laplacian with boundary condition is

4k = ∇k · ∇k = ∇−k · ∇−k = (∇− 2πik) · (∇− 2πik) = 4− 4πik∇− 4πk2 = 4−k.
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This implies for the Schrödinger operator that 4k + u = 4−k + u. So for real-valued u, the
Fermi curve is invariant under the antiholomorphic involution τ1 : k 7→ −k̄. Combining both
involutions σ and τ1 yields a third involution τ2 = σ ◦ τ1 = τ1 ◦ σ with τ2(k) = k̄. This
corresponds to the hermitian operator (−4+u)∗ which is determined by

4k
T = (−∇− 2πik)(−∇− 2πik) = 4+ 4πik · ∇ − 4πk2 = 4k.

Since F (u) is invariant under τ1 and σ, it is also invariant under τ2.

(i) Let ψk be an element in the kernel of −4k +u. Then

τ∗1 ((−4k +u)ψk) = (−4−k̄ +u)τ∗1 ψ̄k.

(ii) Let ψk be an element in the kernel of −4k +u. Then

τ∗2 ((−4k +u)Tψk) = (−4k̄ +u)τ∗2 ψ̄k.

(iii) Let now F (u) be invariant under τ1 : k 7→ −k̄ and assume that for ψk ∈ ker(−4k +u)
with k ∈ F (u) holds τ∗1 ψ̄k = ψk. Then (−4k +u)ψk = 0 yields

0 = τ∗1 ((−4k +u)ψk) = (−4−k̄ +u)τ∗1 ψ̄k = c(k)(−4−k̄ +u)ψk = c(k)(−4k +ū)ψk.

Thus ψk is an eigenfunction of −4k +u and −4k +ū for all k ∈ F (u). So ū = u.

1.4. Two examples

We give two explicit examples of Fermi curves: the Fermi curve with zero potential and Fermi
curves with constant potential. The first one will be very important in the sequel since it turns out
in Chapter 2 that all Fermi curves are ‘asymptotically free’, i.e. converge to F (0) for ‖ Im(k)‖ → ∞.

1.4.1. The Free Fermi Curve

In [Klauer, 2011, Theorem 4.2.5], an explicit representation of the free Fermi curve F (0)/Γ ∗ in
terms of (k1, k2) ∈ C is given.

Lemma 1.18 ([Klauer, 2011, Theorem 4.2.5]). The free Fermi curve can be written as F (0) =
R+ Γ ∗, where

R := {k ∈ C2 | k2 = 0} = {k ∈ C2 | (k1 + ιk2)(k1 − ιk2) = 0}, (1.15)
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1. The Schrödinger equation and Fermi curves

provided that the pairs of distinct points (k−ν , k+
ν ) with

k∓ν := 1
2(±ν1 + ιν2,−ιν1 ± ν2) (1.16)

are identified to double points for all ν ∈ Γ ∗ \ {0}. R is a system of representatives for the quotient
F (0)/Γ ∗.

Sketch of the proof. The equality F (0) = R+ Γ ∗ follows by Fourier transforming 4kψk = 0 with
4k = 4∂k∂k as in (1.8), i.e. for all ν ∈ Γ ∗, there has to hold

(ι(ν1 + k1)− (ν2 + k2)) (ι(ν1 + k1) + (ν2 + k2)) ψ̂k(ν) = 0.

Since ψk 6≡ 0, there always exists a ν ∈ Γ ∗ such that ψ̂k(ν) 6= 0. So F (0) ⊆ R+ Γ ∗. Conversely,
let k ∈ R+ Γ ∗. Then there exists a ν ∈ Γ ∗ such that

(k1 + ν1)− ι(k2 + ν2) = 0 or (k1 + ν1) + ι(k2 + ν2) = 0.

Let ψk be a function whose Fourier transform is given by ψ̂(κ) = δνκ. Then ψk solves −4k ψk = 0
and thus also R+ Γ ∗ ⊆ F (0).
The fact that k+

ν and k−ν need to be identified for each ν ∈ Γ ∗ can be seen by answering the
question when the difference of two elements k, k̃ ∈ F (0) is contained in the dual lattice Γ ∗. This
is also done in [Klauer, 2011, Proof of Theorem 4.2.5], but since this fact is essential for the picture
of F (0)/Γ ∗, this step is outlined here as well. So let k, k̃ ∈ F (0) such that k− k̃ ∈ Γ ∗. Then there
are the two possibilities k = k1 ± ιk2 and k̃ = k̃1 ± ιk̃2 or k = k1 ± ιk2 and k̃ = k̃1 ∓ ιk̃2. In the
first case it follows from k− k̃ = ν ∈ Γ ∗ that k = k̃ since ν = ν1± ιν2 = 0 with ν1, ν2 ∈ R can only
hold for ν1 = ν2 = 0. In the second case it is (k1 ± k̃1)− ι(k2 ∓ k̃2) = 0. Using ν = k − k̃ leads to

k1 + k̃1 = 2k1 − k1 + k̃1 = 2k1 − ν1 and k2 + k̃2 = 2k2 − k2 + k̃2 = 2k2 − ν2 = 0

and hence
2k1 − ν1 − ιν2 = 0 and ν1 − ι(2k2 − ν2) = 0.

These lines intersect only in the double points as in (1.16) with k = k+
ν and k̃ = k−ν for ν ∈ Γ ∗.

We use the notation for F (0) as it is also done in [Feldman et al., 2000, §16], i.e. F (0) is represented
as the union

F (0) =
⋃
ν∈Γ ∗

(R+(ν) ∪R−(ν)) (1.17)

of infinitely many straight lines

R±(ν) = {(k1, k2) ∈ C2 | (k1 + ν1)± ι(k2 + ν2) = 0} (1.18)
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with ν ∈ Γ ∗. Then R = R+(0) ∪ R−(0). For brevity, we set R± := R±(0). As we have seen in
the foregoing prove, it is R±(ν) ∩R±(ν̃) = ∅ for ν, ν̃ ∈ Γ ∗ with ν 6= 0 and ν 6= ν̃ and

R+ ∩R−(ν) = {k+
ν }, R− ∩R+(ν) = {k−ν }, R+ ∩R−(−ν) = {k+

−ν}, R+(−ν) ∩R− = {k−−ν}.

and the map k 7→ k + ν maps R+(−ν) ∩ R− to R+ ∩ R−(ν). Since only a finite number of the
line pairs R+(ν) and R−(ν) can intersect any bounded subset of C2, the union in (1.17) is locally
finite.

Lemma 1.19. The eigenspaces of the free Schrödinger operator −4 respectively its transpose
−4T are 1-dimensional on

R \
¶
k±ν | ν ∈ Γ ∗ \ {0}

©
.

There, the eigenfunction of −4 normalized such that ψ0
N (0, 0) = 1 is given by ψ0

N (k, (x, y)) =
e2πι〈k,(xy )〉 and the eigenfunction of −4T normalized as ϕ0

N (0, 0) = 1 is given by ϕ0
N (k, (x, y)) =

e−2πι〈k,(xy )〉. In all double points k±ν , the eigenspaces of 4 respectively 4T are 2-dimensional with

ψ0(k, (x, y)) ∈ span
(
e2πι〈k,(xy )〉, e2πι〈k±ν,(xy )〉)

respectively
ϕ0(k, (x, y)) ∈ span

(
e−2πι〈k,(xy )〉, e−2πι〈k±ν,(xy )〉) .

Proof. Let ψ0(x, y) 6≡ 0 be the eigenfunction of the free Schrödinger operator (1.1) with quasiperi-
odicity (1.3). This can be calculated with help of the Fourier series of the eigenfunction ψ0

k(x, y)
which is periodic in R2 with respect to Γ :

ψ0(x, y) = e2πι〈k,(xy )〉ψ0
k(x, y) =

∑
κ∈Γ ∗

e2πι〈k+κ,x〉ψ̂0
k(κ). (1.19)

Let now k ∈ C2 be fixed and let κ ∈ Γ ∗. Then −4 ψ0(k, (x, y)) = 0 with ψ0(k) 6≡ 0 reads in the
Fourier space as ∑

κ∈Γ ∗
4π2(k + κ)2e2πι〈k+κ,(xy )〉ψ̂0

k(κ) = 0.

This equation can only hold if (k + κ)2ψ̂0
k(κ) = 0 for all κ ∈ Γ ∗. Since the eigenfunction is not

identically zero, (k + κ)2 has to vanish for at least one κ ∈ Γ ∗. Hence, for an arbitrary κ ∈ Γ ∗,
we want to find a k ∈ C2 such that (k + κ)2 = 0. Without loss of generality, let κ = 0. Then
for all other κ′ ∈ Γ ∗ \ {0} also k + κ′ is a solution since the Fermi curve F (0) is invariant under
translation by κ ∈ Γ ∗, compare Lemma 1.8. An element k is contained in the zero set of k2 if and
only if k2

1 + k2
2 = 0. This yields exactly two solutions of k1, where k1 = −ιk2 correspond to R+

and k1 = ιk2 to R−. In order to determine the solution ψ0(k) from this, it is necessary to know
whether other coefficients ψ̂0

k(κ) for κ ∈ Γ ∗ \ {0} in (1.19) are not necessarily equal to zero. That
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means for k chosen in such a way that k2 = 0, we have to answer the question if there is another
κ 6= 0 such that (k + κ)2 = 0 holds with the same k and κ ∈ Γ ∗ \ {0}. By Lemma 1.18 it is clear
that such a second solution can only exist in the double points k±κ at which R± intersects R∓(κ).
At those points,

ψ0(x, y) ∈ span
(
ψ̂0
k(0)e2πι〈k,(xy )〉, ψ̂0

k(ν)e2πι〈k±ν,x〉
)

and at all non-double points on R, the eigenfunction is given by ψ0 = ψ̂0
k(0)e2πι〈k,·〉. For the

normalized eigenfunction ψN (k) the zeroth Fourier coefficient is ψ̂0
k = 1. Also at k = 0, where R+

and R− intersect, the eigenspace is one-dimensional since there the eigenfunctions belonging to k
such that k1 = ιk2 and the eigenfunction belonging to k such that k1 = −ιk2 both become 1.
The same argumentation yields the assertions on the dual eigenfunction ϕ0

k on R as mentioned
above.

It is clear from the foregoing that the free Fermi curve F (0) can locally be represented as a
unique one- or two-sheeted Weierstrass covering, compare [de Jong and Pfister, 2012, Weierstaß
Preparation Theorem 2.3.4]. Weierstraß coverings are local coverings F (u) → C, (k1, k2) 7→ k1

such that locally around (k0,1, k0,2) ∈ F (u) the Fermi curve can be represented as the zero set
of a polynomial in k2 with coefficients that are holomorphic in k1, highest coefficient equal to
one and all lower coefficients vanishing at k1 = k0,1. The degree of this polynomial equals the
number of sheets which meet in (k0,1, k0,2). Even though this covering is obvious for F (0), it is
given here explicitly since it will used in the sequel to compare F (u) with F (0) asymptotically
by considering the local Weierstraß coverings of F (u). Lemma 1.18 yields that for k0 ∈ F (0) and
U ⊂ C2 an open subset around k0, F (0) ∩ U can be parametrized by setting z1 = k0,1 − k1 and
z2 = k0,2 − k2. Then F (0) can locally on an open subset U = U1 × U2 ⊂ C2 containing exactly
one double point k±ν be represented as f0(z1, z2) := (k0,1 − z1)2 + (k0,2 − z2)2 = 0. If U does not
contain a double point, it can either be represented as f+

0 (z1, z2) := (k0,1 − z1)− ι(k0,2 − z2) = 0
or as f−0 (z1, z2) := (k0,1 − z1) + ι(k0,2 − z2) = 0. All of these local descriptions of course coincide
with the local representations of F (0) as the zero set of detA0(z1, z2), where A0 is the 1 × 1-
respectively 2× 2-matrix as introduced in the proof of Theorem 1.14 since this representation is
unique by the Weierstraß Preparation Theorem [de Jong and Pfister, 2012, Theorem 3.2.4].

1.4.2. Fermi curves with constant potential

In [Klauer, 2011, Theorem 4.4.1] it is furthermore shown that also for constant potentials there is
an explicit formula to determine F (4π2u0). Note that for x ∈ C2, the norm ‖x‖ :=

√
x1x̄1 + x2x̄2

is used.

Lemma 1.20 ([Klauer, 2011, Theorem 4.4.1]). Let 4π2u0 be a constant potential and

R(u0) := {k ∈ C2 | (k2 − ιk1)(k2 + ιk1) + u0 = 0}.
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Then F (4π2u0) = R(u0) + Γ ∗ and the set R(u0) is a system of representatives for F (4π2u0)/Γ ∗

provided that the pairs of distinct points (k−ν (u0), k+
ν (u0)) given by

k∓ν (u0) := 1
2

Ç
±ν1 + ιν2

 
1 + 4u0
‖ν‖2

,−ιν1

 
1 + 4u0
‖ν‖2

± ν2

å
(1.20)

are identified to double points for all ν ∈ Γ ∗ \ {0} and provided that the constant potential does
not cause any double points to coincide. In particular, R(u0) is a continuous deformation of R
such that the deformation of a double points k±ν of R is still a double point k±ν (u0). Furthermore,
for every ε > 0, there exists a δ > 0 such that for ν ∈ Γ ∗δ one has ‖k±ν − k±ν (u0)‖ < ε.

Proof. Fourier transforming the Schrödinger operator with constant potential leads to

F (4π2u0) = {k ∈ C2 | ∃κ ∈ Γ ∗ : ((k2 + κ2)− ι(k1 + κ1))((k2 + κ2) + ι(k1 + κ1)) + u0 = 0}.

Therefore, as in the proof of Lemma 1.18, F (4π2u0) = R(u0) + Γ ∗. Also as in the case with zero
potential, the double points of F (4π2u0) must lie on F (4π2u0) and differ only by the corresponding
element of Γ ∗ \ {0}, i.e.

(k+
ν (u0))2 + u0 = 0, (k−ν (u0))2 + u0 = 0, k−ν (u0)− k+

ν (u0) = ν. (1.21)

Inserting the last equation into the second one to eliminate k−ν and then subtracting the first
equation from this yields ‖ν‖2 + 2(ν, k+

ν ) = 0. Assuming ν1 6= 0 and denoting k+
ν (u0) = (k1, k2)

leads to k1 = − 1
2ν1
‖ν‖2 − ν2

ν1
k2. By inserting this into the first equation in (1.21) one getsÇ

‖ν‖2

2ν1
+ ν2
ν1
k2

å2
+ k2

2 + u0 = 0⇔ ‖ν‖4

4ν2
1

+ ‖ν‖
2ν2
ν2

1
k2 + ν2

2
ν2

1
k2

2 + k2
2 + u0 = 0

⇔ k2
2 + ν2k2 + ν2

1u0
‖ν‖2

+ ‖ν‖
2

4 = 0,

and therefore

k±2 = −ν2
2 ±

√
ν2

2
4 −

‖ν‖2
4 − ν2

1u0
‖ν‖2

= 1
2

Ç
−ν2 ± ιν1

 
1 + 4u0
‖ν‖2

å
.

So

k1 = − 1
2ν1
‖ν‖2 − ν2

2ν1

Ç
−ν2 ± ιν1

 
1 + 4u0
‖ν‖2

å
= −‖ν‖

2

2ν1
+ ν2

2
2ν1
∓ ιν2

2

 
1 + 4u0
‖ν‖2

= −1
2

Ç
ν1 ± ιν2

 
1 + 4u0
‖ν‖2

å
.
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Then

k−ν (u0) = k+
ν (u0) + ν = 1

2

Ç
−ν1 ± ιν2

 
1 + 4u0
‖ν‖2

,−ν2 ± ιν1

 
1 + 4u0
‖ν‖2

å
+ (ν1, ν2)

= 1
2

Ç
ν1 ± ιν2

 
1 + 4u0
‖ν‖2

, ν2 ± ιν1

 
1 + 4u0
‖ν‖2

å
.

If ν1 = 0, we may assume ν2 6= 0 since ν 6= 0 and analogous calculations give another set of
double points. Still, it suffices to consider only one of these two sets of solutions: Denote these
four points as k±ν (u0)±, where the second index ± is representing the sign in front of the square
root. The dual lattice Γ ∗ is invariant under transforming ν 7→ −ν and this transformation maps
k±ν (u0)± 7→ k±−ν(u0)∓. So the entire set of solutions is contained in (1.20) and the choice of the
sign in front of the terms of the square roots is arbitrary. Since u0 is constant,

√
1 + 4u0

‖ν‖ → 1 for
ν →∞ and thus also ‖k±ν − k±ν (u0)‖ → 0.

Note that the eigenfunctions of −4k +4π2u0 are the same as the eigenfunctions of −4k with the
only difference that the eigenspace now becomes two-dimensional at the double points k±ν (4π2u0).

1.5. The direct and the inverse problem

Before we go on with the main parts of this work, we want to recall the following: In the title
of this work we promised to consider parts of the so-called inverse problem of the Schrödinger
equation (1.1). Taking a look at the map F : u 7→ F (u), the inverse problem wants to answer the
following two questions:

1. The isospectral problem: Considering the set of potentials belonging to a Fermi curve F (u)
with fixed potential u one asks how the fiber F−1(F (u)) can be parametrized. In other
words, the question is how to change certain properties of the eigenfunctions on F (u)/Γ ∗

such that the transformed eigenfunctions are still belonging to F (u)/Γ ∗.

2. The moduli problem: Here is asked what values of F (u) are possible and how these values are
parametrized when the potential u changes. In other words, one question is which complex
curves obeyed with what kind of ‘data’ describe Fermi curves for some potential u. And
another question is how these curves can be deformed such that they still are Fermi curves
for some other potential ũ.

In order to answer what kind of information we have about the Fermi curve such that we can
assume the right properties of the given data later on, the so-called direct problem is considered
first in this work. Hereby, we assume that a potential u is given and deduce as many properties of
F (u)/Γ ∗ and the corresponding divisor from this as will be necessary to find answers for some
questions raised by the inverse problem. Therefore, the direct problem is considered in Part I and
then partly answers to the question raised by the inverse problem are given in Part II.
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Part I.

The direct problem for finite type
potentials
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2. Asymptotic freeness

Our aim in this chapter is to understand the asymptotic behavior of the Fermi curve F (u) for
‖ Im(k)‖ → ∞. We will deduce that the Fermi curve F (u)/Γ ∗ can be divided in three different
parts: one compact part and one part ‘far outside’, where the part ‘far outside’ is divided into
so-called excluded domains, i.e. the parts of the Fermi curve which are contained in small open
neighborhoods of the double points of the free Fermi curve, and a rest which can be shown to
be a one-dimensional manifold. This was first observed in [Krichever, 1995, Theorem 3.3]. For
real-valued potentials u ∈ L2(R2/Γ,R), this is also explained very detailed in [Feldman et al.,
2000, Chapter 3, §17 and §18]. In [Feldman et al., 2000, Chapter 2, §5 and Chapter 3, §16 – §18],
one can also find the general procedure and an analogous analysis for Heat curves, i.e. curves
corresponding to the heat equation with periodic potential.
For the Fermi curves of the two-dimensional periodic Schrödinger equation, only the asymptotics
for ‖ Im(k)‖ → ∞ are of interest since Γ ∗ is a real two-dimensional lattice and F (u) is periodic
with respect to Γ ∗, see Lemma 1.8. To do so, k is taken from a compact subset in C2 and translate
it into the direction of the double points k±ν of F (0) in (1.16) for ν ∈ Γ ∗ and ‖ν‖ → ∞. We
will see that the approach k 7→ k + k±ν makes sense for two reasons: First of all, it follows from
Lemma 1.18 that k ∈ F (0) implies k + k±ν ∈ F (0) for all ν ∈ Γ ∗. Secondly, ‖ν‖ = 2‖ Im(k−ν )‖ =
2‖ Im(k−ν +κ)‖ = 2‖ Im(k+

ν )‖ for all ν, κ ∈ Γ ∗ and we know from Lemma 1.8 that F (u) is invariant
under translations of κ ∈ Γ ∗. Ergo, it suffices to consider the translations for ν with κ = 0 and
the asymptotic behavior of the Fermi curve for translations of k into the direction of k−ν or k+

ν

with ‖ν‖ → ∞ yields the full asymptotics of the Fermi curve. We now define the compact subsets
of C2 containing k and which will be translated in the direction of the double points. It would
be convenient to include the invariance of F (u) under translations of dual lattice vectors ν ∈ Γ ∗.
However, this alone is not sufficient because C2/Γ ∗ is not compact. Nevertheless, the proof of
Lemma 1.18 shows that at least F (0) is also invariant under translations by the double points k±ν .
This motivates the next definition.

Definition 2.1. We denote the lattice generated by ν and k−ν with ν ∈ Γ ∗ as Γ ∗C. We define ∆C
as a fixed fundamental domain of C2/Γ ∗C such that (0, 0) is in the interior of ∆C.

The lattice Γ ∗C has four real directions, so C2/Γ ∗C is compact and hence also∆C is. Since k+
ν −k−ν = ν,

it does not matter whether k+
ν or k−ν is used in this definition and the above definition yields the

25



2. Asymptotic freeness

lattice generated by all dual lattice vectors ν and all double points k±ν . Moreover,

C2 =
⋃

κ,ν∈Γ ∗
(κ+ k−ν +∆C).

For brevity, when considering F (u) ‘far outside’, we define

C2
δ :=

®
k ∈ C2 | ‖ Im(k)‖ > 1√

2
δ−1

´
(2.1)

for some small δ > 0. This set contains translations of k ∈ ∆C by κ and k±ν with ν, κ ∈ Γ ∗ and
‖ν‖ > δ−1 since ‖k±ν ‖ = 1√

2‖ν‖. To gather the double points ‘far outside’, we define for all δ > 0

Γ ∗δ := {ν ∈ Γ ∗ | ‖ν‖ > δ−1}.

Furthermore, we set for ε > 0

∆ε
C := {k ∈ ∆C, | dist(k, F (0)) ≥ ε}.

Then ∆ε
C is a closed subset of a compact set, hence also compact. To make notation easier in the

sequel, we define for k0 ∈ C2 and some subset M ⊂ C2

k0 +M := {k0 + k | k ∈M}.

To show that the Fermi curve F (u) with u ∈ C(R2/Γ ) is ‘asymptotically free’ in the sense indicated
above, an approach which is proposed in [Klauer, 2011] for the excluded domains is used. We
transfer these results also on the remaining part of F (u) ∩ C2

δ for δ > 0 sufficiently small. In
[Klauer, 2011], another way to see the asymptotic freeness on this part of the Fermi curve is
indicated: it is suggested implicitly that the asymptotic freeness of the resolvent of the Schrödinger
operator yields the full asymptotics for F (u) bounded away from small open balls around the
double points k±ν with ν ∈ Γ ∗. This argument we do not understand. The problem which might
occur in our eyes is that one would have to use the asymptotic freeness of (−4k +u)−1 to estimate
the spectral projection of −4k +u for λ = 0 and compare it to the spectral projection of −4k for
λ = 0. More precisely, to define the spectral projection and estimate it with help of Theorem 2.5
([Klauer, 2011, Theorem 4.3.8]) as suggested in [Klauer, 2011], we think that one has to use the
formulation of the spectral projection of both operators as in the proof of Theorem 1.14. This is
defined by integrating the resolvent 4−1 respectively (4− u)−1 over a small circle around λ = 0
such that no other eigenvalues of 4−1 respectively (4− u)−1 are contained in the interior of this
circle. This ‘separation’ of the eigenvalues is necessary since otherwise, the projection is not unique.
However, the eigenvalues for the free Schrödinger operator can be described as a covering over
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2.1. Preliminaries for the asymptotics

k and then read as λ(k + k±ν ) = (k + κ+ k±ν )−2 with κ ∈ Γ ∗ and k ∈ ∆C. So for ‖ν‖ → ∞, all
eigenvalues of 4−1

(k+κ+k±ν ) converge to zero since they depend on k + k±ν . We think that all these
eigenvalues asymptotically accumulate around zero and hence estimating the eigenprojections by
estimating the integrands under the integral of the spectral projections is not an option. So in
a certain sense, the Schrödinger operators considered here have ‘too much’ of this property ‘to
separate the eigenvalues’ since they become distant from each other so fast that all eigenvalues of
the resolvent converge too fast to zero. Therefore, we do not see how the technique proposed in
[Klauer, 2011] can be applied to show the asymptotic freeness of F (u) away from the excluded
domains.
To come over these difficulties, another method will be used which is proposed in [Schmidt, 2002]
for the Dirac operator and transferred to the asymptotics of the Fermi curve of the Schrödinger
operator in the excluded domains in [Klauer, 2011, Section 4]. Hereby, the excluded domains
denote some small open neighborhoods of k±ν with ν ∈ Γ ∗δ and δ > 0 sufficiently small. We use this
approach to show also away from the excluded domains, F (u) behaves asymptotically free. For the
excluded domains the results from [Klauer, 2011] are directly transferred. For the remaining part,
we make small adjustments. Therefore, some results from [Klauer, 2011] are necessary. These are
summarized in the following section to keep this work self-contained and if necessary extend in the
appropriate way such that it can be use for our purposes later on.

2.1. Preliminaries for the asymptotics

For Banach spaces X and Y , B(X,Y ) denotes the space of all bounded operators from X to Y .
Furthermore, the Sobolev space of L2-integrable functions which are once weakly differentiable is
considered. This is defined as

W 1,2(R2/Γ ) :=
®
f ∈ L2(R2/Γ,C) | ∀ |α| ≤ 1∃ fα ∈ L2(R2/Γ,C)

∀ϕ ∈ C∞0 (R2/Γ ) :
∫
fαϕdµ = (−1)|α|

∫
f∂αϕdµ

´
,

where α is some multi-index and ∂αf := fα is the weak derivative of f . W 1,2(R2/Γ ) is equipped
with the norm

‖f‖W 1,2(R2/Γ ) := ‖f‖L2(R2/Γ ) + ‖∂xf‖L2(R2/Γ ) + ‖∂yf‖L2(R2/Γ ).

Lemma 2.2. Let k ∈ C2 \ F (0). Then the map defined by

K → B(L2(R2/Γ ),W 1,2(R2/Γ )), k 7→ −4−1
k

is holomorphic.
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2. Asymptotic freeness

Proof. We denote the Fourier transform of the W 1,2-norm as ‖ · ‖‘W 1,2(R2/Γ )
:= ‘‖ · ‖W 1,2(Γ ∗). Using

Parseval’s identity [Reed and Simon, 1980, Theorem II.6] and partial integration, where we take
into account that f ∈ L2(R2/Γ ) is periodic with respect to Γ , we obtain

‖f‖2W 1,2(R/Γ,C) =
∫
∆
|∂xf |2 + |∂yf |2 + |f |2

= 1
2

∫
∆
|f̄(4f)|2 + |(4f̄)f |2 + |f |2

=
∑
κ∈Γ ∗

|ψ̂k(κ)|2(1 + 4π2κ) = ‖f‖2‘W 1,2(Γ ∗)
.

Let K be any compact subset of C2 \ F (0) and k ∈ K. Then Fourier-transforming yields

‖ −4−1
k f‖W 1,2(R2/Γ ) = ‖Ÿ�−4−1

k f‖‘W 1,2(R2/Γ,C)

= 1
Vol(∆)

Ñ∑
κ∈Γ ∗

∣∣∣∣∣ f̂(κ)
−4π2(k + κ)2

∣∣∣∣∣
2

(1− 4π2‖κ‖2)

é1/2

≤
(

c

inf
κ∈Γ ∗
k∈K

‖k + κ‖2
+ c̃

inf
κ∈Γ ∗
k∈K

‖k + κ‖

)
‖f‖L2(R2/Γ )

with some constants c, c̃ ∈ R+. Since we can find a compact subset K for any k ∈ C2 \ F (0),
the image −4−1

k is a bounded operator from L2(R2/Γ ) to W 1,2(R2/Γ ). Holomorphy of the map
k 7→ −4−1

k follows as in the proof of Theorem 1.10.

The next Lemma will be used frequently to show the asymptotic freeness of F (u). It can also
be found in [Klauer, 2011, Lemma 4.3.3]. However, the value of the infimum given there is not
determined correctly in [Klauer, 2011] and the corresponding calculations are missing. Therefore,
now a more precise proof how to determine this infimum is given.

Lemma 2.3. Let K ⊂ C2 \ F (0) be a compact set. Then for κ, ν ∈ Γ ∗, one has

lim
‖ν‖→∞

inf
κ∈Γ ∗
k∈K

|(κ+ k + k±ν )2| =∞.

Proof. Let (νn)n∈N be a sequence in Γ ∗ such that limn→∞ ‖νn‖ =∞. Consider for fixed νn

f(κn, kn) =
∣∣∣Äκn + kn + k±νn

ä2∣∣∣ =
∥∥∥Äκn + kn + k±νn

ä∥∥∥2

and choose κn ∈ Γ ∗ and kn ∈ K as vectors such that f attains its infimum. The set K is compact,
Γ ∗ is discrete and f is continuous with lim‖κ‖→∞ f(κ, kn) =∞. So these vectors exist. Since the
infimum of f over κ ∈ Γ ∗ is bigger or equal than the infimum of f over κ ∈ R2, we extend the
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2.1. Preliminaries for the asymptotics

domain of κ ∈ Γ ∗ to κ ∈ R2. Due to (k±ν )2 = 0 it is with kn,1 = an + ιbn and kn,2 = cn + ιdn,
where an, bn, cn, dn ∈ R for all n ∈ N,

∥∥∥Äκn + kn + k±νn

ä∥∥∥2
=

∥∥∥∥∥∥
(
κn,1

κn,2

)
+
(
an + ιbn

cn + ιdn

)
+ 1

2

(
±νn,1 + ινn,2

−ινn,1 ± νn,2

)∥∥∥∥∥∥
2

=
Å
κn,1 + an ±

1
2νn,1

ã2
+
Å
bn + 1

2νn,2
ã2

+
Å
κn,2 + cn ±

1
2νn,2

ã2
+
Å
dn −

1
2νn,1

ã2

= κ2
n,1 + a2

n + 1
4ν

2
n,1 + 2anκn,1 ± κn,1νn,1 ± anνn,1 + b2n + bnνn,2 + 1

4ν
2
n,2 +

+ κ2
n,2 + c2

n + 1
4ν

2
n,2 + 2cnκn,2 ± νn,2κn,2 ± νn,2cn + d2

n − dnνn,1 + 1
4ν

2
n,1.

Thus,

∂κ1f(κn, kn) = 2(κn,1 + an)± νn,1 = 0 ⇔ κn,1 = −an ∓
1
2νn,1,

∂κ2f(κn, kn) = 2(κn,2 + cn)± νn,2 = 0 ⇔ κn,2 = −cn ∓
1
2νn,2

and Hess(f)(κ, kn) =
(

2 0
0 2

)
for all κ ∈ R2. So the infimum is attained for κn = −Re(kn + k±νn)

and for n→∞ we get

f(κn, kn) = ‖ Im(kn + k±νn)‖2 = ‖ Im(kn)‖2 + 2〈Im(kn), Im(k±νn)〉+ ‖νn‖2 →∞.

The boundedness of the imaginary part of kn ∈ K assures that the behavior of the infimum over
κn ∈ Γ ∗ and kn ∈ K also goes to infinity for n→∞.

Note that the operator −4k+k±ν is depending on ν ∈ Γ ∗. So we consider this as a sequence of
operators parametrized by ν ∈ Γ ∗. Thereby, we want to show that certain estimates hold for such
sequences of operators for all ν ∈ Γ ∗δ with δ > 0 sufficiently small, i.e. for large imaginary part of
the boundary value.

Lemma 2.4. [Klauer, 2011, Lemma 4.3.7] Let u ∈ C(R2/Γ ). Then for all sufficiently small
ε, ε̃ > 0 there is a δ(ε, ε̃) > 0 such that for all k ∈ ∆ε

C and ν ∈ Γ ∗δ the operator u4k+k±ν exists and
is bounded from L2(R2/Γ ) to L2(R2/Γ ) with

‖u4−1
k+k−ν

‖ < ε̃.

Proof. Let k0 ∈ ∆ε
C. Due to Theorem 1.10, there exists a neighborhood K of k0 such that the

resolvent 4−1
k exists for all k ∈ K and is bounded on L2(R2/Γ ∗,C). We choose K in such a way

that dist(K,F (0)) > ε
2 . Since F (0) ⊂ C2 is invariant under translations by double points k±κ for

all κ ∈ Γ ∗, this also holds for k ∈ {k±κ + k̃ | k̃ ∈ K}.
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2. Asymptotic freeness

For f ∈ L2(R2/Γ ) and κ ∈ Γ ∗, one has due to Parseval’s identity [Reed and Simon, 1980, Theorem
II.6], Hölder’s inequality [Reed and Simon, 1975, Proposition IX.4.2] and ‖u‖ < c(u)

‖u4−1
k+k−ν

f‖L2(R2/Γ ) ≤ c(u)‖ 4−1
k+k−ν

f‖L2(R2/Γ ) = c(u)‖¤�u4−1
k+k−ν

f‖`2(Γ ∗)

= c(u)

Ñ∑
κ∈Γ ∗

∣∣∣∣∣ f̂(κ)
−4π2(k + k±κ + κ)2

∣∣∣∣∣
2
é1/2

≤ c(u,K)
inf
κ∈Γ ∗
k∈K

|(k + k−ν + κ)2|

(∑
ν∈Γ ∗

|f̂(κ)|2
)1/2

= c(u,K)
inf
κ∈Γ ∗
k∈K

|(k + k−ν + κ)2|
‖f‖L2(R2/Γ ),

where c(u,K) ∈ R+ is some constant depending on u and the neighborhood K of k.
We know from Lemma 2.3 that for all ε̃ > 0, there exists a δK > 0 depending on K and ε̃ such
that for all ν ∈ Γ ∗δ one has

c(u,K)
(

inf
κ∈Γ ∗
k∈K

|(κ+ k + k±ν )2|
)−1

< ε̃.

So the operator norm of u4−1
k+k−1

ν
on K is smaller than ε̃. One can repeat this procedure for all

k ∈ ∆ε
C to obtain the same results for different sets K corresponding to the different k. Since ∆ε

C

is compact, it can be covered by finitely many of such K. Choosing δ as the minimum of all δK
from a finite covering of ∆ε

C yields the desired result.

The proof of the following Theorem is completely analogous to the proof of [Klauer, 2011, Theorem
4.3.8], where it is shown for a wider class of potentials. Nevertheless, we repeat the proof here
since we believe it is crucial for the steps hereinafter.

Theorem 2.5. Let u ∈ C(R2/Γ ). Then for all sufficiently small ε, ε̃ > 0, there exists a δ(ε, ε̃) > 0
such that for all k ∈ ∆ε

C and all ν ∈ Γ ∗δ , the operators 4−1
k+k−ν

and (4k+k−ν − u)−1 exist and are
bounded from L2(R2/Γ ) to L2(R2/Γ ) with

‖(4k+k−ν − u)−1 −4−1
k+k−ν

‖ < ε̃. (2.2)

Proof. It is shown in Lemma 2.2 that the resolvent 4−1
k+k−ν

exists and is bounded from L2(R2/Γ )
to L2(R2/Γ ) for k + k−ν ∈ C2 \ F (0). By Lemma 2.4 we know that for sufficient small 0 < ε′ ≤ ε,
there is a δ′ > 0 such that for all k ∈ ∆ε

C and all ν ∈ Γ ∗δ′ , the operator u4−1
k+k−ν

exists and is
bounded on L2(R2/Γ ) with

‖u4−1
k+k−ν

‖ < ε′.
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2.2. Matrix decomposition of the Schrödinger operator.

For a fixed and sufficiently small ε′ > 0, (1− u4k+k−ν )−1 can be expressed by its Neumann series,
compare [Reed and Simon, 1980, Corollary in VI.3, formula (VI.2)] and thus

‖(4k+k−ν − u)−1 −4−1
k+k−ν

‖ ≤ ‖ 4−1
k+k−ν

‖
∥∥∥∥∥ ∞∑
n=0

(u4−1
k+k−ν

)n − 1
∥∥∥∥∥ ≤ ‖4−1

k+k−ν
‖ ε′

1− ε′ .

Lemma 2.2 yields that 4−1
k+k−ν

is uniformly bounded in k for all ν ∈ Γ ∗ since ∆ε
C is compact.

Furthermore, F (0) is invariant under translations by the double points k−κ . So by Lemma 2.3,
the right hand side of the above inequality is smaller than ε for all k ∈ ∆ε

C and all ν ∈ Γ ∗δ′ for
sufficiently small ε′ such that ε′

1−ε′ < ε̃.

The foregoing considerations yield immediately that F (u) ∩ C2
δ has to be contained in a small

ε-tube around F (0) ∩ C2
δ for δ > 0 sufficiently small. More precisely:

Corollary 2.6.

Let u ∈ C(R2/Γ ). Then for all ε > 0, there is a δ(ε) > 0 such that for all k + k±ν ∈ F (u) with
k ∈ ∆C and ν ∈ Γ ∗δ one has

dist(k + k±ν , F (0)) = dist(k, F (0)) = min
k̃∈F (0)

‖k − k̃‖ < ε.

Proof. It is shown in Lemma 2.2 that for k ∈ ∆ε
C and for all ν ∈ Γ ∗, the free resolvent −4−1

k+k−ν
is a regular operator. Due to Theorem 2.5, for all ε > 0, there exists a δ′ > 0 such that
(2.2) holds for k ∈ ∆ε

C and ν ∈ Γ ∗δ′ . So for δ′ > 0 small enough, also (− 4k+k−ν −u)−1 is a
regular operator for k ∈ ∆ε

C. Hence, the set of singularities of (−4k+k−ν +u)−1 is contained in
{k ∈ C2 | k = k−ν + k′ and k′ ∈ ∆C \∆ε

C}. This yields that for ν ∈ Γ ∗δ′ and k ∈ ∆C, all values of
k + k−ν ∈ C2 that are describing the Fermi curve F (u) are contained in an ε-tube around F (0).
Let (δ′)−1 ≤ ‖ν‖ = 2‖ Im(k−ν )‖ for all ν ∈ Γ ∗δ′ . Choosing δ := 1

2δ
′ yields ‖ Im(k−ν )‖ ≥ δ−1 for all

ν ∈ Γ ∗δ′ , and therefore the assertion.

2.2. Matrix decomposition of the Schrödinger operator.

To see the asymptotic freeness of F (u), we will adapt the technique used in [Klauer, 2011, Section
4.5] – which is used there to describe F (u) in the excluded domains – for all parts of F (u)∩C2

δ with
δ > 0 sufficiently small. Therefore, we repeat the whole theory for both cases and cite in which
part of [Klauer, 2011] the appropriate results for the excluded domains are shown. The following
definitions correspond to the decomposition of L2(R2/Γ ) as given in [Klauer, 2011, Definition
4.5.1] for the excluded domains.

Definition 2.7 ([Klauer, 2011, Definition 4.5.1]). Let E0 be the one-dimensional complex Banach
space generated by ψ0 := 1 and for all ν ∈ Γ ∗, let E±ν be the two-dimensional complex Banach
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2. Asymptotic freeness

space generated by the Fourier modi ψ±ν := e2πι〈k,±ν〉 and ψ0. Then the canonical projections

π0 : L2(R2/Γ )→ E0, ψ 7→ ĉ(0)ψ0

πν : L2(R2/Γ )→ E±ν , ψ 7→ ĉ(0)ψ0 + ĉ(±ν)ψ±ν

are both bounded linear operators, and therefore also π⊥0 = (1− π0) and π⊥±ν := (1− π±ν) are
bounded and linear. We define E⊥0 := Im(π⊥0 ) and E⊥±ν := Im(π⊥±ν). If it makes no or only minor
differences whether we consider E0 or E±ν , we write E respectively E⊥ and π respectively π⊥.

With this definitions, L2(R2/Γ ) = E0⊕E⊥0 as well as L2(R2/Γ ) = E±ν ⊕E⊥±ν . Since we are going
to consider some operators on these subspaces or images under these operators restricted to these
subspaces, the following decomposition of linear operators on L2(R2/Γ ) is very useful.

Definition 2.8 ([Klauer, 2011, Definition 4.5.3]). Let T : L2(R2/Γ ) → L2(R2/Γ ) be a linear
operator. We define the linear operators

A := πT |E : E → E, B := πT |E⊥ : E⊥ → E,

C := π⊥T |E : E → E⊥, D := π⊥T |E⊥ : E⊥ → E⊥.

We call the operator A the restriction of T to E and the operator D the restriction of T to E⊥,
even though it is actually the restriction projected to the respective space.

With respect to the decomposition L2(R2/Γ ) = E ⊕ E⊥, the operator T can be represented as

T =
(
A B

C D

)
.

We have seen in Lemma 1.19 that for k + k±ν ∈ F (0) \ {k±ν | ν ∈ Γ ∗} with k ∈ ∆C, the kernel
of 4k±ν +k consists of E0 and that the kernel of 4k±ν

consists of E±ν , i.e. the singular support
of the resolvent 4k±ν +k is contained in E0 and the singular support of 4−1

k±ν
is contained in E±ν .

Accordingly, the free resolvent restricted to E⊥±ν respectively E⊥0 is a regular operator which we
denote as the reduced resolvent. We will concretize this in Proposition 2.11 which is for E±ν also
shown in [Klauer, 2011, Proposition 4.5.4].
Before we start with this, we introduce the way how we choose k in the asymptotics hereinafter. We
want to consider the asymptotics of F (u) in small, neighborhoods of F (0) and distinguish between
the parts of the Fermi curve ‘far outside’ which are close to the double points k±ν ∈ F (0) and the
part ‘far outside’ which is bounded away from these double points. Therefore, it is necessary to
define open sets around the free Fermi curve such that for δ > 0 sufficiently small F (u) ∩ C2

δ is
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2.2. Matrix decomposition of the Schrödinger operator.

contained in them and such that the local considerations hold for all ν with ν ∈ Γ ∗δ . We define

Bε(k±Γ ∗)
c := C2 \

⋃
κ,ν∈Γ ∗

Bε(k±κ + ν).

Then the set {k ∈ C2 | k ∈ F (u) ∩Bε(k±Γ ∗)c} is the set of all points on F (u) which are ε-far away
from the double points k±ν of F (0). We again consider translations of small open neighborhoods
of k0 ∈ R by k±ν for ‖ν‖ → ∞. To apply the decomposition of the resolvent of the Schrödinger
operator into a singular and a regular part away from the excluded domains, it is necessary to
ensure that we consider only neighborhoods of such k0 ∈ R\{k±ν | ν ∈ Γ ∗} which contain no parts
of R(κ) for κ ∈ Γ ∗ \ {0}. In this case, the kernel of the Schrödinger operator in this neighborhood
consist only of E0.
Using again the norm ‖ · ‖ which is indicated by the hermitian scalar product for elements of C2,
the following proposition holds.

Proposition 2.9. Let k ∈ R± ∩Bε(k±Γ ∗)c. Then for all k̃ ∈ R∓(ν), there holds

‖k − k̃‖ ≥ ‖k − k±ν ‖ ≥ min
ν∈Γ ∗
{‖k − k−ν ‖, ‖k − k+

ν ‖}

and for all k̃ ∈ R±(ν), there holds

‖k − k̃‖ ≥ ‖ν‖ ≥ min{‖κ‖ | κ ∈ Γ ∗ \ {0}}.

Proof. A normal vector of R+(ν) is given by ( 1
ι ) and a normal vector of R−(ν) is given by

( 1
−ι
)

and with respect to the hermitian scalar product · it is(
1
ι

)
·
(

1
−ι

)
= 1 · 1 + ι · (−ι) = 0.

So R+(ν) and R−(κ) are both affine hyperplanes of C2 which are perpendicular to each other. So
R± and R±(ν) are parallel to each other and the minimal distance between two affine hyperplanes
which are parallel is the distance measured orthogonally, it is dist(R±,R±(ν)) = ‖ν‖ for all ν ∈ Γ ∗

and for every k ∈ R± ∩Bε(k±Γ ∗)c, there exists a k̃ ∈ R±(ν) such that

‖k − k̃‖ = dist(R±,R±(ν)) = ‖ν‖.

For the second case, let k ∈ R+ ∩Bε(k±Γ ∗)c and k̃ ∈ R−(ν) with ν ∈ Γ ∗ \ {0}. Then

k1 + ιk2 = 0 and (k̃1 + ν1)− ι(k̃2 + ν2) = 0
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2. Asymptotic freeness

and hence k2 = ιk1 and k̃2 = −ι(k̃1 + ν1 − ιν2). So the triangle inequality yields

‖k − k̃‖ = |k1 − k̃1|+ |k2 − k̃2| = |k1 − k̃1|+ |ιk1 + ι(k̃1 + ν1 − ιν2)|

= |k1 − k̃1|+ |k1 + k̃1 + ν1 − ιν2|

≥ |2k1 + ν1 − ιν2| = 2
∣∣∣∣k1 −

1
2(−ν1 + ιν2)

∣∣∣∣ = 2|k1 − k+
ν,1|.

Together with |k1 − k+
ν,1| = |k2 − k+

ν,2| and R+ ∩R−(ν) = {k+
ν }, we obtain

min
k̃∈R−(ν)

‖k − k̃‖ = ‖k − k+
ν ‖.

Analogous calculations yield for k ∈ R− ∩ Bε(k∗Γ )c and k̃ ∈ R+(ν) that mink̃∈R+(ν)(‖k − k̃‖) =
‖k − k−ν ‖ and taking these two equalities together yields the assertion.

Remark 2.10. This Lemma together with Corollary 2.6 motivates the following setting which we
will use to formulate the asymptotics. Let ε > 0 be chosen such that 4ε is smaller than one quarter
of the minimal distance of the generators of the lattice Γ ∗C from Definition 2.1 and such that
the Fermi curve F (u) is contained in an ε-tube around F (0). The last choice is possible due to
Corollary 2.6. We then consider B4ε(0) = {k ∈ C2 | ‖k‖ < 4ε}. For δ > 0 sufficiently small and
ν ∈ Γ ∗δ , we denote the sets k±ν +B4ε(0) as excluded domains.
To describe the asymptotics bounded away from the double points k±ν , we choose k0 ∈ R∩B4ε(k±Γ ∗)c.
Then due to Proposition 2.9, k0 is bounded away by 4ε from k±ν , thus B2ε(k0) does not intersect
an ε-tube around R(ν) for ν ∈ Γ ∗δ . That means by considering k + k±ν with k ∈ B2ε(k0), one
considers indeed only the part of the Fermi curve which is ε-close to F (0) and bounded away by
2ε from k±ν . Why we are choosing 4ε and 2ε instead of the seemingly more natural choice ε and
2ε will be explained later in Remark 2.30.

Part (b) of the following proposition is shown in [Klauer, 2011, Proposition 4.5.4].

Proposition 2.11. (a) Let ε > 0 and k0 ∈ R∩B4ε(k±Γ ∗)c. Then for all k ∈ B2ε(k0), the resolvent
of the free Schrödinger operator as an operator on L2(R2/Γ ) has the E0 ⊕E⊥0 -decomposition
as in Definition 2.8

4−1
k+k±ν

=
(
S0(k + k±ν ) 0

0 R0(k + k±ν )

)
,

where R0 is the reduced resolvent of the free Schrödinger operator. The reduced resolvent
R0(k+ k±ν ) is holomorphic and bounded in k ∈ B2ε(k0), i.e. for the operator norm, there holds

sup
k∈B2ε(k0)

sup
ν∈Γ ∗\{0}

‖R0(k + k±ν )‖ <∞.
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2.2. Matrix decomposition of the Schrödinger operator.

With respect to the basis ψ0 of E0, the singular part of the free Schrördinger operator reads as

S0(k) = − 1
4π2k

−2.

(b) Let ε̃ > 0 be smaller than half of the distance between the generators of Γ ∗C. Then the resolvent
of the free Schrödinger operator as an operator on L2(R2/Γ ) has for all ν ∈ Γ ∗ \ {0} and
k ∈ Bε̃(0) the E±ν ⊕ E⊥±ν-decomposition as in Definition 2.8

4−1
k+k±ν

=
(
S±ν(k + k±ν ) 0

0 R±ν(k + k±ν )

)
,

where R±ν is the reduced resolvent of the free Schrödinger operator. For k ∈ Bε̃(0) and ν ∈ Γ ∗,
R±ν(k + k±ν ) is holomorphic and bounded, i.e. for the operator norm, there holds

sup
k∈Bε(0)

sup
ν∈Γ ∗\{0}

‖R±ν(k + k±ν )‖ <∞.

With respect to the basis ψ0, ψ±ν of E±ν, the singular part of the free Schrödinger operator
reads as

S±ν(k) =
(
−4π2k2 0

0 −4π2(k + ν)2

)−1

.

Note that ε̃ is chosen in such a way that it holds for 8ε and thus also for 4ε with ε as in Remark
2.10. These two cases will be necessary hereinafter.

Proof. Let k̃ ∈ C2 be a pole of k 7→ 4−1
k , i.e. there exists a κ ∈ Γ ∗ such that k̃ ∈ R(κ). Then due

to Lemma 1.18,
k̃2 + κ2 = ι(k̃1 + κ1) or k̃2 + κ2 = −ι(k̃1 + κ1). (2.3)

Furthermore, we already know that the Fourier transform of 4−1
k is a diagonal operator with

− 1
4π2(k+κ)2 on the diagonals with κ ∈ Γ ∗ and with some bijection between Γ ∗ and N to sort the

diagonal entries.

(a) Let k̃ = k0 ∈ B4ε(k±Γ ∗)c. Then also k0 + k±ν ∈ B4ε(k±Γ ∗)c∩ for all ν ∈ Γ ∗. Without loss of
generality, let k0 ∈ R± and k0 6∈ R∓. Then k0 fulfills exactly one of the conditions in (2.3)
with κ = 0, since Γ ∗ is discrete. Thus, for k ∈ B2ε(k0) ⊂ B2ε(kΓ ∗)c, also only the equation in
(2.3) with κ = 0 which holds for k0 can equal zero. Therefore, 4−1

k+k±ν
becomes only singular

on E0 and is regular when it is restricted to E⊥0 . The form of S0 is given by the Fourier
transform of the resolvent restricted to E0 and maps ψ̂0 to − 1

4π2(k+k±ν )2 ψ̂
0.

(b) Let now k̃ = k±ν for some ν ∈ Γ ∗. Then one of the equalities in (2.3) holds for κ = 0 and
the other one for κ = ±ν as can be seen in the proof of Lemma 1.18. So for any other pole
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2. Asymptotic freeness

k̃ = k±ν + k of the resolvent with k ∈ Bε(0), the corresponding equality in (2.3) can also only
hold for either the same κ or 0 since Γ ∗ is discrete. The rest of the argumentation is analogous
to (i) with the only difference that in the neighborhood of k±ν , the free Schrödinger operator is
singular on E±ν .

The estimate of the norm follows in both cases as in Lemma 2.2. The only difference is that
now also k ∈ F (0) is allowed since only the regular part of the free Schrödinger operator is
considered.

Remark 2.12. For abbreviation, one can also write the above statements as

4−1
k = S(k) +R(k),

where S(k) := π 4−1
k |E and R(k) := π⊥ 4−1

k |⊥E . If we want to point out whether we consider
these operators in a neighborhood of k±ν or in the neighborhood of a regular point of F (0), we put
an index ±ν respectively 0 to the corresponding operators S and R. No index shall imply that the
assertions hold for both variants. We also neglect the dependence of S and R on k as long as it is
not necessary for the asymptotics.
For the reduced resolvent, the same statements as we have seen in Section 2.1 for k ∈ ∆ε

C can be
shown for all k ∈ ∆C, so especially also for k ∈ F (0) since the reduced resolvent is regular on F (0).
Therefore, the following Lemma is obvious to expect. Part (b) is shown in [Klauer, 2011, Lemma
4.5.9].

Lemma 2.13. (a) For all ε > 0 as in Remark 2.10, there is a δ(ε) > 0 such that for all
k ∈ B2ε(k0), all k0 ∈ R ∩B4ε(k±Γ ∗)c and all ν ∈ Γ ∗δ

inf
k∈B2ε(k0)
κ∈Γ ∗\{0}

|(κ+ k + k±ν )2| > ε−1.

(b) For all ε̃ > 0 which are smaller than half of the distance between the generators of Γ ∗C, there is
a δ(ε̃) > 0 such that for all ν ∈ Γ ∗δ

inf
k∈Bε̃(0)

κ∈Γ ∗\{0,±ν}

|(κ+ k + k±ν )2| > ε−1.

Proof. The proof of both statements is more or less analogous to the proof of Lemma 2.3. In case
(a), there is only exactly one zero of κ 7→ |(κ+ k + k±ν )2|. Without loss of generality, we assume
again that κ = 0 and due to the choice of ε, this zero does not coincide with any double point k±ν .
However, κ = 0 is excluded from the infimum. The same holds in a neighborhood of the double
points k±ν with the only difference that in this case, the only zeros of κ 7→ |(κ+ k+ k±ν )2| are given
by κ ∈ {0,±ν} which are also excluded from the infimum, and therefore (b) holds.
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2.2. Matrix decomposition of the Schrödinger operator.

We also need an analogon to Lemma 2.4 for the reduced resolvent, but in stronger norms and also
for reversed order of potential and Laplacian. First of all, note that W 1,2(R2/Γ ) ⊂ L2(R2/Γ ).
Thus, the direct composition of L2(R2/Γ ) in Definition 2.8 transfers also on W 1,2(R2/Γ ) and we
also denote this composition as W 1,2(R2/Γ,C) = E + E⊥.

Lemma 2.14. (a) For all ε > 0 as in Remark 2.10 and all u ∈ C(R2/Γ ), there is a δ(ε, u) >
0 such that for all k ∈ B2ε(k0) with k0 ∈ R ∩ B4ε(k±Γ ∗)c and all ν ∈ Γ ∗δ , the operator
π⊥0 (4−1

k+k±ν
u|E⊥±ν ) is in B(L2(R2/Γ ),W 1,2(R2/Γ )) with

‖π⊥0 (4−1
k+k±ν

u|E⊥0 )‖ < ε.

(b) For all ε > 0 as in Remark 2.10 and all u ∈ C(R2/Γ ), there exists a δ(ε, u) > 0 such that for
all k ∈ B4ε(0) and all ν ∈ Γ ∗δ , the operator π⊥±ν(4−1

k+k±ν
u|E⊥±ν ) is in B(L2(R2/Γ ),W 1,2(R2/Γ ))

with
‖π⊥±ν(4−1

k+k±ν
u|E⊥±ν )‖ < ε.

Proof. Proposition 2.11 yields that

π⊥ 4−1
k+k±ν

u|E = 4−1
k+k±ν

π⊥u|E .

The multiplication operator u : L2(R2/Γ )→ L2(R2/Γ ) is bounded since u ∈ C(R2/Γ ). Moreover,
it follows as in Lemma 2.2 that − 4k+k±ν |E⊥ ∈ B(L2(R2/Γ ),W 1,2(R2/Γ )). Hence, for δ > 0
sufficiently small, the restriction of 4k+k±ν u to E⊥0 is bounded for k ∈ B2ε(k0) respectively the
restriction to E⊥±ν is bounded for k ∈ B4ε(0). As in the proof of Lemma 2.2, there holds in the
case of (a) for the operator norm

‖ − π⊥0 4−1
k+k±ν

|E⊥‖ ≤
c

inf
κ∈Γ ∗\{0}
k∈K

‖k + k±ν + κ‖2
+ c̃

inf
κ∈Γ ∗\{0}
k∈K

‖k + k±ν + κ‖

with some constants c, c̃ ∈ R+. For δ > 0 sufficiently small and ν ∈ Γ ∗δ , the term on the right
hand side is smaller than ε. Analogously the case (b) is shown. The only difference is that the
infimum in κ is taken over Γ \ {0,±ν}.
The estimate of the norm is also shown as the estimate in Lemma 2.14 since for ψ ∈ L2(R2/Γ ),
there holds

‖π⊥ 4−1
k+k±ν

uψ‖W 1,2(R2/Γ ) ≤ ‖4−1
k+k±ν

‖W 1,2(R2/Γ )‖π⊥uψ‖L2(R2/Γ ).

So by Lemma 2.13, there exists a δ > 0 depending only on u and ε such that ‖−4−1
k+k±ν

u‖ < ε.

Lemma 2.15 ([Schmidt, 2002, Lemma 3.21]). Let E be a Banach space, F a closed subspace of
E and T : E → F a bounded linear operator. Then the operator 1E − T is boundedly invertible if
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2. Asymptotic freeness

and only if 1F − T |F is boundedly invertible, where 1E and 1F denote the identity in E and F ,
respectively. Furthermore, if (1F − T |F )−1 exists, then

(1E − T )−1 = 1E + (1F − T |F )−1T.

Proof. Let (1E−T )−1 exist and be bounded. Since the codomain of T is F , one has (1E−T )F ⊆ F .
Let x ∈ E \ F and assume that (1E − T )x ∈ F . Then x − Tx ∈ F and Tx ∈ F , so also x ∈ F .
Thus, one also has (1E − T )(E \F ) ⊆ (E \F ). Next, ee want to deduce F ⊆ (1E − T )F . Suppose
that there exists a g ∈ F such that there is no f ∈ F with (1E − T )f = g. Due to the surjectivity
of (1E − T ), it follows that there exits an f ∈ E \ F such that (1E − T )f = g which shows that
g ∈ E \ F. By the same means, also E \ F ⊆ (1E − T )(E \ F ), and therefore (1E − T )F = F and
(1E − T )(E \ F ) = E \ F . So the inverse of 1F − T |F exists and is given by (1E − T )−1|F . It is
bounded since (1E − T )−1 is bounded.
Conversely, let (1F − T |F )−1 exist and be bounded on F . Since (1E)|F = 1F and T : E → F , one
has (1E − T )|F = 1F − T |F and accordingly (1E − T )(1F − T |F )−1 = 1F . Since T : E → F , this
equality yields

(1E − T )(1E + (1F − T |F )−1T ) = 1E − T + (1E − T )(1F − T |F )−1T = 1E ,

and so 1E + (1F − T |F )−1T is a right inverse of 1E − T . T : E → F implies

T (1E − T ) = T1E − TT = 1FT − T |FT = (1F − T |F )T,

so 1E + (1F − T |F )−1T is also a left inverse of 1E − T . Hence,

(1E + (1F − T |F )−1T )(1E − T ) = 1E − T + (1F − T |F )−1T (1E − T )

= 1E − T + (1F − T |F )−1(1F − T |F )T

= 1E − T + T = 1E .

We show now that formally, one has a decomposition of (4+ u)−1 similar to the decomposition of
4−1 given in Remark 2.12.

Proposition 2.16. Formally, it is

(4k − u)−1 = (1−Ru)−1R+ (1−Ru)−1 S(u) (1− uR)−1 , (2.4)

where
S(u) :=

Ä
1− Su(1−Ru)−1ä−1

S.
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2.2. Matrix decomposition of the Schrödinger operator.

R and S are to be understood as operators acting on L2(R2/Γ ) and not as operators acting on E⊥

respectively on E. Formally shall indicate two things: First of all, that the above equality holds
whenever the operators on both sides of the equality exist and are bounded. Secondly, that the sets
of functions in L2(R2/Γ ) for which they are unbounded coincide.

Proof. It is 4−1
k = S +R, see Proposition 2.11. Moreover,

R(1− uR)−1 =
Ä
(1− uR)R−1ä−1 = (R−1 − u)−1 =

Ä
R−1(1−Ru)

ä−1 = (1−Ru)−1R.

So
4−1
k = R+ S − Su(1− uR)−1R+ Su(1− uR)−1R

=
Ä
1− Su(1−Ru)−1äR+ S

Ä
1+ uR(1− uR)−1ä .

Using Neumann series one gets that

1+ uR(1− uR)−1 = 1+ uR
∞∑
n=0

(uR)n =
∞∑
n=0

(uR)n = (1− uR)−1

and hence 4−1
k =

(
1− Su(1−Ru)−1)R+ S(1− uR)−1. So formally, it isÄ

1− Su(1−Ru)−1ä−14−1
k = R+

Ä
1− Su(1−Ru)−1ä−1

S(1− uR)−1.

The left hand side of this equation equals (1−Ru)(4k − u)−1 sinceÄ
1− Su(1−Ru)−1ä−1 = (1−Ru) (1−Ru)−1 Ä

1− Su(1−Ru)−1ä−1

= (1−Ru)
Ä
(1− Su(1−Ru)−1)(1−Ru)

ä−1

= (1−Ru) (1− Su−Ru)−1

= (1−Ru)
Ä
1−4−1

k u)
ä−1

(2.5)

and (4k − u)−1 = (1 − 4−1
k u)−14−1

k . Taking all of this together finally yields the desired
decomposition of (4k − u)−1.

The first part of (b) in the next proposition is also shown in [Klauer, 2011, Proposition 4.5.15].

Proposition 2.17. (a) For all ε > 0 as in Remark 2.10 and all u ∈ C(R2/Γ ), there is a
δ(ε, u) > 0 such that for all k ∈ B2ε(k0) with k0 ∈ R∩Bε(k±Γ ∗)c and all ν ∈ Γ ∗δ , the operators

π0u
Ä
1−R(k + k±ν )u

ä−1 ∣∣∣
E0

and (1−R(k + k±ν )u)−1

exist and are bounded.
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2. Asymptotic freeness

(b) For all ε as in Remark 2.10 and all u ∈ C(R2/Γ ), there is a δ(ε, u) > 0 such that for all
k ∈ B4ε(0) and all ν ∈ Γ ∗δ , the operators

π±νu
Ä
1−R(k + k±ν )u

ä−1 ∣∣∣
E±ν

and (1−R(k + k±ν )u)−1

exist and are bounded.

Proof. By Lemma 2.14, we know that for every ε > 0 under the given conditions in (a) respectively
(b), there exists a δ(ε, u) > 0 such that for all k ∈ B2ε(k0) respectively k ∈ B4ε(0) and ν ∈ Γ ∗δ the
operator

π⊥(Rk+k±ν u)|E⊥

is bounded by ε > 0. For sufficiently small ε > 0, the Neumann Theorem yields that

1E⊥ − π⊥R(k + k±ν )u|E⊥

is invertible. By Lemma 2.15, this implies that in this case 1−R(k+k±ν )u is invertible on L2(R2/Γ ).
So the operator u(1−R(k + k±ν )u)−1 exists and is bounded from L2(R2/Γ ) to L2(R2/Γ ) and the
same is true for the restriction πE(u(1−Ru)−1)|E of this operator to E.

We want to get the explicit form of a matrix such that the zero set of the determinant of this
matrix locally equals the values of F (u) for some u ∈ C(R2/Γ ). Again, part (b) of the next
theorem can be found in [Klauer, 2011, Theorem 4.5.19].

Theorem 2.18. (a) For all ε > 0 as in Remark 2.10 and all u ∈ C(R2/Γ ), there is a δ(ε, u) > 0
such that for all k ∈ B2ε(k0) with k0 ∈ R ∩ Bε(k±Γ ∗)c and all ν ∈ Γ ∗δ , the Fermi curve can
locally on k±ν +B2ε(k0) be described as the zero set of the in k holomorphic mapping

k 7→ det
Ä
−4π2(k + k±ν )2 +A0(k + k±ν , u)

ä
,

where
A0(k + k±ν , u) := π0u (1−Ru)−1 |E0 .

(b) For all ε > 0 as in Remark 2.10 and all u ∈ C(R2/Γ ), there is a δ(ε, u) > 0 such that for all
k ∈ B4ε(0) and all ν ∈ Γ ∗δ , the Fermi curve can locally on k±ν +B4ε(0) be described as the zero
set of the in k holomorphic mapping

k 7→ det
((
−4π2(k + k±ν )2 0

0 −4π2(k + k∓ν )2

)
+A±ν(k + k±ν , u)

)
,

where
A±ν(k + k±ν , u) := π±νu (1−Ru)−1 |E±ν .
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2.2. Matrix decomposition of the Schrödinger operator.

Proof. In the setting of (a), it is for k ∈ B2ε(k0) and ν ∈ Γ ∗δ

S0(k + k±ν ) = 1
−4π2(k + k±ν )2

and in the setting of (b), since k±ν ± ν = k∓ν , one has for k ∈ B4ε(0) that

S±ν(k + k±ν ) =
(
−4π2(k + k±ν )2 0

0 −4π2(k + k∓ν )2

)−1

.

Combining the results of Proposition 2.17 and Proposition 2.16 yields that k ∈ F (u) for generic
u ∈ C(R2/Γ ) if and only if the operator in the decomposition (2.4) has a pole. The reduced
resolvent R is regular and unequal to zero and it is shown in Proposition 2.17 that the same holds
for (1 − Ru)−1. Analogous argumentation as in the proof of this Proposition yields that also
(1− uR)−1 is regular and unequal to zero. More precisely, for all ε > 0, there exists a δ > 0 such
that (1−R(k+ k±ν )u)−1 and (1− uR(k+ k±ν ))−1 are regular for ν ∈ Γ ∗δ and the respective choices
of k. So all terms but S(u) in the decomposition (2.4) are regular and unequal to zero for δ > 0
sufficiently small. This implies together with Lemma 2.15 that k ∈ F (u) \ F (4π2û0) if and only if
S(u) restricted to E Ä

1E − S(k + k±ν )A(k + kν(û0), u)
ä−1

S(k + k±ν )
∣∣∣
E

has a pole or equivalently if

det(S(k + k±ν )−1 −A(k + k±ν , u)) = 0.

To see that the same holds for k ∈ F (0), note that as in the proof of Proposition 2.16 it is due to
equation (2.5)

(4k+k±ν − u)−1 = (1−4−1
k+k±ν

u)−14−1
k+k±ν

= (1−Ru)−1 Ä1− Su(1−Ru)−1ä−1 (R+ S)

which is a meromorphic operator in k. It is shown in Proposition 2.17 that for δ > 0 sufficiently
small (1−R(k + k±ν )u)−1 is regular and bounded for all ν ∈ Γ ∗δ . R + S is an operator of block
diagonal form with zeros on the off diagonals, so (R+S)−1 = R−1 +S−1. Hence, for k ∈ F (u)\F (0)
and for k ∈ F (u) ∩ F (0), all poles of (4k+k±ν − u)−1 are contained inÄ

1− Su(1−Ru)−1ä−1 (R+ S) =
Ä
(R+ S)−1(1− Su(1−Ru)−1)

ä−1

=
Ä
(R+ S)−1 − (R+ S)−1Su (1−Ru)−1ä−1 =

Ä
R−1 + S−1 − πu(1−Ru)−1ä−1

.

The last equality holds due to R−1S = 0 and S−1S = 1E , so (R + S)−1(u) = πu. The last
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2. Asymptotic freeness

expression of these equalities can only have a pole if (R + S)−1 − πu(1 − Ru)−1 = 0. Because
Im(R−1) ⊂ E⊥ and Im

(
S−1 − πu(1−Ru)

)
⊂ E, this can only hold for functions contained in the

kernel of R. So for k ∈ F (0) and ν ∈ Γ ∗δ , all poles of (4k+k±ν − u)−1 are contained in the set of
poles of

(
S−1 − πu(1−Ru)−1)−1 or equivalently, are contained in¶

k ∈ C2 | det(S−1 −A(u, k + k±ν )) = 0
©
.

Note that an arbitrary potential u ∈ C(R2/Γ ) can be represented as

u(x, y) = 1
µ(∆)

∑
κ∈Γ ∗

û(κ)e2πι〈κ,(xy )〉 = 4π2û0 + 1
µ(∆)

∑
κ∈Γ ∗\{0}

û(κ)e2πι〈κ,(xy )〉,

where û0 := û(0)
4π2µ(∆) . This is also done in [Klauer, 2011, Section 4.4] to obtain stronger asymptotics

for F (u) which are not necessary for this work. However, this decomposition is necessary for the
next Lemma. Part (b) of it is a modified version from [Klauer, 2011][Lemma 4.5.21].

Lemma 2.19. (a) For all ε > 0 as in Remark 2.10 and all u ∈ C(R2/Γ ), there is a δ(ε, u) > 0
such that for all k ∈ B2ε(k0) with k0 ∈ R ∩Bε(k±Γ ∗)c and all ν ∈ Γ ∗δ , there holds

|û0| − ε < ‖A0(k + k±ν , u)‖ < |û0|+ ε

in the usual operator norm.

(b) Let A±ν(k + k±ν , u) =
Å
a(k+k±ν ,u) b(k+k±ν ,u)
c(k+k±ν ,u) d(k+k±ν ,u)

ã
. For all ε > 0 as in Remark 2.10 and all

u ∈ C(R2/Γ ), there is a δ(ε, u) > 0 such that for all k ∈ B4ε(0) and all ν ∈ Γ ∗δ , there holds

|û0| − ε <‖a(k + k±ν , u)‖, ‖d(k + k±ν , u)‖ < |û0|+ ε

‖b(k + k±ν , u)‖, ‖c(k + k±ν , u)‖ < ε.

in the usual operator norm.

Proof. Again, the proof of (a) and (b) is analogous up to different open subsets B2ε(k0) respectively
B4ε(0). Therefore, let k ∈ B2ε(k0) for (a) and k ∈ B4ε(0) in the setting of (b). One has

A(k + k±ν , u) = πu(1−R(k + k±ν )u)−1|E ,

where the second part converges to the identity due to Lemma 2.14. So the norm of the whole
operator converges to ‖πu‖. In case (a), this implies

lim
‖ν‖→∞

A(k + k±ν , u) = lim
‖ν‖→∞

π0u(1−R(k + k±ν )u)−1 = π0u = û0.
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2.2. Matrix decomposition of the Schrödinger operator.

In the case of (b), one also has that for ‖ν‖ → ∞, A(k + k±ν , u) converges to π±νu, where

π±νu =

Ñ
û0 û(ν)e2πι〈ν,(xy )〉

û(−ν)e2πι〈−ν,(xy )〉 û0

é
→
(
û0 0
0 û0

)
for ‖ν‖ → ∞

because 1
|T |

(∫
T (û(±ν)e2πι〈±ν,(xy )〉)2dA

)1/2
→ 0 for ‖ν‖ → ∞.

More precisely, for all ε > 0, there exists a δ > 0 such that (1−R(k+k±ν )u)−1 and (1−uR(k+k±ν ))−1

are regular for ν ∈ Γ ∗δ and the respective choices of k.

Lemma 2.20. (a) For all ε > 0 as in Remark 2.10 and all u ∈ C(R2/Γ ), there is a δ(ε, u) > 0
such that for all k ∈ B2ε(k0) with k0 ∈ R∩Bε(k±Γ ∗)c and all ν ∈ Γ ∗δ , the matrix A±ν(k+k±ν , u)
is continuously differentiable in k and

lim
‖ν‖→∞

∥∥∥∥ ∂∂kA0(k + k±ν , u)
∥∥∥∥ = 0

uniformly in k.

(b) For all ε > 0 as in Remark 2.10 and all u ∈ C(R2/Γ ), there is a δ(ε, u) > 0 such that for all
k ∈ B4ε(0) and all ν ∈ Γ ∗δ , the matrix A±ν(k + k±ν , u) is continuously differentiable in k and

lim
‖ν‖→∞

∥∥∥∥ ∂∂kA±ν(k + k±ν , u)
∥∥∥∥ = 0

uniformly in k.

Proof. By Proposition 2.17, A(k + k±ν , u) exists and is holomorphic in k for k ∈ B2ε(k0) in the
case of (a) and k ∈ B4ε(0) in the case of (b) and ν ∈ Γ ∗δ with δ > 0 sufficiently small. Then

∂

∂k
u = 0 and ∂

∂k
R = R

∂

∂k
4k+k±ν |E⊥R.

We abbreviate C := ∂
∂k 4k+k±ν |E⊥ and denote the derivative with respect to k with a prime.

The components of the Fourier transform of C are given by −8π2(ki + k±ν,i + κi) for i ∈ {1, 2} and
hence the Fourier transform of RC is uniformly bounded. Then

(u(1−Ru)−1)′ = u((1−Ru)−1)′ = −u(1−Ru)−1(1−Ru)′(1−Ru)−1

= u(1−Ru)−1R′u(1−Ru)−1 = u(1−Ru)−1RCRu(1−Ru)−1

and since π⊥(4k+k±ν ) = 4k+k±ν π
⊥

∂

∂k
A(k + k±ν , u) = −πu(1−Ru)−1RCRu(1−Ru)−1|E .
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2. Asymptotic freeness

By Lemmata 2.14 and 2.15, the norm of Ru vanishes uniformly for ‖ν‖ → ∞ and the norms of
the remaining operators are uniformly bounded. So the assertion follows.

Corollary 2.21. (a) For all ε > 0 as in Remark 2.10, all ε̃ > 0 and all u ∈ C(R2/Γ ), there is a
δ(ε, ε̃, u) > 0 such that for all k ∈ B2ε(k0) with k0 ∈ R ∩Bε(k±Γ ∗)c and all ν ∈ Γ ∗δ , there holds

| det(S−1(k + k±ν +A(k + k±ν , u)))− det(S−1(k + k±ν ))| < ε̃.

(b) For all ε > 0 as in Remark 2.10, all ε̃ > 0 and all u ∈ C(R2/Γ ), there exists a δ(ε, ε̃, u) > 0
such that for all k ∈ B4ε(0) and all ν ∈ Γ ∗δ , there holds

| det(S−1(k + k±ν +A(k + k±ν , u)))− det(S−1(k + k±ν ))| < ε̃.

Proof. For (a), one has

lim
‖ν‖→∞

|det(S−1(k + k±ν ) +A(k + k±ν , u))− det(S−1(k + k±ν ))| = lim
‖ν‖→∞

|û0|
‖4π2(k + k±ν )‖

= 0

since û0 is constant and ‖k + k±ν ‖ → ∞ for ν →∞. For (b), the same holds since

lim
‖ν‖→∞

| det(S−1(k + k±ν ) +A(k + k±ν , u))− det(S−1(k + k±ν ))| =

= lim
‖ν‖→∞

|û2
0|

16π4‖(k + k±ν )2(k + k∓ν )2‖
= 0.

Let δ > 0 be sufficiently small such that the statements from Theorem 2.18 can be applied to
describe F (u) ∩ C2

δ . We denote the locally defined holomorphic functions determined in Theorem
2.18, whose zero sets describe F (u) on k±ν +B2ε(k0) respectively k±ν +B4ε(0) with ε and k0 as in
Remark 2.10 and ν ∈ Γ ∗δ , as follows: On k±ν +B2ε(k0), let

f0
k0+k±ν

:= det(S−1(k + k±ν )) and fu
k0+k±ν

:= det(S−1(k + k±ν ) +A(k + k±ν ))

with S and A as in Theorem 2.18(a) and on B4ε(k±ν ) let

f0
k±ν

:= det(S−1(k + k±ν )) and fu
k±ν

:= det(S−1(k + k±ν ) +A(k + k±ν ))

with S and A being the 2× 2-matrices constructed in Theorem 2.18(b).

Lemma 2.22. For all u ∈ C(R2/Γ ), all multi-indices α = (α1, α2) with αi ∈ N0, all ε > 0 as
defined in Remark 2.10 and all ε̃ > 0, there exists a δ(ε, ε̃, α, u) > 0 such that for all k + k±ν with
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2.2. Matrix decomposition of the Schrödinger operator.

k ∈ B2ε(k0) and k0 ∈ R ∩B4ε(Γ ∗)c and all ν ∈ Γ ∗δ , there holds

|∂α(fu
k0+k±ν

− f0
k0+k±ν

)(k + k±ν )| < ε̃.

and for k ∈ B4ε(0) and all ν ∈ Γ ∗δ , one has

|∂α(fu
k±ν
− f0

k±ν
)(k + k±ν )| < ε̃. (2.6)

Proof. It follows from the proof of Corollary 2.21 that for δ > 0 sufficiently small, the zero sets of
the holomorphic functions f0

k0+k±ν
and fu

k0+k±ν
respectively f0

k±ν
and fu

k±ν
are ε-close to each other on

k±ν +B2ε(k0) respectively k±ν +B4ε(0). Corollary 2.21 yields that |(f0
k0+k±ν

− fu
k0+k±ν

)(k + k±ν )| < ε̃

respectively |(f0
k0+k±ν

− fu
k0+k±ν

)(k + k±ν )| < ε̃ for k + k±ν on these neighborhoods. Cauchys integral
inequality [Gunning and Rossi, 1965, I.A.2] then implies for local coordinates (z1, z2) ∈ k±ν +B2ε(k0)
centered at k0 and any multi-index α

∣∣∣∂α(fu
k0+k±ν

− f0
k0+k±ν

)(z1, z2)
∣∣∣ ≤ c α!

(2ε)|α|
max

(z1,z2)∈k±ν +B2ε(k0)
|fu
k0+k±ν

− f0
k0+k±ν

)(z1, z2)| ≤ ε̃ cα!
(2ε)|α|

.

Since 2ε is fixed for all ν ∈ Γ ∗ and f0
k0+k±ν

as well as fu
k0+k±ν

are holomorphic on k±ν +B2ε(k0), this
yields the assertion away from the double points. Analogously, the claim for k ∈ B4ε(0) follows.
Note that the convergence of the derivatives is not uniform in k, i.e. for each higher derivative one
might need a smaller δ(ε, α).

Finally, we can also deduce the following asymptotics for the eigenfunctions of the Schrödinger
operator from the considerations in this section.

Lemma 2.23. (a) For all ε > 0 as in Remark 2.10 and all u ∈ C(R2/Γ ), there is a δ(ε, u) > 0
such that for all k ∈ B2ε(k0) with k0 ∈ R ∩Bε(k±Γ ∗)c and ν ∈ Γ ∗δ , there holds

‖ψk+k±ν (x, y)− ψ̂(0))‖W 1,2(R2/Γ ) ≤ ε|ψ̂(0)|.

(b) For all ε > 0 as in Remark 2.10 and all u ∈ C(R2/Γ ), there is a δ(ε, u) > 0 such that for all
k ∈ B4ε(0) and all ν ∈ Γ ∗δ , there holds

‖ψk+k±ν (x, y)− ψ̂(0)− ψ̂(ν)e2πι〈k+k±ν ,ν〉‖W 1,2(R2/Γ ) ≤ ε
Ä
|ψ̂(0)|+ |ψ̂(ν)|

ä
.

Proof. By formally considering

4k+k±ν −u = 4k+k±ν (1−4−1
k+k±ν

u), (2.7)

one sees that formally (1−4−1
k+k±ν

u) maps the eigenspace of 4k+k±ν −u to the eigenspace of 4k+k±ν .
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2. Asymptotic freeness

Writing this with respect to the partition E ⊕ E⊥ as in Definition 2.7 yields

(1−4−1
k+k±ν

u) =
(
π(1− S(k + k±ν )u)E −πS(k + k±ν )u|E⊥
−π⊥R(k + k±ν )u|E π⊥(1−R(k + k±ν ))|E⊥)

)
=
(
A B

C D

)
.

Then there is a ψ0 ∈ E such that for ψk+k±ν in the eigenspace of 4k+k±ν − u, one has due to (2.7)

(1−4−1u)
(
ψk+k±ν |E
ψk+k±ν |E⊥

)
=
(
A B

C D

)(
ψk+k±ν |E
ψk+k±ν |E⊥

)
=
(
ψ0|E

0

)

and hence
Cψk+k±ν |E +Dψk+k±ν |E⊥ = 0 ⇔ ψk+k±ν |E⊥ = −D−1Cψk+k±ν |E .

For a given ψk+k±ν = ψ̂(0) + ψk+k±ν |E⊥ , it is

D−1C : E → E⊥, ψ̂(0) 7→ ψk+k±ν |E⊥ .

We want to show that for ψk+k±ν ∈ L
2(R2/Γ ), it is D−1Cψk+k±ν ∈ W

1,2(R2/Γ ). We have seen
in Lemma 2.14 that Ru|E : L2(R2/Γ )→W 1,2(R2/Γ ). Furthermore, Lemma 2.14 yields that for
δ > 0 sufficiently small ‖ 4k+k±ν u‖W 1,2(R2/Γ ) < 1. Thus, the Neumann series ∑∞n=0(4k+k±ν u)n

converges and (1 − 4k+k±ν u)−1 : W 1,2(R2/Γ ) → W 1,2(R2/Γ ) exists. This shows that D−1C :
L2(R2/Γ )→W 1,2(R2/Γ ). This operator obeys

‖D−1C‖ ≤ ‖D−1‖‖C‖.

Proposition 2.17 applies to R(k + k±ν )u and hence also to the corresponding restrictions to E and
E⊥. Therefore, with k ∈ B2ε(k0) for (a) respectively k ∈ B4ε(0) for (b), one gets

lim
‖ν‖→∞

‖D−1C‖ = lim
‖ν‖→∞

∥∥∥Ä1|⊥E −R(k + k±ν )u|E⊥
ä−1

π⊥R(k + k±ν )u|E
∥∥∥ = 0.

Moreover, in the case of (a)
ψk+k±ν − ψ̂(0) = ψk+k±ν |E⊥

and in the case of (b)

ψk+k±ν − ψ̂(0)− ψ̂(ν)e2πι〈k+k±ν ,ν〉 = ψk+k±ν |E⊥ .

Due to ‖ψk+k±ν |E⊥‖ = ‖D−1Cψ|E‖ ≤ ‖D−1C‖‖ψk+k±ν |E‖, the assertion follows from the above
considerations.
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2.3. Asymptotic freeness of F (u)/Γ ∗

2.3. Asymptotic freeness of F (u)/Γ ∗

In the rest of this work, we want to associate a compact curve to the Fermi curve. This is only
possible if we consider F (u)/Γ ∗. Therefore, it is necessary to formulate the asymptotics for this
case. Further, we also want to determine the number of connected components of the regular part
R(F (u)/Γ ∗) of F (u)/Γ ∗ and show that this part is complex one-dimensional. Thereby, we use the
following definitions.

Definition 2.24 ([Gunning, 1990, Definition F.]). A point in a holomorphic variety V at which V
is a complex manifold is called a regular point of V . A point that is not regular is called a singular
point of V . The set of all regular points comprises the regular part R(V ) ⊆ V of V while the set
of all singular points comprises the singular part S(V ) = V \R(V ) ⊆ V .

Definition 2.25 ([Gunning, 1990, Definition G.1]). The dimension of a holomorphic variety V is
the dimension of the complex manifold R(V ).

The question of the number of connected components cannot be answered for F (u) since already
the part where F (0) is a complex one-dimensional manifold consists of infinitely many connected
components, see Section 1.4. In Lemma 1.8 we have seen that F (u) is invariant under translations
by elements of the dual lattice Γ ∗. So it would be convenient to consider F (u)/Γ ∗ instead of F (u)
to formulate the asymptotics. We know from Corollary 2.6 and the chosen covering of F (u) in
Remark 2.10 that the asymptotic behavior of F (u) bounded away from the excluded domains can
be considered in

U±ε,δ :=
®
k ∈ C2 | |k1 ± ιk2| < ε, ‖ Im k‖ > 1√

2δ
and ‖k − k±ν ‖ > 2ε ∀ ν ∈ Γ ∗ \ {0}

´
.

The condition |k1 ± ιk2| < ε in the definition of U±ε,δ means that all elements U±ε,δ are close to the
free Fermi curve, the condition ‖ Im(k)‖ > 1√

2δ reflects that one considers the asymptotics, i.e. the
behavior of F (u)∩C2

δ , and the condition ‖k−k±ν ‖ > 2ε ensures that all elements of U±ε,δ are staying
away from the double points k±ν . With R as in (1.15), we know from Section 1.4 that for every
k ∈ R \ {k±ν | ν ∈ Γ ∗}, the Γ ∗-orbit of k contains exactly one point in R(κ) \ {k±ν + κ | ν ∈ Γ ∗}
for every κ ∈ Γ ∗ and in particular intersects R only in k. So for ε as in Remark 2.10, the open
sets U±ε,δ also intersect any Γ ∗-orbit of k at most once. A sketch of this situation, projected to C,
can also be seen in Figure 2.1. Hence, we may consider U±ε,δ as subsets of C2/Γ ∗.

Because F (u) is translation invariant under Γ ∗, see Lemma 1.8, we can consider the asymptotics
for F (u)/Γ ∗. When we consider the quotient, we often write k = (k1, k2) instead of [k] respectively
(k, λ) instead of ([k], λ). We mean by this that we consider a representant of the corresponding
equivalence class and if we compare two such elements, we also take the representants corresponding
to the same translation κ ∈ Γ ∗. Usually, in the asymptotics, we consider the equivalence class
which is contained in an U±ε,δ around R.
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2. Asymptotic freeness

Figure 2.1.: Intersection of F (0) and Uε,δ with respect to the lattice 4Z⊗ 4Z with the real plane
spanned by (1, 0) and (0, ι) and for δ sufficiently small. All double points k±ν are
excluded from Uε,δ which is indicated by the small circles around them.

A problem that occurs is that even if F (u) is ε-close to F (0) far outside, one does not know what
the Fermi curve F (u) looks like in an ε-neighborhood of k±ν . Interpreting the potential u as a
perturbation of the zero potential, we will show in Theorem 2.34 that a double point k±ν ∈ F (u)
may decay into two separate branch points on F (u) with respect to the covering (k1, k2) 7→ k1.
Furthermore, the two-dimensional eigenspace of the two points constituting the double point may
decay into two one-dimensional eigenspaces. Therefore, we define the excluded domains more
precisely as before.

Definition 2.26. For given ε > 0 and every ν ∈ Γ ∗δ with δ(ε) > 0 sufficiently small, we call the
compact subset

eν :=
®
k ∈ C2 | |k1 ± ιk2| < ε, ‖ Im k‖ > 1√

2δ
and ‖k − k±ν ‖ ≤ 2ε

´
of C2 an excluded domain for the double point k±ν of F (0)/Γ ∗. We call the compact subset eν∩F (u)
a handle of F (u) around the double point k±ν if the regular part of this subset is connected.

To describe the parts of F (u)/Γ ∗ at which the eigenspace has more than one dimension, the next
definition is necessary.

Definition 2.27. The eigenvalues of the Schrödinger operator at which the corresponding gener-
alized eigenspace has more than one dimension are called degenerated eigenvalues.

We want to determine the number of connected components of the regular part of F (u)/Γ ∗ and
show with help of this that generically, the eigenspace the Schrödinger operator is one-dimensional
on F (u) respectively F (u)/Γ ∗. As already mentioned, the first question can only be answered for
the quotient.
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2.3. Asymptotic freeness of F (u)/Γ ∗

Theorem 2.28. Let u ∈ C(R2/Γ ).

(a) F (u)/Γ ∗ is a one-dimensional variety in C2/Γ ∗ and for ε > 0 as in Remark 2.10 and δ > 0
sufficiently small, F (u)/Γ ∗ ∩ U±ε,δ is a one-dimensional connected manifold.

(b) The regular part of the Fermi curve F (u)/Γ ∗ has at most two connected components. Each
component contains one of the two sets F (u)/Γ ∗ ∩ U±ε,δ.

(c) The set of singularities and branch points of the covering π1 : F (u)→ C, (k1, k2) 7→ k1 as well
as of the covering π2 : F (u)→ C, (k1, k2) 7→ k2 of F (u)/Γ ∗ is discrete.

(d) The set of k ∈ F (u)/Γ ∗ such that λ = 0 is a degenerated eigenvalue of −4k +u contains only
discrete points.

Proof. (a) We know already from Lemma 1.18 that F (0) is a one-dimensional subvariety of C2

and from Corollary 1.15 that F (u) is a holomorphic variety in C2 which is due to Lemma 1.8
invariant under translations by elements of Γ ∗. So F (u)/Γ ∗ is a subvariety of C2/Γ ∗. Hence,
it is necessary to show that F (u)/Γ ∗ is one-dimensional. Due to Corollary 2.6, for every ε > 0
we can choose δ > 0 sufficiently small such that F (u)/Γ ∗∩C2

δ is contained in an ε-tube around
F (0)/Γ ∗. Theorem 2.18 (a) yields that for δ > 0 sufficiently small and ν ∈ Γ ∗δ , the values of
k ∈ B2ε(k0) ∩ F (u)/Γ ∗ are described by the solution set of

fu
k0+k±ν

(k + k±ν ) = det(S−1
0 +A0)(k + k±ν ) = 0.

Lemma 2.20 implies that ∂A0/∂k1(k+ k±ν ) vanishes for ‖ν‖ → ∞ and direct calculation yields
that ∂S−1

0 /∂k1(k + k±ν ) = −8π2(ki + k±ν,1). Using the chain rule and taking into account that
|k±ν,2| = 1

2‖ν‖ → ∞ for ‖ν‖ → ∞ yields that the partial derivative ∂f0
k0+k±ν

/∂k2 does not
vanish on any of the open balls k±ν +U2ε(k0) with ε and k0 defined as in Remark 2.10 and δ > 0
sufficiently small. By the Implicit Function Theorem for several complex variables [de Jong and
Pfister, 2012, Theorem 3.3.1], the zero set F (u)/Γ ∗ ∩ (k±ν +B2ε(k0)) can be represented as a
holomorphic function k2(k1). Thus, both sets F (u)/Γ ∗ ∩U±ε,δ are one-dimensional holomorphic
subvarieties of C2

δ . This induces that F (u)/Γ ∗ is a one-dimensional holomorphic variety in
all of C2/Γ ∗ since the alternative would be that there are parts of F (u)/Γ ∗ where it is a
two-dimensional submanifold. However, this would imply that there is an open set U ⊂ C2/Γ ∗

on which the zero set of the holomorphic function describing F (u)/Γ ∗ on U is identically zero.
Since F (u)/Γ ∗ is a variety, see Corollary 1.15, on all nonempty intersections of open sets V,W
of C2/Γ ∗ where V ∩W ∩ F (u)/Γ ∗ 6= 0, the local zero sets describing F (u)/Γ ∗ coincide. Then
on all nonempty intersections of open sets with U , the Fermi curve would also be identical to
the open set intersected with U . Successively continuing like that would yield that F (u)/Γ ∗ is
all of C2/Γ ∗ which contradicts the fact that F (u)/Γ ∗ ∩ U±ε,δ is a one-dimensional holomorphic
variety. Determining also the derivative with respect to k1 on k±ν +B2ε(k0) under the same
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2. Asymptotic freeness

conditions as above shows that also this derivatives vanishes nowhere on F (u)/Γ ∗∩U±ε,δ. Thus,
F (u)/Γ ∗ is a one-dimensional manifold on those sets.

(b) Since F (u)/Γ ∗ is a variety in C2/Γ ∗, we can locally consider the Weierstraß coverings

πi : F (u)→ C, (k1, k2) 7→ ki

for i = 1, 2. Both of these mappings are, due to the Open Mapping Theorem [Conway, 1978,
Theorem 7.5], either open or constant on a connected component of R(F (u)). If both of these
maps are constant on one connected component of R(F (u)), then this connected component
consists only of one point and is a 0-dimensional variety. This contradicts (a), where we
have seen that F (u) is a one-dimensional variety. So without loss of generality, let π1 be
open on R(F (u)). Then the branch points of this covering are discrete on R(F (u)). Let
(k0,1, k0,2) ∈ F (u) be an arbitrary point of the Fermi curve. We connect k0,1 ∈ C with an
arbitrary point k′0,1 ∈ C by a continuous path γ(t) : [0, 1]→ C with γ(0) = k0,1 and γ(1) = k′0,1.
Due to the openness of π1 and the lifting property of paths, compare [Miranda, 1995, Section
III.4], we can lift this path to a continuous path k(t) = (k1(t), k2(k1(t))) ∈ F (u) such that
the lifted path in F (u) is also connected. We have seen in (b) that the singularities of F (u)
as well as the branch points of π1 are discrete, so we can choose γ in such a way that the
lifted path passes neither singularities of F (u) nor branch points of π1. Moreover, the union⋃
ν∈Γ ∗\Γ ∗

δ
k±ν + ∆C is compact. So Corollary 2.6 yields that for every ε > 0, there exists a

δ > 0 such that for k̃ ∈ ∆C as in Definition 2.1, the value of ‖ Im(k̃ + k±ν )‖ with ν ∈ Γ ∗ \ Γ ∗δ
attains it maximum M . Let γ be chosen in such a way that

‖ Im(k1(1))‖ > max
®

1√
2δ
,M

´
.

Then ‖ Im(k(1))‖ > 1√
2δ , so k(1) ∈ (F (u) ∩ C2

δ)/Γ ∗. Furthermore, it follows from Corollary
2.6 that there exists some κ ∈ Γ ∗ such that |(k1(1) + κ1)± ι(k2(1) + κ2)| < ε. Furthermore,
for ε > 0 sufficiently small, we can choose γ in such a way that for all lifted values k(t) of k1(t)
contained in γ holds that ‖k − k±ν ‖ ≥ 2ε, because the points k±ν lie discrete in C2/Γ ∗. Then
k(1) ∈ κ+ U±ε,δ for some κ ∈ Γ ∗ and the corresponding equivalence class [(k(1)] ∈ F (u)/Γ ∗ is
either contained in F (u)/Γ ∗ ∩ U+

ε,δ or in F (u)/Γ ∗ ∩ U−ε,δ. Both options are possible because
Lemma 2.22 implies that none of these two sets is empty. Since F (u)/Γ ∗ is a one-dimensional
holomorphic variety, the regular parts of F (u)/Γ ∗ are connected, see [Gunning, 1990, Theorem
E.19]. The path γ we constructed is continuous, starts at (k1, k2) ∈ F (u) and connects
this point with the part of the Fermi curve which is contained in κ+ U±ε,δ for some κ ∈ Γ ∗.
Therefore, the number of connected components of the regular part is at most two.

(c) Due to [Gunning, 1990, Theorem E.17], the part where F (u)/Γ ∗ is not regular consists only
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of discrete points. Let k = (k1, k2) ∈ F (u) ∩ C2
δ . Due to the asymptotic freeness of F (u)/Γ ∗,

we can assume without loss of generality that |k1 ± ιk2| < ε on R(F (u)) ∩ U±ε,δ. So neither π1

nor π2 is a constant map on R(F (u)/Γ ∗) ∩ U±ε,δ. Therefore, by (b) and the Open Mapping
Theorem [Conway, 1978, Theorem 7.5], they are open on both of the maximal two connected
components of R(F (u)/Γ ∗). Hence, the number of branch points of these coverings is discrete,
because ∂πi/∂ki with i = 1, 2 can only vanish at discrete points on R(F (u)/Γ ∗).

(d) For fixed u ∈ C(R2/Γ ), we know from Corollary 1.15 that the Bloch variety B(u) is a variety
in C3. So due to Lemma 1.8, B(u)/Γ ∗ is a variety in C3/Γ ∗. It follows from Theorem 1.14
that B(u)/Γ ∗ can locally, on a small open set U ⊂ C2 which intersects B(u), be described
by the zero set of the characteristic polynomial of an n × n-matrix A(k) which depends
holomorphically on k, i.e. by the set of points such that det(A(k) − λ1) = 0. Hereby, n is
the range of the eigenprojection of the Schrödinger operator on U as defined in the proof of
Theorem 1.14. The values k such that λ is degenerated on B(u)/Γ ∗ can be detected by the
solutions of the zero set of the discriminant D of the characteristic polynomial which is defined
as

D(det(A(k)− λ1)) :=
∏
i<j

(λi(k)− λj(k))2. (2.8)

The discriminant is a polynomial in the coefficients of the polynomial det(A(k)− λ1) and can
be written as the sum of the elementar-symmetric functions over the sheets of the covering
over λ in terms of k, compare [Forster, 1981, Section 8.1]. So D(detA(k)−λ1) is holomorphic
in k and λ. Thus, the set of (k, λ) such that D(det(A(k)− λ1)) = 0 defines a subvariety of C3.
Restricting these holomorphic function on B(u)/Γ ∗ to λ = 0 yields a subvariety on F (u)/Γ ∗.
If we can find an open subset U ⊂ F (u)/Γ ∗ on one of the maximal two connected components
F (u)/Γ ∗ such that D(det(A(k) − λ1))|U ≡ 0, this would yield that D(det(A(k) − λ1)) ≡ 0
on all of the connected component. However, due to (a) and the proof of Theorem 1.14,
F (u)/Γ ∗ ∩ U±ε,δ can be represented as the zero set of the characteristically polynomial of an
1× 1-matrix. So the eigenspace is one-dimensional on F (u) ∩ U±ε,δ and thus the discriminant
2.8 cannot vanish identically on each of the maximal two connected components of F (u)/Γ ∗.

Corollary 2.29. Let u ∈ C(R2/Γ ).

(a) B(u)/Γ ∗ is a two-dimensional variety in C3/Γ ∗.

(b) The regular part of the Bloch variety B(u)/Γ ∗ has at most two connected components.

(c) The set of ([k], λ) ∈ B(u)/Γ ∗ such that λ is a degenerated eigenvalues of − 4k +u is a
subvariety of codimension 1.
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Proof. (a) We know from Corollary 1.15 that B(u) is a variety in C3 and from Lemma 1.8 that
it is invariant under translations by κ ∈ Γ ∗. So B(u)/Γ ∗ is a variety in C3/Γ ∗. In the proof
of Theorem 1.14 is shown that B(u)/Γ ∗ can locally be represented as the zero set of one
holomorphic function. Since considering the zero set of only one function can the reduce the
dimension of a variety in C3 at most by one, compare [Gunning, 1990, Theorem G.5], the
dimension of B(u)/Γ ∗ cannot be less than two. B(u)/Γ ∗ can also not be a three-dimensional
variety since this would imply that F (u)/Γ ∗ is a two-dimensional variety.

(b) Since B(u)/Γ ∗ is a variety in C3/Γ ∗, the map B(u)/Γ ∗ → λ is – due to the Open Mapping
Theorem [Conway, 1978, Theorem 7.5] – either constant or open. If this map is constant, then
B(u)/Γ ∗ = F (u)/Γ ∗. This contradicts the fact that F (u)/Γ ∗ is a two-dimensional variety as
shown in Theorem 2.28(a) and B(u)/Γ ∗ a three-dimensional variety as shown in (a). Thus,
every path in C containing λ can be lifted to a path on B(u)/Γ ∗. So for λ 6= λ′, two Fermi
curves Fλ(u)/Γ ∗ and Fλ′(u)/Γ ∗ with λ 6= λ′ are connected. In Theorem 2.28(b) it is shown
that R(F (u)/Γ ∗) has at most two connected components. The same also holds for the regular
part of the translated Fermi curves Fλ(u)/Γ ∗ and thus R(B(u)/Γ ∗) has at most two connected
components.

(c) We have seen in Theorem 2.28(d) that the subvariety of the degenerated eigenvalues has
codimension one on F (u)/Γ ∗. Since F (u)/Γ ∗ is a subset of B(u)/Γ ∗, this implies that the
codimension of the subvariety of degenerated eigenvalues on B(u)/Γ ∗ is bigger or equal to
one. However, if it was two, then also the codimension on F (u)/Γ ∗ of this subvariety would
be two which contradicts the statement in Theorem 2.28(d).

The results of the previous section are now very helpful to gain insight into the fact that for
δ > 0 sufficiently small, F (u)∩C2

δ can locally be represented as a Weierstrass covering of maximal
degree two. This means that there is a covering F (u) ∩ C2

δ → C, (k1, k2) 7→ k1 such that locally
around (k0,1, k0,2) ∈ F (u) ∩ C2

δ , there is a Weierstraß polynomial in k2 of degree one or two with
holomorphic coefficients ai(k1) such that the highest coefficient is equal to one and all lower
coefficients vanish at k0,1 and the zero set of this polynomial coincides locally with F (u), see
[de Jong and Pfister, 2012, Weierstraß Preparation Theorem 3.2.4]. It is clear from the above
considerations that the degree of the Weierstraß polynomial on F (u) ∩ U±ε,δ equals one. For δ > 0
sufficiently small, it remains to analyze the Weierstraß polynomial of F (u) inside of the excluded
domains eν with ν ∈ Γ ∗δ . We already know from Section 1.4 that the degree of the polynomial
representing F (0) at k±ν with ν ∈ Γ ∗ equals two.

Remark 2.30. To ensure that we can find Weierstraß coverings of both parts of F (u)/Γ ∗, the part
contained in the excluded domains and the part bounded away from these, we consider coverings
over k1 of F (u) ∩ C2

δ which can be realized by choosing neighborhoods Bε(k0,1) := {k1 ∈ C |
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|k1 − k0,1| < ε} with k0 = (k0,1, k0,2) and ε chosen as in Remark 2.10, δ > 0 sufficiently small and
ν ∈ Γ ∗δ . We know already from Theorem 2.28(a) that in this case F (u) ∩ U±ε,δ can be represented
by a one-sheeted Weierstraß covering over k1 on k±ν +Bε(k0,1). Because F (0)/Γ ∗ is described by
planes in this area, for fixed k1 ∈ k±ν,1 +Bε(k0,1), the minimal distance between (k1, k2) ∈ F (u)/Γ ∗

and (k1, k̃2) ∈ F (0)/Γ ∗ is given by |k2 − k̃2| < ε. Then (k1, k2) ∈ k±ν + Bε(k0,1) × Bε(k0,2). Let
ν ∈ Γ ∗δ with δ > 0 small. To describe F (u) also in the neighborhoods of k±ν by Weierstraß
coverings, note that we have chosen ε > 0 such that 8ε is smaller than half of the distance
between the generators of Γ ∗C as in Definition 2.1. Therefore, we can transfer the asymptotics
in the excluded domains with 4ε-balls around k±ν also on larger excluded domains with radius
8ε. We consider k±ν + k1 with k1 ∈ B4ε(0). Since ε > 0 is chosen such that F (u) is contained in
an ε-neighborhood of F (0) and the two sheets R± and R∓(ν) intersect in k±ν , this ensures that
the Weierstraß covering in the neighborhood of the k±ν yields values k±ν + (k1, k2) ∈ F (u) such
that (k1, k2) ∈ B4ε(k±ν,1)×B4ε(k±ν,2). By this choice, all open neighborhoods in which we describe
(F (u) ∩ C2

δ)/Γ ∗ by Weierstraß coverings overlap. We denote the polynomials which we obtain to
describe F (u) in local coordinates (z1, z2) centered at k±ν in analogy to (2.6) by p0

k±ν
and pu

k±ν
.

In order to tell more about the correspondence of the number of branch points of this covering in
open neighborhoods of C2, the following definitions are necessary:

Definition 2.31. The discriminant of

p(z1, z2) = z2
2 + a(z1)z2 + b(z1) = 0

with is defined as
Dp(z1) := a(z1)2 − 4b(z1).

Since for a Weierstraß polynomial p the coefficients a and b are holomorphic in z1, also Dp is.

Definition 2.32. We call a point (z0,1, z0,2) of the zero set defined by

p(z1, z2) := z2
2 + a(z1)z2 + b(z1) = 0

on an open polydisc U := U1 × U2 of C2 with a, b ∈ O(U1) an ordinary branch point of the
Weierstraß covering over z1 if

∂p

∂z1
(z0,1, z0,2) 6= 0, and ∂p

∂z2
(z0,1, z0,2) = 0

and an ordinary double point of this covering if

∂p

∂z1
(z0,1, z0,2) = 0, ∂p

∂z2
(z0,1, z0,2) = 0 and D′′(z0,1) 6= 0.
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There is also another way to characterize the branch and double points of a locally two-sheeted
Weierstraß covering which uses the discriminant.

Lemma 2.33. (a) The Weierstraß covering over z2 defined by p = 0 as in Definition 2.32 has an
ordinary branch point at (z0,1, z0,2) ∈ {z ∈ C2 | p(z) = 0} if and only if

Dp(z0,1) = 0 and D′p(z0,1) 6= 0.

(b) The Weierstraß covering over z1 defined by p = 0 as in Definition 2.32 has an ordinary double
point at (z0,1, z0,2) ∈ {z ∈ C2 | p(z) = 0} if and only if

Dp(z0,1) = 0, D′p(z0,1) = 0 and D′′p(z0,1) 6= 0.

Proof. Let (z0,1, z0,2) ∈ {z ∈ C2 | p(z) = 0}. First of all, Dp(z0,1) = 0 if and only if p has a
zero of higher order in z2 at (z0,1, z0,2), i.e. if ∂p

∂z2
(z0,1, z0,2) = 0: Dp(z0,1) = 0 is equivalent to

a(z0,1)2 = 4b(z0,1). Inserting this into p yields that z0,2 = −a(z0,1)
2 is a zero of second order of p.

Conversely, p has only one zero of second order at z0,2 = −a(z0,1)
2 . Furthermore,

∂p

∂z2
(z0,1, z0,2) = 2z0,2 + a(z0,1),

∂p

∂z1
(z0,1, z0,2) = a′(z0,1)z0,2 + b′(z0,1),

∂2p

∂z2
1

(z0,1, z0,2) = a′′(z0,1)z0,2 + b′′(z0,1),

D′p(z0,1) = −2a′(z0,1)a(z0,1) + 4b′(z0,1),

D′′p(z0,1) = −2a′′(z0,1)a(z0,1)− 2(a′(z0,1))2 + 4b′′(z0,1).

We need to show that ∂p
∂z1
6= 0 ⇔ D′p(z0,1) 6= 0 for Dp(z0,1) = p(z0,1, z0,2) = ∂p

∂z2
(z0,1, z0,2) = 0.

Since ∂p
∂z2

(z0,1, z0,2) = 0 one has z0,2 = −a(z0,1)
2 . Hence,

∂p

∂z1

Ç
z0,1,−

a(z0,1)
2

å
= −a′(z0,1)a(z0,1)

2 + b′(z0,1) 6= 0

⇔ D′p(z0,1) = −2a′(z0,1)a(z0,1) + 4b′(z0,1) 6= 0.

With this at hand, we can describe F (u) ∩ C2
δ for δ > 0 in the neighborhood of the double points

more precisely.
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Theorem 2.34. For ε > 0 as in Remark 2.10 and u ∈ C(R2/Γ ), there exists a δ(ε, u) > 0 such
that for all k1 ∈ B4ε(0) and all ν ∈ Γ ∗δ the part of F (u) ∩

ÄÄ
k±ν,1 +B4ε(0)(0)

ä
×
Ä
k±ν,2 +B4ε(0)

ää
is

a complex curve consisting of two sheets with respect to the covering (k1, k2) 7→ k1 and for every
ν ∈ Γ ∗δ , each open set (k±ν,1 +B4ε(0))× (k±ν,2 +B4ε(0)) contains either two branch points of this
covering or a double point k±ν (u).

Proof. Note that we are considering neighborhoods of k±ν ∈ F (0) with ν ∈ Γ ∗δ and δ > 0 sufficiently
small. In case that F (u) ∩ eν decays into two sheets, we abuse of the common notation in the
sense that we define the product of the two Weierstraß polynomials – which are both linear in k2

in this neighborhood – as the Weierstraß polynomial of F (u) in the excluded domain.
To see that the number of sheets of F (u) considered as a covering k2(k1) over k±ν,1 + k1 with
k1 ∈ Bε,1(0) is two, remember that we have seen in Theorem 2.18 that

detS−1
±ν(k + k±ν ) = 16π4 Ä(k + k±ν )2ä Ä(k + k±ν + ν)2ä = 0 (2.9)

describes the free Fermi curve in a neighborhood of k±ν for these k1 and for every ν ∈ Γ ∗δ with
δ > 0 sufficiently small. This is equivalent to one of the four factors in this product being equal to
zero. At k+

ν it isÄ
k2 + k±ν,2 + ι(k1 + k±ν,1)

ä
= 0 and

Ä
k2 + k±ν,2 + ν2 − ι(k1 + k±ν,1 + ν1)

ä
= 0,Ä

k2 + k±ν,2 − ι(k1 + k±ν,1)
ä
6= 0 and

Ä
k2 + k±ν,2 + ν2 + ι(k1 + k±ν,1 + ν1)

ä
6= 0

and at k−ν this is just the other way around. Hence, the factors unequal to zero in the product
(2.9) can be assumed to be approximately constant for k±ν,1 + k1 with k1 ∈ Bε,1(0), and so equation
(2.9) yields exactly two solutions of k2(k1) for k1 ∈ (k±ν,1 +Br1(0)) \ {k±ν,1} which are of multiplicity
one and one solution at k±ν,1 with multiplicity two. For k±ν + k with k ∈ Bε(0), Lemma 2.19 yields
for ‖ν‖ → ∞

A(u, k + k±ν ) =
(
a(u, k + k±ν ) b(u, k + k±ν )
c(u, k + k±ν ) d(u, k + k±ν )

)
→
(
û0 0
0 û0

)
,

where a, b, c, d are holomorphic in k. So for δ > 0 sufficiently small and k±ν,1 + k1 with k1 ∈ Bε,1(0),
fu can approximately be described by the zero set of

det(S−1
±ν(k + k±ν ) +A(u, k + k±ν )) ≈ det

(
(k + k±ν )2 + û0 0

0 (k + k±ν + ν)2 + û0

)
.

We get from this equation that asymptotically

((k + k±ν )2 + û0)((k + k±ν + ν)2 + û0) = 0.

Using again the assumption that on (k+
ν,1+B4ε(0))×(k+

ν,2+B4ε(0)) it is k2+k+
ν,2+ι(k1+k+

ν,1) ≈ c1 6= 0
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and k2 + k+
ν,2 + ν2 − ι(k1 + k+

ν,1 + ν1) ≈ c2 6= 0 as well as k2 + k+
ν,2 − ι(k1 + k+

ν,1) ≈ 0 and
k2 + k+

ν,2 + ν2 + ι(k1 + k+
ν,1 + ν1) ≈ 0 and vice versa for k−ν , one gets two solutions k2(k1) + k±ν,2

counted with multiplicity for every k±ν,1 + k1 with k1 ∈ B4ε(0). So the covering is locally two
sheeted.
As shown for the one-sheeted part of F (u) ∩ U±ε,δ, these solutions are for all ν ∈ Γ ∗δ contained in
k±ν,2 +Bε(0). They can either coincide a discrete number of times or not at all, so the number of
intersection points of these two sheets is discrete or empty in k±ν + (B4ε(0)×B4ε(0)). Note that
here, the open balls are one-dimensional balls around each component of (k±ν,1, k±ν,2)
To see that the number of branch points of the local Weierstraß covering of F (u)/Γ ∗ in the
neighborhood of these double points equals two, we first show that F (0) has an ordinary double
point at k±ν for ν ∈ Γ ∗ and consider without loss of generality k+

ν : choosing local coordinates
(zν,1, zν,2) = (k+

ν,1 − k1, k
+
ν,2 − k2) on (k+

ν,1 + B4ε(0)) × (k+
ν,2 + B4ε(0)) yields that on these open

neighborhoods

p0
k+
ν

(zν,1, zν,2) = ((kν,1 − zν,1) + ι(kν,2 − zν,2))((kν,1 − zν,1) + ν1 − ι((kν,2 − zν,2) + ν2))

= (kν,1 − zν,1)2 + (kν,1 − zν,1)(ν1 − ιν2) + (kν,2 − zν,2)(ν2 + ιν1) + (kν,2 − zν,2)2,

and therefore

∂p0
k+
ν

∂zν,1
= 2(k±ν,1 − zν,1) + ν1 − ιν2 and

∂p0
k+
ν

∂zν,2
= 2(k±ν,2 − zν,2) + ν2 + ιν1.

So (∂p0
k+
ν
/∂zν,1)(zν,1, zν,2) = (∂p0

k±ν
/∂zν,2)(zν,1, zν,2) = 0 if and only if (zν,1, zν,2) = (0, 0). For

the second derivative of the discriminant of p0
kν± holds D′′

p0
kν±

(0) = 2 6= 0. Therefore, Lemma
2.33(b) yields that every k±ν is an ordinary double point of F (0). The definition of the open
neighborhoods of k0 and k±ν in Remark 2.10 ensures that k±,1ν + B4ε(0) contains only points k1

such that both coverings (k1, k2) 7→ k1 of F (0) and F (u) restricted to k1 ∈ γν := k±ν,1 +∂B4ε(0) are
contained in R(F (u)) respectively R(F (0)). Next, we consider the difference of the zero-counting
integrals of the discriminants Dpu

k±ν
(zν,1) and Dp0(k±ν )(zν,1) inside of γν to determine the number of

branch points. For brevity, we set Dpu
k±ν

:= Du and Dp0
k±ν

:= D0. The discriminants Du and D0

are polynomials in the coefficients of the Weierstraß polynomial puknu± and p0
k±ν

and D′u and D′0
derivatives of those. Therefore, all these four functions are holomorphic in zν,1. Since F (0) has an
ordinary double point at all k±ν , the value of the zero counting integral is

∮
γν

D′0
D0

(zν,1) dzν,1 = 2.

Furthermore,∣∣∣∣∣
∫
γν

D′u
Du

(zν,1) dzν,1 −
∫
γ

D′0
D0

(zν,1) dzν,1
∣∣∣∣∣ ≤

∫
γν

∣∣∣∣∣D′uD0 −D′0Du

D0Du
(zν,1)

∣∣∣∣∣ dzν,1.
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It is

‖D′uD0 −D′0Du‖∞ ≤ ‖D′uD0 −D′0D0‖+ ‖D′0D0 −D′0Du‖∞
= ‖D0‖∞‖D′u −D′0‖∞ + ‖D′0‖∞‖D0 −Du‖∞.

Due to the first part of this proof, for all ε′′ > 0 there exists a δ′′ > 0 such that ‖D0 −Du‖∞ < ε′′

as well as ‖D′0 −D′u‖∞ < ε′′ for (zν,1, zν,2) ∈ γν with ν ∈ Γ ∗δ′′ . Moreover, neither D0 nor Du is
identically zero on γν , both are holomorphic in zν,1 and γν is compact. So there exists a c > 0
such that ‖D0Du|γν‖∞ ≥ c and ‖Du|γν‖∞ as well as ‖D0|γν‖∞ are bounded. Thus, for ν ∈ Γ ∗δ′′ ,∥∥∥∥∥

∫
γν

D′u
Du

(zν,1) dzν,1 −
∫
γν

D′0
D0

(zν,1) dzν,1
∥∥∥∥∥
∞
≤
∫
γν

∥∥∥∥∥D′uD0 −D′0Du

D0Du
(zν,1)

∥∥∥∥∥
∞

dzν,1 ≤ c̃(c, γ, u)ε′′

Since the values of each of these zero-counting integrals are integer, for δ > 0 sufficiently small,
this integral must equal. Hence, the number of branch points of F (u) and F (0) coincides in the
neighborhood of the double point k±ν with ν ∈ Γ ∗δ′′ . Since k±ν is the only branch point of F (0) and
counted with multiplicity two, F (u) has in each excluded domain around k±ν either two branch
points of the covering (k1, k2) 7→ k1 or a double point k±ν (u). Due to Corollary 2.6 and since the
two sheets R± and R∓(ν) meet in k±ν , these two solutions of k2 are contained in k±ν,2 +B4ε,2(0).

Taking all the above together finally leads us to the following Theorem which summarizes all
results concerning the asymptotics of F (u)/Γ ∗.

Theorem 2.35 (Trisection of F (u)/Γ ∗). Let u ∈ C(R2/Γ ) be fixed.

(a) For all ε > 0 as in Remark 2.10 and all u ∈ C(R2/Γ ), there exists a δ > 0 such that the two
open sets F (u)/Γ ∗ ∩ U±ε,δ are isomorphic to connected one-dimensional complex submanifolds
of C2/Γ ∗. These submanifolds look like two real planes from which one huge hole and infinitely
many small holes are cut out. The eigenspaces of −4k +u over F (u)/Γ ∗ ∩ U±ε,δ are purely
one-dimensional.

(b) The relative complement of (F (u)/Γ ∗ ∩ U+
ε,δ) ∪ (F (u)/Γ ∗ ∩ U−ε,δ) decomposes into two different

parts:

(i) A compact set contained in®
k ∈ C2/Γ ∗ | ‖ Im(k)‖ ≤ 1√

2δ

´
.

(ii) Infinitely many small excluded domains eν indexed by Γ ∗δ = {ν ∈ Γ ∗ | ‖k±ν ‖ ≥ (
√

2δ)−1}.
The excluded domain eν is contained in

{k ∈ C2 | ‖k − k+
ν ‖ ≤ 2ε} = {k ∈ C2 | ‖k − k−ν ‖ ≤ 2ε}
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and connects the small disc around k+
ν excluded from F(u)/Γ ∗ ∩ U+

ε,δ with the small
disc around k−ν excluded from F (u)/Γ ∗ ∩ U−ε,δ. The eigenspaces of −4k +u over these
excluded domains has at most two dimensions.

Proof. We can summarize the foregoing considerations as follows:

(a) That F (u)∩U±ε,δ is a one-dimensional manifold is the statement of Theorem 2.28(a) and that the
eigenspace of the Schrödinger operator over these parts of the Fermi curve is one-dimensional
follows from Lemma 2.23(a). The second statement also follows from Theorem 1.14 together
with Theorem 2.34 since they imply that −4k +u can be represented as a 1× 1-matrix on
U±ε,δ and thus has a one-dimensional eigenspace.

(b) (i) The fundamental domain ∆C is compact and Γ ∗ \ Γ ∗δ contains for any δ > 0 only a
finite set of points. Due to the definition of C2

δ in (2.1), the set (C2 \ C2
δ)/Γ ∗ is for any

δ > 0 the union of finitely many compact sets and thus compact. Since the Fermi curve
F (u)/Γ ∗ is closed, (F (u) ∩ (C2 \ C2

δ))/Γ ∗ is compact.

(ii) That also follows from Theorems 1.14 and 2.34 since they imply that − 4k +u can
be represented as a 2 × 2-matrix on each eν and thus has at most a two-dimensional
eigenspace.
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3. The eigenfunctions

The meaning of this chapter is two-fold. The Fermi curve F (u)/Γ ∗ is not a Riemann surface, but
a singular curve. Hereby, we call one-dimensional singular complex analytic spaces X ′ in the sense
of [de Jong and Pfister, 2012, Definition 6.1.36] singular curves in the sequel. Moreover, we keep in
mind that we can understand all one-sheeted coverings of F (u)/Γ ∗ as desingularizations F (u)/Γ ∗.
Then the ‘most desingularized’ one-sheeted covering is the normalization of F (u)/Γ ∗. Because
F (u)/Γ ∗ is a one-dimensional variety in C2/Γ ∗, the normalization is a Riemann surface and thus
all singular points of F (u)/Γ ∗ are resolved on the normalization. Furthermore, the Fermi curve
F (u)/Γ ∗ is, as a variety, a topological space. So we can consider the sheaves of functions on small
open neighborhoods of every [k] ∈ F (u)/Γ ∗. In the first section of this chapter, we define the
normalization of F (u)/Γ ∗, introduce the sheaf of holomorphic functions on F (u)/Γ ∗ and define
regular differentials on F (u)/Γ ∗ which can be understood as the analogon for singular curves to
the holomorphic differentials on a Riemann surface. These are defined as in [Serre, 1988, Chapter
IV §3] or in [Rosenlicht, 1952].
On singular curves, one cannot define divisors as the ‘classical’ divisors are defined on Riemann
surfaces. Nevertheless, we want to be able to consider an object on F (u)/Γ ∗ which can – on
the regular part of F (u)/Γ ∗ – be understood at the pole divisor of the eigenfunction when the
latter is normalized in an appropriate way. This is the first meaning of this chapter and will be
introduced in the second section in terms of a generalized divisor on F (u)/Γ ∗. Generalized divisors
are finitely generated subsheaves of the meromorphic functions. We will consider the subsheaf of
the meromorphic functions which is generated by normalized the eigenfunction of −4+u and
show that this defines a so-called generalized divisor on F (u)/Γ ∗.
The second meaning of this chapter is to construct a regular operator-valued 1-form on the Fermi
curve. The construction of this 1-form is done in two steps: First, we consider the spectral
projection of the Schrödinger operator on the Bloch variety and show that this defines a regular
operator-valued 2-form on B(u)/Γ ∗. However, it will not be possible to restrict this 2-form to
a regular-valued 1-form on the Fermi curve because it is defined with respect to the covering
(k, λ) 7→ k. So in a second step we will introduce another projection and deduce from the first step
that this defines a regular 2-form on B(u)/Γ ∗ with respect to the covering (k, λ) 7→ (k1, λ). Note
that for local considerations, it does not make a difference whether we consider (k, λ) ∈ B(u) or
([k], λ) ∈ B(u)/Γ ∗ because Γ ∗ is discrete. We will see that the latter 2-form can be restricted to
F (u)/Γ ∗ by setting λ = 0 and obtain the desired regular operator-valued 1-form on the Fermi
curve. This 1-form will be crucial to show in Section 4.2.1 that the eigendivisor of the Schrödinger
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3. The eigenfunctions

operator with a so-called regular finite type potential has to obey a certain symmetry with respect
to the holomorphic involution σ introduced in Section 1.3. This symmetry is very important in
the whole remainder of this work. We will go into this in more detail in Chapter 4.2 after we have
introduced regular finite potentials u.
From now on we assume more regularity on the eigenfunctions, i.e. we define

C∞[k](∆) := {f ∈ C∞(R2,C) | ∀γ ∈ Γ : f((x, y) + γ) = e2πι〈k,γ〉f(x, y)}

and assume that ψ([k]) ∈ C∞[k](∆) and ϕ([k]) ∈ C∞[−k](∆). This is no obstruction since we will see
in the inverse problem in Chapter 5 that the reconstruction of the eigenfunctions out of some given
data yields indeed elements of this space and we can also apply the results of the foregoing sections
since C∞(∆) ⊂ L2(∆). Note that fg ∈ L2(R2/Γ ) for f ∈ C∞[−k](∆) and g ∈ C∞[k](∆). Hence,
⟪∂yf, g⟫ = −⟪f, ∂yg⟫. Analogously, we assume that the eigenfunctions of −4k +u are elements
of C∞(R2/Γ,C). In the inverse problem in Chapter 5, we will see that even more regularity holds
for the eigenfunctions corresponding to regular finite type potentials.

3.1. The Fermi curve as a singular curve

As a first step to define finite type potentials in the following chapter, the normalization π :
X◦(u)→ F (u)/Γ ∗ is necessary, where X◦(u) is a Riemann surface and π is a one-sheeted covering
over F (u)/Γ ∗. For brevity, we set X ′ = X ′(u) := F (u)/Γ ∗ and X◦ := X◦(u) in all of this chapter
and we omit the dependency of u if it is clear from the context which Fermi curve we consider. By
abuse of notation, we sometimes denote the elements of X◦ by k and the elements of X ′ by k′

instead of by [k] and [k′], respectively.
Corollary 1.15 together with Theorem 2.28 (a) and (c) yields that X ′(u) is a one-dimensional
variety in C2/Γ ∗ with two open ends and hence at any point k′ ∈ X ′(u), a germ of an analytic space
as defined in [de Jong and Pfister, 2012, Definition 3.4.2 (a)]. So the existence of the normalization
X◦ follows by [de Jong and Pfister, 2012, Theorem 4.4.8]. The direct image π∗OX◦ of the sheaf of
holomorphic functions OX◦ on X◦(u) equals ŌX′ which is the sheaf of locally bounded functions
on X ′(u), compare [de Jong and Pfister, 2012, Theorem 4.4.15 and proof of Theorem 4.4.8]:

ŌX′ = π∗OX◦ , ŌX′,k′ :=
⊕

k∈π−1[{k′}]
OX◦,k.

We identify the meromorphic functions MX′ on X ′(u) with the meromorphic functions MX◦

on X◦(u) via f 7→ f ◦ π as in [Klein et al., 2016, Section 2.1] and denote them by the same
symbol. This induces an isomorphism of sheavesMX′ ' π∗MX◦ . It is shown in [Klein et al., 2016,
Proposition 2.1] that the set S of non-regular points of X ′(u) is given by the set of k′ ∈ X ′(u)
for which Ōk′/Ok′ 6= 0 and that this is a discrete subvariety of X ′(u). These non-regular points
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3.1. The Fermi curve as a singular curve

we call the singularities of X ′(u), because they coincide with X ′(u) \ R(X ′(u)). Since X ′(u)
is a one-dimensional variety in C2/Γ ∗, the normalization space X◦(u) is smooth, i.e. has no
singularities, compare [de Jong and Pfister, 2012, Corollary 4.4.10]. Moreover, the one-sheeted
covering π : X◦(u) \ π−1[S]→ X ′(u) \ S is biholomorphic. Together with some statements shown
in the foregoing chapter, we obtain the following Lemma.

Lemma 3.1. Let u ∈ C(R2/Γ ) and let X ′(u) be the corresponding Fermi curve. Then there exists
a covering π : X◦(u)→ X ′(u), where X◦(u) is a Riemann surface, the image of π is X ′(u) and π
is biholomorphic on X◦(u) \ S. The covering (X◦(u), π) is called the normalization of X ′(u).

(i) For u = 0, the singularities are exactly the double points {k±ν | ν ∈ Γ ∗} of X ′(0).

(ii) For δ > 0 sufficiently small, the singularities S ∩ C2
δ of X ′(u) are contained in the excluded

domains eν around k±ν as introduced in Definition 2.26 for all ν ∈ Γ ∗δ . These singularities
are only double points.

(iii) The singularities in X ′(u) ∩ (C2 \ C2
δ)/Γ ∗ may be of higher order, but are discrete.

Proof. The existence and smoothness of the normalization for X ′(u) was already justified above.
Equation (1.15) yields that the double points k±ν are the only non-regular points ofX ′(0). Theorems
2.28(b) and 2.34 are just the statement in (ii) and Theorem 2.35 b(i) together with the fact that
the set of singularities is a discrete set in X ′(u) yields (iii).

On singular curves X ′, we define generalized divisors as in [Klein et al., 2016, Definition 3.1] or
[Hartshorne, 1986, §1].

Definition 3.2. [Klein et al., 2016, Definition 3.1] A generalized divisor on a singular curve X ′

is a finitely generated subsheaf S of the sheaf of meromorphic functionsM on X ′. The support
suppS of a generalized divisor S is the set of all k′ ∈ X ′ such that Sk′ 6= Ok′ . Two generalized
divisors S and S ′ are linear equivalent if there exists an f ∈M such that f · S = S ′.

For a generalized divisor S with finite support on a singular curve X ′, we define the degree as it is
done in [Klein et al., 2016, Definition 3.5]:

Definition 3.3. Let S ′ be any generalized divisor with finite support containing S and OX′ . Then

deg(S) := dimH0(X ′,S ′/OX′)− dimH0(X ′,S ′/S).

Since the support of S is discrete, see [Klein et al., 2016, Proposition 3.3], there exists for each
k′ ∈ suppS a generalized divisor S(k′) such that suppS(k′) = {k′} and S(k′)k′ = Sk′ . We call
degk′(S) := deg(S(k′)) the degree of S at k′. In a sufficiently small open neighborhood of a regular
point of X ′ a generator of maximal pole order respectively minimal zero order alone suffices to
generate S, compare [Klein et al., 2016, § 6]. In particular on R(X ′), a generalized divisor S
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3. The eigenfunctions

equals OD for some classical divisor D. Furthermore, the regular differential forms on X ′ are
defined as follows.

Definition 3.4 ([Klein et al., 2016, Definition 6.1]). Let X ′ be a complex one-dimensional curve
with normalization π : X → X ′. Then a meromorphic differential form ω on X ′ is regular at
k′ ∈ X ′ if ∑

k∈π−1[{k′}]
Resk(π∗(f · ω)) = 0 for all f ∈ OX′,k′ ,

where the residue Resk is defined as in [Forster, 1981, §9.9] We say that ω is a regular 1-form if it
is regular at every k′ ∈ X ′. ΩX′ is the sheaf of regular differential forms on X ′.

Every global meromorphic function f which does not vanish identically on a connected com-
ponent of X ′ has an inverse meromorphic function. For such an f , the map g 7→ g · df is an
isomorphism from the sheaf of meromorphic functions onto the sheaf of meromorphic 1-forms
and thus identifies finitely generated OX′-submodules of the sheaf of meromorphic 1-forms with
generalized divisors on X ′. The degree of such a submodule is defined as the degree of the
corresponding generalized divisor, compare [Klein et al., 2016, Section 6]. The arithmetic genus
of X ′ is defined as g′ := dimH1(X ′,OX′), the geometric genus as g := dimH1(X,OX) and δ

as ∑k′∈S δk′ with δk′ := dim(Ōk′/Ok′) as defined in [Klein et al., 2016, Proposition 2.1(a)]. We
remark that δk′ > 0 is equivalent to k′ ∈ S: if k′ ∈ S, then Ōk′ 6= Ok′ , so δk′ > 0 and conversely,
for δk′ = 0 one has Ōk′ = Ok′ , so k′ 6∈ S. Moreover, is shown in [Klein et al., 2016, Lemma
5.1(b)] that the arithmetic and the geometric genus of X ′ are correlated by g′ = g + δ. For the
degree of the regular 1-forms it is shown in [Klein et al., 2016, Corollary 6.6] that deg(Ω′X) = 2g′−2.

Definition 3.5 ([Hartshorne, 2013, Section 5, page 109]). Let (X ′,OX′) be a ringed space. A
sheaf of modules S over OX′ is said to be locally free if for every point k′ ∈ X ′, there is an open
neighborhood U ⊂ X ′ of k′ such that the restriction S|U is a free sheaf of modules over OX′ |U ,
i.e. it is isomorphic to the direct sum of a set `(X ′) of finitely many copies of the structure sheaf
OX′ |U . If X ′ is connected and `(X ′) consists of n elements, then n does not depend on the point
k′ and is called the rank of the locally free sheaf.

For hypersurfaces, one can show that the sheaf of regular differential forms is locally free. The two
main ingredients for this proof are that a hypersurface is the zero set of only one holomorphic
function R and that one can describe the curve locally by Weierstraß coverings. More precisely,
the following Lemma – taken from [Schmidt, 2002, Lemma 2.20] – yields that on a hypersurface in
Cn+1, the regular differential form

ω := 1
∂R/∂z1

dz2 ∧ · · · ∧ dzn
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3.1. The Fermi curve as a singular curve

locally generates all regular differential forms since all regular forms can be represented as f · ω
with f being holomorphic. Hence, the regular forms are an invertible sheaf, i.e. a sheaf which is –
as a module – locally free of rank 1 in the sense of Definition 3.5. This means in particular that
every stalk over a point on X of this sheaf is, as a vector space, isomorphic to the stalk of the
holomorphic functions at this point. We decided to give the proof of the Lemma because the proof
which can be found in [Schmidt, 2002] is rather short.

Lemma 3.6. [Schmidt, 2002, Lemma 2.20] Let R(z1, . . . , zn+1) be a holomorphic function on some
open subset U ⊂ Cn+1 whose partial derivative ∂R/∂z1 is not identically zero on the connected
components of the subvariety of U defined by the equation R(z1, . . . , zn+1) = 0. Therefore, this
subvariety can locally be considered as a covering space over z̃ := (z0,2, . . . , zn+1) ∈ Cn. On every
open subset V ⊂ Cn where such a local representation of the subvariety in Cn+1 exists, we define

O := {(z1, . . . , zn+1) ∈ C× V | R(z1, . . . , zn+1) = 0}.

We assume in the sequel that V is always chosen in such a way that it contains at least one connected
component of O. The following conditions on a meromorphic function f on this subvariety are
equivalent:

(i) f ∈ OO.

(ii) Let us consider the subvariety as a covering space over z̃ ∈ Cn. Then for all g ∈ OO, the
local sum of gf/(∂R/∂z1) over all sheets of this covering contained in O which contain an
arbitrary element of this subvariety is a holomorphic function.

Proof. Since the statement of the Lemma is a local statement, it suffices to show that for all
z0 := (z0,1, . . . , z0,n+1) = (z0,1, z̃0) ∈ O, there exists a ball Bε(z̃0) ⊂ V such that the lemma holds
on the restriction of the Weierstraß covering O → V to the preimage Õ of Bε(z̃0). In particular,
one can choose Bε(z̃0) small enough such that all connected components of the preimage of z̃0

consists only of one point in Õ. Since the holomorphic functions on the connected components are
independent, we can assume that Õ → Bε(z̃0) only consists of the one point z0 over z̃0. Let us
choose some element z0 of the subvariety Õ. Due to the Weierstraß Preparation Theorem [de Jong
and Pfister, 2012, Theorem 3.2.4], locally, there exists a Weierstraß polynomial

Q[z1](z̃) = zd1 +
d−1∑
i=0

qi(z̃)zi1

with respect to z1 whose coefficients qi are holomorphic functions depending on Bε(z̃0) such that
R = Q · u, where u is a locally holomorphic unit. Moreover, the degree d of Q equals the number
of all sheets of Õ considered as a covering space over z̃ ∈ Bε(z̃0) which contain the element (z1, z̃)
of Õ. In a neighborhood of z0, condition (ii) is equivalent to an analogous condition, where R is
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replaced by Q. Let Q be an arbitrary polynomial in z1 of degree d with leading coefficient 1 whose
coefficients are complex numbers and let p1, . . . , pd be the zeros of Q. Assume that the values of
an arbitrary polynomial g in z1 with complex-valued coefficients and of degree less than d are
given in these zeros, i.e. (pi, g(pi)) for i = 1, . . . , d. Then the Lagrange interpolation [Roman, 2007,
page 248] is given by

g(z1) =
d∑
i=1

g(pi)`i(z1), where `i(z1) :=
d∏
j=0
j 6=i

z1 − pj
pi − pj

.

This leads to

g(z1) =
d∑
i=1

g(pi)
∂Q(pi)/∂z1

∏
j 6=i

(z1 − pj)

if at least deg(g) zeros of Q are pairwise different since

∂Q

∂z1
(z1) =

d∑
i=1

d∏
j=1
j 6=i

(z1 − pj), so ∂Q

∂z1
(pi) =

d∏
j=1
j 6=i

(pi − pj),

In particular, the sum
d∑
i=1

g

∂Q/∂z1
(pi)

is equal to the coefficient of the monomial zd−1
1 in g(z1). We conclude that we can also apply

Lagrange interpolation as above if the coefficients of Q are holomorphic functions depending on z̃
such that the discriminant of Q does not vanish identically because in this case all zeros of the
polynomial are still pairwise different. Due to the Weierstraß Division Theorem [de Jong and
Pfister, 2012, Theorem 3.2.3], each meromorphic function on the subvariety which is defined by the
zero set of Q can be written locally as a polynomial with respect to z1 of degree smaller or equal
to d− 1 whose coefficients are meromorphic functions depending on z̃. Hence, the local sum of
this function over all sheets of the subvariety considered as a covering space over z̃ ∈ Bε(z̃0) which
contain z0 is locally a holomorphic function if and only if the coefficient of zd−1

1 of the polynomial
is locally holomorphic. With this at hand, we show that (i) and (ii) are equivalent.

(i)⇒(ii): Let

f(z1, z̃) = zd−1
1 f1(z̃) + · · ·+ fd(z̃),

g(z1, z̃) = zd−1
1 g1(z̃) + · · ·+ gd(z̃),

Q(z1, z̃) = zd1 + zd−1
1 q1(z̃) + · · ·+ qd(z̃)

be holomorphic functions on C×Bε(z̃0). That means all coefficients of each of these functions
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3.1. The Fermi curve as a singular curve

are holomorphic in z̃ on Bε(z̃0). Note that f(z1, z̃) · g(z1, z̃) has degree 2d− 2. To consider
(f · g)(z1, z̃) on Õ, we have do divide it by Q. Due to the normalization of Q, it is

(f · g)(z1, z̃) = (s1(z̃)zg−2
1 + · · ·+ sg−2(z̃)z1 + sg−1(z̃))Q(z1, z̃) + r1(z̃)zd−1

1 + · · ·+ rd(z̃),

where s1(z̃)zg−2
1 + · · · + sg−1(z̃) and r1(z̃)zd−1

1 + · · · + rd(z̃) are polynomials in z1 whose
coefficients are linear combinations of the coefficients of f(z1, z̃), g(z1, z̃) and Q(z1, z̃) and
thus holomorphic on Bε(z̃0). Since we consider f · g on Õ, i.e. Q(z1, z̃) = 0, one has .

(f · g)|Õ(z1, z̃) = zd−1
1 r1(z̃) + · · ·+ rd(z̃).

Due to the above considerations,

r1(z̃) =
∑

sheets of Õ

g · f
∂R/∂z1

(z̃)

is holomorphic on Bε(z̃0).

(ii)⇒(i): Let ∑sheets of Õ
g(z̃)f(z̃)
∂Q/∂z1

be holomorphic on Bε(z̃0) for every g ∈ OÕ. Inserting g = z0
1

leads to
(g · f)(z1, z̃) = f(z1, z̃) = zd−1

1 f1(z̃) + · · ·+ fd(z̃).

Then f1(z̃) = ∑ gf
∂Q/∂z1

, and therefore, f1 is holomorphic on Bε(z̃0). For g = z1
1 one gets

(g · f)(z1, z̃) = z1f(z1, z̃) = zd1f1(z̃) + · · ·+ fd(z̃)z1.

Moreover,

(g · f)(z1, z̃)− f1(z̃) ·Q(z1, z̃) = zd1f1(z̃) + zd−1
1 f2(z̃) + · · ·+ z1fd(z̃)−

− f1(z̃) · (zd1 + zd−1
1 q1(z̃) + · · ·+ qd(z̃))

= zd−1
1 (f2(z̃)− f1(z̃)q1(z̃)) + z̃d−2(f3(z̃)− f1(z̃)q2(z̃)) + . . .

· · ·+ z1(fd(z̃)− f1(z̃)qd−1(z̃) + f1(z̃)qd(z̃).

Hence, f2(z̃)− f1(z̃)q1(z̃) = ∑ gf
∂Q/∂z1

. Since q1 and f1 are holomorphic on Bε(z̃), also f2 is
holomorphic on Bε(z̃0). Repeating this procedure for g = z`1 with ` ∈ {2, . . . , d− 1} finally
yields that all coefficients of f are holomorphic on Bε(z̃0), so f is holomorphic on C×Bε(z̃0).

This Lemma shows that on n-dimensional varieties O, the regular n-forms are defined as those
meromorphic n-forms whose products with the holomorphic functions in OO have no residue in
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some neighborhood of any point of O. So Definition 3.4 of regular 1-forms on a one-dimensional
variety coincides with the conditions given in Lemma 3.6 for ω = f dz1. Let the subvariety O of
U ⊂ Cn+1 be a hypersurface, defined as in Lemma 3.6, and let not only ∂R/∂z1 6≡ 0, but also some
other derivative ∂R/∂zj 6≡ 0 for j = 2, . . . , n+ 1 on a connected components of O. Then one can
consider this subvariety locally either as a covering space over (z2, . . . , zn+1) ∈ Cn or as a covering
space over (z1, . . . , zj−1, zj+1, . . . , zn+1) ∈ Cn. Due to (∂R/∂z1)dz1 + . . .+ (∂R/∂zn+1)dzn+1 = 0,
it is

1
∂R/∂z1

dz2 ∧ . . . ∧ dzn+1 = (−1)j+1

∂R/∂zj
dz1 ∧ . . . ∧ dzj−1 ∧ dzj+1 ∧ · · · ∧ dzn+1. (3.1)

So Lemma 3.6 yields that an n-form

ω = f(z1, . . . , zn+1)
∂R(z1, . . . , zn+1)/∂z1

dz2 ∧ . . . ∧ dzn+1 =

= (−1)j f(z1, . . . , zn+1)
∂R(z1, . . ., zn+1)/∂zj

dz1 ∧ . . . ∧ dzj−1 ∧ dzj+1 ∧ · · · ∧ dzn+1

on a hypersurface is regular in the sense of Definition 3.4 if and only if f satisfies one of the
equivalent conditions (i) or (ii) from Lemma 3.6 either for z1 or the analogous condition to (ii)
with z1 replaced by zj .

3.2. The eigendivisor

Let u ∈ C(R2/Γ ) be fixed. We now want to introduce a generalized divisor which corresponds to
the pole divisor of a normalized eigenfunction in the smooth case. Remember that π : X◦ → X ′ is
the covering map defined in Lemma 3.1.
Since we now talk in the language of germs, it will be convenient to indicate the eigenfunctions
with an index k′, where k′ ∈ X ′ denotes the point at which the stalk of a germ is considered. So
far, we indicated the eigenfunctions ψk′ of the Schrödinger equation (1.6) in the formulation with
help of the trivializations as in Definition 1.5 with an index k′ in order to distinguish them from
the eigenfunctions ψ in the formulation in Definition 1.4 on the fundamental domain ∆. In this
section, we only consider the formulation of the fundamental domain, and therefore, we want to
point out that the index k′ in this section is used to indicate the corresponding germ at k′ ∈ X ′.
We choose the fundamental domain ∆ in (1.4) in such a way that it always contains (x, y) = (0, 0).
To define a generalized divisor on the subvariety X ′ which corresponds to the pole divisor of
a normalized eigenfunction in the smooth case, we normalize the locally defined, holomorphic
eigenfunction ψ on X◦ as

ψN ( ·, (x, y)) := ψ(·, (x, y))
ψ( ·, (0, 0)) (3.2)
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and consider for every ξ ∈ L2(∆)

⟪ξ, ψN (·)⟫ = ⟪ξ, ψ(·)⟫
ψ( ·, (0, 0)) . (3.3)

For every ξ ∈ L2(∆), the latter defines a meromorphic function which is globally defined on X◦.
This induces a germ inM and motivates the following definition:

Definition 3.7. We define the generalized divisor S as the subsheaf which is generated by the
meromorphic functions in (3.3) with any ξ ∈ L2(∆). The corresponding germs at k′ ∈ X ′ we
denote by Sk′ .

From [Klein et al., 2016, Section 2.1], we know that an open neighborhood of k′ ∈ S is defined as
the disjoint union of the elements k ∈ π−1[{k′}]. So for k′ ∈ S, one has

MX′,k′ = ×
k∈π−1[{k′}]

MX◦(u),k

and for the germ of a holomorphic function ψ ∈ OX′,k′ holds that the values of π∗ψ coincide at all
k ∈ π−1[{k′}]. In particular, the covering π : X◦ → X ′ is locally biholomorphic on X◦ \ π−1[S].
So let k′ ∈ R(X ′). The eigenfunction ψ can be chosen holomorphic on any sufficiently small open
neighborhood of k′ and is, as an eigenfunction of the Schrödinger operator, not identically zero.
So we can always find a ξ ∈ L2(∆) such that Sk′ is generated by

( ⟪ξ,ψ⟫
ψ(0,0)

)
k′

with ξ ∈ L2(∆). Then
Sk′ 6= Ok′ if and only if ψ(k′, (0, 0)) = 0. For k′ ∈ S, let π−1[{k′}] = {k1, . . . , kn} with n ∈ N.
Moreover, let Ok′ be a small open neighborhood of k′ and let π−1[Ok′ ] consist of open sets Oki
with i = 1, . . . , n such that each Oki is a small open neighborhood of ki ∈ π−1[{k′}]. We always
choose Ok′ sufficiently small such that Oki ∩Okj = ∅ for i 6= j. Then Ok1 ∪̇ . . . ∪̇Okn is an open
neighborhood of π−1[{k′}]. In this case,

ψ|Ok′ : Ok1 ∪̇ . . . ∪̇Okn → L2(∆).

For every ξ ∈ L2(∆), the germ
( ⟪ξ,ψ⟫
ψ(0,0)

)
k′

is contained inMX◦(u),k1×· · ·×MX◦(u),kn and ⟪ψ,ξ⟫ψ(0,0)

∣∣∣
Ok′is generated by

⟪ξ, ψ(k)⟫
ψ(k, (0, 0))

∣∣∣∣∣
Ok1

, . . . ,
⟪ξ, ψ(k)⟫
ψ(k, (0, 0))

∣∣∣∣∣
Okn

.

Nevertheless, the germ of the generalized divisor S from Definition 3.7 at k′ contains the germ of
the holomorphic functions of this point, as it is shown in the next proposition.

Proposition 3.8. Ok′ ⊆ Sk′ for all k′ ∈ X ′.

Proof. Let (ξn)n∈N be a sequence of smooth functions with supp (ξn) ⊂ B 1
n

(0, 0) and
∫
R2 ξn dA = 1

for all n ∈ N. For n > 0 sufficiently large, this defines a sequence with ξn ∈ L2(∆) which converges
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to the δ-function. Because we have assumed for every k′ ∈ X ′(u) that the eigenfunction ψ(k′, ·) is
continuous on R2, it is

lim
n→∞

|⟪ξn, ψ(k′, ·)⟫− ⟪ξn, ψ(k′, (0, 0))⟫| = lim
n→∞

∣∣∣∣⟪ξn, ψ(k′, ·)⟫− ψ(k′, (0, 0))
∫
∆
ξn dA

∣∣∣∣ = 0.

Now let k′ ∈ X ′(u) with π−1[{k′}] = k1, . . . , kn and Ok′ be a simply connected, small open
neighborhood of k′ such that π−1[Ok′ ] is the disjoint union of small disks Ok1 , . . . , Okn where Oki
contains ki for i = 1, . . . , n.
It follows from the Cauchy Integral Formula that the bounded holomorphic functions on π−1[Ok′ ]
are closed in the Banach space C(π−1[Ok′ ],C). Let OOk′ denote the holomorphic functions
on Ok′ . The codimension of OOk′ is finite in ¯OOk′ because Ok′ has finite codimension in Ōk′ ,
compare [Klein et al., 2016, Proposition 2.1(a)]. Therefore, OOk′ is closed in C(π−1[u],C). So
{π∗f | f ∈ OOk′} ⊆ Ok′ is a closed set in C(π−1[Ok′ ],C). Let SOk′ be the set of all sections of S
on Ok′ . Then SOk′ ⊆ Sk′ . By definition of S, it is ψ(0, 0)Sk′ ⊆ Ok′ . In the neighborhood of every
element in π−1[{k′}], there is a generator of ψ(0, 0)Sk′ 6≡ 0. So the generators of ψ(0, 0)Sk′ are a
finitely generated submodule of the meromorphic function over the ring OX,k′ . This corresponds to
a divisor D of finite degree on X. Then D is positive since it is generated by holomorphic functions.
So the codimension of the above submodule in the stalk of the holomorphic functions equals the
degree of all points of D contained in π−1[{k′}] and thus is finite. Because δk′ < ∞, ψ(0, 0)Sk′
has finite codimension in π∗OD. So ψ(0, 0)Sk′ has finite codimension in ŌX , and therefore also in
Ok′ , compare [Klein et al., 2016, Proposition 2.1(a)]. Then the closedness of OOk′ yields that also
ψ(0, 0)SOk′ is closed.
For every n ∈ N, it follows from the definition of S that ⟪ξn, ψ⟫ ∈ ψ(0, 0)SOk′ and we have seen
above that (⟪ξn, ψ⟫)n∈N converges in ψ(0, 0)SOk′ to ψ(0, 0). Therefore, ψ(0, 0)OOk′ ⊆ ψ(0, 0)SOk′ .
Because this holds for arbitrarily small Ok′ defined as above and every element of the germ Ok′ is
defined on such a small open neighborhood, this yields that ψ(0, 0)Ok′ ⊆ ψ(0, 0)Sk′ . Since ψ(0, 0)
is – as a meromorphic function in k′ – invertible, this yields that Ok′ ⊆ Sk′ for all k′ ∈ X ′.

We have already seen that Sk′ has only one generator for k′ ∈ R(X ′). One might think that Sk′
has infinitely many generators for k′ ∈ S because Sk′ contains all functions of the form ⟪ξ,ψ(k′)⟫

ψ(k′,(0,0))
with ξ ∈ L2(∆). However, the next Lemma shows that Sk′ is also finitely generated for all k′ ∈ S.

Lemma 3.9. The divisor S as in Definition 3.7 is a finitely generated submodule ofM over O.

Proof. It remains to show that Sk′ is also finitely generated for k′ ∈ S. We normalize the
eigenfunction ψ in such a way that ψ|Ok′ : Ok1 ∪̇ . . . ∪̇Okn → L2(∆) is a holomorphic function
which has no zeros in L2(∆). Then for every ξ ∈ L2(∆), ⟪ξ, ψ⟫k′ ∈ Ōk′ . Let ψ̂(0) be the
zeroth Fourier coefficient of ψ. We know from Lemma 2.23 that for every ε > 0, there exists
a δ > 0 such that for k ∈ R(X ′) ∩ C2

δ , there holds ‖ψ(k, (0, 0)) − ψ̂(0)‖ < ε with ψ̂(0) 6= 0,
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wherefore ψ(·, (0, 0)) 6≡ 0 on both of the maximal two connected components of R(X ′). So for
every ξ ∈ L2(∆), ⟪ξ,ψ⟫ψ(0,0) is a submodule of the submodule of the meromorphic functions over O
which is generated by 1

ψk′ (0,0)Ōk′ . Therefore, also S is a submodule of the latter submodule. For
k′ ∈ S, we can decompose ŌX′,k′ as

ŌX′,k′ = OX′,k′ ⊕ ŌX′,k′/OX′,k′ .

Accordingly, the number of generators of ŌX′,k′ is at most 1 + δk′ <∞, compare [Klein et al., 2016,
Proposition 2.1(a) and Lemma 5.1(a)]. So 1

ψk′ (0,0)Ōk′ is a finitely generated submodule of Ok′ .
From this follows that the sheaf Sk′ is also finitely generated: Due to Proposition 3.8, Ok′ ⊆ Sk′ .
If there exists a ξ1 ∈ L2(∆) such that

(⟪ξ1,ψ⟫
ψ(0,0)

)
k′
6∈ Ok′ , then we take

(⟪ξ1,ψ⟫
ψ(0,0)

)
k′

as an additional

generator of Sk′ . Successively continuing like this, we can find additional generators
(⟪ξn,ψ⟫
ψ(0,0)

)
k′

of
Sk′ . However, Sk′ is a submodule of a module of at most δk′ + 1 dimensions, so Sk′ cannot contain
more that δk′ + 1 generators.

Corollary 3.10. Let ST be the generalized divisor which is generated by the normalized eigen-
function of the transposed Schrödinger operator. This is defined analogously to S in Definition 3.7.
Then ST = σ∗S. For u ∈ C(R2/Γ,R) one has τ∗1S = S.

Proof. For the transposed Schrödinger operator, we let ST be the generalized divisor generated by
⟪ϕN (·), ξ⟫ with ξ ∈ L2(∆) and dual normalized eigenfunction defined as

ϕN ( ·) := ϕ(·, (x, y))
ϕ( ·, (0, 0)) .

Then this is a direct consequence of Lemma 1.17(a) and (b).

3.3. The Spectral Projection

We have already seen in Theorem 1.14 that the spectral projection of −4+u gives us insight why it
is possible to represent B(u)/Γ ∗ respectively F (u)/Γ ∗ locally as the zero set of the characteristical
polynomial of a matrix. Now, we want to take a different viewpoint on the spectral projection,
i.e. we want to consider it as a meromorphic function on B(u)/Γ ∗ and deduce from this another
projection P∂ which can be restricted to F (u)/Γ ∗. This second projection will be very helpful in
various ways for the following considerations concerning the eigenfunctions. As already mentioned
at the beginning of this section, the most important result is that it will help us to correlate the
eigendivisor of the Schrödinger operator with the eigenfunction of its transposed.
For the Dirac operator, an analogous construction of this modified projection together with its
properties is shown in [Schmidt, 2002, Chapter 2.4]. In this section, we transfer these results to
the Schrödinger operator with some modifications. Therefore, the Schrödinger equation (1.1) with
eigenfunctions which are quasiperiodic with respect to Γ and periodic with respect to Γ ∗ as in
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Definition 1.1 is considered.
In the neighborhood of a regular point ([k], λ) ∈ B(u)/Γ ∗, there exist meromorphic functions
ψ([k], λ) and ϕ([k], λ) from B(u)/Γ ∗ to C∞[k](∆,C) respectively C∞[−k](∆,C) which map ([k], λ) onto
an eigenfunction of the Schrödinger operator −4+u with eigenvalue λ and boundary condition [k]
respectively onto an eigenfunction of the transposed Schrödinger operator (−4+u)T with eigenvalue
λ and boundary condition [−k]. Due to Corollary 2.29(c), the set of degenerated eigenvalues
on B(u)/Γ ∗ has codimension one. So generically, the eigenspaces for a certain eigenvalue are
one-dimensional on B(u)/Γ ∗ and the above maps are unique up to multiplication by some invertible
function which is meromorphic in ([k], λ). The images of these mappings, i.e. the eigenfunctions of
−4+u and (−4+u)T , will also be denoted by ψ([k], λ) and ϕ([k], λ), respectively. Sometimes
we omit λ for clarity of notation if λ is fixed. If we want to point out the dependency of the image
of these functions on (x, y) ∈ ∆, then we write ψ([k], (x, y)), ψ([k], λ, (x, y)) or only ψ(x, y) when
it is clear at which point ([k], λ) ∈ B(u)/Γ ∗ we consider these images. Sometimes we leave all
arguments away. Then it is made clear before to which values these functions belong.
With this notation, we will take a look at the spectral projection mentioned above which is defined
as a meromorphic function on B(u)/Γ ∗ with values in the finite rank operators on L2(∆) by

P ([k], λ) : χ 7→ ⟪ϕ([k], λ), χ⟫
⟪ϕ([k], λ), ψ([k], λ)⟫ψ([k], λ). (3.4)

This definition does not depend on the normalization of the functions ψ and ϕ, i.e. let f and g be
non-vanishing, meromorphic functions in ([k], λ), then

⟪gϕ([k], λ), χ⟫
⟪gϕ([k], λ), fψ([k], λ)⟫fψ([k], λ) = ⟪ϕ([k], λ), χ⟫

⟪ϕ([k], λ), ψ([k], λ)⟫ψ([k], λ).

Hence, we can assume that locally in ([k], λ), the functions ψ and ϕ in P ([k], λ) are always
normalized in such a way that they have neither poles nor zeros and such that the enumerator of
P ([k], λ) has also neither poles nor zeros. The second assumption is justified by the non-degeneracy
of the L2-scalar product. However, the denominator of P can vanish. To see that, consider the
holomorphic covering

B(u)/Γ ∗ → {[k] ∈ C2/Γ ∗ | ∃λ ∈ C such that ([k], λ) ∈ B(u)/Γ ∗}, ([k], λ) 7→ [k]. (3.5)

We have seen in Corollary 2.29(c) that the degenerated eigenvalues λ are generically discrete. So
this covering is well-defined. The next Lemma shows that the denominator of P can only vanish
at the branch points of B(u)/Γ ∗ with respect to this covering, i.e. at the points where λ is a
degenerated eigenvalue. Therefore, P is a well defined global meromorphic function on B(u)/Γ ∗.

Lemma 3.11. The poles of P are contained in the branching divisor of B(u)/Γ ∗ with respect to
the covering (3.5). Hereby, the branching divisor contains all branch points of this covering as well
as the singularities of B(u)/Γ ∗. In particular, all regular branch points of this covering are poles
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of P .

Proof. Due to Corollary 2.29(c), the denominator of P does not vanish identically on any of
the maximal two connected components of B(u)/Γ ∗. This is since for ([k0], λ0) such that λ0 is
non-degenerate, P = P̆ and it follows from the proof of Theorem 1.14 that the rank of P̆ equals
the number of sheets meeting in the neighborhood of ([k0], λ0). In this case, the rank is one, and
therefore P̆ has no zero. If λ is not a degenerated eigenvalue, then we can normalize ψ,ϕ in
such a way that ⟪ϕ([k], λ), ψ([k], λ)⟫ 6= 0. So if the denominator of P vanishes, then only at the
degenerate eigenvalues.
To see that P can indeed have a pole which is contained in the branching divisor of B(u)/Γ ∗

with respect to the covering in (3.5), we first remember that the preimage with respect to this
covering may contain several points of B(u)/Γ ∗. More precisely, due to the Weierstraß Preparation
Theorem [de Jong and Pfister, 2012, Theorem 3.2.4], there are locally finitely many values λ(k)
over each k. Only at a degenerated eigenvalue λ, the corresponding sheets meet and those are
precisely the ramification points of the covering (3.5) and the singularities of B(u)/Γ ∗. Let
([k0], λ) ∈ B(u)/Γ ∗ be contained in the branching divisor. Without loss of generality, we assume
that the preimage of [k0] ∈ C2/Γ ∗ with respect to the covering (3.5) contains only one point
([k0], λ0), i.e. λ0 = π−1[{[k0]}] and that two sheets corresponding to the eigenvalues λi and λj

meet in this point. Since these are only local considerations, it follows as in the proof of Lemma
3.6 that this is no obstruction. For k → k0 and hence λi([k]) and λj([k]) converging to λ0, two
different cases for the eigenfunctions can occur: either the two eigenfunctions ψ([k], λi(k)) and
ψ([k], λj(k)) are linearly independent for k → k0 or they are linearly dependent. If they are linearly
dependent, then also ϕ([k], λi) and ϕ([k], λj) are linearly dependent for k → k0 since we can locally
represent the Schrödinger operator as a matrix and the transposed Schrödinger operator as the
transposed matrix of the first one, see Corollary 1.16. For brevity, we can even assume that the
eigenfunctions become equal for k → k0, which can be reached by normalizing the eigenfunctions.
From this we want to deduce that the denominator of P vanishes at ([k0], λ0). Let us consider a
small neighborhood U ⊂ C2/Γ ∗ of [k0] such that no other sheets than the sheets corresponding
to λi and λj are contained in the preimage of U with respect to the covering (3.5) and such that
the preimage of [k0] is also the only intersection point of the two sheets contained in U . Then
λi([k]) 6= λj([k]) for [k] ∈ U \ {[k0]} and with A([k]) being the local matrix representation of the
Schrödinger operator with fixed potential u introduced in Theorem 1.14, one has for [k] ∈ U \{[k0]}

⟪(λi([k])− λj([k])ϕ([k], λi), ψ([k], λj)⟫ =

= ⟪AT ([k])ϕ([k]λi), ψ([k], λj)⟫− ⟪ϕ([k], λi), A([k])ψ([k], λj)⟫ = 0. (3.6)

Ergo, ⟪ϕ([k]λi), ψ([k], λj)⟫ = 0 for k ∈ U \ {[k0]}. Since the eigenfunctions ψ([k], λj) and ϕ([k], λi)
are holomorphic in k, so in particular continuous, we can extend ⟪ϕ([k], λi), ψ([k], λj)⟫ by zero to
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[k0]. Thus, the denominator of P vanishes at [k0], and so P has a pole at ([k0], λ0).

Note that in the above proof, linear independence of the eigenfunctions at the considered point
([k0], λ([k0])) would yield that this point is a singularity of B(u)/Γ ∗. Because if B(u)/Γ ∗ is smooth
at this point, then we can normalize the eigenfunction in such a way that they are holomorphic and
then the limit considered in this proof would be continuous which would contradict the assumed
linear independence.
The following Lemma is shown in [Schmidt, 2002, Lemma 2.21] for the Dirac operator. In this
Lemma is, among others, shown that the operator-valued 1-form P dk1∧dk2 is regular on B(u)/Γ ∗.
Later on, we also want to show that another operator-valued 1-form is regular on B(u)/Γ ∗

respectively F (u)/Γ ∗. Therefore, the following definition is necessary.

Definition 3.12. We call an operator-valued 1 form P dk1 from L2(∆) to the finite rank operators
on L2(∆) regular on a subvariety X if for all χ, ξ ∈ L2(∆), there holds that ⟪ξ, P (χ)⟫ dk1 is regular
on X. Analogously, regular operator valued two-forms P dk1 ∧ dk2 or P dk1 ∧ dλ are defined.

Note that evaluating P for different χ 6= 0 does not influence the poles or zeros of this map on
B(u)/Γ ∗ since χ is constant in k and λ. For the spectral projection in (3.4), this yields that we
want to show that the form

⟪ξ, P ([k], λ)(χ)⟫ dk1 ∧ dk2 = ⟪ϕ([k], λ), χ⟫
⟪ϕ([k], λ), ψ([k], λ)⟫⟪ξ, ψ([k], λ)⟫ dk1 ∧ dk2

is a regular 2-form on B(u)/Γ ∗ with χ, ξ ∈ L2(∆).

Lemma 3.13. The function P has the following properties:

(i) The values of P are projections of rank one on R(B(u)/Γ ∗).

(ii) If ([k], λ) and ([k], λ′) are two different elements of the B(u)/Γ ∗ such that λ 6= λ′, then

P ([k], λ′) ◦ P ([k], λ) = 0 = P ([k], λ) ◦ P ([k], λ′). (3.7)

(iii) The local sum of the projection P over all sheets of the Weierstraß covering over [k] which
contain an element ([k], λ) ∈ B(u)/Γ ∗ is a holomorphic function in a neighborhood of
[k] ∈ C2/Γ ∗. The values of this function are projections whose rank is equal to the number of
sheets over which that sum is taken. The value of this local sum of P over all sheets containing
([k], λ) is equal to the generalized spectral projection P̆ ([k], λ) as defined in Theorem 1.14
of the Schrödinger operator − 4 +u with boundary condition [k] which projects onto the
generalized eigenspace associated with λ.

(iv) The projection-valued form P dk1 ∧ dk2 is regular.
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Proof. (i) Assume that P ([k], λ) has no pole. Then P 2([k], λ) also has no pole and so, by Lemma
3.11, one has on R(B(u)/Γ ∗)

P 2(χ) = P

Ç ⟪ϕ([k], λ), χ⟫
⟪ϕ([k], λ), ψ([k], λ)⟫ψ([k], λ)

å
= ⟪ϕ([k], λ), ψ([k], λ)⟫
⟪ϕ([k], λ), ψ([k], λ)⟫

⟪ϕ([k], λ), χ⟫
⟪ϕ([k], λ), ψ([k], λ)⟫ψ([k], λ) = P (χ).

The image of P ([k], λ) is spanned by ψ([k], λ) if λ is a non-degenerated eigenvalue. At the
set of points ([k], λ) ∈ B(u)/Γ ∗ such that λ is a degenerated eigenvalue, Lemma 3.11 shows
that P is not defined. So P 2 = P and P is a projection of rank one on R(B(u)/Γ ∗).

(ii) Let λ0 be an r-fold eigenvalue at ([k0], λ0) ∈ B(u)/Γ ∗ and let again A([k]) be the matrix-
valued, holomorphic function which represents the Schrödinger operator on an open neigh-
borhood U of k0 ∈ C2. Due to Corollary 2.29(c), A([k]) has generically pairwise different
eigenvalues. So we can assume that A([k]) is an r × r-matrix with pairwise different eigen-
values λ1, . . . , λr on U \ {k0}. Then the eigenfunctions ψ([k], λ1), . . . , ψ([k], λr) span an
r-dimensional vector space for k ∈ U \{k0} and the eigenfunctions ϕ([k], λ1), . . . , ϕ([k], λr) of
AT ([k]) yield the dual basis. Analogous calculations as in (3.6) show that for all 1 ≤ i 6= j ≤ r,
it is P ([k], λi) ◦ P ([k], λj) = 0 = P ([k], λj) ◦ P ([k], λi). So (3.7) holds at all ([k], λ) at which
the meromorphic function P ([k], λ) is defined and thus on all of U . Since we have seen in
Corollary 2.29(c) that the set of points ([k], λ) ∈ B(u)/Γ ∗ such that λ is non-degenerate is
open and dense, we conclude that (3.7) holds on all of B(u)/Γ ∗.

(iii) We use again that B(u)/Γ ∗ is locally an r-sheeted Weierstraß covering over [k0] ∈ C2/Γ ∗

and define the generalized eigenprojection as in the proof of Theorem 1.14

P̆ ([k], λ) :=
r∑
i=1

P ([k], λi).

We will now use the same notation as in the proof of this theorem. Let λ0 be a fixed,
non-degenerated eigenvalue of −4+u with boundary condition [k0], i.e. ([k0], λ0) ∈ B(u)/Γ ∗.
Let moreover K be a small open neighborhood of [k0] and let Bε(λ0) be a neighborhood of
λ0 which is so small that no other sheets of B(u)/Γ ∗ are contained in K × Bε(λ0). Then
the generalized eigenspace and the ‘common’ eigenspace coincide, and so there is only one
projection in the above sum and P ([k], λ) = P̆ ([k], λ) for all ([k], λ) ∈ K ×Bε(λ0).
For λ0 a degenerated eigenvalue of A([k]), i.e. at a zero of order r of det(A([k])− λ1), the
neighborhoods K and Bε(λ0) can be chosen so small that ([k0], λ0) is the only branch point
in K ×Bε(λ0) and such that only the r sheets colliding at the branch point corresponding to
λ0 are contained inside of K ×Bε(λ0). At the branch point λ0 with respect to the covering
(3.5), the image of P̆ is r-dimensional. Furthermore, Theorem 1.14 yields that P is locally
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holomorphic in k away from the branch point. It is also shown in the proof of Theorem 1.14
that the dimension of the image of P̆ stays the same in the neighborhood of the branch point
and is spanned by the images of ∑r

i=1 P ([k], λi). By continuity, P̆ ([k], λ) = ∑r
i=1 P ([k], λi) is

holomorphic in K and the rank of P̆ equals r.

(iv) Let the local holomorphic covering (3.5) of B(u)/Γ ∗ be r-sheeted over ([k0], λ0) ∈ B(u)/Γ ∗.
Then the Weierstraß Preparation Theorem [de Jong and Pfister, 2012, Theorem 3.2.4] yields
that we can consider det(A([k])−λ1) as a polynomial of degree r in λ with coefficients which
are holomorphic on an open subset of [k0], where the leading coefficient is equal to 1 and all
other coefficients vanish at [k0]. By the Weierstraß Division Theorem [de Jong and Pfister,
2012, Theorem 3.2.3], every holomorphic function f on B(u)/Γ ∗ can locally be represented
as

f([k], λ) =
r−1∑
i=0

ai([k])λi,

where the coefficients ai([k]) are holomorphic functions on an open subset of [k0] ∈ C2/Γ ∗.
With this, we show next that for χ ∈ C∞(∆,C) and locally around [k0] ∈ C2/Γ ∗, the sum
over the sheets of this covering of P (χ) times any holomorphic function is a holomorphic
function on some open subset of [k] ∈ C2/Γ ∗ with values in the finite rank operators in
C∞(∆,C). Because of (−4+u)Pj = Pj , P 2

j = Pj and
r∑
j=1

Pj = 1 one has, using the local

matrix representation of −4k +u as in the proof of Theorem 1.14 and leaving the argument
([k], λ) of the projections as well as the evaluation of P at χ away,

P̆ · f([k], λ) =
r∑
j=1

Pjf([k], λ) =
r∑
j=1

Pj

r−1∑
i=0

ai([k])λi =
r∑
j=1

r−1∑
i=0

ai([k])Pjλi

=
r∑
j=1

r−1∑
i=0

ai([k])λPjλi−1 ==
r∑
j=1

r−1∑
i=0

ai([k])(−4+u)Pjλi−1 =

=
r∑
j=1

r−1∑
i=0

ai([k])A([k])Pjλi−1 = . . . =
r−1∑
i=0

ai([k])A([k])i
r∑
j=1

Pj︸ ︷︷ ︸
=1

=
r−1∑
i=0

A([k])iai([k]).

Therefore, locally, the whole sum over the sheets is holomorphic and stays holomorphic in
[k] when considering ⟪ϕ([k],λ),χ⟫

⟪ϕ([k],λ),ψ([k],λ)⟫⟪ξ, ψ([k], λ)⟫ for ξ ∈ C∞(∆,C) instead of P (χ). So by
Lemma 3.6, P dk1 ∧ dk2 is regular in sense of Definition 3.12.

Until now, we considered the Bloch variety as a covering space over ([(k1, k2)], λ)→ [(k1, k2)]. We
now explain why it follows from Theorem 1.14 that we can also consider the covering ([k1, k2], λ) 7→
(k1, λ) ∈ C2. Since Γ ∗ is discrete, we can consider B(u)/Γ ∗ locally as B(u), and therefore we can
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write ([k1, k2], λ) 7→ (k1, λ) ∈ C2. In the proof of this theorem, it is shown that B(u)/Γ ∗ is locally
described by the zero set of

{([k], λ) ∈ C2/Γ ∗ × C | det(A([k])− λ1) = 0}.

Let us denote this locally defined function as f([k], λ) := det(A([k])−λ1). Due to (3.1), dk1∧ dk2 =
∂f/∂λ
∂f/∂k2

dλ ∧ dk1 = ∂k2
∂λ dλ ∧ dk1, where the last equality sign holds due to the implicit function

Theorem [de Jong and Pfister, 2012, Theorem 3.3.1] and the branch points of the covering
([k], λ) 7→ k2([k1], λ) are exactly those points for which ∂k2/∂k1 = 0 and ∂k2/∂λ = 0. We know
from Corollary 2.29 and 3.11 that these are discrete. At all other points ([k0], λ0) ∈ B(u)/Γ ∗,
both partial derivatives ∂f/∂λ and ∂f/∂k2 are not identically zero. So we may consider the
subvariety B(u)/Γ ∗ in a small open neighborhood of these point either as a covering space over
[(k1, k2)] ∈ C2/Γ ∗ or as a covering space over (k1, λ) ∈ C× C. Hence, ([k1, k2], λ) 7→ (k1, λ) ∈ C2

is indeed a covering.
From this we will now start to construct a projection P∂ which is related to this second covering and
has all the properties we wish for to get a regular form on B(u)/Γ ∗ as covering over ([k], λ) 7→ (k1, λ)
such that we can restrict it to λ = 0 to obtain a regular form on F (u)/Γ ∗.

Lemma 3.14. Let ψ([k], λ) be an eigenfunction of the Schrödinger operator −4+u corresponding
to an element ([k], λ) ∈ B(u)/Γ ∗ and let ϕ([k′], λ) be an eigenfunction of the transposed Schrödinger
operator (−4+u)T corresponding to another element ([k′], λ) ∈ B(u)/Γ ∗. Then there holds:

(i) For fixed ([k], λ), ([k′], λ) ∈ B(u)/Γ ∗, the 1-form

ω :=
Ä
(∂yϕ([k′], λ))ψ([k], λ)− ϕ([k′], λ)(∂yψk)

ä
dx−

−
Ä
(∂xϕ([k′], λ))ψ([k], λ)− ϕ([k′], λ)(∂xψ([k], λ))

ä
dy

on R2 is closed, where ψ([k], λ) = ψ([k], λ, (x, y)) and ϕ([k′], λ)) = ϕ([k′], λ, (x, y)).

(ii) If k1 = k′1 mod Z, then for all p = (x, y)T ∈ R2 one has

∫ p+( 1
0 )

p
ω = ⟪∂yϕ([k′], λ), ψ([k], λ)⟫− ⟪ϕ([k′], λ), ∂yψ([k], λ)⟫

|γ̌2|
. (3.8)

(iii) If additionally to k1 = k′1 mod Z it is [k] 6= [k′] for [k], [k′] ∈ C2/Γ ∗, then
∫ p+( 1

0 )
p ω = 0.

Proof. (i) For all (x, y) ∈ ∆, it is

(−4+u)ψ([k], λ) = λψ([k], λ) and (−4+u)Tϕ([k′], λ) = λϕ([k′], λ).

For clarity, we will omit the dependence of ψ on ([k], λ) as well as the dependence of ϕ on
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([k′], λ) in the notation in the rest of this proof. Then ω is closed because

dω =
Ä
∂2
yϕψ + ∂yϕ∂yψ − ∂yϕ∂yψ − ϕ∂2

yψ − ϕ∂2
xψ − ∂xϕ∂xψ + ∂xϕ∂xψ + ∂2

xϕψ
ä
dy ∧ dx

=
Ä
∂2
xϕ+ ∂2

yϕψ − ϕ∂2
xψ + ∂2

yψ
ä
dy ∧ dx = (4ϕψ − ϕ4 ψ) dy ∧ dx

=(u− λ)(ϕψ − ϕψ) dy ∧ dx = 0.

(ii) The closedness of ω and applying Stokes’ Theorem yields that for p 6= p′ ∈ R2, there holds

0 =
∫ p+( 1

0 )
p

ω +
∫ p′+( 1

0 )
p+( 1

0 )
ω +

∫ p′

p′+( 1
0 )
ω +

∫ p

p′
ω.

So by the quasiperiodicity of ψ and ϕ with respect to Γ together with the preliminary
e−2πik′1 · e2πik1 = 1,

∫ p′

p
ω =

∫ p′

p
(∂yϕψ − ϕ∂yψ) dx =

∫ p′+( 1
0 )

p+( 1
0 )

(∂yϕψ − ϕ∂yψ) dx =
∫ p′+( 1

0 )
p+( 1

0 )
ω.

Hence,

∫ p+( 1
0 )

p
ω=

∫ p+( 1
0 )

p′+( 1
0 )
ω+

∫ p′+( 1
0 )

p′
ω+

∫ p′

p
ω =

∫ p+( 1
0 )

p′+( 1
0 )
ω+

∫ p′+( 1
0 )

p′
ω+

∫ p′+( 1
0 )

p+( 1
0 )

ω =
∫ p′+( 1

0 )
p′

ω,

so this integral does not depend on the base point p. Let γ : [0, 1], t 7→ tγ̌. Then dy = γ̌2dt

and so
∫ p+( 1

0 )
p

(∂yϕψ − ϕ∂yψ) dx =
∫ 1

0

∫ p+( 1
0 )+γ(t)

p+γ(t)
(∂yϕψ − ϕ∂yψ) dx ∧ dt

= 1
|γ̌2|

∫
∆

(∂yφψ − ϕ∂yψ) dx ∧ dy = ⟪∂yφ, ψ⟫− ⟪ϕ, ∂yψ⟫
|γ̌2|

.

(iii) The last statement follows immediately from the independence of the integral from the base
point shown in (ii) together with the quasiperiodicity of the eigenfunctions. Due to the first,
it is ∫ p+( 1

0 )
p

(∂yϕψ − ϕ∂yψ) dx =
∫ p+γ̌+( 1

0 )
p+γ̌

(∂yϕψ − ϕ∂yψ) dx (3.9)

and due to the second,

e2πι〈k−k′,γ̌〉
∫ p+( 1

0 )
p

(∂yϕψ − ϕ∂yψ) dx =
∫ p+( 1

0 )+γ̌

p+γ̌
(∂yϕψ − ϕ∂yψ) dx.

Both of these equations can only hold simultaneously for [k] 6= [k′] if the integrals on both
sides of (3.9) vanish.
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Motivated by the fact that the integral in (3.8) does not depend on the base point p, we define
another bilinear form which is “weighted“ by the derivatives of the eigenfunctions ψ([k], λ) and
ϕ([k′], λ) in y-direction on C∞[−k](∆,C)× C∞[k](∆,C) for two functions f and g the bilinear form

⟪f, g⟫∂ := ⟪∂yf, g⟫− ⟪f, ∂yg⟫ = 2⟪∂yf, g⟫ = −2⟪f, ∂yg⟫,

where ⟪·, ·⟫ is the complex bilinear form introduced in (1.5). This bilinear form will be helpful to
obtain a regular 1-form on the Fermi curve. Similarly this is done in [Krichever, 1989, Chapter
3], where the reconstruction of a potential from given data is shown for the two-dimensional
Schrödinger operators in terms of θ-functions.
Let P∂ be the map from B(u)/Γ ∗ into the finite rank operators on L2(∆) which is defined by

P∂([k], λ)(χ) = 2⟪∂yϕ([k], λ), χ⟫
⟪ϕ([k], λ), ψ([k], λ)⟫∂ ψ([k], λ).

Again, it is easy to see that the definition of P∂ does not depend on the normalization of the ψ and
ϕ on B(u)/Γ ∗ since multiplication of ψ or ϕ with a non-vanishing function which is meromorphic
in ([k], λ) cancels out in the operator P∂ .
Now, we give reason why P∂ is meromorphic on B(u)/Γ ∗. P∂ is invariant under translation of
k by κ ∈ Γ ∗ since ψ and ϕ are invariant under these translations. Note that ϕ and ψ as well
as their derivatives in the direction of y are asymptotically free, compare Lemma 2.23. We will
show in the proof of Lemma 4.7 that for every ε > 0, the difference between ⟪ϕN , ψN⟫∂ and
⟪e−2πι〈k,(xy )〉, e2πι〈k,(xy )〉⟫∂ on R(F (u)/Γ ∗ ∩C2

δ) becomes smaller than this ε if δ > 0 is sufficiently
small. Hereby, the index N indicates the eigenfunctions which are normalized in such a way
that their values at (x, y) = (0, 0) are equal to one. Furthermore, it is also shown in the proof
of this theorem that ⟪ϕ0([k]), ψ0([k])⟫∂ 6= 0 for ‖ Im(k)‖ → ∞. Since we know from Corollary
2.29(b) that B(u)/Γ ∗ has at most two connected components which each contain one open end
of B(u)/Γ ∗, we can deduce from this that ⟪ϕN , ψN⟫∂ does not vanish identically on any of the
maximal two connected components of B(u)/Γ ∗. Because P∂ is independent of the normalization
of ψ and ϕ, this shows that P∂ defines a meromorphic function on B(u)/Γ ∗. We now show how
the denominators of P∂ and P are correlated. This is the key ingredient to deduce from the
regularity of P dk1 ∧ dk2 that also P∂ dk1 ∧ dλ is a regular operator-valued 2-form on B(u)/Γ ∗ in
the following lemma.

Proposition 3.15. Let ψ = ψ([k], λ) be an eigenfunction of −4+u corresponding to the eigenvalue
λ with quasiperiodicity [k] and let ϕ := ϕ([k], λ) be an eigenfunction of (−4+u)T corresponding
to the same eigenvalue with quasiperiodicity [−k]. Then

2πι⟪ϕ,ψ⟫∂ = ∂λ

∂k2
⟪ϕ,ψ⟫. (3.10)
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Proof. We consider the Schrödinger operator Sk := − 4k +u as in (1.6) and its transpose
STk := (−4k +u)T = −4−k +u as in (1.6). Taking formally the derivatives of Sk and STk into the
direction of k2 yields

∂Sk
∂k2

= −4πι∂y + 8π2k2 = 4πι(−∂y − 2πιk2),

∂STk
∂k2

= 4πι∂y + 8π2k2 = 4πι(∂y − 2πιk2).

Furthermore, it is shown in Lemma 1.2 that the eigenfunctions ψ := ψ([k], λ) of −4+u = λ with
boundary condition [k] and ϕ := ϕ([k], λ) of (−4+u)T = λ with boundary condition [−k] differ
from the eigenfunctions ψk := ψk(λ) of Sk and ϕk := ϕk(λ) of STk by multiplication with a phase,
i.e. ψk = e−2πι〈k,(xy )〉ψ and ϕk = e2πι〈k,(xy )〉ϕ. Therefore,

∂yψk = −2πιk2e
−2πι〈k,(xy )〉ψ + e−2πι〈k,(xy )〉∂yψ and ∂yϕk = 2πιk2e

2πι〈k,(xy )〉ϕ+ e2πι〈k,(xy )〉∂yϕ.

So with ⟪ϕk, ψk⟫ = ⟪ϕ,ψ⟫ it is

1
2πι

∂λ

∂k2
⟪ϕ,ψ⟫ = 1

2πι
∂λ

∂k2
⟪ϕk, ψk⟫ = 1

4πι

Å
⟪ ∂λ
∂k2

ϕk, ψk⟫+ ⟪ϕk, ∂λ
∂k2

ψk⟫
ã

= 1
4πι

Ç
⟪∂S

T
k

∂k2
ϕk, ψk⟫+ ⟪STk

∂ϕk
∂k2

, ψk⟫+ ⟪ϕk, ∂Sk
∂k2

ψk⟫+ ⟪ϕk, Sk ∂ψk
∂k2
⟫
å

= 1
4πι

Ç
⟪∂S

T
k

∂k2
ϕk, ψk⟫+ ⟪∂ϕk

∂k2
, Skψk⟫+ ⟪ϕk, ∂Sk

∂k2
ψk⟫+ ⟪STk ϕk,

∂ψk
∂k2
⟫
å

= 1
4πι

Ç
⟪∂S

T
k

∂k2
ϕk, ψk⟫+ λ⟪∂ϕk

∂k2
, ψk⟫+ ⟪ϕk, ∂Sk

∂k2
ψk⟫+ λ⟪ϕk, ∂ψk

∂k2
⟫
å

= 1
4πι

Ç
⟪∂S

T
k

∂k2
ϕk, ψk⟫+ λ⟪∂ϕk

∂k2
, ψk⟫+ ⟪ϕk, ∂Sk

∂k2
ψk⟫− λ⟪∂ϕk

∂k2
, ψk⟫

å
= 1

4πι

Ç
⟪∂S

T
k

∂k2
ϕk, ψk⟫+ ⟪ϕk, ∂Sk

∂k2
ψk⟫

å
= ⟪(∂y − 2πιk2)ϕk, ψk⟫+ ⟪ϕk, (−∂y − 2πιk2)ψk⟫
= ⟪e2πι〈k,(xy )〉∂yϕ, e−2πι〈k,(xy )〉ψ⟫− ⟪e2πι〈k,(xy )〉ϕ, e−2πι〈k,(xy )〉∂yψ⟫
= ⟪ϕ,ψ⟫∂ .

Even though P∂ is not a spectral projection anymore, similar properties can be shown. In addition,
this new projection can be used to define a regular 1-form P∂ dk1 on the Fermi curve F (u)/Γ ∗,
because on the Bloch variety, it is defined with respect of the covering B(u) 7→ C2, (k, λ) 7→ (k1, λ).
This can be restricted to λ = 0.
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Lemma 3.16. The function P∂ has the following properties

(i) The values of P∂ are projections of rank 1 on R(B(u)/Γ ∗).

(ii) If ([k], λ) and ([k′], λ) are two different elements of B(u)/Γ ∗ such that k1 = k′1 mod Z, then

P∂([k], λ) ◦ P∂([k′], λ) = 0 = P∂([k′], λ) ◦ P∂([k], λ).

(iii) Locally, the Bloch variety is a finite-sheeted covering over (k1, λ) ∈ C2. The local sum P̆∂ of
P∂ over all sheets which contain an element ([k], λ) ∈ B(u)/Γ ∗ is a holomorphic function
on some open subset of (k1, λ) ∈ C2 with values in the finite rank projections on C∞(∆,C).
Moreover, the rank of any of these projections is equal to the number of sheets over which the
sum is taken.

(iv) The 2-form P∂ dk1 ∧ dλ is a regular form on B(u)/Γ ∗ and the 1-form P∂ dk1 is a regular
1-form on F (u)/Γ ∗.

(v) For all elements ([k], λ) ∈ B(u)/Γ ∗, there exists a unique projection P̆∂([k], λ) which locally
adds all values of P∂([k], λ) over all sheets of B(u)/Γ ∗ that contain ([k], λ).
Let ([k], λ), ([k′], λ) ∈ B(u)/Γ ∗. If ([k], λ) 6= ([k′], λ) and k1 = k′1 mod Z, then

P̆∂([k], λ) ◦ P̆∂([k′], λ) = 0 = P̆∂([k′], λ) ◦ P̆∂([k], λ).

(vi) If χ is an eigenfunction of −4+u with boundary condition [k] corresponding to ([k], λ) ∈
B(u)/Γ ∗, then the range of P̆∂ contains χ.

Proof. (i) This is shown the same way as Lemma 3.13(i).

(ii) This follows from Lemma 3.14 (ii) and (iii) since there, it is shown that for ([k], λ), ([k′], λ) ∈
B(u)/Γ ∗ with [k] 6= [k′] and k1 = k′1 mod Z, one has ⟪ϕ([k], λ), ψ([k′], λ)⟫∂ = 0.

(iii) and (iv) We will deduce the regularity of P∂ dk1 ∧ dλ on B(u)/Γ ∗ from the regularity of
P dk1 ∧ dk2 shown in Lemma 3.13. So using (3.10)

P ([k], λ) dk1 ∧ dk2 = ∂k2
∂λ

P ([k], λ) dk1 ∧ dλ = ∂k2
∂λ

⟪ϕ([k], λ), ·⟫
⟪ϕ([k], λ), ψ([k], λ)⟫ψ([k], λ) dk1 ∧ dλ

=
�
��
∂k2
∂λ

⟪ϕ, ·⟫
2πι

��
��Ä

∂λ
∂k2

ä−1⟪ϕ([k], λ), ψ([k], λ)⟫∂
ψ([k], λ) dk1 ∧ dλ

= ⟪ϕ, ·⟫
2πι⟪ϕ([k], λ), ψ([k], λ)⟫∂ ψ([k], λ)([k], λ) dk1 ∧ dλ.

(3.11)
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To see that
P∂ dk1 ∧ dλ = 2⟪∂yϕ([k], λ), ·⟫

⟪ϕ([k], λ), ψ([k], λ)⟫ψ([k], λ) dk1 ∧ dλ (3.12)

is regular, note that the only difference between the expression on the right hand side of
(3.11) and on the right hand side of (3.12) are the enumerators of the fractions. So the next
step is to show that deriving ϕ into the direction of y does not change the pole order of
ϕ on B(u)/Γ ∗. Therefore, remember that the regularity of P dk1 ∧ dk2 does not depend
on the normalization of the eigenfunction of (−4+u)T with boundary condition [k]. Let
ϕ([k], (x, y)) be an eigenfunction of −4+u for fixed λ with the same boundary condition
normalized in such a way that it is locally holomorphic and nowhere zero in ([k], λ), but at
an isolated point ([k0], λ) ∈ B(u)/Γ ∗ has a zero at (x, y) = (0, 0), i.e. ψ([k0], (0, 0)) = 0. We
then normalize this eigenfunction as

ϕN ( ·, (x, y)) := ϕ( ·, (x, y))
ϕ( ·, (0, 0)) .

Then the denominator of ϕN ([k]) does not depend on (x, y). Since ϕN ([k]) ∈ C∞(4), deriving
ϕN ([k]) into the direction of y can only cause zeros in the enumerator of ϕN ([k], (x, y)) which
can either reduce the pole order of ϕN ([k]) or generate new zeros compared to the zeros
ϕN ([k]). These additional zeros could only influence the regularity of the form on the right
hand side of (3.12) if ([k], λ) is a singularity of B(u)/Γ ∗ or a branch point with respect to the
covering in (3.5). Due to Lemma 3.6(ii), we can deduce from the regularity of P dk1 ∧ dk2

that for a locally holomorphic function g, also the sum of g ⟪ϕ([k]),χ⟫
⟪ϕ([k]),ψ([k])⟫⟪ψ([k]), ξ⟫ over all

sheets of the covering (3.5) is holomorphic. Choosing g ∈ OF (u)/Γ ∗ such that the zero order
of g equals the difference of the zero order of ∂yϕ([k], λ) minus the zero order of ϕ([k], λ) at
these points shows that also these additional zeros do not influence the regularity of the form
on the right hand side of (3.12). Hence, P∂ dk1 ∧ dλ is regular on B(u)/Γ ∗.
So again due to Lemma 3.6(ii), the values of the local sum of P∂ over all sheets of B(u)/Γ ∗

which contain ([k], λ) is holomorphic. The rank of this sum over the projections is equal to the
number of sheets of the covering ([k], λ)→ [k] over which the sum is taken: Formally, every
sheet of B(u)/Γ ∗ over [k] has a contribution to the image of the sum over P∂([k], λ). However,
a sheet does not appear in the sum if all of its values are in the kernel of P∂([k], λ). And
we have seen in Lemma 3.14 that this is the case for [k] 6= [k′] with k1 = k′1 mod Z, i.e. for
([k′], λ) not on the same sheet as ([k], λ). Then ⟪ϕ([k′], λ), ψ([k], λ)⟫ = 0. Due to Theorem
2.28(d), the values of [k] such that λ = 0 is a degenerated eigenvalue for ([k], 0) ∈ B(u)/Γ ∗

are discrete. So we can restrict P∂ dk1 ∧ dk2 to F (u)/Γ ∗ by setting λ = 0 and show the
regularity of P∂ dk1 as follows: Due to Theorem 2.28(a) and Corollary 2.29, F (u)/Γ ∗ is a
one-dimensional variety in C2 and B(u)/Γ ∗ a two-dimensional variety in C3, i.e. both are
locally defined as the zero set of one holomorphic function. So by Lemma 3.6(i), the regularity
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of P∂ dk1 ∧ dλ on B(u)/Γ ∗ yields that ⟪ξ, P∂([k], λ)(χ)⟫ is holomorphic for all χ, ξ ∈ L2(∆).
Then also the restriction of this function to λ = 0 is holomorphic and thus applying again
Lemma 3.6(ii) yields that P∂ dk1 is regular on F (u)/Γ ∗.

(v) This property follows immediately from (iii).

(vi) For the proof of the last statement, let χ be an eigenfunction of the Schrödinger operator
− 4 +u corresponding to ([k], λ) ∈ B(u)/Γ ∗ and ϕ := ϕ([k′], λ′) be an eigenfunction of
the transposed Schrödinger operator (−4+u)T corresponding to ([k′], λ′) ∈ B(u)/Γ ∗ with
k1 = k′1 mod Z and λ 6= λ′. Consider

ω̃ := (∂yφχ− ϕ∂yχ) dx− (∂xφχ− ϕ∂xχ) dy

on R2. Similar calculations as the ones in the proof of Lemma 3.14(i) yield that the exterior
derivative is given by

d [(∂yφχ− ϕ∂yχ) dx− (∂xφψk − χ∂xχ)dy] = (λ− λ′)ϕχdx ∧ dy.

This shows that ω̃ is not closed for λ 6= λ′. Applying Stokes Formula leads to

(λ− λ′)⟪ϕ, χ⟫ =
∫
∆
d ω̃ =

∫
∂∆

ω̃ =
∫ p+( 1

0 )
p

ω̃ +
∫ p+( 1

0 )+γ̌

p+( 1
0 )

ω̃ +
∫ p+γ̌

p+( 1
0 )+γ̌

ω̃ +
∫ p

p+γ̌
ω̃.

With the quasiperiodicity of ϕk and χ in mind, we get for the first and third term on the
right hand side of this sum that

∫ p+γ̌

p+( 1
0 )+γ̌

ω̃ = −e2πι〈k′−k,γ̌〉
∫ p+( 1

0 )
p

ω̃.

Taking additionally k1 = k′1 mod Z into account, the second and fourth term of this sum
are related by ∫ p+( 1

0 )+γ̌

p+( 1
0 )

ω̃ = −
∫ p

p+γ̌
ω̃.

So by Lemma 3.14(ii), it isÄ
1− e2πι〈k′−k,γ̌〉

ä
|γ̌2|

⟪ϕ, χ⟫∂ =
Ä
1− e2πι〈k′−k,γ̌〉ä ∫ p+( 1

0 )
p

ω̃

=
Ä
1− e2πι〈k′−k,γ̌〉ä ∫

∆
dω̃ = (λ′ − λ)⟪ϕ, χ⟫.

This relation is equivalent to

1
λ′ − λ

⟪ϕ, χ⟫∂ = |γ̌2|
1− exp(2πι〈k′ − k, γ̌〉)⟪ϕ, χ⟫.
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Using the equality ⟪ϕ,ψ⟫∂ = 1
2πι

∂λ
∂k2
⟪ϕ,ψ⟫ with ψ := ψ([k′], λ′) from Proposition 3.15, one

sees that this is equivalent to

1
λ′ − λ

⟪ϕ, χ⟫∂
⟪ϕ,ψ⟫∂ = 2πι|γ̌2|

1− exp(2πι〈k′ − k, γ̌〉)
⟪ϕ, χ⟫
∂λ
∂k2
⟪ϕ,ψ⟫ .

So finally, we obtain with dλ = ∂λ
∂k2

dk2 that

1
λ′ − λ

P∂([k′], λ′)(χ) dλ = 1
1− exp(2πι〈k′ − k, γ̌〉)P ([k′], λ′)(χ) dk2.

The subvariety {(k′1, λ′) ∈ C2 | ([k′], λ′) ∈ B(u)/Γ ∗} can locally be considered as a covering
space over k′1 ∈ C or over λ′ ∈ C. The residue of the right hand side is the value of the local
sum of P (χ) over all sheets which contain (k1, λ) of the subvariety considered as a covering
over k′1 ∈ C since it adds up all the values λ over k1 and the residue of the left hand side is
the value of the local sum of P∂(χ) over all sheets which contain (k1, λ) of the subvariety
considered as a covering over λ′ ∈ C since it adds up all the values k1 over λ. Then the
restrictions of the sheets of B(u)/Γ ∗, considered as a covering space over [k] ∈ C2/Γ ∗, to
the subvariety k1 = constant are locally different and also the restriction of the sheets of
B(u)/Γ ∗ considered as a covering space over (k1, λ) with k1 = constant are locally different.
Hence, the residue of the right hand side is equal to P̆ ([k], λ)(χ) and the residue of the left
hand side is equal to P̆∂([k], λ)(χ). This proves (vi) because we have seen in Lemma 3.16(vi)
that χ is in the range of P̆ ([k], λ) if it is an eigenfunction of −4+u corresponding to ([k], λ).
So it is also in the range of P̆∂([k], λ).

Corollary 3.17. For every χ, ξ ∈ L2(∆), the form ⟪ϕ,χ⟫
⟪ϕ,ψ⟫∂ ⟪ξ, ψ⟫ dk1 is regular on F (u)/Γ ∗.

Proof. This follows exactly by the same means as it is shown in the foregoing proof that P∂ dk1 is
a regular operator-valued one-form on F (u)/Γ ∗.
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4. Fermi curves of finite type

As the title of this work suggests, we want to consider so-called ‘finite type’ potentials u ∈
C(R2/Γ ). These are potentials such that the normalization X◦(u) of X ′(u), see Lemma 3.1,
can be compactified and such that normalized eigenfunctions of the Schrödinger operator can be
lifted to a meromorphic function on this compactified normalization. The second condition we
will formulate with help of the so-called middleding which we introduce in Definition 4.4: this is
the unique 1-sheeted covering of X ′ which is the desingularization of X ′ such that the germs of
holomorphic functions on this middleding are defined as the maximal subring of OX which acts on
the divisor S. It will turn out that a compactifiable middleding leads to the second condition for
a potential to be of finite type. We then will show that the lift to the middleding of the regular
operator-valued 1-form P∂ dk1, constructed in the foregoing section, is also regular on the latter.
After that, we define another class of so-called regular finite type potentials. For these, the
middleding and the normalization coincide. Because the normalization of F (u)/Γ ∗ is a Riemann
surface, we will be able to define a classical divisor D as in [Forster, 1981, Definition 16.1] on the
normalization from the generalized divisor S. For regular finite type potentials, the lift of P∂ dk1 to
the normalization is a holomorphic 1-form. In the remainder of this chapter, we then consider only
Fermi curves with regular finite type potentials and show several properties of the corresponding
divisor D. One central point in this work is that we deduce a connection between the fixed points
of the holomorphic involution σ on X, which will turn out to be exactly the two points added
to compactify the normalization X◦, and the divisor D in terms of a linear equivalence. More
precisely, we show that D + σ(D) ' K +Q+ +Q−, where K is the canonical divisor on X and
Q± are two points which can be added to compactify X◦ for finite type potentials as we will see
hereinafter. That this property holds for the divisor of the normalized eigenfunction is well-known
in the common literature, compare for example [Novikov and Veselov, 1984, Veselov, 1984, Novikov
and Veselov, 1986], but we could not find a proof of it. We will also show that such a linear
equivalence can hold if and only if the involution σ has exactly two fixed points. It is mentioned
in [Novikov and Veselov, 1984] that I. R. Shafarevich and V. V. Shokurov pointed out that this
relation should hold. For real-valued potentials, we show that the action of τ on D has to leave D
invariant. After exploiting the symmetries of the Fermi curve, we also show that the divisor D is
non-special and that also all other divisors obtained from normalizing the eigenfunctions to 1 at
another point (x, y) ∈ R2 then (0, 0) also leads to a non-special divisor.
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4. Fermi curves of finite type

4.1. Finite type potentials

The normalization X◦(0) of X ′(0) can be compactified. As before, we consider without loss of
generality the representant R of X ′(0) as defined in equation (1.15) with the pairs of distinct
points (k+

ν , k
−
ν ) for ν ∈ Γ ∗ identified. It has been shown in Theorem 2.34 that k±ν is an ordinary

double point for all ν ∈ Γ ∗ and that these ordinary double points are the only singular points of
F (0)/Γ ∗. Then R(R) = R\{k±ν | ν ∈ Γ ∗} consists of the two connected components R+ and R−

as in equation (1.18) with the corresponding double points k+
ν respectively k−ν taken out. Since

R \ {k±ν | ν ∈ Γ ∗} is the product of two linear equations in k1 and k2 which are each irreducible,
X◦(0) has the two connected components

X◦(0) = (X+)◦ ∪̇ (X−)◦,

where

(X+)◦ :=
{(

t

−ιt

) ∣∣∣∣∣ t ∈ C
}

and (X−)◦ :=
{(

s

ιs

) ∣∣∣∣∣ s ∈ C
}

with two different parameters s, t and (X+)◦ ∩ (X−)◦ = ∅. This is the usual desingularization of
double points of singular curves as for example formulated in [de Jong and Pfister, 2012, Example
4.7.7 (2)]. Hence, a small open neighborhood of a double point k±ν on R decays into two disjoint
open discs on the normalization X◦(0) and each of the two components (X±)◦ of the normalization
is isomorphic to C. Covering each of these components with two open sets

U±1 = C and U±2 = (C \ {0}) ∪ {Q±},

where

Q+ := lim
|t|→∞

(
t

ιt

)
and Q− := lim

|s|→∞

(
s

−ιs

)
,

yields that the usual one-point compactification [Munkres, 2000, § 29, page 185] of each of these
components is given by the local charts t1 = t on U+

1 , t2 = 1
t on U+

2 and s1 = s on U−1 , s2 = 1
s on

U−2 , where t2 and s2 map U±2 homeomorphically to the punctured open disc {z ∈ C\{0} | |z| < 1}.
The respective transition functions f±i,j : C \ {0} → C \ {0} with i, j ∈ {1, 2} and i 6= j are defined
as

f+
1,2 = t1 ◦ t−1

2 , f+
2,1 = t2 ◦ t−1

1 , f−1,2 = s1 ◦ s−1
2 , f−2,1 = s2 ◦ s−1

1 .

We extend the homeomorphisms t2 and s2 to U±2 ∪{Q±} → {z ∈ C | |z| < 1} such that t2(Q+) = 0
and s2(Q−) = 0. The new compact Riemann surface X(0) := X◦(0) ∪ {Q+, Q−}, defined as the
union of a complex atlas of X◦(0) with the coordinate charts t2 and s2 defined on U±2 ∪ {Q±},
is compact. We denote the corresponding compactified connected components of X(0) with
X+ := (X+)◦ ∪ {Q+} and X− := (X−)◦ ∪ {Q−}.
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4.1. Finite type potentials

In Theorem 2.34, it is shown that for δ > 0 sufficiently small, the only singularities that can
occur in X ′ ∩ (C2

δ/Γ
∗) are double points k±ν (u) which are contained in the excluded domains

eν of k±ν . It is not possible to compactify the Fermi curve X ′: Theorem 2.34 implies that the
geometric genus of X ′ will in general be infinite since each handle which contains two branch
points contributes by one to the arithmetic genus of X ′ and there will in general be infinitely many
excluded domains containing two branch points accumulating in the two open ends of X ′. More
precisely, the arithmetic genus of X ′ is constant under small deformations, compare [Grauert et al.,
1994, Theorem III.4.7(c)], and is defined as ga = gg + δ, where δ := ∑

q∈S δq. So every time a
double point is replaced by a handle, the δ-invariant is δ − 1, and so the geometric genus gg of the
former curve gains one in comparison to the latter curve. This motivates the following definition.

Definition 4.1. A potential u ∈ C(R2/Γ ) is a compact curve potential if there exists a δ > 0
such that for all ν in Γ ∗δ every excluded domain eν contains a double point k±ν (u) of X ′(u) and the
normalization of the excluded domain eν decomposes into two connected components U+

ν and U−ν .
With π : X◦ → X ′ as defined in Lemma 3.1, each of these components is a disc which is contained
in π−1[(C2

δ/Γ
∗) \ U±ε,δ] around one of the two points in π−1[{k±ν (u) | ν ∈ Γ ∗δ }] with ε > 0 as in

Remark 2.10 and U+
ν ∩ U−ν = ∅.

Lemma 4.2. For every potential u ∈ C(R2/Γ ), the normalization X◦(u) of the Fermi curve X ′

can be compactified if and only if u is a compact curve potential as in Definition 4.1. We call the
compactified curve X(u).

Proof. In order to compactify X◦(u) by the same means as it is done for X◦(0), the two components
of X ′(u) ∩ C2

δ/Γ
∗ which lie in a ε-neighborhood of X ′(0) for δ > 0 sufficiently small, compare

Corollary 2.6, also need to be separated. This is only possible if all branch points of X ′(u) which
are contained in X ′(u)∩ (C2

δ/Γ
∗) \U±ε,δ, are discrete ordinary double points which is just Definition

4.1 of compact curve potentials. On the other hand, for u not being a compact curve potential,
infinitely many branch points do not collide into a double point of X ′ and the normalization of an
open set around these branch points consists only of one connected component. Thus, it is not
possible to find a δ > 0 such that X◦(u) ∩ C2

δ/Γ
∗ is biholomorphic to X◦(0) ∩ C2

δ/Γ
∗.

The involutions σ : X ′ → X ′ and τ1 : X ′ → X ′ as defined in Lemma 1.17 can be lifted to X◦ and
later on analogously also on all other coverings of X ′. We will also denote these involutions by σ
and τ1. They can be extended to all of X:

Corollary 4.3. The involution σ : X ′ → X ′ induced by σ in Lemma 1.17(a) can be extended to
an involution on X which leaves Q± invariant. The involution τ1 : X◦ → X◦ induced by τ1 in
Lemma 1.17(b) can also be extended to X and acts on Q± as τ1(Q±) = Q∓.

Proof. It is σ(k) = −k and τ1(k) = −k̄. On X(0) that means that if k ∈ R±, then −k ∈ R± and
−k̄ ∈ R∓. This also holds for k ∈ U±, where U± ⊂ R(X) is a small open neighborhoods of Q±,
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4. Fermi curves of finite type

since X is asymptotically free. Since both involutions are continuous in k, we can extend these
involutions over Q± and the assertion follows.

It would be convenient if we would find an analogous condition such that the Fermi curve X ′ can
be compactified. Unfortunately this is not possible since infinitely many of the excluded domains
‘far outside’ might contain handles. So we seek for a unique one-sheeted covering πM : M◦(u)→ X ′

such that M◦(u) can be compactified by adding two points Q+ and Q− and such that there
exists a generalized divisor SM on M◦(u) with (πM )∗SM = S, where S as in Definition 3.7 and
Q± 6∈ suppSM . Such a covering corresponding to (X ′,S) is given by the so-called middelding
which is introduced in [Klein et al., 2016, Definition 4.2].

Definition 4.4. For a generalized divisor S on a singular one-dimensional curve X ′, let πM :
M◦ → X ′ be the unique one-sheeted covering such that

(πM )∗OM◦ = {f ∈ π∗OX◦ | f · g ∈ S for all g ∈ S},

where OM◦ is the sheaf of regular functions on M◦. We call M◦ the middleding of X ′.

It is shown in [Klein et al., 2016, Lemma 4.1] that this covering is unique and that there exists a
unique generalized divisor SM which obeys (πM )∗SM = S. Hereby, SM is the OM◦-module which
is generated by the pullbacks of some choice of local generators of S. Since X◦ →M◦ → X ′ are
coverings, the asymptotic freeness of X ′ transfers also to M◦. So if M◦ is compactifiable, then it
can also only be compactified by adding two points for ‖ Im(k)‖ → ∞ as it is done for X◦. We
will also denote these points by Q+ and Q−. With this, we can now give the full definition of
finite type potentials.

Definition 4.5. We call a potential u ∈ C(R2/Γ ) of finite type if the corresponding middleding
M◦(u) can be compactified by adding two smooth points Q+ and Q− at infinity. The compactified
curve is denoted as M . The corresponding sheaf of holomorphic functions on M is denoted by
OM . We call a finite type potential u regular if M(u) equals X(u).

Note that every finite type potential is in particular also a compact curve potential in the sense of
Definition 4.1.

Remark 4.6. In general, it is not clear whether the middleding M corresponding to S equals the
middleding corresponding to σ∗S. For a regular finite type potential u both middledings equal the
normalization of X ′(u) since σ : X ′(u)→ X ′(u), so they are also the same.

The definition of a finite type potential is equivalent to the existence of a one-sheeted covering
π̃ : X̃ → X ′ which can be compactified by adding two points Q+ and Q− at infinity and on which
exists a sheaf S̃ which is a finitely generated submodule of M such that π̃∗S̃ = S: Assuming
Definition 4.5 holds, then πM : M◦ → X ′ is this covering. Vice versa, let π̃ : X̃ → X ′ be such a
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4.1. Finite type potentials

one-sheeted covering. Since X̃ can be compactified by adding two points Q+ and Q−, X̃ ∩ (C2
δ/Γ

∗)
is biholomorphic to X◦ ∩ (C2

δ/Γ
∗) for δ > 0 sufficiently small. Because π̃∗S̃ = S and M◦ is the

covering of X ′ such that OM◦ is the maximal subsheaf of OX◦ acting on S, M◦ covers X̃, so also
M◦ can be compactified. Furthermore, Q± are defined in such a way that they are contained in
the regular part of the compactified middleding M .
In the rest of this section, we assume that u is a finite type potential in the sense of Definition 4.5
and we often consider the eigenfunctions on small open neighborhoods U± of Q± on X respectively
M and especially in the excluded domains contained in U±. So we now introduce some notation
for these cases. For a finite type potential and δ > 0 sufficiently small, M◦ ∩C2

δ/Γ
∗ ' X◦ ∩C2

δ/Γ
∗

and all singularities in X ′ ∩ C2
δ/Γ

∗ are double points k±ν (u) with ν ∈ Γ ∗δ which are desingularized
in X◦ as well as in M◦. So we make no difference in the notation for the objects on and subsets
of M and X in this case. We denote the two points in π−1[{k±ν (u)}] ∈ X◦ ∩ C2

δ/Γ
∗ respectively

π−1
M [{k±ν (u)}] ∈ M◦ ∩ C2

δ/Γ
∗ as kν,+ and kν,−. Further, we define an open neighborhood Uν of

k±ν (u) on X ′ such that Uν contains no other double point then k±ν (u). The two preimages of Uν
under π respectively πM we denote as U+

ν and U−ν . These are smooth open neighborhoods of
kν,+ respectively kν,− which contain no preimages of other double points. The following Lemma
motivates the definition of finite type potentials.

Lemma 4.7. Let u ∈ C(R2/Γ ) be a compact curve potential in the sense of Definition 4.1. Then
the following three statements are equivalent:

(i) u is a finite type potential in sense of Definition 4.5.

(ii) There exists a δ > 0 such that the eigenspaces corresponding to the Schrödinger equation
(1.6) are two dimensional at all double points k±ν (u) with ν ∈ Γ ∗δ .

(iii) The meromorphic function ⟪ξ, ψN⟫ on X ′ as defined in (3.3) can for every ξ ∈ L2(∆) be
lifted to a meromorphic function in k on X.

To see the equivalence, the following two helping Lemmata are necessary which we show first:

Lemma 4.8. The 1-forms

π∗M⟪ξ, P∂(χ)⟫ dk1 and π∗M

Ç ⟪ϕ, χ⟫
⟪ϕ,ψ⟫∂ ⟪ξ, ψ⟫

å
dk1 (4.1)

are regular on M◦ for all χ, ξ ∈ L2(∆).

Proof. We only have to show this for k′ ∈ S. So let k′ ∈ S with π−1[{k′}] = {k1, . . . , kJ}. Due to
Lemma 3.16, P∂ dk1 is regular on X ′. So at k′ ∈ S, where J sheets of X ′ meet, there holds for all
f ∈ OX′ and χ, ξ ∈ L2(∆)

Resπ∗ (f · ⟪ξ, P∂(χ)⟫)k′ =
J∑
j=1

Res
Ç
f · ⟪ϕ, χ⟫∂⟪ϕ,ψ⟫∂ ⟪ξ, ψ⟫

å
kj

= 0,
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4. Fermi curves of finite type

where the index kj means that we are considering the sheaf generated by the above function
at kj ∈ π−1(k′) on X◦. Furthermore, since P∂ is independent of the normalization of the
eigenfunctions, we can evaluate this operator-valued 1-form with the germs at k′ of the normalized
eigenfunction ψN,k′ such that ⟪ξ, ψN⟫k′ ∈ Sk′ . By Lemma 3.9, S is a finitely generated submodule
of the meromorphic functions over OX′ . For l = 1, . . . , L, we choose ξl ∈ L2(∆) such that the
L ≤ δk′ + 1 <∞ generators at k′ are given by ⟪ξl, ψN⟫k′ . Let f ∈ ((πM )∗OM◦)k′ . Definition 4.4
of the middleding M◦ yields that f⟪ξ, ψN⟫ is an element of Sk′ and thus can be represented as∑L
l=1(fl⟪ξl, ψN⟫)k′ with fl ∈ Ok′ . SoÇ

f
⟪ϕ, χ⟫∂
⟪ϕ,ψN⟫∂ ⟪ξ, ψN⟫

å
k′

=
(

L∑
l=1

⟪ϕ, χ⟫∂
⟪ϕ,ψN⟫∂ fl⟪ξl, ψN⟫

)
k′

.

The regularity of P∂ dk1 on X ′ yields that

Resπ∗
Ç
fl
⟪ϕ, χ⟫∂
⟪ϕ,ψN⟫∂ ⟪ξl, ψN⟫

å
k′

= 0

for l = 1, . . . , L. Hence, for all f ∈ (πM )∗OM◦ one has

Resπ∗
Ç
f
⟪ϕ, χ⟫∂
⟪ϕ,ψN⟫∂ ⟪ξ, ψN⟫

å
k′

= 0.

Let π′M : X →M◦ be the covering such that πM ◦π′M = π. The existence of this covering is shown
in [Klein et al., 2016, Proof of Lemma 4.1]. Recall that k′ ∈ S with π−1[{k′}] = {k1, . . . , kJ} ⊂ X.
Let further π−1

M [{k′}] contain a point k̃ ∈M◦, where (π′M )−1[{k̃}] = {k1, . . . , km} with 1 < m ≤ J .
To see that then also holds

Res
(
(π′M )∗(f⟪ξ, π∗MP∂(χ)⟫)k̃

)
=

m∑
j=1

Res (fπ∗M⟪ξ, P∂(χ)⟫)kj = 0

for all f ∈ OM◦,k̃, we use the fact that ((πM )∗OM◦)k′ contains an element g such that π∗Mg = f at
k1, . . . , km but vanishes at all other preimages of k′. So we can use g to separate the points which
are separated on M◦ but identified on X ′. Then

m∑
j=1

Res (fπ∗M⟪ξ, P∂(χ)⟫)kj =
J∑
j=1

Res (g⟪ξ, P∂(χ)⟫)kj = Resπ∗M (g⟪ξ, P∂(χ)⟫)k′ = 0.

Thus, we have shown that π∗MP∂ dk1 is a regular 1-form on M◦ in sense of Definition 3.12.
The proof for the regularity of π∗M

( ⟪ϕ,χ⟫
⟪ϕ,ψ⟫∂ ⟪ξ, ϕ⟫

)
dk1 follows analogously. Also this form has

no zeros, because π∗MP∂ dk1 contains no zeros and the only difference between the two forms in
(4.1) are the enumerators, which is for π∗M

( ⟪ϕ,χ⟫
⟪ϕ,ψ⟫∂ ⟪ξ, ϕ⟫

)
dk1 given by ⟪ϕ, χ⟫ and for P∂ dk1 by

⟪∂yϕ, χ⟫.
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4.1. Finite type potentials

In what follows next, we will make a few considerations for germs in small neighborhoods of the
preimage of the double points. Therefore, we denote these points as

π−1[{k±ν (u)}] = {kν,+, kν,−}

and consider the eigenfunctions pulled back to small open neighborhoods of these points for ν ∈ Γ ∗δ
and δ > 0 sufficiently small. To gain clarity, we make no difference between the germs as well
as the pullback of the germs of the eigenfunction at k±ν (u) and denote the germs ψN,k±ν (u) and
π∗ψN,k±ν (u) respectively ϕN,k±ν (u) and π∗ϕN,k±ν (u) as ψ± and ϕ±. We also omit the dependence on
ν ∈ Γ ∗δ and point out that these assertions shall always hold for every ν ∈ Γ ∗δ .

Lemma 4.9. For δ > 0 sufficiently small, the pullback of the generalized eigenprojection π∗P∂

to X◦ has a pole at both points kν,± = π−1(kν,±(u)) with ν ∈ Γ ∗δ if and only if the values of the
eigenfunctions at these two points are linearly dependent. In this case, these poles are each of first
order.

Proof. We assume that ψ+(k±ν (u)) and ψ−(k±ν (u)) are linearly dependent for all ν ∈ Γ ∗δ . As in the
proof of Lemma 3.11 follows that then also ϕ+(k±ν (u)) and ϕ−(k±ν (u)) are linearly dependent. So

⟪ϕ+(kν,+), ψ+(kν,+)⟫∂ = c⟪ϕ−(kν,−), ψ−(kν,−)⟫∂ = c̃⟪ϕ±(kν,±), ψ∓(kν,∓)⟫∂ .

With the covering (k1, k2) 7→ k1, the two values k± ∈ U±ν \ {kν,±} are the preimages of k, k′ ∈ Uν
with the same k1 and different values k2 and k′2. Let ψ+ and ϕ+ be the eigenfunction and the
transposed eigenfunction belonging to k = (k1, k2) and ψ− and ϕ− be the eigenfunction and the
transposed eigenfunction belonging to k′ = (k1, k

′
2). Because ψ+ ∈ C∞[k](∆) and ϕ− ∈ C∞[−k](∆) for

every k ∈ X(u), Lemma 3.16(ii) yields that

0 = P∂(k′)(ψ+) = 2⟪∂yϕ−, ψ+⟫
⟪ϕ−, ψ−⟫∂ ψ+ = 2⟪ϕ−, ψ+⟫∂

⟪ϕ−, ψ−⟫∂ ψ+.

So due to continuity, ⟪ϕ−, ψ+⟫∂ = 0 on all of U±ν . Evaluating P∂(k)(ψ−) yields that also
⟪ϕ+, ψ−⟫∂ = 0. Since π∗P∂ does not depend on the normalization of the eigenfunctions, we
can renormalize ψ± and ϕ± in this operator such that they are holomorphic functions in k± on
U±ν ⊂ X. Neither deriving ψ± respectively ϕ± into the direction of y nor integrating over ∆
influences the holomorphy in k, so ⟪ϕ±, ψ∓⟫∂ is a holomorphic function in k± ∈ U±ν . Thus also
for k± ∈ U±ν \ {kν,±}, there holds

⟪ϕ±(k±), ψ∓(k±)⟫∂ = π∗⟪ϕ±, ψ∓⟫∂(k±) = ⟪ϕ±(k), ψ∓(k)⟫∂ = 0,

where k = π(k±) ∈ Uν \ [{k±ν (u)}]. Then continuous continuation of ⟪ϕ±(k±), ψ∓(k±)⟫∂ to
k±ν (u) yields that for ψ+ and ψ− being linearly dependent at k±ν (u), the denominator of π∗P∂ at
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4. Fermi curves of finite type

π−1(k±ν (u)) equals zero. Because the δ-invariant at a double point equals 1, see [Klein et al., 2016,
Example 2.5(1)], this pole can only be of first order.
Now assume on the other hand that ψ+ and ψ− are linearly independent. As in the proof of Lemma
3.11, then also ϕ+ and ϕ− are linearly independent at k±ν (u), wherefore OM◦,kν,± = OX◦,kν,± .
Since u is a compact curve potential, this yields that U±ν ⊂ M is an open neighborhood of
kν,± ∈ π−1

M [{k±ν (u)}] which contains no branch point with respect to the Weierstraß covering
(k1, k2) 7→ k1 for ν ∈ Γ ∗δ and δ > 0 sufficiently small. More precisely, it follows from Theorem
2.34 that the only singularities and branch points on X ′ ∩ C2

δ/Γ
∗ are either two branch points

or one double point which are contained in the handles indexed with ν for ν ∈ Γ ∗δ . Because u is
a compact curve potential, all these singularities are double points and hence U±ν ⊂ X contains
no branch points for all ν ∈ Γ ∗δ , so dk1 6= 0 on these open sets. We then use Lemma 4.8: Since
π∗MP∂ dk1 is regular on M◦, π∗MP∂ it is holomorphic on U+

ν ∪ U−ν . Accordingly, since dk1 has no
zero on U±ν , there are also no poles of π∗MP∂ on these open sets. For a finite type potential, there
exists a δ > 0 such that M◦ ∩ C2

δ/Γ
∗ is locally biholomorphic to X◦ ∩ C2

δ/Γ
∗. This implies that

also π∗P∂ has no pole at π−1[{k±ν (u)}].

In the next proof, we will often consider objects which are either defined on U+
ν or on U−ν . For

brevity, we write ψ for ψ± as well as ϕ for ϕ± when no difference between these functions is
necessary.

Proof of Lemma 4.7. To see that (i) ⇒ (ii), we use again that u is a finite type potential and
choose ν ∈ Γ ∗δ with δ > 0 sufficiently small. In [Klein et al., 2016, Example 2.5.1], it is shown
that the subring Ok±ν (u) on X ′ ∩ (C2

δ/Γ
∗) of Ōk±ν (u) = Okν,+ × Okν,− is given by all elements of

the form (f+, f−) with f+(k+) = f−(k−). Then ((πM )∗OM )k±ν (u) = Ōk±ν (u), and therefore contains
the functions (1, 0) and (0, 1) which take different values at the two points kν,± over k±ν (u) on M .
Since k±ν (u) is an ordinary double point, Sk±ν (u) contains two elements ψ+ and ψ−. Assume that
these are linearly dependent at k±ν (u). Then due to the normalization of the eigenfunctions, it is
ψ+(k±ν (u), (0, 0)) = ψ−(k±ν (u), (0, 0)), so ψ+(k±ν , (x, y)) = ψ−(k±ν (u), (x, y)) for all (x, y) ∈ ∆ and
hence also ⟪ξ, ψ+(k±ν (u))⟫ = ⟪ξ, ψ−(k±ν (u)), ⟫ for all ξ ∈ L2(∆). Then (1, 0)S and (0, 1)S are not
contained in S which contradicts Definition 4.4 of the middleding.
Vice versa, we show that ¬(i) implies ¬(ii), i.e. we deduce fromM◦(u) not being compactifiable that
there exists a δ > 0 such that the eigenfunctions ψ+ and ψ− at k±ν (u) are linearly dependent for all
ν ∈ Γ ∗δ . Since M◦(u) cannot be compactified, there are infinitely many points in M◦(u) ∩ C2

δ/Γ
∗

such that at these points, the germs of the holomorphic functions of M◦(u) do not equal the germs
of holomorphic functions of X◦(u) at the corresponding preimages of these points. These points
are contained in {π−1

M [{k±ν (u)}] | ν ∈ Γ ∗δ }. So linear independence of the eigenfunctions at these
points would yield that ((πM )∗OM )k±ν (u) = Ōk±ν (u) for all ν ∈ Γ ∗δ which contradicts the assumption
that M◦(u) cannot be compactified. Consequently, the eigenfunctions are linearly dependent.
Now (i) implies (iii) as follows: SinceM◦(u) can be compactified, the arithmetic genus gM,a ofM is
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4.1. Finite type potentials

finite. Ergo, deg(SM ) = deg(σ∗SM ) <∞, compare [Klein et al., 2016, Lemma 5.1(b)]. This implies
that also the support of the generalized divisor generated by π∗M

(⟪ξ,ψ(·,·)⟫
ψ(·,(0,0))

)
and the support of

the generalized divisor generated by π∗M
(⟪ϕ(·,·),ξ⟫
ϕ(·,(0,0))

)
are finite for each fixed ξ ∈ L2(∆). Since there

exists a covering π′M : X →M such that πM ◦π′M |X◦ = π and X is smooth, there exists a classical
divisor D on X such that π′M (D) equals the generalized divisor generated by π∗M

(⟪ξ,ψ(·,·)⟫
ψ(·,(0,0))

)
and

by the definition of S, D corresponds to the pole divisor of π∗ψN . Since deg(SM ) < ∞, also
deg(D) <∞.
Next we show that ¬(ii) implies ¬(iii). So let ψ+(kν,±) and ψ−(kν,±) be linearly dependent for all
ν which are contained in a subset A ⊂ Γ ∗δ which consists of infinitely many points. We have seen
in the proof of Lemma 4.9 that then ⟪ϕ(k±ν (u)), ψ(k±ν (u))⟫∂ has a zero of first order for all ν ∈ A.
Thus, also the zeros at the two points kν,± in the preimage π−1[{k±ν (u)}] are each of first order
for every ν ∈ Γ ∗δ . We now want to deduce from this with Rouchet’s Theorem for meromorphic
functions [Moskowitz, 2002, Theorem 4.3.1] that ⟪ϕ(·), ψ(·)⟫∂ must have a pole of first order in
each of the two preimages of the excluded domains eν intersected with X ′(u) for every ν ∈ A.
Remember that we can represent (k1, k2) ∈ X(u) as the Weierstraß covering (k1, k2(k1)) for
k1 ∈ B4ε(kν,±,1) if we choose ε > 0 as in Remark 2.10. The same is done in the proof of Theorem
2.34. For brevity, we define Bν := B4ε(kν,±,1) and ∂Bν := ∂B4ε(kν,±,1). Also remember that the
two elements in π∗ψN,k±ν (u) respectively π∗ϕN,k±ν (u) are denoted by ψ respectively ϕ. In the sequel
of this proof, we will only evaluate them at (k1, k2) ∈ X(u) with k1 ∈ Bν . In the proof of Theorem
2.34 is given reason why for k1 ∈ ∂Bν , the values (k1, k2(k1)) ∈ R(X ′(u)). One has for every
k ∈ X(u) that ∥∥∥∥e2πι〈k,(xy )〉

∥∥∥∥ =
∥∥∥∥e−2πι〈k,(xy )〉

∥∥∥∥ = Vol(∆).

Choosing ε as in Remark 2.10 assures by Theorem 2.34 that there is a δ(ε) > 0 such that for
all ν ∈ Γ ∗δ and k± = (k±,1, k±,2(k±,1)) with k±,1 ∈ ∂Bν , the functions ⟪e−2πι〈k,(xy )〉, e2πι〈k,(xy )〉⟫∂
and ⟪ϕ,ψ⟫∂ have neither poles nor zeros. Since the only branch points of X ′(u) ∩ C2

δ/Γ
∗ → C,

(k1, k2) 7→ k1 are contained inside of Bν , the holomorphic function ⟪ϕ,ψ⟫ is not equal to zero for
(k1, k1(k2)) ∈ X(u) with k1 ∈ ∂Bν , see Lemma 3.11. Let k1 ∈ ∂Bν and k = (k1, k2(k1)) ∈ X(u).
We want to estimate ∣∣∣∣⟪ϕ,ψ⟫∂ − ⟪e−2πι〈k,(xy )〉, e2πι〈k,(xy )〉⟫

∂

∣∣∣∣
and then apply Rouchet’s Theorem to this expression to count the poles of ⟪ϕ,ψ⟫∂ for k1 ∈ Bν .
Note that for k1 ∈ ∂Bν , we have shown in (4.2) that

∣∣∣∣⟪e−2πι〈k,(xy )〉, e2πι〈k,(xy )〉⟫
∂

∣∣∣∣ =

∣∣∣∣∣∣
∫
∆
∂y
(
e−2πι〈k,(xy )〉) e2πι〈k,(xy )〉 − e−2πι〈k,(xy )〉∂y

(
e2πι〈k,(xy )〉) dµ

∣∣∣∣∣∣
=4π|k2|Vol(∆).

(4.2)
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4. Fermi curves of finite type

Remember that ‖·‖ = ‖·‖L2(∆) and that the eigenfunctions ψ and its duals ϕ from the fundamental
domain-formulation of the Schrödinger equation in Definition 1.4 and the eigenfunction ψk and its
duals ϕk from the trivialization-formulation of the Schrödinger equation in Definition 1.5 only differ
by a phase of length

∣∣∣e±2πι〈k,(xy )〉∣∣∣ = 1. Note moreover that for the normalized eigenfunction ψN (k)
holds that the zeroth Fourier coefficient ψ̂(0) = 1. So by Lemma 2.23(a), it is for k = (k1, k1(k2))
with k1 ∈ Bν∥∥∥∥ψ − e2πι〈k,(xy )〉

∥∥∥∥ = ‖ψk − 1‖ as well as
∥∥∥∥ϕ− e−2πι〈k,(xy )〉

∥∥∥∥ = ‖ϕk − 1‖.

For the derivative with respect to y it is for k1 ∈ ∂Bν and k = (k1, k2(k1))

‖∂y(ψk − 1)‖ =
∥∥∥∥∂y(e−2πι〈k,(xy )〉Äψ − e2πι〈k,(xy )〉ä)∥∥∥∥

= 2π|k2|
∥∥∥∥ψ − e2πι〈k,(xy )〉

∥∥∥∥+
∥∥∥∥∂yÄψ − e2πι〈k,(xy )〉ä∥∥∥∥ .

From the asymptotic freeness in Lemma 2.23(a) of the eigenfunctions ψk and ϕk in the formulation
of Definition 1.5 in W 1,2(R2/Γ ) shown in Lemma 2.23(a) follows that on R(X(u)), there holds∥∥∥∥ψ − e2πι〈k,(xy )〉

∥∥∥∥ , ∥∥∥∥∂y (ψ − e2πι〈k,(xy )〉)∥∥∥∥ ≤ ∥∥∥∥ψ − e2πι〈k,(xy )〉
∥∥∥∥
W 1,2(∆,C)

< ε̃Vol(∆).

All these estimates also transfer to ψ and ϕ evaluated at the corresponding k on the normalization
because R(X ′(u)) is isomorphic to π−1[R(X ′(u))] ⊂ X(u). For brevity, we set in the next
calculation ψ0 := e2πι〈k,(xy )〉 and ϕ0 := e−2πι〈k,(xy )〉 as well as ψ := ψ(k) and ϕ := ϕ(k) with
k = (k1, k2(k1)) and k1 ∈ ∂Bν . Using the quasiperiodicity of the eigenfunctions and its duals (1.3),
we obtain by partial integration, where we take the periodicity of ψ · ϕ on ∆ into account, that

|⟪ϕ,ψ⟫∂ − ⟪ϕ0, ψ0⟫∂ | = |⟪∂yϕ,ψ⟫− ⟪ϕ, ∂yψ⟫− ⟪∂yϕ0, ψ0⟫+ ⟪ϕ0, ∂yψ0⟫|
= 2|⟪∂yϕ,ψ⟫− ⟪∂yϕ0, ψ0⟫|
= 2|⟪∂y(ϕ− ϕ0), ψ⟫− ⟪∂yϕ0, ψ0 − ψ⟫|
= 2|⟪∂y(ϕ− ϕ0), ψ − ψ0⟫+ ⟪∂y(ϕ− ϕ0), ψ0⟫− ⟪∂yϕ0, ψ0 − ψ⟫|
≤ 2 (|⟪∂y(ϕ− ϕ0), ψ − ψ0⟫|+ |⟪(ϕ− ϕ0), ∂yψ0⟫|+ |⟪∂yϕ0, ψ0 − ψ⟫|)
≤ 2 (‖∂y(ϕ− ϕ0)‖‖ψ − ψ0‖+ ‖ϕ− ϕ0‖‖∂yψ0‖+ ‖∂yϕ0‖‖ψ − ψ0‖) .

Due to the above considerations, it is

‖∂y (ϕ− ϕ0)‖ ‖(ψ − ψ0)‖ ≤ 2π|k±,2|ε̃2Vol(∆).

Since ‖∂yϕ0‖ = 2π|k2|Vol(∆), one has

‖(ϕ− ϕ0)‖‖∂yψ0‖ < 2π|k±,2|ε̃Vol(∆)
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4.1. Finite type potentials

and analogously
‖∂yϕ0‖‖(ψ − ψ0)‖ < 2π|k±,2|ε̃Vol(∆).

So altogether, we obtain for k = (k1, k2(k1)) with k1 ∈ Bν that

|⟪ϕ,ψ⟫∂ − ⟪ϕ0, ψ0⟫∂ | ≤ 4πVol(∆) (|k±,2|ε̃(ε̃+ 2)) < 4π|k2,±|Vol(∆)

for ε̃ > 0 sufficiently small. By Rouchet’s Theorem for meromorphic functions, the differences
of the number of poles and the number of zeros of ⟪ϕ,ψ⟫∂ and ⟪ϕ0, ψ0⟫∂ for k1 ∈ Bν and
k = (k1, k2(k1)) ∈ X(u) coincide. Because ⟪ϕ0, ψ0⟫ has neither poles nor zeros on Bν and ⟪ϕ,ψ⟫∂
has one zero on each of the two open subsets on X(u) corresponding to k1 ∈ Bν , the latter has also
a pole of first order in each of the sets corresponding to k1 ∈ Bν . Let us denote this pole by k′ν,±.
Since deriving ψ and ϕ into the direction of y does not generate new poles in k for k ∈ X◦(u),
compare the proof of Lemma 3.16(iii) and (iv), for every ν ∈ A one of the germs of

( ⟪ϕ,ν⟫
ϕ(·,(0,0))

)
kν,±

and
( ⟪ξ,ψ⟫
ψ(·,(0,0))

)
kν,±

has a pole of first order at some ν ∈ L2(∆) at k′ν,± with k′ν,±,1 ∈ Bν .

Now remember that the germs of S are generated by ⟪ξ,ψ⟫
ψ((0,0)) and ⟪ϕ,ξ⟫

ϕ(0,0) , where the zero sets
of ⟪·, ψ⟫ and ⟪ϕ, ·⟫ both have codimension 1 in L2(∆) since ψ,ϕ 6≡ 0. That means that the
complement set of their zeros in L2(∆) is an open and dense subset of L2(∆) for each ν ∈ Γ ∗δ . So
if ψ(k′ν,±, (0, 0)) = 0 respectively ϕ(k′ν,±, (0, 0)) = 0, the germs of S have poles on an open and
dense subset of L2(∆). As Γ ∗ is countable, also A is. For each ν ∈ A, the set of poles of either
⟪ξ, ψN (k′ν,±)⟫ or ⟪ϕN (k′ν,±), ξ⟫ is an open and dense subset of ∆. Then by Baire’s Theorem [Reed
and Simon, 1980, Theorem III.8], also the intersection of these open and dense subsets over all
ν ∈ A is open and dense. Hence, there exists an ξ0 ∈ L2(∆) such that either ⟪ξ0, ψN⟫ or ⟪ϕN , ξ⟫
has a pole for all ν ∈ A. So either ⟪ξ0, π

∗ψN⟫ or ⟪π∗ϕN , ξ0⟫ has infinitely many poles on U+ ∪U−,
where U± ⊂ R(X) are open neighborhoods of Q±, respectively. Since ψN = σ∗ϕN , the number of
poles of these functions coincides and thus there exists a ξ0 ∈ L2(∆) such that neither ⟪ξ0, ψN⟫
nor ⟪ϕN , ξ0⟫ can be lifted to a meromorphic function on the compact Riemann surface X.

For a finite type potential u, the biholomorphy of X ∩C2
δ/Γ

∗ and M ∩C2
δ/Γ

∗ for δ > 0 sufficiently
small yields the following Lemma.

Corollary 4.10. For a finite type potential u, there are small open neighborhoods U± of Q± on
M as well as on X such that for all k ∈ U± \ {Q±}, there holds∥∥∥∥ψN (k, (x, y))− e2πι〈k,(xy )〉

∥∥∥∥
W 1,2(R2/Γ )

< ε̃.

Proof. We show this only for M(u) since the proof for X(u) follows analogously by replacing πM
with π. Recall that for ψN (k) holds that the zeroth Fourier coefficient ψ̂(0) = 1. Due to Lemma
2.23(a), the above assertion already holds on Uε,δ with ε > 0 as in Remark 2.10, so it only has
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4. Fermi curves of finite type

to be shown in the excluded domains eν ∩X(u) around k±ν with ν ∈ Γ ∗δ and δ(ε) > 0 sufficiently
small.
Since u is a finite type potential, the equivalence of (i) and (iii) in Lemma 4.7 yields that π∗ψN (k) is
holomorphic for k = (k1, k2(k1)) and k1 ∈ Bν . So also π∗ψN−e2πι〈k,(xy )〉 is holomorphic for k1 ∈ Bν
and all ν ∈ Γ ∗δ . Lemma 2.23 together with Remark 2.10 yields that for all (k1, k2(k1)) ∈ X(u)∩C2

δ

with k1 6∈ Bν and ν ∈ Γ ∗δ , it is∥∥∥∥ψN − e2πι〈k,(xy )〉
∥∥∥∥ < ε

∥∥∥∥e2πι〈k,(xy )〉
∥∥∥∥ = ε

∫
∆

∣∣∣∣e2πι〈k,(xy )〉
∣∣∣∣ dµ = εVol(∆).

This also holds for the pullback of these functions to M ∩ π−1[R(X(u))] ' R(X(u)). So let δ > 0
be chosen so small that the above estimate of the eigenfunctions holds for k1 ∈ ∂Bν . This yields
that the modulus

∥∥∥ψN − e2πι〈k,(xy )〉∥∥∥ cannot archive its maximum in k1 inside of the open set
Bν but that this maximum must be contained in ∂Bν . On ∂Bν , this modulus is smaller then
εVol(∆). Since Bν , defined as in the foregoing proof, is biholomorphic to an open subset of C,
the maximum modulus Theorem [Conway, 1978, Theorem 1.1] can be applied. This yields that
the above estimate of the eigenfunction holds for all k1 ∈ Bν and for every ν ∈ Γ ∗δ . The maps
k 7→ e2πι〈k,(xy )〉 and k 7→ ψN (k) are bounded and unequal to zero for k = (k1, k2(k1)) with k1 ∈ Bν .
By Lemma 2.23(a) also the partial derivatives ∂xψN and ∂yψN can be estimated analogously:
These are also holomorphic and have no zeros for k1 ∈ ∂Bν , so the above estimate also holds for∥∥∥ψN − e2πι〈k,(xy )〉∥∥∥

W 1,2(R2/Γ )
with another ε.

Of course, the same assertions also hold for the eigenfunction of the transposed Schrödinger
operator.

Corollary 4.11. For a finite type potential u, the support of the generalized divisor SM on M

which obeys (πM )∗SM = S consists of finitely many points. The marked points Q± on M(u) are
not contained in suppSM .

Proof. Since S is a generalized divisor on X ′, its support contains only discrete points, see [Klein
et al., 2016, Proposition 3.3]. Due to Lemma 4.7(iii), we can choose small open neighborhoods U±
of Q± such that SM ∩ U± = ∅. Hence, suppSM is contained in a compact subset of M and thus
consists of finitely many points. The second assertion holds because the above Lemma yields that
there exists open neighborhoods U± of Q± on M on which |ψ(0, 0)− 1| < ε, and so by continuity,
it is ψ(Q±, (0, 0)) 6= 0.

4.2. Properties of the divisor for regular finite type potentials

From now on, we assume that u ∈ C(R2/Γ ) is a regular finite type potential. That means X equals
M and thus the 1-form π∗P∂ dk1 is, by Lemma 4.8, a holomorphic 1-form on the normalization X◦.
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4.2. Properties of the divisor for regular finite type potentials

For these potentials, the generalized divisor SM can be identified with a classical positive divisor
D on X of finite degree as it is done in [Klein et al., 2016, § 6]. The action of the involutions
on these divisor is then denoted as σ∗SM = σ(D) and τ∗1SM = τ1(D). Hereby, the involution σ
extends to an involution on the divisors on X by σ

Ä∑
p∈X a(p)p

ä
:= ∑

p∈X a(p)σ(p) which we
also denote as σ and the same holds for τ1. So the degree of a divisor is conserved under these
involutions. We will now summarize some more properties of the eigenfunctions. These will be
necessary in Chapter 5 to show that the unique function which we reconstruct out of some given
data equals the unique normalized eigenfunction of the Schrödinger operator corresponding to a
reconstructed unique potential u.

4.2.1. A linear equivalence

Next, we want to deduce from the holomorphy of π∗P∂ dk1 on X(u) which we have seen in Lemma
4.8 that for the pole divisor D of the normalized eigenfunction holds

D + σ(D) ' K +Q+ +Q−,

where K is the canonical divisor on X and Q± are the two distinguished points added to compactify
X◦ as it is done at the beginning of Section 4. Therefore, it is necessary to show the following
proposition:

Proposition 4.12. Let u be a regular finite type potential. Then ω := 1
⟪ϕN ,ψN⟫∂ dk1 is a holo-

morphic 1-Form on X◦.

Proof. Lemma 4.8 yields together with the fact that X◦ is a Riemann surface that

⟪ϕ(k), χ⟫
⟪ϕ(k), ψ(k)⟫∂ ⟪ξ, ψ(k)⟫ dk1

is a holomorphic 1-form on X◦ for all χ, ξ ∈ L2(∆). Since this is independent of the normalization
of the eigenfunctions, we can assume that for all k0 ∈ X◦ and all k contained in a small open
neighborhood Uk0 ⊂ X◦ of k0, the germs ψk0 and ϕk0 are elements of OX◦,k0 without zeros on Uk0 .
Since the L2-scalar product is non-degenerate, we can always find χ, ξ ∈ L2(∆) such that ⟪ϕk0 , χ⟫
and ⟪ξ, ψk0⟫ are unequal to zero and holomorphic for k ∈ Uk0 : Since ϕk0 holomorphic on Uk0 , also
ϕk ·χ is and since integration over∆ does not influence this holomorphy, also ⟪ϕk0 , χ⟫ is holomorphic
and unequal to zero on Uk0 . The same holds for ⟪ξ, ψk0⟫. Thus, ⟪ϕk0 , χ⟫−1, ⟪ξ, ψk0⟫−1 ∈ OX◦,k0

and due to Lemma 3.6(i), 1
⟪ϕk0 ,ψk0⟫

dk1 is holomorphic in a small neighborhood of k0. Note that
on X◦, the divisor D coincides with the zeros of ψ(·, (0, 0)) and the divisor σ(D) coincides with
the zeros of ϕ(·, (0, 0)). Since ψk0 and ϕk0 are normalized in such a way that they have no poles on
Uk0 , also ψ(0, 0)k0 and ϕ(0, 0)k0 are holomorphic on Uk0 . Consequently, Lemma 3.6, the biliniarity
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4. Fermi curves of finite type

of ⟪·, ·⟫∂ and the independence of ψ(0, 0)k0 and ϕ(0, 0)k0 from (x, y) ∈ ∆ together yield that

ψ(0, 0)k0ϕ(0, 0)k0
1

⟪ϕk0 , ψk0⟫∂
= 1

1
ϕ(0,0)k0ψ(0,0)k0

(⟪ϕk0 , ∂yψk0⟫− ⟪∂yϕk0 , ψk0⟫)
= 1
⟪ϕN,k0 , ψN,k0⟫∂

is holomorphic on Uk0 for every k0 ∈ X◦. So the assertion follows.

From this, we can now deduce the well-known linear equivalence for regular finite type potentials.
We show it here so explicitly since it is mentioned often in the common literature, see e.g. [Novikov
and Veselov, 1984] and [Novikov and Veselov, 1986], but we could not find the explicit proof of this
statement. Hereby, K is the canonical divisor of degree 2g − 2, i.e. the divisor of a meromorphic
1-form on X, compare for example [Forster, 1981, § 16.2].

Lemma 4.13. For a regular finite type potential u, the pole divisor D on the compactified
normalization X is positive and of degree g, where g is the genus of X, and fulfills

D + σ(D) ' K +Q+ +Q−. (4.3)

Proof. It follows from Theorem 2.28(c) that the covering k1 : X◦ → C is a multivalued holomorphic
map on X whose values over a point in X◦ only differ by elements of Z. So dk1 is a meromorphic
1-form on X which is holomorphic and single-valued on X◦ and vanishes only at the branch points
of the above covering. Only at Q+ and Q− can be poles of dk1. We first show that

K ' (dk1) = Z − 2Q+ − 2Q−, (4.4)

where Z is the zero divisor of dk1 on X. The linear equivalence in (4.4) holds since dk1 is a
meromorphic differential on the compact Riemann surface X. The equality sign in (4.4) follows by
determining the pole divisor of dk1 which can only be contained in Q+ and Q−. That dk1 has
poles of second order at both of these points is a consequence of the asymptotic freeness of X: In
a neighborhood U± of Q±, X can be represented by a local coordinates z± : U± → C centered at
Q±, so the asymptotic freeness yields that the value of k on an open neighborhood U± containing
Q± is given by k1(z±) = 1

z±
and k2(z±) = ∓ι

z±
+∑∞

j=1 ajz
2j+1
± , where the power series of k2 only

contains uneven powers of z± because σ : X → X, k 7→ −k leaves Q± invariant, so the local
coordinates have to be uneven in z±. Hence, dk1(z±) = − 1

z2
±
, and so dk1 has a pole of second

order at both points Q+ and Q−. Furthermore, we claim that

0 '
Ç

1
⟪ϕN , ψN⟫∂

å
= −Z +D + σ(D) +Q+ +Q−, (4.5)

where the linear equivalence in (4.5) holds since the divisor of a meromorphic function on a
compact Riemann surface is linear equivalent to the zero-divisor. The equality sign we show in
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4.2. Properties of the divisor for regular finite type potentials

three steps: first we consider this meromorphic function only on X◦. Then the holomorphy of
1

⟪ϕN ,ψN⟫∂ dk1 on X◦, shown in Lemma 4.8, yields immediately that the zeros of ⟪ϕN , ψN⟫∂ must
be contained in Z. To see that even equality holds, note that by the same argumentation how to
separate the points on M(u) in the proof of Lemma 4.8, the same properties which hold for P∂ on
F (u)/Γ ∗ shown in Lemma 3.16 also hold for π∗MP∂ . Since u is a regular finite type potential, it is
X(u) = M(u). We consider the covering X(u)→ C, k 7→ k1. Then analogous argumentation as in
the proof of Lemma 3.16(iii) yields that if r sheets of this covering meet at a point k of X(u) with
(π′M )−1[{k}] = k1, . . . , kr, then

r∑
j=1

Ç⟪ϕ, χ⟫
⟪ϕ,ψ⟫

å
kj

(4.6)

is holomorphic and and of rank r, i.e. unequal to zero since the image contains at least one direction
of the eigenspace of −4 +u. Since X(u) is smooth, this sum can only contain more than one
summand if the considered point k is a branch point of the above covering. In this case, we can
always find a local coordinate z centered at k = (k1, k2) ∈ X(u) and a local coordinate w centered
at k1 such that w = zr. So we can read this as a special case of Lemma 3.6, and therefore, P∂ dk1

is holomorphic with P∂ dk1 = 0 if and only if the expression in (4.6) equals zero. So P∂ dk1 has no
zeros on X(u). So if dk1 has a zero of order n at some k ∈ X(u), also ⟪ϕ,ψ⟫∂ has to vanish of
order n, and therefore, the zero divisor of ⟪ϕ,ψ⟫∂ equals Z.
Next, we argue why the zeros of this function are just the poles of the normalized eigenfunctions.
Lemma 1.17(a) yields that for the normalized eigenfunctions, there holds ϕN = σ∗ψN . So σ(D) is
the divisor of ϕN which is defined in the same manner as D, only that it refers to the eigenfunction
of the transposed Schrödinger equation with the same potential. Accordingly, we want to show
that

(⟪∂yϕN , ψN⟫∂)X◦ = −Z +D + σ(D), (4.7)

where ψN and ϕN both have no zeros in k since they map k to an eigenfunction of the Schrödinger
operator respectively its transpose. We have already seen in the proof of Lemma 4.7 that
⟪ϕN , ψN⟫∂ = 2⟪∂yϕN , ψN⟫ and it is shown in the proof of Lemma 3.16(iii) and (iv) that deriving
ϕN into the direction of y cannot cause new poles at k ∈ X◦. So only new zeros can occur. We
have seen above that these are contained in Z, and therefore, also dk1 equals zero there of the
same order. So these new zeros do not influence the poles ⟪ϕN , ψN⟫∂ on X◦. Since

ϕN ( ·, (x, y)) = ϕ( ·, (x, y))
ϕ( ·, (0, 0)) and ψN ( ·, (x, y)) = ψ( ·, (x, y))

ψ( ·, (0, 0)) ,

the denominator of these functions does not depend on (x, y) ∈ ∆, so the same argumentation
why deriving into the direction of y cannot cause new poles also yields that the poles on X◦ of
the whole integrand ∂yϕNψN are not influenced by integrating over ∆. Since for each k, there
always exist χ, ξ ∈ L2(∆) such that ⟪ξ, φ⟫, ⟪ϕ, χ⟫ 6≡ 0, the divisor D coincides on X◦ with the
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4. Fermi curves of finite type

zero divisor of ψ(·, (0, 0)) and σ(D) coincides on X◦ with the zero divisor of ϕ(·, (0, 0)). So the
pole divisor of ⟪ϕN , ψN⟫∂ on X coincides with D + σ(D) and equation (4.7) holds.
Due to Corollary 4.10, ⟪ϕN , ψN⟫∂ has a pole at Q± if and only if ⟪ϕ0

N , ψ
0
N⟫∂ has a pole at Q̃±,

where Q̃± are the two points added at infinity to compactify X(0)◦. In the calculations in (4.2)
we have seen that

⟪ϕ0
N , ψ

0
N⟫∂ = −4πιVol(∆)k2 = 4πVol(∆)k1 = ±4πιVol(∆)

z±
= 4πVol(∆)

z±
,

where now z± is a local coordinate on X(0) centered at Q̃±. So ⟪ϕ0
N , ψ

0
N⟫∂ has a pole of first

order at each Q̃+ and Q̃− and thus also ⟪ϕN , ψN⟫∂ has simple poles at Q+ and Q−. Combining
this with (4.7) shows that (4.5) holds and finally combining (4.4) with (4.5) yields

0 ' K + 2Q+ + 2Q− −D − σ(D)−Q+ −Q− ⇔ D + σ(D) ' K +Q+ +Q−.

The degree is invariant under σ, so deg(D) = deg(σ(D)) and deg(K) = 2g − 2, wherefore
deg(D) = 2g−2+1+1

2 = g.

4.2.2. A connection between the holomorphic involution and the pole divisor

In [Novikov and Veselov, 1984] is remarked without proof that I. R. Shafarevich and V. V. Shokurov
pointed out that D + σ(D) ' K +Q+ +Q− can hold if and only if Q+ and Q− are the only fixed
points of σ. To prove this assertion, we basically use the results reflecting the connection between
the Jabobian variety and the Prym variety as defined in A.12 which is shown in [Mumford, 1974].
A more detailed reflection of the Prym variety, leaned on the results in [Mumford, 1974], can be
found in Appendix A. Since we are mainly using the ideas shown there and not the whole concept,
we will explain in this section how this connection involves here.

A two-sheeted covering

We first define another Riemann surface Xσ such that πσ : X → Xσ defines a two-sheeted covering.

Definition 4.14. For k, k̃ ∈ X let k ∼σ k̃ :⇔ (k = k̃ ∨ k = σ(k̃)) and define Xσ := X/ ∼σ.

In Lemma A.1, it is shown that Xσ is also a compact Riemann surface. Let πσ : X → Xσ be
the canonical two-sheeted covering map which is holomorphic, compare [Miranda, 1995, Theorem
III.3.4]. Due to the construction of Xσ, the fixed points of σ coincide with the ramification points
of πσ.

Definition 4.15. We denote the set of ramification points of πσ on X by rπσ and define the
ramification divisor of πσ on X as Rπσ := ∑

k∈rπσ k. The set of branch points of πσ on Xσ we
define as bπσ := πσ[rπσ ].
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4.2. Properties of the divisor for regular finite type potentials

The map πσ is locally biholomorphic on X \ rπσ , see [Forster, 1981, Corollary I.2.5]. In general, the
ramification divisor is defined as Rπσ := ∑

k∈X(multk(πσ)−1) ·k, where the multiplicity multk(πσ)
of πσ in k denotes the number of sheets which meet in k, compare [Miranda, 1995, Definition
II.4.2]. Since multk(πσ) = 1 for k ∈ X \ rπσ and multk(πσ) = 2 for k ∈ rπσ , this coincides with the
definition above.

Definition 4.16. We define the pullback of a point kσ ∈ Xσ as

π∗σkσ :=
∑

k∈{π−1
σ [{kσ}]}

multk(πσ)k.

The pullback of a divisor D := ∑
kσ∈Xσ a(kσ)kσ on Xσ is defined as π∗σD := ∑

kσ∈Xσ a(kσ)π∗σkσ.

Since πσ is a non-constant holomorphic map between two Riemann surfaces, every meromorphic
1-form on Xσ can be pulled back to a meromorphic 1-form ω := π∗σωσ on X, compare for example
[Miranda, 1995, Section IV.2.].

Lemma 4.17. Let X,Xσ and πσ be given as above and let ωσ be a non-constant meromorphic
1-form on Xσ.

(i) The divisor of π∗σωσ on X is given by (π∗σωσ) = π∗σ(ωσ) +Rπσ .

(ii) Let gσ be the genus of Xσ. Then there exists a divisor K̃ on X with deg(K̃) = 2gσ − 2 such
that (π∗σωσ) = K̃ + σ(K̃) +Rπσ where πσ(K̃) is the canonical divisor of Xσ.

Proof. (i) Due to [Miranda, 1995, Lemma IV.2.6], there holds for k ∈ X that

ordk(π∗σωσ) = (1 + ordπσ(k)(ωσ))multk(πσ)− 1

with ordk(π∗σωσ) as defined in [Miranda, 1995, Section IV.1.9]. Inserting this into the definition
of (π∗σωσ) = ∑

k∈X(ordk(π∗σω)) yields the assertion as follows:

(π∗σωσ) =
∑
k∈X

(ordk(π∗σω))k =
∑
k∈X

Ä
(1 + ordπσ(k̃)(ωσ)) ·multk(πσ)− 1

ä
k

=
∑
k∈X

ordπσ(k)(ωσ) ·multk(πσ)k +
∑
k∈X

(multk(πσ)− 1)k

=
∑

kσ∈Xσ

∑
k∈π−1

σ [{kσ}]

ordkσ(ωσ) ·multk(πσ)k +Rπσ

=
∑

kσ∈Xσ
ordkσ(ω)

∑
k∈π−1

σ [{kσ}]

multk(πσ)k +Rπσ =
∑

kσ∈Xσ
ordkσ(ω)π∗σkσ +Rπσ

= π∗σ(ω) +Rπσ .
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(ii) One has degKσ = deg(ωσ) = 2gσ − 2, where Kσ is the canonical divisor on Xσ. Let kσ ∈ Xσ

be a point in the support of (ωσ) as defined in [Miranda, 1995, Section V.1]. For kσ 6∈ bπσ , one
has π∗σkσ = k + σ(k) with k 6= σ(k) ∈ X and for kσ ∈ bπσ , it is π∗σkσ = 2k with k ∈ rπσ . For
kσ 6∈ bπσ , let one of the pulled back points in π∗σkσ be the contribution to K̃ and for kσ ∈ bπσ ,
the pulled back point is counted with multiplicity one in K̃. Then π∗σ(Kσ) = K̃ + σ(K̃) and
the claim follows from (i).

Now, we are going to construct a symplectic cycle basis of H1(X,Z) from a symplectic cycle
basis of H1(Xσ,Z). The notation and the basic ideas for the construction of the cycles in this
section is based on [Adler et al., 2010, Section 5.2.4]. The holomorphic map σ : X → X induces a
homomorpism of H1(X,Z) which we denote as

σ] : H1(X,Z)→ H1(X,Z), γ 7→ σ]γ. (4.8)

Let gσ be the genus of Xσ and Aσ,1, . . . , Aσ,gσ , Bσ,1, . . . , Bσ,gσ be representatives of a symplectic
basis of H1(Xσ,Z), i.e.

Aσ,i ? Aσ,` = Bσ,i ? Bσ,` = 0 and Aσ,i ? Bσ,` = δi`, (4.9)

where ? is the intersection product between two cycles. From Riemann surface theory, it is known
that such a basis exists, compare e.g. [Miranda, 1995, Section VIII.4]. Due to Hurwitz’s Formula
[Miranda, 1995, Theorem II.4.16], one knows that that ]bπσ = 2n is even for the two sheeted
covering πσ : X → Xσ and that the genus g of X is given by g = 2gσ + n− 1. Hence, a basis of
H1(X,Z) consists of 4gσ + 2n− 2 cycles. The aim is to construct a symplectic basis of H1(X,Z)
which we denote as Ai, σ]Ai, Bi, σ]Bi and Cj , Dj which has the following two properties: First of
all, the only non-trivial pairwise intersections between elements of the basis of H1(X,Z) must be
given by

Ai ? Bi = σ]Ai ? σ]Bi = Cj ? Dj = 1. (4.10)

Secondly, the involution σ] has to map Ai to σ]Ai and vice versa, Bi to σ]Bi and vice versa and
has to act on Cj and Dj as σ]Cj = −Cj and σ]Dj = −Dj . In the rest of this subsection, let
i, ` ∈ {1, . . . , gσ} and j, k ∈ {1, . . . , n− 1} as long as not pointed out differently. The difference in
the notation of the cycles indicates the origin of these basis elements: the A- and B-cycles on X
will be constructed via lifting a certain symplectic cycle basis of H1(Xσ,Z) via πσ and the C- and
D-cycles originate from the branch points of πσ.
We will start by constructing the C- and D-cycles. A sketch of the idea how to do this is shown for
n = 3 and gσ = 0 in Figure 4.1a . We connect the points in bπσ pairwise by paths sj for j = 1, . . . , n.
The set of points corresponding to a path sj : [0, 1]→ Xσ we denote by [sj ] := {sj(t) | t ∈ [0, 1]}
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4.2. Properties of the divisor for regular finite type potentials

and use the same notation for any other path considered as a set of points in X or Xσ. Let [sj ]◦

be the corresponding set with t ∈ (0, 1). The paths sj are constructed in such a way that every
branch point is connected with exactly one other branch point and such that sk ∩ sj = ∅ for
k 6= j. This is possible because the branch points lie discrete on Xσ: suppose the first two branch
points are connected by s1 such that s1 contains no other branch point. Then one can find a small
open tubular neighborhood N(s1) of s1 in Xσ with boundary ∂N(s1) in Xσ isomorphic to S1. To
see that Xσ \ [s1] is path connected, let γ be a path in Xσ which intersects ∂N(s1) in the two
points p1, p2 ∈ Xσ. Then there is a path γ̃ such that γ̃|Xσ\N(s1) = γ|Xσ\N(s1) and such that the
points p1 and p2 are connected via a part of ∂N(s1). Hence, Xσ \ [s1] is path connected. Like
that one can gradually choose s2, . . . sn. To find a path sj not intersecting s1, . . . sj−1, consider
Xσ \ ([s1] ∪ · · · ∪ [sj−1]) which is path connected and repeat the above procedure until all branch
points are sorted into pairs. The preimage of sj under πσ yields two paths in X which both
connect the preimage of the connected two branch points. These preimages are ramification points
of πσ and we denote them as b1j and b2j . A suitable linear combination of the two paths on X then
defines a cycle Cj for j = 1, . . . , n. Since πσ is unbranched on X \ rπσ , i.e. a homeomorphism, and
since πσ[rπσ ] = bπσ ⊂ [s1]∪ · · · ∪ [sn], π−1

σ [Xσ \ ([s1]∪ · · · ∪ [sn])] consists of two disjoint connected
manifolds whose boundaries both are equal to π−1

σ [s1] ∪ · · · ∪ π−1
σ [sn] and σ interchanges those

manifolds. We call them M and σ[M ]. Since the n C-cycles are the boundary of M respectively
σ[M ], they are homologous to another, i.e. Cn = −∑n−1

i=1 Ci. So this construction yields maximal
n − 1 C-cycles which are not homologous to each other. These n cycles we orientate as the
boundary of the Riemann surface M . We will see later on that, due to the intersection numbers,
the cycles C1, . . . , Cn−1 are not homologous to each other. By construction, each cycle Cj contains
the two ramification points b1j and b2j of πσ and no other ramification points.
The next step is to construct n− 1 D-cycles such that one has Cj ?Dk = δjk. We will see that it is
possible to connect πσ(b2j ) with πσ(b1j+1) by a path tj for j = 1, . . . , n− 1 such that tj ∩ tk = ∅ for
j 6= k. Since Xσ \ ([s1] ∪ · · · ∪ [sn]) is path connected, also Xσ \ ([s1]◦ ∪ [s2]◦ ∪ [s3] ∪ · · · ∪ [sn]) is
path connected. So one can connect b21 with b12 with a path t1 in Xσ not intersecting s3, . . . , sn and
the path s1 + t1 + s2 in Xσ contains no loop. As above, one can chose a small open neighborhood
N([s1]∪ [t1]∪ [s2]) with boundary isomorphic to S1. Therefore, Xσ \ ([s1]∪ · · · ∪ [sn]∪ [t1]) is path
connected. Repeating this procedure shows that Xσ \ ([s1] ∪ · · · ∪ [sn] ∪ [t1] ∪ · · · ∪ [tj ]) remains
path connected and that ∑j

m=1(sm + tm) + sj+1 contains no loop for j = 1, . . . , n− 1. This yields
the desired n − 1 paths tj in Xσ. Lifting these paths via πσ yields each n − 1 paths on M and
n− 1 paths on σ[M ]. The paths on M and σ[M ] which result from the lift of tj both start at b2j
and end in b1j+1. Hence, identifying these end points with each other yields a cycle on X which we
denote as ‹Dj . We orientate ‹Dj such that Cj ? ‹Dj = 1 and Cj+1 ? ‹Dj = −1 for j ∈ {1, . . . , n− 1}.
Due to the construction of ‹Dj , one has Ci ? ‹Dj = 0 for i 6∈ {j, j + 1}. Defining Dj := ∑n−1

i=j
‹Di
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4. Fermi curves of finite type

(a) A sketch of the idea how to construct the
C-cycles for n = 3 and gσ = 0.

(b) Example taken from [Adler et al., 2010, Fig-
ure 5.1] of how a cycle basis on X and Xσ

could look like for gσ = 2 and πσ having two
branch points on X.

Figure 4.1.: About constructing the cycle basis of H1X,Z out of H1(Xσ,Z).

yields for k < j that

Cj ? Dj = Cj ?
n−1∑
l=j

‹Dl = Cj ? ‹Dj = 1, Ck ? Dj = Ck ?
n−1∑
l=j

‹Dl = 0,

Cj ? Dk = Cj ?
n−1∑
l=k

‹Dl = Cj ? (‹Dj + ‹Dj−1) = 1− 1 = 0

and hence n− 1 cycles which obey Ck ? Dj = δkj . Two cycles cannot be homologous to each other
if the intersection number of each one of those cycles with a third cycle is not equal. Consequently,
Ck ? Dj = δkj implies that the above construction yields 2n− 2 cycles Cj and Dj which are not
homologous to each other. To construct the missing 4gσ cycles, we choose a symplectic cycle basis
Aσ,i, Bσ,i of H1(Xσ,Z) such that they intersect none of the paths s1, . . . , sn and t1, . . . , tn−1. This
is possible since all of these paths in Xσ are connected, and therefore can be contracted to a point.
On the preimage of Xσ \ {

⋃n−1
j=1 ([sj ] ∪ [tj ]) ∪ [sn]}, the map πσ is a homeomorphism. So each of

the cycles in H1(Xσ,Z) is lifted to one cycle in M and one cycle in σ[M ] via πσ and those two
cycles are interchanged by σ. Thus, lifting the whole basis yields 4gσ cycles on X, where we denote
the 2gσ cycles lifted to M as Ai and Bi and the corresponding cycles lifted to σ[M ] as σ]Ai and
σ]Bi. By the universal lifting property of paths, see Lemma A.2, these cycles obey the desired
transformation behavior under σ]. Since M and σ[M ] are disjoint, the intersection number of
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4.2. Properties of the divisor for regular finite type potentials

the lifted cycles on X stays the same as the intersection number of the corresponding cycles on
Xσ if two cycles are lifted to the same sheet M respectively σ[M ] or equals zero if they are lifted
to different sheets. Furthermore, the construction of these cycles ensures that the lifted A- and
B-cycles do not intersect any of the C- and D-cycles on X. Hence, Ai, σ]Ai, Bi, σ]Bi, Cj and Dj

are in total 4gσ + 2n− 2 cycles which obey condition (4.10). So by Hurwitz Formula [Miranda,
1995, Theorem II.4.16], they represent a symplectic basis of H1(X,Z) and the A- and C-cycles are
disjoint. That the C- and D-cycles constructed like this have the desired transformation behavior
under σ] is shown in the next lemma.

Lemma 4.18. For Cj , Dj ∈ H1(X,Z) as defined above one has σ]Cj = −Cj and σ]Dj = −Dj.

Proof. Every cycle Cj is the preimage of a path in Xσ and Xσ is invariant under σ. So σ[Cj ] = [Cj ]
and the two points b1j and b2j stay fixed. Therefore, σ]Cj = ±Cj . Since σ commutes, the two lifts
of the path sj in Xσ, i.e. b1j and b2j are the only fixed points of σ on Cj , one has σ]Cj = −Cj .
Since Dj also consists of the two lifts of tj which are interchanged by σ, it follows by the same
means that also σ]Dj = −Dj .

Decomposition of H1(X,Z)

With help of the Abel map Ab one can identify the elements of H1(X,Z) with a lattice in Cg such
that Jac(X) ' Cg/Λ, compare [Miranda, 1995, Section VIII.2]. To do so, let ω1, . . . , ωg ∈ H0(X,Ω)
be a basis of the g = 2gσ + n− 1 holomorphic differential forms on X which are normalized with
respect to the A-, σ]A- and C-cycles, i.e.∮

Ai

ω` = δi`,

∮
σ]Ai

ωgσ+` = δi`,

∮
Cj

ω2gσ+k = δjk (4.11)

and all other integrals over one of the A- and C-cycles with another element of the basis of H0(X,Ω)
are equal to zero. Furthermore, note that the construction of the A-cycles yields σ∗ωi = ωgσ+i

and that Lemma 4.18 implies σ∗ω2gσ+j = −ω2gσ+j . We define

ω±i := 1
2(ωi ± ωgσ+i) and ω−gσ+j := ω2gσ+j . (4.12)

Direct calculation shows that these differential forms also yield a basis of H0(X,Ω), compare the
proof of Lemma A.7 and Proposition A.10. For a path γ in X, we define the vectors

Ωγ :=
Ç ∫

γ
ωk

åg
k=1

, Ω+
γ :=

Ç ∫
γ
ω+
k

ågσ
k=1

, Ω−γ :=
Ç ∫

γ
ω−k

ågσ+n−1

k=1
. (4.13)
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and the following lattices generated over Z as

Λ := 〈ΩAi , Ωσ]Ai , ΩCj , ΩBi , Ωσ]Bi , ΩDj 〉i=1,...,gσ
j=1,...,n−1

Λ+ := 〈Ω+
Ai+σ]Ai , Ω

+
Bi+σ]Bi〉i=1,...,gσ

Λ− := 〈Ω−Ai−σ]Ai , Ω
−
Bi−σ]Bi , Ω

−
Cj
, Ω−Dj 〉i=1,...,gσ

j=1,...,n−1
.

(4.14)

Furthermore, the map

Φ : Cg → Cgσ ⊕ Cgσ+n−1,

á
v1
...
vg

ë
7→

á
1
2(v1 + vgσ+1)

...
1
2(vgσ + v2gσ)

ë
⊕



1
2(v1 − vgσ+1)

...
1
2(vgσ − v2gσ)

v2gσ+1
...

v2gσ+n−1


is obviously linear and bijective. Hence, Φ is a vector space isomorphism.

Lemma 4.19. For every path γ on X, one has

Φ(Ωγ) = Ω+
γ ⊕Ω−γ = Ω+

1
2 (γ+σ]γ) ⊕Ω

−
1
2 (γ−σ]γ).

Proof. The first equality follows from the definitions of Φ and the differential forms in (4.12):

Φ(Ωγ) = Φ

á∫
γ ω1
...∫
γ ωg

ë
=

á
1
2(
∫
γ ω1 + ωgσ+1)

...
1
2(
∫
γ ωgσ + ω2gσ)

ë
⊕



1
2(
∫
γ ω1 − ωgσ+1)

...
1
2(
∫
γ ωgσ − ω2gσ)∫
γ ω2gσ+1∫

γ ω2gσ+n−1


=

=

á∫
γ ω

+
1

...∫
γ ω

+
gσ

ë
⊕



∫
γ ω
−
1

...∫
γ ω
−
gσ∫

γ ω
−
gσ+1∫

γ ω
−
gσ+n−1


.
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Since ω+
k = σ∗ω+

k for k = 1, . . . , gσ and ω−k = −σ∗ω−k for k = 1, . . . , gσ + n− 1 one has

∫
γ
ω+
k = 1

2

Ç ∫
γ
ω+
k + σ∗ω+

k

å
=
∫

1
2 (γ+σ]γ)

ω+
k

as well as ∫
γ
ω−k = 1

2

Ç ∫
γ
ω−k − σ

∗ω−k

å
=
∫

1
2 (γ−σ]γ)

ω−k

which implies the second equality.

Corollary 4.20. The generators of Φ−1(Λ+ ⊕ Λ−) span a basis of Cg over R, the generators of
Λ+ span a basis of Cgσ over R and the generators of Λ− span a basis of Cgσ+n−1 over R.

Proof. Since Jac(X) = Cg/Λ is a complex torus, the generators of Λ given in (4.14) are a basis of
Cg over R, compare for example [Lange and Birkenhake, 1992, Section II.2]. Basis transformation
yields that ΩAi+σ]Ai , ΩAi−σ]Ai ,ΩBi+σ]Bi , ΩBi−σ]Bi , ΩCj and ΩDj are also a basis of Cg over R.
Since Φ is a vector space isomorphism with

Φ(ΩAi+σ]Ai) = Ω+
Ai+σ]Ai ⊕ 0, Φ(ΩAi−σ]Ai) = 0⊕Ω−Ai−σ]Ai ,

Φ(ΩBi+σ]Bi) = Ω+
Bi+σ]Bi ⊕ 0, Φ(ΩBi−σ]Bi) = 0⊕Ω−Bi−σ]Bi ,

Φ(ΩCj ) = 0⊕Ω−Cj , Φ(ΩDj ) = 0⊕Ω−Dj ,

the generators of Φ−1(Λ+ ⊕ Λ−) yield a basis of Cg over R. Since Φ is an isomorphism, the
generators of Λ+ are a basis of Cgσ and the generators of Λ− of Cgσ+n−1 over R.

In the sequel, we will apply Φ and Φ−1 to lattices. Note that we abuse the notation to gain clarity
in the sense that Φ(Λ) denotes the lattice in Cgσ ⊕Cgσ+n−1 spanned by the image of the generators
of Λ under Φ and analogously for Φ−1 applied to lattices.

Lemma 4.21. (a) Λ+ ⊕ 0 = Φ(Λ) ∩ (Cgσ ⊕ 0) and 0 ⊕ Λ− = Φ(Λ) ∩ (0⊕ Cgσ+n−1).

(b) Φ(Λ) decomposes as
Φ(Λ) = (Λ+ ⊕ Λ−) +M (4.15)

with

M :=
{ gσ∑
i=1

(ai
2 Ω

+
Ai+σ]Ai +

bi
2Ω

+
Bi+σ]Bi

)
⊕

gσ∑
i=1

(ai
2 Ω

−
Ai−σ]Ai +

bi
2Ω
−
Bi−σ]Bi

) ∣∣∣∣ ai, bi ∈ {0, 1}}.
(c) M ∩ (Λ+ ⊕ Λ−) = {0}.

Proof. Obviously, Λ+ ⊕ 0 is contained in Φ(Λ) ∩ (Cgσ ⊕ 0). To see that Φ(Λ) ∩ (Cgσ ⊕ 0) is also a
subset of Λ+ ⊕ 0, note that for every γ ∈ Λ, there exist coefficients ai, aσ,i, bi, bσ,i, cj , dj ∈ Z such
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that
γ =

gσ∑
i=1

aiΩAi + aσ,iΩσ]Ai + biΩBi + bσ,iΩσ]Bi + cjΩCj + djΩDj .

The generators of Λ+ and Λ− are linearly independent, compare Corollary 4.20. So the second
equality in Lemma 4.19 shows that Φ(γ) ∈ Cgσ ⊕ 0 can only hold if cj = dj = 0, ai = aσi and
bi = bσi . So for such γ, it is

Φ(γ) = 2aiΩ+
1
2 (Ai+σ]Ai)

+ 2biΩ+
1
2 (Bi+σ]Bi)

⊕ 0

= aiΩ
+
Ai+σ]Ai + biΩ

+
Bi+σ]Bi ⊕ 0 ∈ Λ+ ⊕ 0.

The equality 0⊕ Λ− = Φ(Λ) ∩ (0⊕ Cgσ+n−1) follows in the same manner. So (a) holds.
To get insight into (b), we will show that for the set of cosets one has

Φ(Λ)/(Λ+ ⊕ Λ−) = {Φ(λ) + (Λ+ ⊕ Λ−) |λ ∈ Λ}

= {Φ(λ) + (Λ+ ⊕ Λ−) |λ ∈M}.

The lattice Λ is a finitely generated abelian group, so also Φ(Λ), Λ+ and Λ− are finitely generated
abelian groups and Φ(2Λ) ⊂ Λ+ ⊕ Λ− ⊂ Φ(Λ), where the second inclusion is obvious and the first
inclusion holds since any element 2Ωγ of 2Λ can be decomposed as 2Ωγ = 2

Ä
1
2(Ωγ +Ωσ]γ)+ 1

2(Ωγ−
Ωσ]γ)

ä
. Therefore, Φ(Λ)/(Λ+ ⊕ Λ−) ⊂ Φ(Λ)/Φ(2Λ) and the set of the (Λ : 2Λ) = 22g elements

contained in Φ(Λ)/Φ(2Λ) is the maximal set of points which are not contained in Λ+ ⊕ Λ−,
but in Φ(Λ). One has Φ(ΩCj ), Φ(ΩDj ) ∈ Λ+ ⊕ Λ− ⊂ Φ(Λ). Therefore, all points in M are
linear combinations of Φ(ΩAi), Φ(Ωσ]Ai), Φ(ΩBi) and Φ(Ωσ]Bi) with coefficients in {0, 1}. Since
ΩAi = ΩAi+σ]Ai−Ωσ]Ai , it is [Φ(ΩAi)] = [Φ(Ωσ]Ai)] and [Φ(ΩBi)] = [Φ(Ωσ]Bi)] in Φ(Λ)/(Λ+⊕Λ−)
and thus

M ⊆
{ gσ∑
i=1

aiΦ(ΩAi) + biΦ(ΩBi)
∣∣∣ ai, bi ∈ {0, 1}}. (4.16)

Furthermore, Φ(ΩAi) = 1
2(Φ(ΩAi+σ]Ai)+Φ(ΩAi−σ]Ai)). Due to Corollary 4.20, these representations

of Φ(ΩAi) as vectors in Cg in the basis given by the generators of Λ+⊕Λ− is unique, i.e. Φ(ΩAi) 6∈
Λ+⊕Λ− and by the same means Φ(Ωσ]Ai), Φ(ΩBi), Φ(ΩσBi) 6∈ Λ+⊕Λ−. The linear independence
of the generators of Λ then yields equality in (4.16). Hence, (Φ(Λ) : Λ+ ⊕ Λ−) = 22gσ , and so Λ
can be seen as finitely many copies of Λ+ ⊕ Λ− translated by the points in M . Finally, the linear
independence of the generators of Λ+ and Λ− and the definition of M imply (c).

Remark 4.22. In [Mumford, 1974], it is shown that Jac(Xσ) ' Cgσ/Λ+ and that the Prym variety
Prym(X,σ) can be identified with Cgσ+n−1/Λ−. Furthermore, it is also shown that the direct
sum Jac(Xσ)⊕ Prym(X,σ) is only isogenous to Jac(X), but that the quotient of this direct sum
divided by a finite set of points is isomorphic to Jac(X). The explicit calculations in Lemmata
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4.2. Properties of the divisor for regular finite type potentials

4.19 and 4.21 are mirroring this connection and the finite set of points which are divided out of the
direct sum in [Mumford, 1974, Section 2, Data II] are exactly the points in M . This is illustrated
more detailed in Appendix A from on Lemma A.11.

The fixed points of σ and the linear equivalence

Theorem 4.23. Let X be a Riemann surface of genus g, K be a canonical divisor on X, σ : X → X

be a holomorphic involution and Q+, Q− ∈ X be fixed points of σ. Then there exists a divisor D
of degree g on X which solves

D + σ(D) ' K +Q+ +Q− (4.17)

if and only if σ has exactly the two fixed points Q+ and Q−.

Proof. Assume that σ has more fixed points than Q+ and Q−, i.e. n > 1, and that (4.17) holds. Due
to Lemma 4.17, there exists a divisor K̃ of degree 2gσ−2 on X such that K = K̃+σ(K̃)+Rπσ and
hence equation (4.17) yieldsD−K̃+σ(D−K̃) ' Rπσ+Q++Q−. We sort the 2n ramification points
in rπσ into pairs as it is done in the construction of the C-cycles and denote the two fixed points on
Cn as Q+ and Q−. Then equation (4.17) reads as D−K̃+σ(D−K̃) '∑n−1

j=1 (b1j +b2j )+2Q+ +2Q−.
With D̃ := D − K̃ −∑n−1

j=1 b
1
j −Q+ −Q− this is equivalent to

D̃ + σ(D̃) +
n−1∑
j=1

(b1j − b2j ) ' 0. (4.18)

Furthermore, deg(D̃+σ(D̃) +∑n−1
j=1 (b1j − b2j )) = 0 and deg(∑n−1

j=1 (b1j − b2j )) = 0 since ∑n−1
j=1 (b1j − b2j )

contains the same number of points counted with multiplicity 1 as counted with multiplicity −1.
Since deg acts linear on divisors and is invariant under σ, this yields deg(D̃) = 0. So counted
without multiplicity, there are as many points with positive sign as with negative sign in D̃,
i.e. D̃ = ∑`

m=1(p1
m − p2

m). Let γm : [0, 1]→ X be a path with γm(0) = p1
m and γm(1) = p2

m. Then
σ]γm : [0, 1]→ X is a path with σ]γm(0) = σ(p1

m) and σ]γm(1) = σ(p2
m). We define γD̃ := ∑`

m=1 γm

and σ]γD̃ := ∑`
m=1 σ]γm. Analogously, let γR,j be defined as the paths γR,j : [0, 1] → X such

that γR,j(0) = b1j and γR,j(1) = b2j . Then, due to the construction of the C-cycles, one has
γR,j − σ]γR,j = Cj . We define γR := ∑n−1

j=1 γR,j . Set γ := γD̃ + σ]γD̃ + γR and let ω1, . . . , ωg be a
canonical basis of H0(X,Ω) normalized with respect to the A- and C-cycles as in (4.11). Again,
we use the identification Jac(X) = Cg/Λ via the Abel map Ab with the basis of holomorphic
1-forms on X normalized as in (4.11). Due to (4.18), the linear equivalence can also be expressed
as

Ab
(
D̃ + σ(D̃) +

n−1∑
j=1

(b1j − b2j )
)

= 0 mod Λ.

This equation can only hold if Ωγ ∈ Λ. Due to Lemma 4.19, we can split Ωγ ∈ Cg uniquely
by considering Φ(Ωγ) = Ω+

γ ⊕ Ω−γ and because of the decomposition of Λ in (4.15), Ωγ ∈ Λ is
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4. Fermi curves of finite type

equivalent to Ω+
γ ⊕ Ω−γ ∈ (Λ+ ⊕ Λ−) +M as defined in Lemma 4.21. So we want to show that

Ω+
γ ⊕Ω−γ is not contained in any of the translated copies of Λ+ ⊕ Λ− if n > 1. Since it will turn

out that it is Ω−γ which leads to this assertion, we determine the explicit form of Ω−γ . For every
ω− ∈ H0(X,Ω) such that σ∗ω− = −ω−, one has∫

γD̃+σ]γD̃
ω− =

∫
γD̃

ω− +
∫
γD̃

σ∗ω− =
∫
γD̃

ω− −
∫
γD̃

ω− = 0

as well as

2
∫
γR,i

ω− =
∫
γR,i

ω− −
∫
γR,i

σ∗ω− =
∫
γR,i

ω− −
∫
σ]γR,i

ω− =
∫
γR,i−σ]γR,i

ω− =
∮
Ci

ω−,

i.e.
∫
γR,i

ω− = 1
2
∮
Ci
ω−. So

Ω−γ =
Ç ∫

γR

ω−i

ågσ+n−1

k=1
= 1

2

Ç n−1∑
k=1

∮
Ck

ω−k

ågσ+n−1

k=1
= 1

2

n−1∑
k=1

Ç ∮
Ck

ω−k

ågσ+n−1

k=1
= 1

2

n−1∑
k=1

Ω−Ck .

Due to the definition of Ω−Ck in (4.13), it is Ω−γ = 1
2
∑n−1
k=1 Ω

−
Ck

. If Ω+
γ ⊕Ω−γ would be contained in

one of the translated copies of Λ+ ⊕ Λ−, then Ω−γ would be contained in the second component of
the direct sum in one of the translated copies of Λ− introduced in Lemma 4.21. This is not possible
since the generators of Λ+ ⊕ Λ− are linearly independent and only integer linear combinations of
C-cycles are contained in all translated lattices. Therefore, Ωγ 6∈ Λ for n > 1. If n ≤ 1, then there
are no C-cycles in H1(X,Z) and equation (4.18) reads as D + σ(D) ' 0. So equation (4.17) can
only hold if n ≤ 1. Since Q+ and Q− are fixed points of σ it is n = 1.
Let nowQ+ andQ− be the only fixed points of σ. Then Lemma 4.17 yields that there exists a divisor
K̃ on X with deg(K̃) = 2gσ − 2 such that K = K̃ + σ(K̃) +Q+ +Q−. Define D := K̃ +Q+ +Q−.
The Hurwitz Formula [Miranda, 1995, Theorem II.4.16] for n = 1 yields deg(D) = 2gσ = g and
one has

D + σ(D) = K̃ + σ(K̃) + 2Q+ + 2Q− ' K +Q+ +Q−.

4.2.3. A divisor condition for real regular finite type potentials

If the potential u is real-valued, then there is an antiholomorphic involution τ1 : X ′ → X ′, k 7→ −k̄,
see Lemma 1.17(b). From this one can deduce a ‘realness’ condition on the divisor.

Lemma 4.24. Let u ∈ C(R2/Γ,R) be a real-valued regular finite type potential, X ′ the corre-
sponding Fermi curve and D the corresponding divisor of ψN on the normalization X. Then
τ1(D) = D.

Proof. Let u ∈ C(R2/Γ,R) be a regular finite type potential and ψN (·)k the eigenfunction of
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4.2. Properties of the divisor for regular finite type potentials

−4k +u normalized as ψN,k(0, 0) = 1, i.e. we consider the formulation of the Schrödinger equation
we called trivialization in Definition 1.5. Then (−4k +u)ψN,k = 0 yields

(τ∗1 (−4k +u)ψN,k) = 0 ⇔ (−τ∗14k + u)τ∗1 ψ̄N,k) = 0 ⇔ (−4k +u)τ∗1 ψ̄N,k = 0.

Due to the normalization of the eigenfunctions, it is τ∗1 ψ̄N,k = ψN,k. So Lemma 1.2 yields

τ∗1 ψ̄N (k) = τ∗1

Å
e2πι〈k,(xy )〉ψN,k

ã
= τ∗1

(
e−2πι〈k̄,(xy )〉ψ̄N,k

)
= e2πι〈k,(xy )〉τ∗1 ψ̄N,k = e2πι〈k,(xy )〉ψN,k = ψN (k)

and thus τ1(D) = D.

4.2.4. Non-speciality of the eigendivisor

Usually, a divisor is called special if dimH1(X,OD) > 0 and non-special otherwise. The Riemann
Roch Theorem [Forster, 1981, § 16.10] yields that for a divisor of degree g, it is

dimH0(X,OD) = 1 + dimH1(X,OD).

So the divisors of degree g which are special and belong to a normalized eigenfunction cannot
be uniquely assigned to an element of H0(X,OD) since then dimH0(X,OD) > 1. So it will be a
crucial assumption in the inverse problem that the considered given divisor is non-special in a
certain sense.

Definition 4.25. We call a positive divisor D of degree g on X non-special if

dimH1(X,OD−Q±) = 0.

To show that this modification also holds in our case, the following two Lemmata are necessary.
These are direct consequences of Serre Duality [Forster, 1981, §17.9] and the Riemann Roch
Theorem [Forster, 1981, § 16.10]. These Lemmata are also necessary to show that our modified
version of non-speciality holds for the divisor D. The first Lemma has also been shown for the
more general case of singular curves and generalized divisors in [Klein et al., 2016, Lemma 8.1].
However, the proof for the case of classical divisors on a Riemann surface is much shorter, so we
formulate it here anyway.

Lemma 4.26. Let D′ ≥ D be two divisors on X. Then H1(X,OD) = 0 implies H1(X,OD′) = 0.

Proof. This follows immediately from Serre Duality [Forster, 1981, §17.9]. Let D,D′ be divisors
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4. Fermi curves of finite type

on a Riemann surface X such that D′ ≥ D. Then

H1(X,OD)︸ ︷︷ ︸
=0

'
⇒

H0(X,OK−D)︸ ︷︷ ︸
=0

,

where K is the canonical divisor on X. Because of −D′ ≤ −D, there holds H0(X,OK−D′) ⊂
H0(X,OK−D), so H0(X,OK−D′) = 0. Using Serre Duality [Forster, 1981, 17.6] again then yields
H0(X,OK−D′) ' H1(X,OD′).

Lemma 4.27. For every positive divisor D of degree g on X, the following equivalences hold:

dimH0(X,OD−Q±) = 0 ⇔ dimH1(X,OD) = 0 and suppD ⊂ X \ {Q±}.

Proof. Let dimH0(X,OD−Q±) = 0. If Q± ∈ suppD holds, then D ≥ 0 implies D−Q± ≥ 0 which
contradicts dimH0(X,OD−Q±) = 0. So Q± 6∈ suppD. One has degD = g, so due to the Riemann
Roch Theorem [Forster, 1981, § 16.10], it is dimH1(X,OD−Q±) = 0. Then Lemma 4.26 yields
that dimH1(X,OD) = 0 since D ≥ D −Q±.
Conversely, let dimH1(X,OD) = 0 and suppD ⊂ X \ {Q±}. Again, the Riemann Roch Theorem
[Forster, 1981, § 16.10] for deg(D) = g and dimH1(X,OD) = 0 yields that dimH0(X,OD) = 1.
SinceD ≥ 0, 1 ∈ H0(X,OD), and therefore 1 generatesH0(X,OD). Because dimH0(X,OD−Q±) ≤
dimH0(X,OD), it is 1 ∈ H0(X,OD−Q±) if dimH0(X,OD−Q±) 6= 0. Let 1 ∈ dimH0(X,OD−Q±).
Then Q± must be contained in D since otherwise the corresponding section would not be generated
by 1. This contradicts the assumption that Q± 6∈ suppD, so H0(X,OD−Q±) = 0.

We know from Lemma 4.13 that deg(D) = g <∞. From the finiteness of the degree of the divisor
and with help of the asymptotic behavior of ψk on X, we show in the next Theorem that the pole
divisor of the normalized eigenfunctions is non-special.

Lemma 4.28. Let the compactified Fermi curve X be a Riemann surface of genus g with two
marked points Q+ 6= Q− at infinity and let D be the pole divisor of the normalized eigenfunction
ψN,k on X with suppD ⊂ X \ {Q+, Q−}. Then

dimH1(X,OD) = 0, dimH1(X,OD−Q+) = 0 and dimH1(X,OD−Q−) = 0.

Proof. To show this, we use the Wirtinger operators ∂ = 1
2(∂x + ι∂y) and ∂̄ = 1

2(∂x − ι∂y) again.
The divisor D is positive and of degree g, where g is the genus of X and D is defined in such a
way that ψN ( ·, (x, y)) ∈ H0(X,OD) for all (x, y) ∈ ∆. As in the proof of Lemma 4.13, let U± ⊂ X
be small disjoint open neighborhoods of Q±, respectively, with local coordinates z± : U± → C

centered at Q±. Then the holomorphic involution σ acts on U± as σ : z± 7→ −z±, see Lemma 4.3.
Therefore, the images of the local coordinates have to be point-symmetric around 0 ∈ C2 and
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4.2. Properties of the divisor for regular finite type potentials

together with the asymptotic freeness of X, we can choose z± such that

k(z+) =

Ñ
1
z+
,− ι

z+
+
∞∑
j=0

a+,jz
2j+1
+

é
and k(z−) =

Ñ
1
z−
,
ι

z−
+
∞∑
j=0

a−,jz
2j+1
−

é
. (4.19)

Since ψN (k, (x, y)) = e2πι〈k,(xy )〉ψN,k(x, y) it is

ψN (k(z±), (x, y)) = exp

Ñ
2πιx
z±
± 2πy

z±
+ 2πιy ·

∞∑
j=0

a±,jz
2j+1
±

é
ψN,k(z±)(x, y).

So the Leibnitz rule yields for the partial derivatives on U±

e−2πι〈k(z±),(xy )〉∂xψN (k(z±), (x, y)) = 2πι
z±

ψN,k(z±)(x, y) + ∂xψN,k(z±)(x, y)

and

e−2πι〈k(z±),(xy )〉∂yψN (k(z±), (x, y))=

Ñ
∓2π
z±

+ 2πι
∞∑
j=0

a±,zz
2j+1
±

é
ψN,k(z±)(x, y) + ∂yψN,k(z±)(x, y).

From this, we obtain for the Wirtinger operators ∂ and ∂̄ applied to ψN (k, ·) on U+, that

e−2πι〈k(z+),(xy )〉∂ψN (k(z+), (x, y)) =

Ñ
−π

∞∑
j=0

a+,jz
2j+1
+

é
ψN,k(z+)(x, y) + ∂ψN,k(z+)(x, y)

and

e−2πι〈k(z+),(xy )〉∂̄ψN (k(z+), (x, y)) =

Ñ
2πι
z+

+ π
∞∑
j=0

a+,jz
2j+1
+

é
ψN,k(z+)(x, y) + ∂̄ψN,k(z+)(x, y).

On U−, we obtain

e−2πι〈k(z−),(xy )〉∂ψN (k(z−), (x, y)) =

Ñ
2πι
z−
− π

∞∑
j=0

a−,jz
2j+1
−

é
ψN,k(z−) + ∂ψN,k(z−)(x, y)

and

e−2πι〈k(z−),(xy )〉∂̄ψN (k(z−), (x, y)) =

Ñ
π
∞∑
j=0

a−,jz
2j+1
−

é
ψN,k(z−)(x, y) + ∂̄ψN,k(z−)(x, y).

Hence, ∂̄ψN has an additional pole of first order at Q+ and ∂ψN has an additional pole of
first order at Q−. Let ξ ∈ L2(∆) be such that ⟪ξ, ψN⟫ 6= 0. If ∂̄ψN has an additional pole at
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Q+, then also ⟪ξ, ∂̄ψN⟫ has an additional pole at Q+ in comparison to ⟪ξ, ψN⟫ and the same
holds for similar expressions of this form. So ⟪ξ, ∂ψN⟫ with ξ ∈ L2(∆) such that ⟪ξ, ψN⟫ 6= 0
has an additional pole at Q− in comparison to ⟪ξ, ψN⟫. Analogously as it is shown for ∂yϕN
in the proof of Lemma 3.16, deriving ψN in the direction of 1

2(x ± ιy) does not generate new
poles in k ∈ X◦. So for ξ ∈ L2(∆) chosen as above, there holds for the corresponding divisors
(⟪ξ, ∂ψN⟫), (⟪ξ, ∂̄ψN⟫) ≥ −D −Q− −Q+ and ⟪ξ, ∂ψN⟫ as well as ⟪ξ, ∂̄ψN⟫ generate sections in
OD+Q−+Q+ which are not contained in OD since suppD ⊂ X◦. Because all other elements with
poles of first order at Q+ and Q− can be obtained by a linear combinations of ⟪ξ, ∂ψN⟫ and
⟪ξ, ∂̄ψN⟫, it is

dimH0(X,OD+Q−+Q+) = dimH0(X,OD) + 2.

The second derivatives of ∂∂̄ψN , ∂2ψN and ∂̄2ψN can be determined analogously. Again, using
the Leibnitz rule yields that ∂̄2ψN has a pole of second order at Q+, ∂2ψN has a pole of second
order at Q−. For the mixed derivative, we obtain on U+

e2πι〈k(z+),(xy )〉∂∂̄ψN (k(z+), (x, y)) =π2

ÖÇ
1
z+

å2
+

Ñ
ι

z+
+
∞∑
j=0

a+,jz
2j+1
+

é2
è
ψN,k(z+)(x, y)+

+ πι

Ñ
1
z+

+ ι

Ñ
ι

z+
+
∞∑
j=0

a+,jz
2j+1
+

éé
∂̄ψN,k(z+)(x, y)+

+ πι

Ñ
1
z+
− ι

Ñ
ι

z+
+
∞∑
j=0

a+,jz
2j+1
+

éé
∂

=π2

Ö
2ι
∞∑
j=0

a+,jz
2j
+ +

Ñ
∞∑
j=0

a+,jz
2j+1

é2
è
ψN,k(z+)(x, y)+

+ πι

Ñ
ι
∞∑
j=0

a+,jz
2j+1
+

é
∂̄ψN,k(z+)(x, y)

+ πι

Ñ
2
z+
− ι

∞∑
j=0

a+,jz
2j+1
+

é
∂ψN,k(z+)(x, y)

+ ∂∂̄ψN,k(z+)(x, y).

Analogous calculations on U− show that ⟪ξ, ∂∂̄ψN⟫ ∈ OD+Q++Q− and hence this second derivative
does not generate a new section compared to the sections of the first derivatives. So the second
derivatives generate sections in H0(X,OD+2Q++2Q−) with ∂2ψN , ∂̄

2ψN 6∈ H0(X,OD+Q++Q−) and
all additional poles of second order can be generated by linear combinations of ⟪ξ, ∂2ψN⟫ and
⟪ξ, ∂̄2ψN⟫. So

dimH0(X,OD−2Q+−2Q−) = dimH0(X,OD−Q+−Q−) + 2 = dimH0(X,OD) + 4.
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Continuing this procedure for n ∈ N yields that the n-th derivatives always generate two
functions ⟪ξ, ∂nψN⟫ and ⟪ξ, ∂̄nψN⟫ which are contained in H0(X,OD+nQ++nQ−) but which
are not contained in H0(X,OD+(n−1)Q++(n−1)Q−) since these derivative always have an extra
pole at Q+ respectively Q− of one order higher than the derivatives of order n − 1. With
k + l = n and k, l ∈ N, direct calculations show that for the mixed derivatives, there holds
∂̄k∂lψN ∈ H0(X,OD+(n−1)Q++(n−1)Q−) since they behave similar as the mixed derivative for n = 2.
Thus, dimH0(X,ODnQ++nQ−

) = dimH0(X,OD)+2n. Due to deg(D+nQ++nQ−) = deg(D)+2n,
the Riemann Roch Theorem [Forster, 1981, Theorem 16.9] yields for every n ∈ N

dimH1(X,OD+nQ++nQ−) = dimH0(X,OD+nQ++nQ−)− deg(D + nQ+ + nQ−) + g − 1

= dimH0(X,OD) + 2n− deg(D)− 2n+ g − 1

= dimH1(X,OD).

Since g < ∞, there exists an n ∈ N such that deg(D + nQ+ + nQ−) > 2g − 2. Then Serre
Duality [Forster, 1981, 17.6] implies for this n that dimH1(X,OD+nQ+nQ−) = 0, and therefore
dimH1(X,OD) = 0.
Finally, by Lemma 4.27 follows that dimH0(X,OD−Q±) = 0. Since deg(D−Q±) = g−1, we obtain
by the Riemann Roch Theorem [Forster, 1981, Theorem 16.9] that dimH1(X,OD−Q±) = 0.

4.2.5. Translations of the divisor

The divisor D is defined by the divisor S which is induced by the subsheaf of the meromorphic
functions on X◦ that is generated by the pullback ⟪ξ, ψN⟫, whereby ψN is normalized at (x, y) =
(0, 0) as ψN (k, (x, y)) = 1 for each k ∈ X◦. So we consider the germ ψk ∈ Ok for every k ∈ X◦

and define D ⊂ X◦ as the pole divisor of
( ⟪ξ,ψ⟫
ψ(0,0)

)
k
with ⟪ξ, ψ⟫k 6= 0. Likewise we can define for

every (x, y) ∈ ∆ the subsheaf OD(x,y) of the meromorphic functions whose germ is at each k ∈ X◦

generated by Ç ⟪ξ, ψ⟫
ψ(x, y)

å
k

, (4.20)

where ξ ∈ L2(∆) is again chosen in such a way that ⟪ξ, ψ⟫ 6≡ 0. We say that D(x, y) is a translation
of the divisor D.
We now want to describe these translations as the tensor product of OD with a double-periodic
flow Lh(x, y). To construct this flow, we use a presentation of elements of H1(X,O) by Mittag
Leffler distributions with support in Q+ and Q− which is known as the Krichever construction
[Krichever, 1977]. This is presented here as in [Klein et al., 2016, Chapter 8].
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4. Fermi curves of finite type

Definition 4.29. Let H be the algebra of germs of functions which are holomorphic in a punctured
open neighborhood of 0 ∈ C

H := {(U, h) | U ⊂ C open with 0 ∈ U and h : U \ {0} → C is holomorphic/ ∼},

where
(U, h) ∼ (U ′, h′) ⇔ ∃V ⊂ U ∩ U ′ such that 0 ∈ V and h|V \{0} = h′|V \{0}.

Furthermore, we define the following subset of H:

H−finite := {(U, h) ∈ H | h extends holomorphically to CP 1 \ {0} with h(∞) = 0

and h has a pole at 0}.

Let X be a compact Riemann surface with two marked points Q+ 6= Q− and let z+ respectively
z− be local coordinates such that z+(Q+) = 0 and z−(Q−) = 0. For any (h+, h−) ∈ H2, we choose
disjoint open neighborhoods U+ respectively U− of Q+ respectively Q− such that z∗±h± is defined
on U± \ {Q±}. With the open set X◦ ⊂ X the set U = {X◦, U+, U−} is an open covering of X.
Since the only non-empty intersections of sets in this covering are X◦ ∩ U± = U± \ {Q±}, z∗±h±
are holomorphic on these intersections and thus define an element of the cochain group C1(U ,O),
compare [Forster, 1981, Section 12.1]. Since X◦ ∩U+ ∩U− = ∅ it is C2(U ,O) = 0, and so (h+, h−)
defines a cocycle which induces an element in H1(U ,O), see [Forster, 1981, Definition 12.2]. Since
X◦ and U± are open and not compact, U is a Leray cover, compare [Forster, 1981, S.93 and
Theorem 26.1], and therefore H1(U ,O) = H1(X,O). Each element (h+, h−) ∈ (H−finite)2 defines a
Mittag-Leffler distribution on X, compare [Forster, 1981, Sections 18.1 to 18.3]. A solution is a
meromorphic function f on X such that f − z∗±h± is holomorphic on U± and f is holomorphic
on X◦, i.e. f and z∗±h± have the same principal parts on U±. It is shown in [Klein et al., 2016,
Lemma 7.2] that a Mittag-Leffler distribution (h+, h−) ∈ (H−finite)2 has a solution if and only if for
all ω ∈ H0(X,Ω), there holds

ResQ+z∗+h+ω + ResQ−z∗−h−ω = 0.

Moreover, it is shown in [Klein et al., 2016, Chapter 7] that (h+, h−) ∈ (H−finite)2 defines a
one-parameter group of cocyles z∗± exp(2πιth±) via the exponential map exp : H1(X,O) →
H1(X,O∗) = Pic(X), where t ∈ R. For given t ∈ R, these cocycles map the holomorphic functions
on X◦ to holomorphic functions on U± \ {Q±}. We construct a holomorphic line bundle on X
whose local sections define a one parameter family Lh(t) on X with cocycles z∗± exp(2πιth±) out of
these cocycles, see [Forster, 1981, Theorem 26.16]. For the trivial line bundle on X◦ together with
this cocycles on U± \{Q±}, it is shown in [Forster, 1981, Theorem 29.16] that this line bundle has a
global meromorphic section and thus Lh(t) can be identified with a divisor. One-parameter family
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4.2. Properties of the divisor for regular finite type potentials

means that Lh(t+ t′) = Lh(t)⊗Lh(t′) for t, t′ ∈ R, where ⊗ denotes the product in Pic(X). Since
Lh(0) = O = 1Pic(X), Lh(t) stays in the unit component Pic0(X) of Pic(X) which is the group of
isomorphy classes of bundles of degree 0. It is also shown in [Klein et al., 2016, Chapter 7] that every
one-parameter group in Pic0(X) is obtained this way. Due to [Klein et al., 2016, Lemma 7.3 (ii)],
an element (h+, h−) ∈ (H−finite)2 induces a periodic flow with period T > 0, i.e. Lh(T ) = 1Pic(X), if
and only if the Mittag-Leffler distribution can be solved by means of a multivalued function f
whose values over a point differ by an element of TZ, i.e.

∫
γ df ∈ TZ for all γ ∈ H1(X,Z). This

method of constructing flows on X is called the Krichever construction. Our next aim is to transfer
these results to two different Mittag-Leffler distributions with support in Q+ and Q− to construct
a flow Lh(x, y) which is double periodic with respect to the two dimensional lattice Γ ⊂ R2 that
corresponds to the periodicity of the Schrödinger operator −4+u with u ∈ C(R2/Γ ). Let γ̂ and
γ̌ be the generators of Γ . We will deduce two linearly independent elements ĥ and ȟ in (H−finite)2

from local representations of the Fermi curve as a tuple (H−finite)2 × (H−finite)2 which represent the
Fermi curve on U+ respectively U− asymptotically as in (4.19). Since we are only concerned with
the Mittag Leffler distributions, i.e. with the pole behavior at Q± of these representations, we
consider

h+ := (hx+, h
y
+) =

Ç
1
z+
,− ι

z+

å
and h− := (hx−, h

y
−) =

Ç
1
z−
,
ι

z−

å
.

With this we define ĥ := (ĥ+, ĥ−) and ȟ := (ȟ+, ȟ−) with

ĥ+ := 〈h+, γ̂〉 = γ̂1 − ιγ̂2
z+

, ĥ− := 〈h−, γ̂〉 = γ̂1 + ιγ̂2
z−

,

ȟ+ := 〈h+, γ̌〉 = γ̌1 − ιγ̌2
z+

, ȟ− := 〈h−, γ̌〉 = γ̌1 + ιγ̌2
z−

.

(4.21)

Each of the elements ĥ, ȟ ∈ (H−finite)2 induce a line bundle Lĥ and Lȟ, respectively, such that
for the periods T̂ = 1 and Ť = 1, there holds Lĥ(1) = Lȟ(1) = 1Pic(X). Tensorating these flows
together yields a double-periodic flow which we can express in terms of (x, y) ∈ R2 instead of
in (t̂, ť) ∈ R2: With (x, y) := t̂γ̂ + ťγ̌ it is t̂ = 〈κ̂, ( xy )〉 and ť = 〈κ̌, ( xy )〉, where κ̂ and κ̌ are the
generators of the dual lattice as defined in (1.10). Thus

ĥ±t̂+ ȟ±ť = 1
z±

(γ̂1t̂+ γ̌1ť)∓
ι

z±
(γ̂2t̂+ γ̌2ť) = 〈h±, ( xy )〉

and we can interpret the two flows generated by ĥ and ȟ also as flows in (x, y) ∈ R2 with periods
γ̂ and γ̌. We abbreviate Lh(x, y) := Lĥ(x, y) ⊗ Lȟ(x, y) for (x, y) ∈ R2. As Lh(t) defines a
one-parameter group on Pic0(X) for flows which are periodic in one direction, this defines a two-
parameter group on Pic0(X) via Lh((x, y)+(x′+y′)) = Lh(x, y)⊗Lh(x′, y′) for (x, y), (x′, y′) ∈ R2.
The corresponding cocycles have the form z∗±e

2πι(xhx±+yhy±) and Lh(γ) = 1Pic(X) for all γ ∈ Γ .
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4. Fermi curves of finite type

Transferring [Klein et al., 2016, Lemma 7.3] to double-periodic flows immediately yields the
following Lemma:

Lemma 4.30. The two linearly independent elements ĥ, ȟ ∈ (H−finite)2 which are defined as in
equation (4.21) induce a double-periodic flow with respect to a non-degenerated lattice Γ ⊂ R2 with
generators γ̂ and γ̌ if and only if the Mittag-Leffler distribution can be solved by means of two
meromorphic functions ĉ := 〈k, γ̂〉 and č := 〈k, γ̌〉 whose values over a point differ by an element
of Z, i.e. one has ∫

γ
dĉ ∈ Z and

∫
γ

dč ∈ Z for all γ ∈ H1(X,Z).

Hereby, it is k = ĉκ̂+ čκ̌, where κ̂ and κ̌ are generators of Γ ∗ defined in (1.10) which are dual to
the generators γ̂ and γ̌ of Γ .

For fixed (x, y) ∈ R2, we consider Lh(x, y) as a sheaf on X which is at Q± generated by

z∗± exp
(

2πι
〈(

hx±

hy±

)
,

(
x

y

)〉)

and on X◦ by OX◦ . With that we can show the following proposition about the translated divisors
D(x, y).

Proposition 4.31. Let X be a compact Riemann surface of genus g, Q± two marked points on
X and let D(x, y) be the positive divisor as defined in (4.20), where D = D(0, 0). Then

OD(x,y) ' OD ⊗ Lh(x, y)

with Lh(x, y) as defined above.

Proof. We claim that the isomorphism is given by

H0(X,OD(x,y))→ H0(X,OD ⊗ Lh(x, y)), f 7→ ψ(k, (x, y))
ψ(k, (0, 0)) f (4.22)

with inverse map

H0(X,OD ⊗ Lh(x, y))→ H0(X,OD(x,y)), f 7→ ψ(k, (0, 0))
ψ(k, (x, y))f. (4.23)

One has to show this for every germ at k ∈ X. Hereby, we consider the two cases k = Q±

and k 6= Q±. At first, we show that the map (4.22) is a homomorphism between the given
spaces. Therefore, note that due to the definition of D and D(x, y) none of these divisors has
a contribution at Q±. So we have to show that (4.22) maps OQ± to (O ⊗ Lh(x, y))Q± . Let
f ∈ H0(X,OQ±). Since the germ ψQ± ∈ OQ± is a not normalized eigenfunction of −4+u and

116



4.2. Properties of the divisor for regular finite type potentials

the eigenfunctions are asymptotically free, compare Lemma 1.19 or Corollary 4.10, ψ(0, 0)Q± is
the product of the exponential factor z∗± exp(2πι〈

Ä
hx
hy

ä
, ( 0

0 )〉) = 1 with a non-vanishing element
of OQ± and thus in OQ± . Likewise the germ ψ(x, y)Q± is the product of the exponential factor
z∗± exp(2πι〈

Ä
hx
hy

ä
, ( xy )〉) with a non-vanishing element of OQ± . So ψ(x, y)Q± ∈ (O ⊗ Lh(x, y))Q±

and thus also
(
f · ψ(x,y)

ψ(0,0)

)
Q±
∈ OQ± ⊗ Lh(x, y).

Let now k ∈ X◦ and ξ̃ ∈ L2(∆) be chosen such that ⟪ξ̃, ψ⟫ 6= 0. We have already seen before
that such an ξ̃ exists because the zero set of ⟪·, ψ⟫ has codimension one in L2(∆). Then OD,k is
generated by

( ⟪ξ̃,ψ⟫
ψ(0,0)

)
k
and OD(x,y),k is generated by

( ⟪ξ̃,ψ⟫
ψ(x,y)

)
k
. We assume that the germ ψ(0, 0)k

has a zero of order n and ψ(x, y)k a zero of order m at k. Then at k it is

ψ(k, (x, y))
ψ(k, (0, 0))


is holomorphic for n = m

has a pole of order n−m for n > m

has a zero or order m− n for n < m.

Since Lh(x, y)k = Ok, we have to show that the map in (4.22) maps OD(x,y) to OD. For every
section f ∈ H0(X,OD(x,y)), it is (f) ≥ −D(x, y). So fk either has a pole of order ≤ −m, is
holomorphic or has has a zero of arbitrary finite order at k. We denote this order with p ≥ −m,
where p < 0 if fk has a pole at k of order p ≥ −m, p = 0 if fk is holomorphic and p > 0 for fk
having a zero of order p. In any of the three cases one has p ≥ −m, soÇ

f · ψ(x, y)
ψ(0, 0)

å
k

= (p+m− n)k

and p+m−n ≥ −n. Therefore, fk · ψk(x,y)
ψk(0,0) ∈ OD and the map in (4.22) is indeed a homomorphism

from H0(X,OD(x,y)) to H0(X,OD ⊗ Lh(x, y)).
By the same means one sees that the map in (4.23) is a homomorphism from H0(X,OD⊗Lh(x, y))
to H0(X,OD(x,y)), where the only differences in the proof are the considerations at Q±. Now ψ(0,0)

ψ(x,y)
contains the factor z∗± exp

Ä
−2πι

¨Ä
hx
hy

ä
, ( xy )

∂ä
, and therefore maps an element of (O⊗Lh(x, y))Q±

to OQ± .
Obviously,

(
ψ(0,0)
ψ(x,y)

ψ(x,y)
ψ(0,0)

)
k

= 1 for all k ∈ X, so these two mappings are inverse to each other.

The next theorem summarizes the results from this section for the divisor D.

Theorem 4.32. Let u be a regular finite type potential, X be the compactified normalization of
X ′(u) with two marked points Q±, D ⊂ X◦ the divisor as in Definition 3.7 and D(x, y) ⊂ X◦ the
translated divisor as defined in (4.20), σ : X → X the holomorphic involution from Lemma 1.17(a)
which acts on X as σ(k) = −k and Lh(x, y) the sheaf as defined above. Then there holds:

(i) D(x, y) is positive and of degree g.

117



4. Fermi curves of finite type

(ii) D(x, y) + σ(D(x, y)) ' K +Q+ +Q−, where K is the canonical divisor on X.

(iii) H1(X,OD(x,y)−Q±) = 0.

(iv) OD(x,y) ' OD ⊗ Lh(x, y).

If u is real-valued, there holds additionally τ1(D(x, y)) = D(x, y).

Proof. By definition, D(x, y) is positive. Since we can translate D(x, y) into the origin by
considering the coordinates (x−x0, y−y0) instead of (x, y), there also holds D(x, y)+σ(D(x, y)) '
K +Q+ +Q− as it is shown for D in Lemma 4.13 and D(x, y) is is of degree g which yields (i)
and (ii). The same argument also yields (iii) and the realness-condition. Statement (iv) is just the
statement of Proposition 4.31.

4.3. Two meromorphic differentials of second kind

We will now show that for a regular finite type potential u, there exist two Abelian differentials
of second kind on the compactified normalization X(u) which have poles of second order at Q+

and Q− and are holomorphic on X◦(u). Therefore, we first remember the ‘coordinate change’
which we have already used in the Kritchever construction in the foregoing section, compare
Lemma 4.30. We want to use coordinates which depend on the lattice Γ . On X◦(u), we define the
maps cγ : k 7→ 〈k, γ〉 with γ ∈ Γ . These are multivalued holomorphic functions from X◦(u) to C,
i.e. cγ(k + Γ ∗) = cγ(k) +Z for k ∈ F (u). We define

ĉ : X◦(u)→ C, k 7→ 〈k, γ̂〉 and č : X◦(u)→ C, k 7→ 〈k, γ̌〉,

where γ̂ and γ̌ are the generators of Γ . Then for every γ ∈ Γ , cγ can be generated by a linear
combination of these two functions. On X◦(0), the components of k at Q+ are related by
k1 + ιk2 = 0 and at Q− by k1 − ιk2 = 0. Let U± be a neighborhood of Q± which consists only of
smooth points of X(u). Then the asymptotic freeness yields that k1 ≈ ∓ιk2 for k = (k1, k2) ∈ U±.
Hence, each of the two components of k has a pole of first order at Q+ and a pole of first order at
Q−. Choosing local coordinates z+ resp. z− in a neighborhood U± of Q± such that z±(Q±) = 0,
we can find local representations h1

± in k1-direction and h2
± in k2-direction of X(u) on U± \ {Q±},

similar as it is done in the proof of Lemma 4.28, such that

z∗+h
1
+(z+) = 1

z+
, z∗+h

2
+(z+) = − ι

z+
+
∞∑
i=0

ciz
2i+1
+ ,

z∗−h
1
−(z−) = 1

z−
, z∗−h

2
−(z−) = ι

z−
+
∞∑
i=1

diz
2i+1
− .
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With this notation, one has on U+ respectively U− that

z∗+h+ =
(
z∗+h

1
+

z∗+h
2
+

)
respectively z∗−h− =

(
z∗−h

1
−

z∗−h
2
−

)
,

so
ĉ|U± = 〈z∗±h±, γ̂〉 and č|U+ = 〈z∗±h±, γ̌〉.

Since k1 and k2 are locally holomorphic on X◦(u) also ĉ and č are locally holomorphic on X◦(u).
The principal parts of ĉ respectively č on U+ can be represented as γ̂1−ιγ̂2

z+
respectively γ̌1−ιγ̌2

z+

and on U− as γ̂1+ιγ̂2
z−

respectively γ̌1+ιγ̌2
z−

. We deduce from this that dĉ and dč are two abelian
differentials of second kind which are holomorphic on X◦(u) with poles of second order at Q±,
more precisely on U±

dĉ|U+ =
(
−γ̂1 + ιγ̂2

z2
+

+
∞∑
i=1

c̃iz
i
+

)
dz+ as well as dč|U+ =

(
−γ̌1 + ιγ̌2

z2
+

+
∞∑
i=1

c′iz
i
+

)
dz+,

dĉ|U− =
(
−γ̂1 − ιγ̂2

z2
−

+
∞∑
i=1

d̃iz
i
−

)
dz− as well as dč|U− =

(
−γ̌1 − ιγ̌2

z2
−

+
∞∑
i=1

d̃′iz
i
−

)
dz−.

(4.24)
Furthermore, the multivaluedness of ĉ and č on X(u) yields that they generate differential forms
over Z such that ∫

γ
dĉ,

∫
γ
dč ∈ Z for all closed curves γ ∈ H1(X,Z),

i.e. for all γ ∈ Γ one has that d〈k, γ〉 is an integer linear combination of dĉ and dč, so
∫
γ d〈k, γ〉 ∈ Z

for all γ ∈ Γ . Furthermore, the definition of these 1-forms yields immediately that the involution
σ : X(u)→ X(u), k 7→ −k acts as σ∗ dĉ = − dĉ and σ∗ dč = − dč . Moreover, for u ∈ C(R2/Γ,R),
the involutions τ1 : X(u) → X(u), k 7→ −k̄ respectively τ2 : X(u) → X(u), k 7→ k̄ act as
τ∗1 dĉ = − dĉ and τ∗1 dč = − dč respectively τ∗2 dĉ = dĉ and τ∗2 dč = dč.
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The inverse problem for finite type
potentials
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5. Reconstruction of the eigenfunctions and
the potential

In the direct problem, we have so far deduced some properties that hold for the Fermi curve X ′(u)
and the pole divisor D of the pullback of normalized eigenfunction of −4+u on X ′(u) to the
normalization X◦(u) for a regular finite type potential u. Conversely, we now assume that some
so-called spectral data is given – which reflect the properties shown in the direct problem – to
reconstruct a unique potential u ∈ C(C2/Γ,C) and a unique normalized function ψ ∈ C∞[k](∆,C) for
every k ∈ X◦(u) which lies in the kernel of the Schrödinger operator with potential u. Therefore,
we introduce first the necessary spectral data. Let X be a compact Riemann surface of genus
g <∞ with the following properties:

(F1) On X, there are two marked points Q+ and Q−.

(F2) (i) There exist two multivalued functions ĉ and č on X which are holomorphic on X◦ :=
X \ {Q+, Q−}. The differentials dĉ and dč are meromorphic differentials of second kind
with double poles at Q±, linear independent principal parts over R and with vanishing
residues. Additionally, there are disjoint, small open neighborhoods U± of Q± such that
in local coordinates on these neighborhoods centered at Q±, it is on U±

dĉ|U± = 1
z2
±
, dč|U+ = b

z2
+

+
∞∑
j=1

ǎ+,jz
2j
+ and dč|U− = b̄

z2
−

+
∞∑
j=1

ǎ−,jz
2j
± .

(ii)
∫
γ dĉ ∈ Z and

∫
γ dč ∈ Z for all closed curves γ ∈ H1(X,Z).

(F3) On X, there exists a holomorphic involution σ with exactly two fixed points Q± and σ∗ĉ = −ĉ
as well as σ∗č = −č.

We have shown in the direct problem that R(X) consist of at most two connected components and
that every connected component contains one of the marked points Q+ and Q−. This property is
implicitly contained the above conditions. Because if there would be a connected component on
which the differentials dĉ and dč have no poles, then the anti-derivatives (ĉ, č) would be holomorphic
function on this connected component. X is assumed to be compact, this would yield that (ĉ, č) are
constant and thus the differentials dĉ and dč would be identically zero. However, this contradicts
condition (F2)(ii). Therefore, every connected component of R(X) must contain either Q+ or Q−.
So the number of connected components of R(X) is at most two.
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5. Reconstruction of the eigenfunctions and the potential

Next, we want to define a double periodic flow Lh(x, y) on X for (x, y) ∈ R from the given data
(X,Q+, Q−, dĉ, dč, σ), similar as it was done in Section 4.2.5.
Therefore, note first that for b ∈ C \ {0} as in condition (F2)(i), we can set b = γ̌1 − ιγ̌2 with
γ̌2 6= 0 because otherwise the principal parts of dĉ and dč would be linearly dependent over R.
Moreover, condition (F3) yields that there are only even powers in the representation of dĉ and dč
in (F2)(i). In case that one searches for a real-valued potential u ∈ C(C2/Γ,R), additionally a
reality condition for u is necessary. This can be expressed as follows:

(R1) On X, there is an antiholomorphic involution τ1 with τ1(Q±) = Q∓ and τ∗1 ĉ = −ĉ as well as
τ∗1 č = −č.

We now show that the periodicity conditions on dĉ and dč in (F2)(ii) induce a real 2-dimensional
lattice Γ with linear independent generators γ̂ = ( 1

0 ) and γ̌ =
Ä
γ̌1
γ̌2

ä
and we introduce the real

2-dimensional subgroup of the Picard group corresponding to the translations of (x, y) ∈ R2 by
R2/Γ . As in Section 4.2.5, we define an open covering of X by X◦ := X \ {Q+, Q−} and the two
small open neighborhoods U± of Q±. The only non-empty intersections of each two sets in this
covering are U∗± := U± \ {Q+, Q−}. We define a cocycle on X via its transition functions on U∗±.
These are for any (t̂, ť) ∈ R2 given by e2πι(t̂ĉ+ťč), compare [Forster, 1981, Theorem 29.16]. We
set (x, y) := t̂γ̂ + ťγ̌ and k := κ̂ĉ + κ̌č, whereby γ̂ = ( 1

0 ) and γ̌ =
Ä
γ̌1
γ̌2

ä
. Hereby, γ̌1 and γ̌2 are

defined in condition (F2)(ii). Due to γ̌2 6= 0, these two vectors are obviously linearly independent.
Let Γ be the lattice generated by γ̂ and γ̌. Then the corresponding dual lattice Γ ∗ as in (1.10)
is generated by κ̂ =

Å
1
− γ̌1
γ̌2

ã
and κ̌ =

( 0
1
γ̌2

)
. With this we obtain from the definition of k that

k1 = κ̂1ĉ+ κ̌1č = ĉ and k2 = κ̂2ĉ+ κ̌2č = − γ̌1
γ̌2
ĉ+ 1

γ̌2
č. So in the local coordinates from condition

(F2)(i), it is
dk1|U± = 1

z2
±

(5.1)

and

dk2|U± = − γ̌1
γ̌2

1
z2
±

+ 1
γ̌2

Ñ
γ̌1 ∓ ιγ̌2
z2
±

+
∞∑
j=1

ǎ±,jz
2i
∓

é
= ∓ ι

z2
±

+
∞∑
j=1

ǎ±,j
γ̌2

z2i
± (5.2)

which shows that on the neighborhoods U±, dk1 and dk2 are correlated as dk1|U± ≈ ∓ιdk2|U± .
Moreover, direct calculation yields that

e2πι(t̂ĉ+ťč) = e2πι〈k,(xy )〉. (5.3)

For all (x, y) ∈ R2, we denote the locally free sheaf of rank 1 on X which is defined by this
cocycles as Lh(x, y). If (x, y) ∈ Γ , i.e. (t̂, ť) ∈ Z2, then this transition function extends to a
global non-vanishing holomorphic function on X◦. Due to condition (F1)(ii) and Lemma 4.30, the
corresponding sheaf is equal to OX in this case.
So far we have only given properties on the curve X. To make sure that there exists a unique
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potential u and a unique normalized eigenfunction ψN , more information is necessary. Therefore,
we consider in addition a divisor D on X with the following properties:

(D1) D is a positive divisor.

(D2) D + σ(D) ' K +Q+ +Q−, where K is the canonical divisor on X.

(D3) For all (x, y) ∈ R2 it is dimH1(X,OD−Q± ⊗ Lh(x, y)) = 0.

Note that due to the Riemann Roch Theorem [Forster, 1981, § 16.10] and Lemma 4.27, the
condition dimH1(X,OD−Q±) = 0 immediately yields that Q± 6∈ suppD. Furthermore, condition
(D2) yields that deg D = g and due to Theorem 4.23, the genus of X must be even. The reality
condition for the divisor D reads as

(R2) τ1(D) = D.

Definition 5.1. Let (X,Q+, Q−, dĉ, dč, σ,D) obey conditions (F1) to (F3) as well as (D1) to
(D3). We denote this set as spectral data if we seek for a complex potential u. If we seek for a
real-valued potential u, this spectral data is given by the set (X,Q+, Q−, ĉ, č, σ, τ1, D) and this
data additionally has to obey (R1) and (R2).

Due to the next lemma, the demand that D is a positive divisor is actually obsolete: the choice of
the representant D in H1(X,OD−Q±) depends only on the isomorphy class of D and the lemma
shows that if there exists a divisor which obeys (D3), then there always exists a unique divisor D
with the properties in (D1) as well.

Lemma 5.2. Every divisor D of degree g satisfying

dimH1(X,OD−Q+) = 0 and dimH1(X,OD−Q−) = 0

is linearly equivalent to a unique positive divisor ‹D with dimH1(X,O
D̃

) = 0 and supp ‹D ⊂ X◦.
Proof. For a divisor D with dimH1(X,OD−Q±) = 0, there holds due to Lemma 4.26 that
dimH1(X,OD) = 0. Since degD = g, the Riemann Roch Theorem [Forster, 1981, § 16.10] yields
that dimH0(X,OD) = 1. Therefore, there exists a function f ∈ OD, unique up to multiplication
by c ∈ C \ {0} such that (f) +D ≥ 0 and such that (f) ' D − ‹D. So ‹D ' (f) +D ≥ 0 is unique
and because of deg(f) = 0, it is deg ‹D = g. Then Lemma 4.27 yields that suppD ∈ X◦ and the
assertion follows.

The theory presented now can most likely also be formulated for the more general case of a compact
complex curve X ′ together with a generalized divisor S to reconstruct a finite type potential u
instead of a regular finite type potential. Most of the corresponding proofs necessary for the more
general construction in a slightly different setting can be found in [Klein et al., 2016, Chapter 8].
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5. Reconstruction of the eigenfunctions and the potential

However, we have shown the condition D+ σ(D) ' K +Q+ +Q− only under the assumption that
u is a regular finite type potential and not for the generalized divisors SM on the middleding of
the Fermi curve corresponding to a finite type potential. So we restrict ourselves to reconstruction
of regular finite type potentials and refer the reader to [Klein et al., 2016, Chapter 8] to get insight
into the first part of the reconstruction of a Schrödinger operator with probably magnetic field
and without this linear equivalence for the divisors. Our next aim is to show the following theorem
in several steps.

Theorem 5.3. If for a compact Riemann surface X conditions (F1) to (F3) hold and additionally,
there exists a divisor D such that conditions (D1) to (D3) hold, then there exists a unique, real-
analytic regular finite type potential u : R2/Γ → C such that the compactified normalization X(u)
of the corresponding Fermi curve X ′(u) equals X and such that the pole divisor of the pullback of
the corresponding unique normalized eigenfunction ψN of −4+u as in (1.1) to X equals D. The
reconstructed eigenfunction also obeys the quasiperiodicity condition in (1.3) with respect to Γ . If
additionally properties (R1) and (R2) hold, then the corresponding potential u is real-valued.

To do so, we show that the given spectral data defines a unique Baker-Akhiezer function [Akhiezer,
1961] which we define next. Hereby, the double-periodic flow Lh(x, y) will yield the quasiperiodicity
of the reconstructed Baker-Akhiezer function. Hereinafter, we show that the Baker-Akhiezer
function is just the seeked normalized eigenfunction corresponding to a real-analytic potential
u : R2/Γ → C. We also deduce this potential u from the given spectral data. Baker-Akhiezer
functions combine the two equivalent concepts divisors and cocycles to describe line bundles on
Riemann surfaces. They describe sections of families of line bundles, see [Dubrovin et al., 1990,
Chapter 2, §2]. Baker-Akhiezer functions for general complex curves have been constructed in [Klein
et al., 2016, Chapter 8]. Let now (X,Q+, Q−, dĉ, dč, σ,D) be given spectral data as in Definition
5.1. For non-special divisors in the sense of Lemma 4.28, i.e. with dimH1(X,OD−Q±) = 0, one can
show that the value of the Baker-Akhiezer function at Q+ determines the eigenfunction uniquely.
To see this, the next lemma is necessary.

Lemma 5.4. Let X be a compact Riemann surface of genus g, Q± two marked points on X and
D a divisor on X of degree g such that suppD ⊂ X◦. Then the linear map

H0(X,OD)→ C, f 7→ f(Q±) (5.4)

is an isomorphism if and only if
H1(X,OD−Q±) = 0.

Proof. Let the mapping in (5.4) be an isomorphism. Then its kernel has to be zero. The
kernel equals H0(X,OD−Q±) since (f) ≥ −D +Q± yields f(Q±) = 0. Because deg (D −Q±) =
g − 1, the Riemann Roch Theorem [Forster, 1981, § 16.10] implies that dimH0(X,OD−Q±) =
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dimH1(X,OD−Q±). Hence, H0(X,OD−Q±) = 0 holds if and only if H1(X,OD−Q±) = 0. So
H1(X,OD−Q±) = 0.
Conversely, let H1(X,OD−Q±) = 0. Then also H0(X,OD−Q±) = 0, and so the map in (5.4) is
injective. Because of dimH1(X,OD−Q±) = 0, Lemma 4.26 yields that dimH1(X,OD) = 0 and so,
by the Riemann-Roch Theorem [Forster, 1981, § 16.10] , dimH0(X,OD) = 1. Therefore, the map
in (5.4) is an isomorphism of one-dimensional vector spaces.

This lemma justifies the modified non-speciality from Definition 4.25. Motivated by this, we define
the set of parameters T which belong to special divisors in the above sense as T := T+ ∪ T−,
where

T± := {(x, y) ∈ C2 | dimH1(X,OD−Q± ⊗ Lh(x, y)) 6= 0}.

Hereby, we extend the sheaf Lh(x, y) defined above from (x, y) ∈ R2 to (x, y) ∈ C2. We can apply
[Klein et al., 2016, Theorem 8.6] with n = 2 to see that T+ and T− are subvarieties of C2 in the
sense of Definition 1.11. Hence, also T is a subvariety of C2, and so the complement of T is open
and dense in C2. The set T describes the set of parameters for which the Baker-Akhiezer function
with pole divisor D is not uniquely defined since in this case dimH0(X,OD ⊗ Lh(x, y)) > 1, see
Lemma 5.4. As already mentioned in Section 4.2.5, we consider Lh(x, y) as a sheaf on X for
fixed (x, y) ∈ C2. The same cocycles with variable (x, y) ∈ C2 induce a sheaf Lh on X × C2

and we consider OD ⊗ Lh as a sheaf on X × C2. From [Klein et al., 2016, Lemma 8.5] it follows
that one can consider OD ⊗ Lh as a deformation of OD on X for every (x, y) ∈ C2. So one can
use the theory of deformations of sheaves to control the dependence of the cohomology groups
Hq(X,OD ⊗ Lh(x, y)) for (x, y) ∈ C2 \ T . The dimension of these spaces does not change for
(x, y) 6∈ T , see [Grauert et al., 1994, Theorem III.4.7]. We will see in Corollary 5.10, that the two
sets T+ and T− as defined above coincide if the divisor D obeys (D2).

Definition 5.5. For c ∈ C \ {0}, a Baker-Akhiezer function is a function

ψ : X◦ × (C2 \ T )→ C,

with the following properties:

(i) For (x, y) ∈ C2 \ T , the map k 7→ ψ(k, (x, y)) is a holomorphic section of OD on X◦.

(ii) For (x, y) ∈ C2 \ T , the map

U∗+ → C, k 7→ ψ(k, (x, y)) · exp
(
−2πι

〈
k|U+ , (

x
y )
〉)

extends to a holomorphic function on U+ with value c : C2/Γ → C at Q+, where c is
holomorphic and not identically zero and the map

U∗− → C, k 7→ ψ(k, (x, y)) · exp
(
−2πι

〈
k|U− , ( xy )

〉)
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5. Reconstruction of the eigenfunctions and the potential

extends to a holomorphic function on U−.

Hereby, ψ is a holomorphic section in OD ⊗ Lh, so especially holomorphic in (x, y) ∈ C2 \ T , and
therefore real-analytic when restricted to (x, y) ∈ R2 \ (T |R2). Also c is real analytic in this case.
In the above definition, one could also normalize the map k 7→ ψ(k, (x, y)) at Q− instead of at Q+.
The standard normalization for Baker-Akhiezer functions on complex curves with two marked
points is to determine the values of the Baker-Akhiezer function at both of these points, whereby
the degree of the given divisor is g + 1, compare [Klein et al., 2016, Chapter 8]. Then the set
T comprises the points (x, y) ∈ C2 such that dimH1(X,OD−Q+−Q−) 6= 0. In this work, due to
the degree g of the divisor and the periodic flow in two directions, it suffices to normalize the
Baker-Akhiezer function at one of these two points to obtain the desired isomorphism in Lemma
5.4 which is the only difference in the proof of the existence of a unique eigenfunction. We will
see in the sequel that in our case, condition (D2) enforces that the value of the Baker-Akhiezer
function at Q− is determined by the value at Q+. Theorem [Klein et al., 2016, Theorem 8.8]
transfers to our situation, where n = 1 is the number of marked points on X and L = 2 the
number of linear independent directions of the considered linear flow Lh.

Theorem 5.6. Let (X,Q±, dĉ, dč, σ,D) be given spectral data. Then for every holomorphic
c : C2 → C which is not identically zero, there exists one and only one Baker-Akhiezer function ψ
such that exp (2πι 〈k, ( xy )〉)ψ(Q+, (x, y)) = c(x, y) and ψ(x, y) ∈ H0(X◦× (C2 \T ),OD⊗Lh(x, y)),
where k is defined by the anti-derivatives of the Mittag Leffler distributions in (5.1) and (5.2).

Besides a different definition of T and a different isomorphism indicated by Lemma 5.4, our
situation concerning the above Theorem is identical to the situation in [Klein et al., 2016] and
the proof of [Klein et al., 2016, Theorem 8.8] to obtain the existence of a unique Baker-Akhiezer
function corresponding to given spectral data applies here. So we only show where the proof in
our case differs from the proof in [Klein et al., 2016, Theorem 8.8]. The rest transfers identically
to our situation and can be found in [Klein et al., 2016].

Proof of Theorem 5.6. An element of H0(X,Lh(x, y)) is given by a triple of holomorphic functions
(ψ0, ψ+, ψ−) with ψ0, ψ± ∈ H0(U±,OU±) and ψ0 ∈ H0(X◦,OX◦) such that on U∗±

ψ± = ψ0 · z∗± exp
(
−2πι

〈(
hx,±

hy,±

)
,

(
x

y

)〉)
. (5.5)

Consequently, for (x, y) ∈ C2 \ T , an element ψ of H0(X,OD ⊗ Lh(x, y)) is given by functions
ψ0 ∈ H0(X◦,OD) and ψ± ∈ H0(U±,OU±) such that on U± \ {Q±} again (5.5) holds.
By Lemma 5.4, the map

H0(X,OD ⊗ Lh(x, y))→ C, ψ 7→ ψ(Q+)
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is an isomorphism for (x, y) ∈ C2 \ T . Therefore, there exists a unique element ψ ∈ H0(X,OD ⊗
Lh(x, y)) which is mapped to ψ(Q+) by the above isomorphism. Then ψ := ψ0 is the unique
function with the properties of the Baker-Akhiezer function ψ given in Definition 5.5. The
holomorphy of ψ in (x, y) ∈ C2 \ T now follows analogously as shown in the proof of [Klein et al.,
2016, Theorem 8.8].

Condition (ii) in Definition 5.5 yields that the unique Baker-Akhiezer function obeys the quasiperi-
odicity condition (1.3) if we chose the normalization c(x, y) in the right way:

Proposition 5.7. Let ψ ∈ OD ⊗ Lh be a Baker-Akhiezer function which is normalized with a
holomorphic function c : C2/Γ → C. Then for all γ ∈ Γ and (x, y) ∈ C2 \ T , there holds

ψ(k, (x, y) + γ) = e2πι〈k,γ〉ψ(k, (x, y)).

and there exists a holomorphic function ψ̃ which is periodic with respect to Γ such that

ψ(k, (x, y)) = e2πι〈k,(xy )〉ψ̃(x, y).

Proof. It follows from [Klein et al., 2016, Lemma 7.3(ii)] that Lh(γ) induces the trivial flow for all
γ ∈ Γ . Then the definition of the Baker-Akhiezer function yields that ψ((x, y)+γ) = g(k, γ)ψ(x, y),
where g : X(u) × Γ → C can be interpreted as the change of the normalization of the unique
function ψ(x, y). This is since g(k, γ)ψ(x, y) obeys the same conditions as ψ in Definition 5.5 and
due to Theorem 5.6, ψ is unique. Because of (ii) in Definition 5.5, this normalization is given
by exp (2πι 〈k, γ〉) and thus ψ(k, ·) is quasiperiodic with respect to Γ . Defining ψ̃ at k ∈ X◦ as
ψ̃(k, (x, y)) := exp (−2πι 〈k, ( xy )〉)ψ for all (x, y) ∈ C2 \ T yields then for all γ ∈ Γ that

ψ̃(k, (x, y) + γ) = exp (−2πι 〈k, ( xy ) + γ〉)ψ(k, (x, y) + γ) =

= exp (−2πι 〈k, ( xy )〉)ψ(k, (x, y)) = ψ̃(k, (x, y)).

Since we are later on only interested in reconstruction of Baker-Akhiezer functions which obey the
quasiperiodicity condition we have just shown for Γ -periodic normalization, we assume from now
on that c(x, y) is a holomorphic function which is periodic on C2 with respect to Γ .

Proposition 5.8. Let X be a Riemann surface with two marked points Q± and D, D̃ be positive
divisors of degree g with support in X◦ which obey D + D̃ ' K +Q+ +Q−. Then

dimH0(X,OD−Q±) = 0 ⇔ dimH0(X,OD̃−Q±) = 0.
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5. Reconstruction of the eigenfunctions and the potential

Proof. It is degD = g, so the Riemann Roch Theorem [Forster, 1981, § 16.10] and Serre Duality
[Forster, 1981, §17.9] yield

dimH0(X,OD−Q±) = 0 ⇔ dimH1(X,OD−Q±) = 0 ⇔ dimH1(X,OK−D+Q±) = 0

⇔ dimH1(X,OK−D+Q±+Q∓−Q∓) = 0 ⇔ dimH1(X,OD̃−Q∓) = 0

⇔ dimH0(X,OD̃−Q∓) = 0.

To see how condition (D2) involves in the reconstruction of the Schrödinger operator, we introduce
a Schrödinger operator with magnetic field

H := −4∂∂̄ +Az(x, y)∂ +Az̄(x, y)∂̄ + u(x, y), (5.6)

where ∂ and ∂̄ are again the Wirtinger operators. We want to deduce an analytic potential
u : C2 \ T → C which is double-periodic with respect to the lattice Γ as well as a vector valued
magnetic field (Az, Az̄) with Az, Az̄ : C2 \ T → C2 such that ψ lies in the kernel of H. It will
turn out that the magnetic field is zero for divisors which obey the linear equivalence in (D2) and
constant c. Moreover, we show that u is periodic with respect to Γ if the chosen normalization at
Q+ is periodic with respect to Γ .
A first step is to see the influence of the normalization of ψ at Q+ on H and why we could also
have chosen a normalization at Q− in Definition 5.5. So let Hψ = 0, where ψ is normalized at Q+

as ψ(Q+, (x, y)) = c+(x, y). Direct calculations yield for an analytic function f : C2 → C thatÄ
−4∂∂̄ + Ãz∂ + Ãz̄∂̄ + ũ

ä
(fψ) = −4

Ä
f∂∂̄ψ − ∂∂̄fψ − ∂̄f∂ψ − ∂f∂̄ψ

ä
+

+ Ãz (∂fψ + f∂ψ) + Ãz̄
Ä
∂̄fψ + f∂̄ψ

ä
+ ũfψ.

Inserting

Ãz := Az + 4∂̄ ln(f), Ãz̄ := Az̄ + 4∂ ln(f), ũ := u−Az∂ ln(f)−Az̄∂̄ ln(f)− 8∂f∂̄f
f2 + 4∂∂̄f

f
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into this equation yieldsÄ
−4∂∂̄ + Ãz∂ + Ãz̄∂̄ + ũ

ä
(fψ) = −4

Ä
f∂∂̄ψ −���

∂∂̄fψ − ∂̄f∂ψ − ∂f∂̄ψ
ä

+

+
Ä
Az + 4∂̄ ln(f)

ä
(∂fψ + f∂ψ) +

+
Ä
Az̄ + 4∂ ln(f)

ä Ä
∂̄fψ + f∂̄ψ

ä
+

+
(
u−Az∂ ln(f)−Az̄∂̄ ln(f)− 8∂f∂̄f

f2 +
�

�
�

4∂∂̄f
f

)
fψ = f(−4∂∂̄ +Az∂ +Az̄ ¯∂ + u)ψ − 4

Ä
∂̄f∂ψ + ∂f∂̄ψ

ä
+

+
Ä
Az∂f +Az̄∂̄f + 4(ln ∂f∂̄f + ln ∂̄f∂f)

ä
ψ+

+ 4
Ä
∂̄ ln(f)f∂ψ + ∂ ln(f)f∂̄ψ

ä
−

−
Ç
Az∂ ln(f) +Az̄∂̄ ln(f) + 8∂f∂̄f

f2

å
fψ

and since ∂ ln(f) = ∂f
f as well as ∂̄ ln(f) = ∂̄f

f , this is equivalent toÄ
−4∂∂̄ + Ãz∂ + Ãz̄∂̄ + ũ

ä
(fψ) = f

Ä
−4∂∂̄ +Az∂ +Az̄∂̄ + u

ä
ψ. (5.7)

So however one normalizes ψ at Q+, there is always an element fψ normalized differently at
Q+ which lies in the kernel of an operator H̃ with possibly different potential and different
magnetic field and H̃ is obtained by gauging with f as in equation (5.7). In particular, one can
change the normalization at Q+ by considering f = c̃+(x,y)

c+(x,y) , where fψ(Q+, (x, y)) = c̃+(x, y) is the
normalization fψ at Q+. Likewise one can also normalize fψ at Q− as fψ(Q−, (x, y)) = c̃−(x, y)
and then f = c̃−(x,y)

ψ(Q−,(x,y)) . In the proof of the next Theorem it will become clear how one
can determine the value ψ(Q−, (x, y)) out of ψ(Q+, (x, y)) if the corresponding divisor fulfills
D + σ(D) ' K +Q+ +Q−. It will moreover turn out that one has to choose the normalization as
periodic with respect to Γ to obtain an operator which is periodic with respect to Γ . This will be
made more precise in the proof of part (a) of the following Theorem.

Theorem 5.9. Let (X,Q+, Q−, dĉ, dč, σ,D) be given spectral data as in Definition 5.1 obeying all
conditions but (D2) and (D3). Let z± be local coordinates centered at Q± and let the corresponding
Mittag-Leffler distribution induced by dĉ and dč be given by a local parametrization of X in a
neighborhood of Q±, that is

k|U∗+ =

Ñ
1
z+
,− ι

z+
+
∞∑
j=0

a+,jz
2j+1
+

é
and k|U∗− =

Ñ
1
z−
,
ι

z−
+
∞∑
j=0

a−,jz
2j+1
−

é
.

For every (x, y) ∈ C2 \ T , let ψN (k, (x, y)) be the unique Baker-Akhiezer function associated to
this data as in Theorem 5.6 with holomorphic c : C2 → C and c 6≡ 0. Then there exists an analytic
function u : C2 \ T → C and a magnetic field (Az, Az̄) : C2 \ T → C2 such that ψN lies in the
kernel of (5.6) and D is the pole divisor of ψN . Furthermore, there holds:
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5. Reconstruction of the eigenfunctions and the potential

(a) (Az, Az̄) = (0, 0) if and only if (D2) holds and c is constant.

(b) If additionally to (D2) also (R1) and (R2) hold, then the potential u is real-valued.

Proof. With ψ0 = ψ and ψ± defined as in the proof of Theorem 5.6, one has

ψ0|U∗± = exp
Ä
2πι

¨
k|U∗± , (

x
y )
∂ä
· ψ±.

Thereby, the representation of k on U± is a consequence of the principal parts of ĉ and č given by
the pole behavior of dĉ and dč, compare (5.1) and (5.2). Due to (F3), only the uneven powers of
z± occur in the power set in a neighborhood of Q±. To determine ∂ψ, ∂̄ψ and ∂∂̄ψ at Q+ and
Q−, note that with the triple (ψ,ψ+, ψ−) ∈ H0(OD ⊗ Lh), it is on U∗±

exp (−2πι 〈k, ( xy )〉) ∂ψ = πι(k1 + ιk2)ψ± + ∂ψ±,

exp (−2πι 〈k, ( xy )〉) ∂̄ψ = πι(k1 − ιk2)ψ± + ∂̄ψ±,

exp (−2πι 〈k, ( xy )〉) ∂∂̄ψ = −π2(k2
1 + k2

2)ψ± + πι(k1 + ιk2)∂̄ψ±
+ πι(k1 − ιk2)∂ψ± + ∂∂̄ψ±.

In the following calculations, we ignore the fact that 1
z±

does not exist at Q±. This abuse of
notation is justified by the fact that we are only interested in the poles at Q± and the constants
in front of them when evaluating the above derivatives at Q± to find out the right values for
the magnetic field (Az, Az̄) and the potential u of the corresponding operator H such that u is
holomorphic on C2 \ T and periodic with respect to Γ . This is done in such a way that the terms
with poles which occur in ∂∂̄ψ± are canceled out by the right choice of Az and Az̄. We know that
ψ±(x, y) is holomorphic on U± for every (x, y) ∈ C2 \ T , i.e. we can write these functions as power
series

ψ±(x, y) =
∞∑
j=0

ψ±,j(x, y)zj

on the corresponding neighborhoods, where ψ±,j ∈ C∞(C2/Γ,C) due to Proposition 5.7. In the
following calculations, we omit the dependence of ψ on (x, y) and the dependence of k|U∗± on
z+ and z−,respectively. Inserting k|U∗+ into the above derivatives and evaluating the obtained

132



expressions at Q+, i.e. setting z+ = 0, yields formally

exp (−2πι 〈k, ( xy )〉) ∂ψ =− π

Ñ
∞∑
j=0

a+,jz
2j+1
+

é
ψ+ + ∂ψ+

⇒ exp (−2πι 〈k, ( xy )〉) ∂ψ(Q+) = ∂ψ+,0,

exp (−2πι 〈k, ( xy )〉) ∂̄ψ = πι

Ñ
2
z+

+ ι
∞∑
j=0

a+,jz
2j+1
+

é
ψ+ + ∂̄ψ+

⇒ exp (−2πι 〈k, ( xy )〉) ∂̄ψ(Q+) = 2πι
Ç
ψ+,0
z+

+ ψ+,1

å
+ ∂̄ψ+,0,

exp (−2πι 〈k, ( xy )〉) ∂∂̄ψ =− π2

Ö
1
z2

+
+

Ñ
ι

z+
+
∞∑
j=0

a+,jz
2j+1
+

é2
è

︸ ︷︷ ︸
=2ι
∑∞

j=0 a+,jz
2j
+ +
(∑∞

j=0 a+,jz
2j+1
+

)2
ψ+

− π

Ñ
∞∑
j=0

a+,jz
2j+1
+

é
∂̄ψ+

+ πι

Ñ
2
z+
− ι

∞∑
j=0

a+,jz
2j+1
+

é
∂ψ+ + ∂̄∂ψ+

⇒ exp (−2πι 〈k, ( xy )〉) ∂∂̄ψ(Q+) =− 2π2ιa+,0ψ+,0 + 2πι
Ç
∂ψ+,0
z+

+ ∂ψ+,1

å
+ ∂̄∂ψ+,0.

Analogously one obtains at Q−

exp (−2πι 〈k, ( xy )〉) ∂ψ(Q−) = 2πι
Ç
ψ−,0
z−

+ ψ−,1

å
+ ∂ψ−,0

exp (−2πι 〈k, ( xy )〉) ∂̄ψ(Q−) = ∂̄ψ−,0,

exp (−2πι 〈k, ( xy )〉) ∂∂̄ψ(Q−) = 2π2ιa−,0ψ−,0 + 2πι
Ç
∂̄ψ−,0
z−

+ ∂̄ψ−,1

å
+ ∂̄∂ψ−,0.

Let now
Az(x, y) := 4∂̄ ln(ψ−,0)(x, y) and Az̄ := 4∂ ln(ψ+,0)(x, y). (5.8)
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5. Reconstruction of the eigenfunctions and the potential

Then

exp (−2πι 〈k, ( xy )〉)
Ä
4∂∂̄ −Az∂ −Az̄∂̄

ä
ψ(Q+) =

= −8π2ιa+,0ψ+,0 + 8πι
Ç
∂ψ+,0
z+

+ ∂ψ+,1

å
+ 4∂̄∂ψ+,0−

− 4∂̄ ln(ψ−,0)∂ψ+,0 − 8πι∂ ln(ψ+,0)
Ç
ψ+,0
z+

+ ψ+,1

å
+ 4∂̄ψ+,0

= −8π2ιa+,0ψ+,0 + 8πι∂ψ+,1 + 4∂̄∂ψ+,0−

− 4∂̄ ln(ψ−,0)∂ψ+,0 − 8πι∂ ln(ψ+,0)ψ+,1 + 4∂̄ψ+,0

and

exp (−2πι 〈k, ( xy )〉)
Ä
4∂∂̄ −Az∂ −Az̄∂̄

ä
ψ(Q−) =

= 8π2ιa−,0ψ−,0 + 8πι
Ç
∂̄ψ−,0
z−

+ ∂̄ψ−,1

å
+ 4∂̄∂ψ−,0−

− 8πι∂̄ ln(ψ−,0)
Ç
ψ−,0
z−

+ ψ−,1

å
+ 4∂ψ−,0 − 4∂̄ ln(ψ+,0)∂̄ψ−,0

= 8π2ιa−,0ψ−,0 + 8πι∂̄ψ−,1 + 4∂∂̄ψ−,0−

− 8πι∂̄ ln(ψ−,0)ψ−,1 + 4∂ψ−,0 − 4∂̄ ln(ψ+,0)∂̄ψ−,0.

We define
u(x, y)ψ :=

Ä
4∂∂̄ −Az(x, y)∂ −Az̄(x, y)∂̄

ä
ψ. (5.9)

Then by definition of u(x, y), Az(x, y) and Az̄(x, y), ψ is in the kernel of H. Moreover, due to the
above calculations, exp (2πι 〈k, ( xy )〉)u(x, y)ψ is holomorphic on U± for (x, y) ∈ C2 \ T : we have
given reason above that the dimensions of the cohomology groups are constant under deformations of
OD by tensorating it with Lh(x, y) for (x, y) ∈ C2\T . Therefore, dimH0(X,OD−Q+⊗Lh(x, y)) = 0
and dimH0(X,OD−Q− ⊗ Lh(x, y)) = 0 for all (x, y) ∈ C2 \ T . Accordingly, Lemma 4.27 yields
that ψ0,± 6≡ 0. Since the right hand side of (5.9) multiplied with exp(−2πι〈k, ( xy )〉) is holomorphic
on U±, the same holds for the left hand side of (5.9). So exp(−2πι〈k, ( xy )〉)u(x, y)|U± has no
pole. Furthermore, uψ(x, y) ∈ H0(X◦,OD ⊗ Lh(x, y)) for (x, y) ∈ C2 \ T since deriving ψ into
the direction of (x± ιy) does not change the pole order of ψ in k which can be seen by the same
means as it is shown for the normalized eigenfunction in the proof of Lemma 3.16. Hence, uψ is a
Baker-Akhiezer function with a different normalization then ψ at Q+ which is uniquely determined
by Theorem 5.6. Furthermore, Proposition 5.7 yields that ψ±,0 are periodic with respect to Γ on
C2 \ T for periodic c. Thus, also Az and Az̄ as in (5.8) are periodic with respect to Γ , wherefore
finally also u is.

(a) We know from the direct problem, more precisely from Lemma 4.13, that for the divisor
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D corresponding to the Schrödinger operator without magnetic field, the linear equivalence
D + σ(D) ' K +Q+ +Q− holds.
Let now D be a positive divisor which obeys D+σ(D) ' K+Q+ +Q− and let ψ be the Baker-
Akhiezer function, unique up to normalization at Q+ and solving (5.6) with pole divisor D.
Since D+σ(D) ' K+Q+ +Q− holds, there exists a 1-form with divisor D+σ(D)−Q+−Q−

which is holomorphic on X◦ and has 2g zeroes and poles of first order at Q+ and Q−. Hence,
the Residue Theorem yields that ResQ+(ω) + ResQ−(ω) = 0. Condition (F2)(i), Property (ii)
of the Baker-Akhiezer function and Proposition 5.7 together yield, as in the proof of Lemma
4.13, that such a 1-form is given by

ω = ψ(x, y)σ∗ψ(x, y)
⟪σ∗ψ,ψ⟫∂ dĉ

with ψ(x, y) 6= 0. Since σ(k) = −k due to condition (F3), the exponential factors in ψ and σ∗ψ
have the same absolute value but opposite signs. So taking into account that σ(Q±) = Q±,
one has with σ∗ψ(Q±) = ψ(Q±)

σ∗ψ(Q±)(x, y)ψ(Q±)(x, y) = σ∗ψ±,0ψ±,0 = ψ2
±,0

and hence
0 = ResQ+(ω) + ResQ−(ω) = c+ψ

2
+,0 + c−ψ

2
−,0,

where c± ∈ C are constants depending on the evaluated integral over the fundamental domain
⟪σ∗ψ,ψ⟫δ, and therefore are independent from (x, y) ∈ C2. So if we normalize ψ at Q+ as
ψ(Q+, (x, y)) = 1 for all (x, y) ∈ C2, then also

ψ−,0 = ±
 
c+
c−
ψ+,0

is constant. Here, we can choose the sign of ψ−,0 arbitrary since ψ−,0 is constant in (x, y), so
the choice of the sign of ψ−,0 at one fixed (x, y) ∈ C2 \T fixes this choice for all (x, y) ∈ C2 \T .
Hence, if ψ is normalized as constant at Q+, it is also constant at Q− and vice versa. Since
ψ±,0 is a constant functions on the compact surface C2/Γ , it is ∂ ln(ϕ±,0) = ∂̄ ln(ϕ±,0) = 0.
So the corresponding operator H has zero magnetic field (Az, Az̄)(x, y) = (0, 0), and therefore
corresponds to the Schrödinger operator (1.1).
Vice versa, let A(x, y) = 0 for all (x, y) ∈ C2 \ T . This implies also that ψ+,0 and ψ−,0 are
constant. More precisely, we can interpret C2/Γ via C2 ' C as the one-dimensional torus, i.e
a compact Riemann surface and

∂̄ lnψ−,0 = ∂̄ψ−,0
ψ−,0

= 0 ⇔ ∂̄ψ−,0 = 0.
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5. Reconstruction of the eigenfunctions and the potential

So ψ−,0 is a double-periodic, holomorphic function on a compact Riemann surface and thus
constant. We have seen above that ψ−,0 is constant if and only if ψ+,0 is, so also ϕ+,0 is constant.

(b) To see that τ1(D) = D implies that u(x, y) ∈ R for all (x, y) ∈ C2 \ T , note that τ∗1 ψ̄ = ψ+,0
ψ−,0

ψ

since τ1(Q+) = Q−, so τ∗1 ψ̄ is the eigenfunction such that ψ̄−,0 = 1 and ψ the eigenfunction
normalized as ψ+,0 = 1. Due to the above considerations on gauging the eigenfunctions and the
operator, these eigenfunctions are both unique and differ only by the constant ψ̄−,0

ψ+,0
. Therefore,

τ∗1 H̄τ
∗
1 ψ̄ = ψ̄−.0

ψ+,0
Hψ, i.e. ker τ∗1 H̄ = kerH. If ψ is known, also u is known since then 4ψ = uψ.

Since ψ is not identically to zero on U+ if normalized as ψ(Q+, (x, y)) = 1, ψ 6≡ 0, so

τ∗1 ū = 4τ
∗
1 ψ̄

τ∗1 ψ̄
= 4ψ

ψ
= u.

and thus u = ū.

Note that the potential u is only real-valued due to both symmetries on the divisor D + σ(D) '
K +Q+ +Q− and τ1(Q+) = Q−. Assuming (D2) does not hold, then – as we have seen in the
discussion about gauging ψ to obtain an eigenfunction with another normalization – τ∗1 applied to
ψ̄ normalized at Q+ only equals ψ̃0,−

ψ0,+
ψ̃ with ψ̃ a Baker-Akhiezer function normalized at Q−. The

above proof shows that for divisors D obeying the linear equivalence in (D2) one has that ψ̃0,−
ψ0,+

is
constant.
From now on, we choose the normalization c ≡ 1 in Theorem 5.6. In that case, the above proof
yields that the two sets T+ and T− coincide.

Corollary 5.10. Let (X,Q+, Q−, dĉ, dč, σ,D) be spectral data as in Definition 5.1 and c ≡ 1 in
Definition 5.5. Then

H0(X,OD−Q+) = 0 ⇔ H0(X,OD−Q−) = 0.

Proof. Note that H0(X,OD−Q±) ⊂ H0(X,OD). H0(X,OD−Q+) = 0 and dimH0(X,OD) = 1 can
hold if and only if all elements in H0(X,OD) are unequal to zero at Q+. In the foregoing proof,
it is shown that this implies that this element is also unequal to zero at Q−. So the assertion
follows.

In Part I, we considered a normalization of the eigenfunction (3.2) to obtain its uniqueness which
on the first view might differ from the normalization c ≡ 1. However, it follows that the Baker-
Akhiezer function tinkered above with normalization c ≡ 1 is just the same as a Baker-Akhiezer
function not normalized at Q+ but as ψ(k, (0, 0)) = 1.
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Corollary 5.11. Let (X, dĉ, dč, Q+, Q−, σ,D) be given spectral data. Then the Baker-Akhiezer
function (ψ0, ψ+, ψ−) is normalized with c ≡ 1 if and only if ψ(k, (0, 0)) = 1.

Proof. That c ≡ 1 for ψ(k, (0, 0)) = 1 is obvious. Conversely, let c ≡ 1. Due to Lemma 4.27,
dimH0(X,OD) = 1. So the normalization of the Baker-Akhiezer function at Q+ as ψ0,+ = 1
yields that the Baker-Akhiezer function is identically to 1 in k for (x, y) = (0, 0). Therefore, also
ψ−,0
ψ+,0

= 1 since this expression does not depend on (x, y) ∈ C2 \ T and the assertion follows.

Taking all the above together, Theorem 5.3 follows because the Baker-Akhiezer function is unique.

Proof of Theorem 5.3. We have seen in Theorems 5.6 and 5.9 that normalizing the Baker-Akhiezer
function at Q+ as equal to one yields for given spectral data (X,Q+, Q−, dĉ, dč, σ,D) and for
every k ∈ X◦ a unique real-analytic function ψ(k) : R2 \ T → C. Since we assumed (D3) holds, it
is T = ∅. In Proposition 5.7, it is shown that ψ(k) obeys (1.3). From Theorem 5.9 follows the
existence of a unique real-analytic potential u : R2/Γ → C such that (−4+u)ψ = 0. Also from
Theorem 5.9 we obtain that if conditions (R1) and (R2) hold, then u is real-valued.
It follows from Theorem 2.28(b) and Section 4 that X(u) obeys (F1) and Lemma 1.17 yields that
(F3) holds for ĉ = 〈k, γ̂〉 and č = 〈k, γ̌〉. Furthermore, in Section 4.3 is shown that the Mittag
Leffler distributions we used to generate the double-periodic flow correspond to the lattice Γ with
respect to which u is periodic and which obey (F2). Moreover, the differentials in condition (F2),
which are uniquely defined by their periods and their pole behavior at Q±, enable us to reconstruct
a map (ĉ, č) : X → C2 whose image in C2 equals the Fermi curve X ′(u) and X is the normalization
of X ′(u). Points which are separated on X are then again identified under the map (ĉ, č). The
structure sheaf OX might contain more functions then the holomorphic function on the Fermi
curve. The latter are precisely the holomorphic functions which are generated by ĉ and č.
The conditions on the divisor which make the Baker-Akhiezer function unique are also all fulfilled
by the pole divisor of the normalized eigenfunction of −4+u pulled back to the normalization
if u is a regular finite type potential, compare Theorem 4.32. That (R1) and (R2) hold for u
real-valued we have seen in Lemmata 1.17(b) and 4.24. Moreover, the Baker-Akhiezer function
corresponding to some given spectral data is unique and also the normalization of the unique
eigenfunction ψN in the direct problem as ψN (k, (0, 0)) = 1 coincides with the chosen normalization
of the Baker-Akhiezer function. So due to Corollary 5.11, Theorem 5.3 follows.
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6. The isospectral set for regular finite type
potentials

Formally, the isospectral set in our setting is the set of regular finite type potentials u which
yield the same Fermi curve. We know from the results in Chapter 5 that on a fixed Fermi curve,
these potentials can be identified with the pole divisors of the corresponding eigenfunction. So we
consider here the isospectral set as the set of divisors D which lead to the same Fermi curve. Our
intuition tells us that for fixed genus g, small deformations of the divisor D from given spectral
data (X,Q+, Q−, ĉ, č, σ,D) as in Definition 5.1 will also yield spectral data which is a solution of
the inverse problem of the Schrödinger operator with a different potential ũ. So the aim of the
inverse problem would be to ‘move’ the divisor D – interpreted as an element in a translation of
the Jacobian variety – to a different divisor D̃. The questions that arise are how to parameterize
such translations and in which cases all translated divisors are non-special. In this work, we
will only give partly answers to these questions in the sense that we show that the Prym variety
parametrizes the isospectral set and that the latter is an open set in the Prym variety. Hereby, the
focus is on real-valued potential.

6.1. Complex potential

Lemma 6.1. The set of divisors of degree 0 which obey D′ = −σ(D′) acts transitively on the set
of positive divisors D obeying D + σ(D) ' K +Q+ +Q−.

Proof. Let D and D′ both be divisors obeying (4.17). Since σ acts linearly on divisors, taking the
difference of these two equations yields that D −D′ + σ(D −D′) ' 0, and therefore σ(D −D′) =
−(D −D′).

Note that the Prym variety Prym(X,σ) consists of the equivalence classes of the images of this
group of divisors under the Abel map. We are mainly interested in non-special divisors D of degree
g obeying (4.17). So let D be such a divisor and let D′ be another non-special divisor of degree g
such that σ(D −D′) = −(D −D′), i.e. D −D′ is the preimage of an element in the Prym variety
under the Abel map. Then these two relations define D′ uniquely as a positive non-special divisor
of degree g. Therefore, the isospectral set for complex-valued potentials has only one connected
component which is parametrized by the Prym variety. Since the Prym variety is isomorphic to a
complex torus Cg/2/Λ−, compare Definition A.12, one immediately obtains the following corollary.

Corollary 6.2. The isospectral set for a Fermi curve X is contained in a complex torus of
dimension g/2.
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6. The isospectral set for regular finite type potentials

Hereby, we use that Prym(X,σ) can be embedded into Jac(X). Actually one can embed 2g/2

differently translated Prym varieties int Cg, compare Lemma A.13. However, these are all
translations via elements in Λ with Jac(X) ' Cg/Λ. So there is only one Prym variety embedded
into Jac(X).

Lemma 6.3. Let X be a compact Riemann surface endowed with a holomorphic involution σ

and let Q± ∈ X be exactly the fixed points of σ. Then the set of all positive divisors D of degree
g on X which obey D + σ(D) ' K + Q+ + Q− and dimH1(X,OD−Q± ⊗ Lh(x, y)) = 0 for all
(x, y) ∈ R2, where Lh(x, y) is defined in under (5.3), is open in the set of all positive divisors
obeying D + σ(D) ' K +Q+ +Q−.

Proof. Let D be a divisor as given in the theorem and let P be the set of divisors D̃ of degree 0
such that D̃ + σ(D̃) ' 0. The proof of the above theorem is done in two steps. For the first step,
let

M1 :=
¶
D̃ ∈ P | dimH1(X,OD+D̃−Q±) = 0

©
.

Due to [Farkas and Kra, 2012, Proposition III.6.5], the image of the set of divisors such that
dimH1(X,OD−Q±) 6= 0 under the Abel map is a subvariety in the Jacobian variety of X and
its complement is open and dense in Jac(X). So also the restriction of this open set to the
Prym variety is open. Since the Abel map is continuous and maps P into Prym(X,σ), this
yields that M1 is an open set in P . Proposition 4.31 implies that for each (x, y) ∈ R2, it is
dimH1(X,OD ⊗ Lh(x, y)) = dimH1(X,OD). So for every fixed (x, y) ∈ R2, also {D̃ ∈ M1 |
dimH1(X,OD+D̃−Q± ⊗ Lh(x, y)) = 0} is an open set in P . In the second step we deduce from
the first step that also

M2 :=
¶
D̃ ∈ P | dimH1(X,OD+D̃−Q± ⊗ Lh(x, y)) = 0 for all (x, y) ∈ R2©

is open. To do so, we define the map

F : P ×R2/Γ → P, D × (x, y) 7→ D(x, y),

where D(x, y) is the divisor D such that OD(x,y) is isomorphic to OD ⊗ Lh(x, y). Let D ∈ M2.
We show that also a small open neighborhood of D is contained in M2. In [Klein et al., 2016,
Lemma 8.5], it is shown that the complexification of Lh(x, y) defines a sheaf on X × C2 which
is flat with respect to the map X × C2 → C2. Therefore, F is continuous and we have seen in
the first step that M1 is open. So for every (x, y) ∈ R2/Γ , there exists an open neighborhood
U ∈ R2/Γ of (x, y) and an open neighborhood V ⊂ P of D such that F [V × U ] ⊂M1. Because
R2/Γ is compact, we find finitely many (x, y) ∈ R2/Γ such that the union of the corresponding
open neighborhoods U yields a finite covering U of R2/Γ . For each of these finitely many U , there
exists an open neighborhood V ⊂ P of D such that F [V × U ] ⊂M1. Intersecting all these finitely
many open sets V with each other yields an open set Ṽ which contains D. So M2 is open.
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6.2. Real potentials

6.2. Real potentials

The aim of this chapter is to define the real parts of the Prym variety of a Riemann surface X
with two marked points Q±, holomorphic involution σ and antiholomorphic involution τ such
that τ ◦ σ = σ ◦ τ , σ(Q±) = Q± and τ(Q±) = Q∓. The isospectral set of a regular finite type
potential u is parametrized by the real Prym variety. We also want to describe the connected
components of this real Prym variety and analyze whether there are connected components which
obtain only non-singular divisors in the sense of Definition 4.25. Due to Lemma 4.27, these are
just the positive divisors of degree g with support away from Q+ and Q−.
The whole section and Appendix B are elaborations of parts of [Natanzon, 2004, Chapter 1 and 2].
We decided not just to cite the results given there, but to work them out completely because it
turned out that in [Natanzon, 2004], many proofs either contain mistakes or are not fully worked
out so that we are not able to understand the argumentations given there, even though the final
results are – up to small modifications – usually correct.
In order to define the real Prym variety, we consider real curves. These are pairs of a compact
Riemann surfaces X and an antiholomorphic involution τ on X. We will see that the fixed point
set of τ on X consists of simple closed contours which are called ovals in the sequel. To introduce
the real Prym variety on a real curve, a certain ‘toolbox’, taken from [Natanzon, 2004, Chapters 1
and 2], is necessary. This can be found in Appendix B. This toolbox contains a short introduction
to so-called real Arf functions and spinor bundles on real curves. The Arf functions used here are
functions from H1(X,Z2) to Z2 which assign a sign to the ovals of a real curve (X, τ). Real spinor
bundles are bundles which square is the cotangent bundle and real spinors are sections of this
bundle. They are used here to show the existence of holomorphic differential forms with certain
properties on the ovals of a real curve. In Appendix B, a 1-to-1 correspondence between these
two objects is established with help of the real Fuchsian groups. These are Fuchsian groups with
an additional antiholomorphic structure. This connection can be used to show the existence of
spinors which induce a certain orientation on the ovals. A square of such a real spinor then is a
holomorphic real differential on the real curve (X, τ), i.e. a 1-form with a certain behavior under
the pullback of τ to the space of 1-forms on X.
The first task of this chapter is to take a a closer look at real curves (X, τ) and how they are
being constructed, whereby we introduce the topological type of a real curve min order to classify
the different kinds of real curves which can occur. After that, we take a closer look at the real
differential forms. The existence and non-existence theorems shown there will afterwards be very
useful to describe the real part of the Prym variety. We define the realness-condition on these
1-forms with different sign than it can be found in [Natanzon, 2004]. This is done because the way
we define it is later on also used in [Natanzon, 2004] to consider the real parts of the Jacobian
variety. Moreover, the two last proofs in the section about real M-curves – which are compact
Riemann surfaces of genus g with the maximal number of g+1 ovals – are not at all understandable

141



6. The isospectral set for regular finite type potentials

for us in [Natanzon, 2004] and large parts of the necessary argumentation is missing in our eyes. A
request to the author about some detail there remained unanswered. So we try to fill in these holes
here. After that, we define the real part of the Jacobian variety. Also here, some mistakes are
made in the corresponding section in [Natanzon, 2004]. For example the action of the involution
on a so-called real basis of H1(X,Z) is wrong. Also large parts to show the precise form of the
real Jacobian variety are missing and what can be found in [Natanzon, 2004] is more the sketch of
the proof structure. So we try to complete the missing steps here, where we take the changes due
to the different behavior of the real basis of H1(X,Z) into account. Finally, we take these results
to present the real part of the Prym variety. Also in this part, we made many changes compared
to the results which can be found in [Natanzon, 2004]. We give proofs of statements which are
made but not shown in [Natanzon, 2004], as for example on the existence of a certain two-sheeted
covering which is necessary to construct real curves (X, τ) which are equipped with a holomorphic
involution. We define clearly how a symplectic basis of a real curve with holomorphic involution
should look like and show that such a basis always exists. Finally, in [Natanzon, 2004] a definition
for positive respectively negative definiteness of certain types of meromorphic differentials on the
ovals of a real curve with involution is made which in our eyes does not make sense. Therefore,
we adjust the definition of this definiteness and argue why we think that our definition of this
definiteness comprises what is actually meant in [Natanzon, 2004]. We will see that with this
new definition, the remaining results from [Natanzon, 2004] on the real Prym variety carry over.
Finally, we will be able to show some assertions on the structure of the Prym variety of a real curve
with holomorphic involution as well as on the possibility of the existence of connected components
in this Prym variety which contain only non-special divisors.

6.2.1. The topological type of real curves

At first, we take a closer look at the so-called real curves, i.e. compact Riemann surfaces X with
an antiholomorphic involution τ . These are defined as follows:

Definition 6.4. A real curve is a pair X = (X, τ), where X is a compact Riemann surface of
genus g and τ : X → X is an antiholomorphic involution. The set of fixed points Xτ ⊂ X of this
involution is the set of real points or the real part of the curve X.

We identify two real curves X1 = (X1, τ1) and X2 = (X2, τ2) if there is a biholomorphic map
ψ : X1 → X2 such that ψ ◦ τ1 = τ2 ◦ ψ. We call curves such that this holds biholomorphically
equivalent. We will not distinguish between curves which are biholomorphically equivalent.

Definition 6.5. Two real curves (X1, τ1) and (X2, τ2) are said to be topologically equivalent if
there is a homeomorphism φ : X1 → X2 such that τ2 ◦ φ = φ ◦ τ1.

To characterize these curves, the following datum which can be found in [Natanzon, 2004, Section
2.1] is necessary:
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6.2. Real potentials

Definition 6.6. A real curve X is said to be separating if X \Xτ is not connected. Otherwise X
is said to be non-separating. We define

ε = ε(X) =

0 if the curve X is non-seperating,

1 if the curve X is seperating.

The topological type of X is given by the triple (g, k, ε), where g is the genus of X and k = k(X) is
the number of connected components of Xτ .

It will turn out that the data (g, k, ε) is sufficient to describe a real curve up to topological
equivalence. Closed paths on X without self-intersections we call simple closed contours in the
sequel and smooth simple closed contours denote simple closed contours which are isomorphic to
S1.
The Uniformization Theorem for simply connected Riemann surfaces, compare e.g. [Forster, 1981,
Theorem 27.9], yields that every compact simply connected Riemann surface X with genus g ≥ 2
is biholomorphically equivalent to a surface of the form H/Λ, where H := {z ∈ C | Im(z) > 0} is
the upper half plane and Λ is a discrete group that acts without fixed points on H. The standard
metric of constant curvature on H, compare e.g. [Dieck, 2000, Section 1.6], induces a metric of
constant curvature on X = H/Λ by the quotient metric. All real curves can be constructed as in
the two following examples of real curves. Hereby, we explain more detailed than it can be found
in [Natanzon, 2004, Example 2.1.1] how these curves are constructed and cite [Natanzon, 2004,
Example 2.1.2]. However, both examples are essential for the further understanding. To keep this
work self-contained, we represent both.

Example 6.7. [Natanzon, 2004, Example 2.1.1] Let X+ be a compact Riemann surface with
boundary of genus g with k connected boundary components which are each a one-dimensional
compact manifold, and therefore are isomorphic to S1. We call them boundary cycles. Let X+ be
equipped with the structure of a Riemann surface given by the atlas of holomorphic charts

{(Ui, zi)}, X+ =
⋃
Ui, zi : Ui → H,

where ⋃Ui is an open covering of X+. This atlas is chosen in such a way that the boundary
components of X+ are mapped to R. Moreover, let X− be the Riemann surface with boundary
which is obtained by considering the local charts z̄i : Ui → ιH. Then there exists a unique
antiholomorphic map τ : X+ → X− such that τ∗z̄i = zi. Moreover, X+ ∪̇X− is a topological
space. From this we want to define a real curve Xg̃,k as the surface X := X+ ∪̇X−/ ∼, where ∼
means that we identify the boundary components of X+ and X− via τ as indicated in Figure
6.1a. To do so, we use the quotient topology induced by the map X+ ∪̇X− → X+ ∪̇X−/ ∼.
Let Ui ⊂ X+ be open. Then τ [Ui ∩ ∂X+] = τ [Ui] ∩ ∂X−, where τ [Ui] ⊂ X− is also open. The
open sets on X are given by (Ui ∪̇ τ [Ui])/ ∼→ C, where we use the local charts zi : Ui → H and
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z̄i : τ [Ui]→ ιH. This map is a homeomorphism and yields an atlas on X such that X is a compact
Riemann surface without boundary. The identified boundaries ∂X± are fixed points of τ on X.
This set of fixed points we denote by Xτ . Due to the selections of the charts at the beginning
of this example, it is zi(p) ∈ R for p ∈ Xτ , i.e. zi(p) = z̄i(p). Because τ is an antiholomorphic
involution on X, the constructed Riemann surface (X, τ) is a real curve of type (2g + k − 1, k, 1).
The complex structure of the Riemann surface of X induces a unique metric of constant sectional
curvature on X. The lift of τ to the universal covering H of X is an antiholomorphic Möbius
transformation. Because the metric on H is invariant under this metric, also τ is an isometry with
respect to the metric on X.

(a) Tinkering a real curve of topological type
(8, 3, 1)

(b) Tinkering a real curve of topological type
(8, 3, 0), i.e. and m = 2

Figure 6.1.: Examples of the constructions of real curves for g = k = 3 and (a) ε = 1, (b) ε = 0.

Example 6.8. [Natanzon, 2004, Example 2.1.2] Repeating the construction of Example 6.7, we take
the Riemann surfaces with boundary X+ and X− and the antiholomorphic map τ : X+ → X−.
The boundary ∂X+ consists of simple closed contours c1, . . . , ck. Let 0 ≤ m < k. For i ≤ m, we
identify the contours ci and τ [ci] by means of the map τ as in Example 6.7. For i > m, let us
consider fixed-point-free isometries τi : ci → ci such that τ2

i = 1. In this case, we identify the
simple closed contours ci and τ [ci] by means of the map τ ◦ τi as indicated in Figure 6.1b. For these
simple closed contours, local coordinates can be found similarly as in Example 6.7 by considering
τ∗i z̄ instead of z̄ as a local coordinate on X−. This yields simple closed contours on the tinkered
curve which are invariant under τ but no ovals. We again obtain a real curve X = (X, τ) of genus
2g̃ + k − 1, but in this case Xτ = ⋃m

i=1 ci. So X is a curve of topological type (2g + k − 1,m, 0).

We show next that any real curve is topologically equivalent to one of the curves in Examples 6.7
and 6.8. Therefore, the following Lemma [Natanzon, 2004, Lemma 2.1.1] is necessary. The proof
in [Natanzon, 2004] is complete and we only give it here to for self-containedness because we will
frequently use its result in the sequel.
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Lemma 6.9 ([Natanzon, 2004, Lemma 2.1.1]). The set Xτ of real points of a real curve X = (X, τ)
decomposes into pairwise disjoint smooth simple closed contours which are all geodesics on X.

Proof. As already mentioned, the complex structure of the surface X induces a metric of constant
curvature and τ is an isometry with respect to this metric. If p ∈ Xτ , then the involution
dτp : TpX → TpX of the tangent plane TpX is the reflection with respect to a direction v ∈ TpX.
We denote by ` ⊂ X the geodesic [Jost, 2006, Definition 1.4.2] that passes through p in the
direction of the line v. All its points are fixed under τ and in a small open neighborhood of p,
there are no other fixed points of τ . Thus, by [Jost, 2006, Corollary 1.4.2], each of the points
p ∈ Xτ belongs to exactly one maximal geodesic ` ⊂ Xτ , i.e. a geodesic with maximal domain,
without self-intersections. Since X is compact, it follows that each of these geodesics is a smooth
simple closed contour.

Definition 6.10. The pairwise disjoint smooth simple closed contours in Xτ are called ovals.

The proof of the next Theorem [Natanzon, 2004, Theorem 2.1.1] is given here completely since in
[Natanzon, 2004], the existence of the desired homeomorphism as well as the topological equivalence
is not shown explicitly.

Theorem 6.11 ([Natanzon, 2004, Theorem 2.1.1.]). Let (X, τ) be a real curve of type (g, k, 1).
Then 1 ≤ k ≤ g+ 1, k ≡ g+ 1 mod 2 and (X, τ) is topologically equivalent to the curve (Xg̃,k, τg̃,k)
of Example 6.7, where g̃ = 1

2(g + 1− k).

Proof. By Lemma 6.9, the set X \Xτ decomposes into two surfaces X+ and X− of genus g̃ with k
boundary cycles such that τ [X+] = X−. Hence, g = 2g̃+k−1, and therefore k ≤ g+1 with equality
if and only if g̃ = 0 and k = g + 1. Let us consider a homeomorphism φ+ : (X+ ∪Xτ )→ X̃+ with
φ+|Xτ : Xτ → ∂X̃+, where X̃+ is defined as in Example 6.7. This homeomorphism exists because
the genus and the number of connected components of the boundary of X+ and X̃+ are the same.
We set

φ : X → Xg̃,k, p 7→

φ+(p) for p ∈ X+ ∪Xτ ,

τg̃,k ◦ φ+(p) for p ∈ X−.

Then one has for p ∈ X+ that τ(p) ∈ X−, so

(φ ◦ τ)(p) = (τg̃,k ◦ φ+ ◦ τ2)(p) = (τg̃,k ◦ φ+)(p) = (τg̃,k ◦ φ)(p)

and for p ∈ X−, it is τ(p) ∈ X+, and therefore

(φ ◦ τ)(p) = (φ+ ◦ τ)(p) = (τ2
g̃,k ◦ φ+ ◦ τ)(p) = (τg̃,k ◦ φ)(p).

The points p ∈ Xτ are mapped to ∂X̃+, which yields the ovals of Xg̃,k. So φ realizes the desired
topological equivalence between X and Xg̃,k.
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Now, we want to give the same characterization by its topological type for non-separating curves.
Until the end of this characterization, let Y be a compact Riemann surface of genus g with an
even number of n boundary cycles and let τ : Y → Y be an antiholomorphic involution without
fixed points such that we can sort the n boundary cycles into pairs which are interchanged by
τ . For a real curve of type (g, k, 0), we can interpret Y as X \ Xτ . In [Natanzon, 2004], it is
neither assumed that Y has to be compact nor that the number of boundary components has to
be even and that these boundary components have to obey the above symmetry with respect to τ .
However, we think that these assumptions are necessary to show the next Lemma. Both of them
are also no obstructions in the sequel since we will apply the next Lemma only to curves with these
properties. To formulate the next Lemma, we additionally the following definition is necessary.

Definition 6.12. (a) A simple closed contour γ ⊂ Y is called invariant if τ [γ] = γ.

(b) A system A = (γ1, . . . , γm) of pairwise disjoint, invariant simple closed contours is said to be
complete if the set Y \A is disconnected.

If A is complete, then Y \A consists of two surfaces Y + and Y − which are both of genus 1
2(g−m+1)

with each m+ n
2 boundary cycles and τ [Y +] = Y −. The proof of the following Lemma extends

the statements compared to what can be found in [Natanzon, 2004] in such a way that we show
besides the existence of a complete system of simple closed contours on Y that these are smooth
and contained in the interior of Y . Moreover, we also extend the arguments for the proof of the
existence in comparison to [Natanzon, 2004].

Lemma 6.13 ([Natanzon, 2004, Lemma 2.1.2]). There is a complete system formed by g + 1
invariant smooth simple closed contours which are contained in Y ◦.

Proof. We show this assertion in three steps. At first we show that there always exists at least
one invariant contour γ ⊂ Y such that γ ∩ ∂Y = ∅. We then show that for g > 0, there is an
invariant contour γ̃ ⊂ Y such that Y \ γ̃ is connected. These two facts can then be used to prove
the assertion in the last step.
To see that there always exists at least one invariant contour γ, let d be the standard metric of
constant curvature on Y . Since Y is a compact Riemann surface with boundary, the continuous
function f : Y → R, p 7→ d(p, τ(p)) attains its minimum on Y at p0. Then there exists a path `
of shortest length which connects p0 and τ(p0). because τ has no fixed points on Y , there holds
τ [`] 6= `. Assume that ` ∩ τ [`] 6= ∅. Then there exist at least two points p1 and τ(p1) which are
contained in ` as well as in τ]` since τ has no fixed points on Y . This yields that the geodesics
` and τ]` connect p1 and τ(p1) with f(p1) < f(p0) which contradicts the assumption that p0 is
the minimum of f . Therefore, the geodesics ` and τ [`] do not intersect each other. By definition,
γ := ` + τ]` is a closed contour which is invariant under τ . Next, we want to gain insight why
γ is smooth. Let v`(p) be the direction of the geodesic at p ∈ ` which is contained in TpX and
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{ { { {

Figure 6.2.: Sketch why the geodesics ` and τ]` cannot meet at p0 with an angle smaller than π,
where the geodesics are linearized for clarity of the sketch.

let vτ]`(p) be the direction of the geodesic at τ(p) ∈ τ]` contained in Tτ(p)X. Then the angle α
between v`(p0) and vτ]`(p0) is the same as the angle between v`(τ(p0)) and vτ]`(τ(p0)) since τ is a
conformal map. Moreover, α ∈ [0, π]. Assume that α < π as indicated in Figure 6.2. Then there
exists a vector field contained in TX which is attached orthogonally to ` and τ]`. On the vector
v of this vector field attached at p0, one can find a point p1 on v with d(p0, p1) < ε for ε > 0
sufficiently small. The point τ(p1) then lies on the corresponding vector ṽ attached at τ(p0) and
obeys d(τ(p0), τ(p1)) = d(p0, p1) since τ is an isometry. Then there is a small path x, orthogonally
attached to v, which connects p1 and ` and a small path y which connects p1 with a point on τ]`.
Likewise τ]y connects τ(p1) with ` and τ]x connects τ(p1) with τ]`. By the triangle inequality, the
length of x is shorter than the length of the segment of ` which lies between p0 and the intersection
point of p0 and x and also the length of y is smaller then the segment of τ]` which lies between
the τ(p0) and the intersection point of y with τ]`. So the length of ` connecting p0 and τ(p0) is
larger than the distance between p1 and τ(p1) which are connected via x, the part of ` which lies
between the intersection points of x with ` and y with ` and then via y. Thus, α < π contradicts
the assumption that p0 minimizes f , and so α = π which implies that γ = ` ∪ σ]` is a smooth
simple closed contour.
If ∂Y = ∅ this shows the assertion of the first step. So assume that ∂Y contains at least two
boundary cycles. We claim that this simple closed contour does not intersect the boundary
components of Y . So assume that p0, τ(p0) ∈ ∂Y such that f attains its minimum at p0. By
the construction of Y , the points p0 and τ(p0) must lay on different boundary cycles which are
interchanged by τ . Let again ` be the unique geodesic connecting p0 and τ(p0). As before, the
angle α between v`(p0) and vτ]`(p0) must lie between 0 and π, whereby α ∈ (0, π) is not possible
by the same argumentation as above. Assume that α = π. Since the boundary cycles are simple
closed contours and geodesics, this would imply that ` is contained in the boundary contour which
contains p0. This contradicts the fact that p0 and τ(p0) lie on different boundary cycles. So π = 0
and we can find a point p1 contained in ` with d(p0, p1) < ε such that τ(p1) ∈ τ]`. Let ˜̀ be the
geodesic connecting p1 and τ(p1). Then ˜̀⊂ ` and the length of ˜̀ is 2ε shorter than the length of
`. This contradicts again the assumption that p0 minimizes f , and so γ ∩ ∂Y = ∅.
To show the second step, let γ ⊂ Y be the contour constructed in step one. For Y \ γ connected
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Figure 6.3.: Origin of ` depicted as in [Natanzon, 2004, Figure 2.1.1].

there is nothing to show. So let Y \ γ be disconnected. Then Y \ γ = Y + ∪ Y −, where Y + and
Y − are surfaces of positive genus and τ [Y +] = Y −. By construction, γ is invariant under τ but
not an oval of τ . So for p ∈ γ, one has p 6= τ(p) ∈ γ. Let us join points p and τ(p) by a curve
` ⊂ Y + without self-intersections and such that Y + \ ` is connected. This is depicted – as in
[Natanzon, 2004, Figure 2.1.1] – in Figure 6.3. Then γ̃ = ` + τ [`] is an invariant contour and
Y \ γ̃ is connected. Furthermore, we can choose this curve in such a way that it intersects the
boundary cycle orthogonally. So γ̃ is a smooth simple closed curve. To see that there always
exists a complete system A consisting of g + 1 invariant smooth simple closed contours, let γ̃1 be
the smooth simple closed contour constructed in the second step. The surface Y \ γ̃1 is of genus
g − 1. If g − 1 > 0, one can again apply the assertion from the second step and continue like this
successively until the genus of Y \ γ̃1, . . . , γ̃k equals zero. Then one applies the first step which
yields the assertion.

The proof of the following Theorem is not given. The only difference to the proof of Theorem
6.11 is that, in addition to Xτ , a complete system A of smooth simple closed contours of X \Xτ

is considered such that X \ (Xτ ∪ A) decomposes into two surfaces X+ and X−. Also the
homeomorphism between an arbitrary real curve of type (g, k, 0) and the corresponding model
curve in Example 6.8 is defined analogously as in the proof of Theorem 6.11. In [Natanzon, 2004,
proof of Theorem 2.1.2], it is not shown that this yields the desired topological equivalence, but
the calculations are the same as the calculations used to show the topological equivalence in the
proof of Theorem 6.11 for a real curve of type (g, k, ε) and the corresponding model curve from
Example 6.7.

Theorem 6.14 ([Natanzon, 2004, Theorem 2.1.2]). Let (X, τ) be a real curve of topological type
(g,m, 0). Then for any m < k ≤ g + 1 with k ≡ g + 1 mod 2, the curve (X, τ) is topologically
equivalent to the curve (Xm

g̃,k, τ
m
g̃,k) in Example 6.8, where g̃ = 1

2(g + 1− k).

The results of Examples 6.7 and 6.8 as well as of Theorems 6.11 and 6.14 are summarized in the
following corollary.

148



6.2. Real potentials

Corollary 6.15 ([Natanzon, 2004, Corollary 2.1.1]). Real algebraic curves are topologically equiv-
alent if and only if they have the same topological type. A set (g, k, ε) is a topological type of a
real algebraic curve if and only if either ε = 1, 1 ≤ k ≤ g + 1 and k ≡ g + 1 mod 2 or ε = 0 and
0 ≤ k ≤ g.

6.2.2. Holomorphic differentials on real curves

From now on, we assume that the ovals of a real curve (X, τ) of type (g, k, ε) are endowed with
an orientation. For ε = 1, this orientation is induced by an orientation of one of the connected
components of the set X \Xτ and for ε = 0, it is the orientation induced by X \Xτ . This we call
the original orientation of an oval.

Definition 6.16. A local chart z : U → C in a neighborhood of a real point p0 ∈ Xτ is a real
local chart if τ [U ] = U and z(τ(p)) = z(p). A real chart agrees with the orientation of the set Xτ

if z sends an oriented segment ` = U ∩Xτ into the segment z[`] ⊂ R oriented by increasing order
of the real numbers.

In deviation from [Natanzon, 2004], let τ∗ : Ω(X)→ Ω(X) be the pullback of τ to the space of
1-forms on X. The map τ∗ in [Natanzon, 2004] is defined slightly different, but we believe that it
shall also just denote the pullback of τ there since it is applied like that in [Natanzon, 2004]. With
this pullback, we are able to define a real differential, whereby we made the opposite sign choice in
the action of τ∗ on ω as in [Natanzon, 2004]. The choice in [Natanzon, 2004] seems to be more
natural on the first sight. However, our choice turns out to be more convenient in the sequel of
this chapter and is also the one used in [Natanzon, 2004]. It is the involution corresponding to
τ : X → X, p 7→ −p̄ as it will be used hereinafter when we consider real curves with an additional
involution σ in Section 6.2.5.

Definition 6.17. (a) A differential ω is said to be a real differential if τ∗ω = −ω̄. In a real chart,
this yields for ω = f(z)dz that f(z̄) = −f(z). In particular, f(z(p)) ∈ ιR for p ∈ Xτ .

(b) The sign of the value −ιf(z(p)) ∈ R with p ∈ Xτ is the same for all real charts that agree
with the orientation of the set Xτ . It is called the sign of the differential ω at a point p ∈ Xτ .

(c) A real differential ω is positive (non-negative, non-positive, negative, respectively) on an oval
c ⊂ Xτ if −ιω is positive (non-negative, non-positive, negative, respectively) at any point of c.

In this definition, we have changed the condition for realness of a holomorphic differential in
such a way that τ∗ω = −ω̄. In the next proof we will frequently use that a spinor can induce an
orientation on the ovals of a real curve (X, τ), compare Definition B.38. We will also make use of
the statements and the notation used in Theorems B.42 and B.43.
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Lemma 6.18 ([Natanzon, 2004, Lemma 2.6.1]). Let η be a real spinor on the curve (X, τ) as in
Definition B.37. Then ω = −ιη2 is a real differential that is non-negative on the oval c ⊂ Xτ if the
orientation generated by η coincides original one and non-positive on the oval c if the orientation
generated by η is opposite to the original one.

Proof. If the spinor η is described by a function f ◦ z in a local real chart z : U → C which
agrees with the orientation of an oval c ⊂ Xτ . Let z be centered at p ∈ c. Then there is an open
neighborhood of p ∈ c on which ω = −ι(f2 ◦ z)dz. If additionally the orientation of the oval c is
generated by η, then it follows from Lemma B.40 that f ◦ z ◦ τ = f ◦ z and f2 is non-negative on c,
so also ι(−ιf2) is non-negative. A change of the orientation of the oval changes the sign of f2.

Theorem 6.19 ([Natanzon, 2004, Theorem 2.6.1]). Let (X, τ) be a real curve of type (g, k, ε) with
ovals c1, . . . , ck, where k = k+ + k− + k0. For ε = 0, let additionally k0 < g and for ε = 1, let
additionally k+ · k− 6= 0. Then there is a real differential on (X, τ) that is non-negative on ci for
i ≤ k+, non-positive on ci for k+ < i ≤ k+ + k− and has zeros on ci for i > k+ + k− such that the
sum of the orders of the zeros restricted to each one of these ovals divided by two is odd.

In [Natanzon, 2004], no obstruction for the sum of the orders of zeros is shown. However, this is
necessary hereinafter. So we added it in the next theorem.

Proof. We use Theorems B.42 and B.43 to deduce that there exists a real spinor η which has zeros
on ck++k−+1, . . . , ck and generates on any other oval ci an orientation that coincides with that of
Xτ for i ≤ k+ and is opposite to the orientation of Xτ for k+ < i ≤ k+ + k−. To ensure that the
ovals ck++k−+i with i = 1, . . . , k0 have a zero such that the sum of the orders of the zeros on this
oval divided by two is odd, the corresponding values αi in these Theorems must equal 1. Then the
sum of the orders of the zeros of η on one such oval is odd. Since ω = −ιη2, the assertion follows.
Let us consider ε = 0. We can always obtain ∑k

i=1 αi = g + 1 mod 2 since k0 < g. So either k+

or k− is unequal to zero and the ovals ci with 1 ≤ i ≤ k+ + k− might also contain elements with
αi = 1. Choosing k+ ≤ m ≤ k+ + k0 in Theorem B.42 yields the desired spinor η.
For ε = 1, the assumptions in Theorem B.43 also hold since k+ · k− 6= 0 implies that there always
exist two ovals of opposite orientation, without loss of generality c1 and ck, on which we can set
α1 = αk = 0. As for ε = 0, the other conditions on α1, . . . , αk can always be fulfilled since the
maximal number of ovals of X is g + 1 and k+, k− ≥ 1, k0 < g. Choosing k+ ≤ m ≤ k+ + k0 in
Theorem B.43 yields the desired spinor η. Applying Lemma 6.18, the differential ω = −ιη2 has
the desired properties.
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6.2.3. Real M-curves

Now we take a closer look at real curves which have the maximal possible number of ovals.
Obviously, such a curve is of separating type, and so ε = 1.

Definition 6.20. A real M-curve is a real curve of type (g, g + 1, 1).

On such curves, the real differentials have some additional properties which we will study now in
more detail.

Lemma 6.21 ([Natanzon, 2004, Lemma 2.6.1]). Let c1, . . . , cg+1 be ovals of an M-curve of genus
g and let 1 ≤ α ≤ n < β ≤ g + 1. Then there is a real differential ω that is positive on cα,
non-negative on c1, . . . , cn, negative on cβ and non-positive on cn+1, . . . , cg+1.

Proof. By Theorem B.43, there is a real spinor η that generates the orientation of X+ on c1, . . . , cn,
generates the opposite orientation of X+ on cn+1, . . . , cg+1 and has zeros on the ovals ci with
i 6= α, β. It is shown in [Atiyah, 1971, Lemma 3.2] that the total number of zeros of a spinor
is g − 1. Hence, η has no zeros on cα and cβ. Therefore, by Lemma 6.18, the real differential
ω = −ιη2 satisfies all hypotheses of the lemma.

This immediately yields the following assertion.

Lemma 6.22 ([Natanzon, 2004, Lemma 2.6.2]). Let c1, . . . , cg+1 be the ovals of an M-curve (X, τ)
of genus g and let 1 ≤ n < g + 1. Then there is a real differential ω that is positive on c1, . . . , cn

and negative on cn+1, . . . , cg+1.

Proof. Let 1 ≤ n < g+ 1. Then by Lemma 6.21, there exists for each (i, j) with i ∈ {1, . . . , n} and
j ∈ {n+ 1, . . . , g+ 1} a real differentials ωi,j on X which is non-negative on c1, . . . , cn, non-positive
on cn+1, . . . , cg+1, positive on ci and negative on cj . Adding up these differentials yields the
assertion.

The next Lemma is concerned with hyperelliptic M -curves. These are curves which are defined by

X◦ := {(x, y) ∈ C2 | y =
»
h(x)},

where h(x) = ∏2g+2
i=1 (x − αi) and α1 < · · · < α2g+2 are real numbers. We compactify X◦ in

such a way that there are two smooth points over ∞ and the covering X → CP 1, (x, y) 7→ x is
unbranched over ∞. The compactification of X◦ we denote as X. This Lemma will be helpful
to show that any real differential is positive on an oval of an M -curve and negative on another
one. For this Lemma, we give a very precise proof in comparison to [Natanzon, 2004]. The
reason for this is two-fold: First of all, the set of ovals given in [Natanzon, 2004] with the choice
τ∗ω = ω̄ is just complementary to the set of ovals of a hyperelliptic curve we consider. It is claimed
implicitly in [Natanzon, 2004] that these are given by the points (x, y) ∈ X corresponding to
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x ∈ (−∞, a1) ∪ (a2, a3) ∪ · · · ∪ (a2g+2,∞). However, the latter would imply that there are ovals
which are no simple closed curves. So the main modification compared to [Natanzon, 2004] is that,
as explained above, we have changed the action of τ∗ on real differentials ω. With this choice,
the proof works out. Hereby, we find another reason why to change the definition of realness
for a holomorphic differential. The second reason why we give this proof so precise compared to
[Natanzon, 2004] is that we do not understand the argumentation given there easily without this
additional information.

Lemma 6.23 ([Natanzon, 2004, Lemma 2.6.3]). Let α1 < · · · < α2g+2 be real numbers, let
h(x) = ∏2g+2

i=1 (x − αi), let X be the hyperelliptic curve corresponding to y2 = h(x) and let
τ : X → X be the antiholomorphic involution generated by the correspondence (x, y) 7→ (x̄,−ȳ).
Then (X, τ) is a real M-curve of genus g each of whose real differentials is positive on one of the
ovals and negative on another one.

Proof. The set
X◦ := {(x, y) ∈ C2 | y =

»
h(x)}

describes a real hyperelliptic curve of genus g, compare [Farkas and Kra, 2012, Section III.7.4].
Let X be the compactification of X◦ such that there are two smooth points over ∞ and the
covering X → CP 1, (x, y) 7→ x is unbranched over ∞. This is defined as a ramified double cover of
CP 1 = C ∪ {∞}, where the branch points of X → CP 1 are at the zeros α1, . . . , α2g+2 of h. There
exists a holomorphic involution X → X, (x, y) 7→ (x,−y) on X. Since the coefficients of h are real,
(x, y) ∈ X implies (x̄, ȳ) ∈ X, so τ : X → X, (x, y) 7→ (x̄,−ȳ) is an antiholomorphic involution
on X. The fixed points of the antiholomorphic involution τ are called the ovals of such a curve.
These are precisely the points (x, y) ∈ X such that y2 = h(x) has a solution in ιR, i.e. h(x) ∈ R
and h(x) ≤ 0 for x ∈ R. Since h(x) is a polynomial of even degree in x, one has for x ∈ R that
limx→±∞ h(x) = ∞, so h(x) ≤ 0 for x ∈ [α2i−1, α2i] with i = 1, . . . , g + 1. So X has g + 1 ovals
ci of τ corresponding to the segments [α2i−1, α2i] for i = 1, . . . , g + 1. Let Xτ = ⋃g+1

i=1 ci. Since
the two sheets of X are only connected via these ovals, X \Xτ consists of two oriented Riemann
surfaces X+ and X− with boundary components c1, . . . , cg+1 which are interchanged by τ . By
[Farkas and Kra, 2012, Corollary III.7.5.1], any holomorphic differential is of the form f(x)dxy ,
where f(x) is a polynomial of degree at most g − 1, so the differential

ωf := f(x)dx
y
,

where f is a polynomial with real coefficients and of degree at most g − 1 is also regular on (X, τ).
For y ∈ ιR and x ∈ R, τ acts as τ(x, y) = (x̄,−ȳ) = (x, y). Taking also the realness of the
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Figure 6.4.: For g = 2: Sketch of the four zeros αi of h and the three zeros βi of h′ as well
as the areas in which Re(h) > 0 and in which Re(h) < 0 and the curves of
M = {(x, h(x)) ∈ C2} starting at βi on which h(x) ∈ R.

coefficients of f into account we see thatÇ
f(x)
y

å
= f(x)

y
= f(x)
−y

= −f(x)
y

,

and so we obtain

τ∗ωf = τ∗
Ç
f(x)
y

dx

å
= f(τ(x))

τ(y) dτ(x) = −f(x)
y

dx = −ω̄f .

Thus, ωf is a real differential. We will deduce the sign of −ιωf on the ovals by considering ω := dx
y

and then multiplying it with the corresponding f . To determine the sign of −ιω on the ovals, we
have to consider the sign of ιy = ι

»
h(x) on these ovals. Therefore, we consider another compact

variety defined by
M◦ := {(x, h(x)) ∈ C2}

and compactify the curve M◦ in such a way that we add one smooth point over x = ∞. The
derivative h′ is a polynomial of degree 2g+ 1 with 2g+ 1 zeros βi ∈ R such that for i = 1, . . . , g+ 1

α2i−1 < β2i−1 < α2i

with h(βi) < 0 for i odd and h(βi) > 0 for i even. Since αi are zeros of first order of h it is
h′(αi) 6= 0. So αi 6= βj for i = 1, . . . , 2g + 2 and j = 1, . . . , 2g + 1. The points βi are the branch
points of the covering (x, h(x)) 7→ x. At these points, one has a local coordinate zi centered at βi
such that one can describe M on a small open neighborhood Ui of βi by y = z2

i . So on Ui one has
z∗i h(x) ∈ R if and only if the image of zi is contained in R or ιR. For brevity, we write zi ∈ R

153



6. The isospectral set for regular finite type potentials

Figure 6.5.: For g = 2: The 4g = 8 curves meeting at ∞ on which h ∈ R.

respectively zi ∈ ιR. Accordingly, we know that at each βi, there start four one-dimensional curves
on which h ∈ R. The two curves corresponding to zi ∈ R are contained in the real axis and one of
the other curves corresponding to zi ∈ ιR is contained in the upper half plane H and the other
one in the lower half plane {z ∈ C | Im(z) < 0}. This is depicted in Figure 6.4. In total, this
yields 4g curves on which h ∈ R, whereby two of these are contained in the real line and at each βi
with i ∈ {1, . . . , 2g − 1}, there start two curves which are not contained in the real line. The set

R := {(x, h(x)) | h(x) ∈ R ∪ {∞}}

is a real, one-dimensional subvariety of M . Furthermore, compactifying M at ∞ by the usual
one-point compactification as in [Munkres, 2000, § 29, page 185], there is a local coordinate z
centered at ∞ such that z(∞) = 0 and such that on a small open neighborhood U of ∞, one can
describe M by y = z2g. Hence, there are 4g one-dimensional curves starting at ∞ on which h(x)
is real: 2g different choices for z ∈ R and 2g different choices for z ∈ ιR, so the sign of h varies on
two neighbored curves, see Figure 6.5 for g = 2. Since h ∈ R+ for real x < α1 and real x > α2g+2,
two of these curves originating at ∞ correspond to x ∈ R. The set

R := {(x, h(x)) ∈M | h(x) ∈ R ∪ {∞}} ⊂M

is a real, one-dimensional compact subvariety of M . To see that the 4g curves, out of which each
two that are not contained in the real line are starting at each βi, are connected to the 4g curves
starting at ∞, first note that the only points in which the real subvariety R has a branch point
are the points at x = βi, so the curves starting at βi which are not contained in R can intersect R
only at one of the points βi with i ∈ {1, . . . , 2n− 1}. We assume that a curve which starts at βi
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6.2. Real potentials

has a second intersection point βj with i 6= j on R. Without loss of generality, let this be the curve
contained in H. Then i− j = 0 mod 2 since the sign of h on the curve starting at βi is opposite
to the sign of h on the curve starting at βi±1. So we can assume without loss of generality that the
second intersection point is in βi+2. Then the curves contained in H starting at βi+1 cannot cross
the curve connecting βi and βi+2 since h(x) ∈ R and h(x) 6= 0 on both curves, whereby h(x) > 0
and h(x) < 0 cannot hold simultaneously. Hence, the curve starting at βi+1 has to remain in the
part of H enclosed by R and the curve connecting βi and βi+2. Then the curve starting at βi+1

must have an open end. This contradicts the definition of R as a subvariety of M : since M is
compact, R is as well. The same holds for the curves starting at βi contained in the lower half
plane. So the assignment of the 4g curves starting at infinity to the 4g curves out of which 4g − 2
are starting at βi is unique. This yields in total g simple closed contours intersecting at infinity,
where one corresponds to the real line and the others are each crossing the real line in exactly one
of the βi. The sign of Im(

√
h) changes when crossing a curve contained in R with h ∈ R+ because

then
√
h ∈ R+, so the imaginary part of

√
h has a zero. These are all the simple closed curves

which intersect the real line at β2i with i ∈ {1, . . . , g − 1}. When crossing a simple closed curve
containing β2i−1 for i ∈ {1, . . . , g}, the real part of

√
h changes its sign because h ∈ R− on this

curve. Since β2i is contained in the complement of the ovals of τ on the real line, the imaginary
part of y has opposite signs on two neighboring segments corresponding to ovals of τ . Because on
these curves, y is purely imaginary, the sign of ιy is also opposite on these neighboring ovals and
hence also −ιω has opposite signs on each two neighboring ovals.
Let us now consider an arbitrary holomorphic 1-form on X given by ωf = f(x)

y dx. Then deg(f) ≤
g − 1 assures that there have to be at least two ovals on which f 6= 0.
We assume without loss of generality that f > 0 and −ιω > 0 on the oval c1 corresponding to
[α1, α2]. If f > 0 on the neighboring oval c2 corresponding to [α3, α4], then −ιωf > 0 on c1 and
−ιωf < 0 on c2.
If f has a zero on the oval corresponding to [α3, α4], then the sign of −ιω on [α5, α6] is equal to
the sign of −ιω on [α1, α2], but the sign of f changed and accordingly −ιωf has opposite signs on
c1 and c3. Successively repeating this procedure while assuming that every of the i− 2 ovals in
between c1 and ci contains at least one zero (since an even number of zeros has the same effect
as no zero), one sees that the number of times that −ιω changed sign from c1 to ci is i and the
maximal number of zeros of f is i− 1. Hence, the sign of −ιωf on c1 and ci is opposite to each
other and the assumption follows.

In the version of the proof of the following Theorem in [Natanzon, 2004], it is claimed but not
shown that two sets which are defined there are open respectively closed. Because we think that
this is one of the crucial steps in the following proof, we worked this part out.

Theorem 6.24 ([Natanzon, 2004, Theorem 2.6.2]). For any real differential ω on an M-curve,
there is an oval on which this differential is positive and an oval on which it is negative.
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6. The isospectral set for regular finite type potentials

Proof. Let M̃ be the set of all M-curves of genus g with an ordered set of ovals c1, . . . , cg+1. We
define two bundles over M̃ : a fiber bundle f : F → M̃ , where the fiber over each point of M̃ is
just the corresponding M-curve, i.e. f−1(X, τ) = (X, τ), and a vector bundle e : E → M̃ which
fibers ẽ−1(X, τ) consists of all real differentials on (X, τ). We take a basis of e−1(X, τ) which is
formed by differentials ωi = ωi(X, τ) such that

∮
ci
ωj = δij for i, j ≤ g. Then there exists a unique

flat connection on e such that the sections ωi are parallel for i = 1, . . . , g. Let us introduce the
following classification of real differentials:

• A real differential is called a differential of type A if each of the ovals contains at least one
points at which the differential is non-positive. The set of M-curves that admit a differential
of type A is called MA.

• A real differential is called a differential of type B if each of the ovals contains at least one
point at which the differential is negative. The set of M-curves that admit a differential of
type B is called MB.

We first show that MA is a closed set in M̃ . Therefore, we choose a sequence (Xn, τn)n∈N of curves
inMA which converges in M̃ . We denote the limit of this sequence by (X, τ) and the corresponding
ovals by ci with i = 1, . . . , g + 1. This yields a sequence ωn := ∑g

i=1 αi,nωi,n of real differentials
of type A. To see that this sequence also converges to a differential of type A, we normalize the
coefficients αi,n ∈ C such that ‖(α1,n, . . . , ag,n)‖ = 1. Then the sequence (α1,n, . . . , αg,n)n∈N is
bounded and thus – by the Bolzano Weierstraß Theorem – contains a convergent subsequence
(ωm)m∈N. This subsequence converges to ω 6= 0. Next, we consider the sequence of real curves
(Xm, τm) corresponding to ωm. To see that each oval ci ⊂ X contains a point pi such that ω is
non-positive at pi, note that the set of ovals is ordered on each Xm with m ∈ N. This defines
also a convergent sequence of ovals (ci,m)m∈N with i = 1, . . . g + 1 in the fibers of f . Since
(Xm, τm) ∈MA for all n ∈ N, there exists a point pi,m on each oval ci,m such that the differential
ωm is non-positive at the points. On every curve Xm, seen as a fiber of f at (Xm, τm) ∈ M̃ , the
set of ovals {c1,m, . . . , cg+1,m} is a compact subset. So the set of ovals

⋃
m∈N

(c1,m ∪ · · · ∪ cg+1,m) ∪ c1 ∪ · · · ∪ cg+1

is also compact in F . Therefore, the sequence (p1,m, . . . , pg+1,m)m∈N contains a convergent
subsequence which we endow with the same index. The limit of this sequence is contained in the
ovals of (X, τ). Since f is a proper map, this also defines a convergent subsequences of points in
the ovals of (Xm, τm) ∈ M̃ . So ω is non-positive at the points pi ∈ ci for i = 1, . . . g + 1 and thus
(X, τ) is a real curve of type A.
Similarly, we show that MB is open: Let (X, τ) ⊂MB be a fixed M -curve in M̃ . We have to show
that any curve which is arbitrarily close to (X, τ) in M̃ is also an element of MB. Let (‹X, τ̃) be
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such an M-curve in M̃ . We denote the set of ordered ovals of (X̃, τ̃) as {c̃1, . . . , c̃g+1}. These are
again just the fixed points of τ̃ in the fiber (X̃, τ̃) over M̃ . Since (X, τ) ∈MB, there exists a the
real holomorphic differential ω on X which is positive at pi ∈ ci for i = 1, . . . , g + 1. We can write
ω = ∑g

i=1 αiωi, where ωi are the elements of the basis of holomorphic differential forms normalized
with respect to c1, . . . , cg. Next, we show that there exists a real holomorphic differential ω̃ and a
set of points {p̃i, . . . , p̃g+1} with p̃i ∈ c̃i on X̃ such that ω̃ is positive at these points. Consider
ω̃ = ∑g

i=1 αiωi, where the coefficients αi are the same as the coefficients of ω. This defines a real
holomorphic differential ω̃ on (X̃, τ̃). Then ω̃ defines a smooth 1-form ωF on F . Moreover, τ
induces an antiholomorphic involution τF on F . Then the set of all fixed points of τF such that
ωF is positive is an open set in the fixed point set of τF in F . Therefore, for all real curves (X̃, τ̃)
in a small open neighborhood of (X, τ), the restriction of ωF to X̃ is a differential form of type B
and thus the set MB is open.
Obviously, MB ⊂MA. If MA ⊂MB, then MA is an open and closed set in M̃ . Since it is shown
in [Natanzon, 2004, Theorem 2.2.1] that M̃ is connected, this yields that MA contains either all
M-curves of fixed genus g or none. Using the example of the hyperelliptic curve from Lemma 6.23
yields that M̃ \MA 6= ∅ and thus MA = ∅ and the assertion follows. So we show that MA ⊂MB.
Let (X, τ) ⊂ MA and let ω be a differential of type A on (X, τ). Because we can decompose
X \Xτ into two parts X+ and X− such that the boundary of these parts is given by c1, . . . , cg+1

and this boundary is homologous to zero, it is

g+1∑
i=1

∮
ci

ω = 0.

It follows that the differential is negative at least at one point of Xτ . Let c be an oval containing
such a point. By Lemma 6.22, there is a real differential γ that is positive on c and negative on
the other ovals. Then for sufficiently small ε, the differential ω + εγ is negative on at least one
point of c and since γ is negative on the remaining ovals and ω non-positive on these, ω + εγ is
negative on these ovals for arbitrary ε > 0. So ω + εγ is a differential of type B for sufficiently
small ε > 0. Thus, MA = MB is an open and closed set in M̃ .

In the classification of the connected components of the real Prym variety, the following theorem
is necessary. Though this is shown in [Natanzon, 2004], we again do not understand the proof
given there due to its shortness and moreover found several small mistakes, e.g. in the formula for
the genus of that curve or several sign switches in the definition of some involution necessary in
that proof. Therefore, we try to give the full picture here.

Theorem 6.25 ([Natanzon, 2004, Theorem 2.6.3]). Let 1 ≤ k ≤ g + 1, k ≡ g + 1 mod 2 and
k > ` ≥ k − k

2 for k even and k > ` ≥ k − k−1
2 for k odd. Then there exists a real curve of type

(g, k, 1) with ovals c1, . . . , ck such that any real differential which is non-negative on c1, . . . , c` must
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6. The isospectral set for regular finite type potentials

be positive on one of the ovals c1, . . . , ck and negative on another.

Proof. For brevity, we set pα(x) := ∏n
i=1(x− αi) and pβ(x) := ∏m

i=1(x− βi). Let us consider the
Riemann surface X◦ which is the normalization of the zero set {(x, y) ∈ C2 | f(x, y) = 0}, where

f(x, y) := y4 − 2y2(pα(x)− pβ(x)) + (pα(x) + pβ(x))2 = 0,

with α1 < · · · < αn ≤ β1 < · · · < βm ∈ R, n > 0 and n,m ≡ 0 mod 2. Solving the above equation
for y2 yields

y2(x) = pα(x)− pβ(x)±
»

(pα(x)− pβ(x))2 − (pβ(x) + pα(x))2

= pα(x)− pβ(x)± 2ι
»
pα(x)pβ(x) =

(»
pα(x)± ι

»
pβ(x)

)2
.

So the surface X◦ is obtained by considering the normalization of the set{
(x, y) ∈ C2 | y = ±

»
pα(x)± ι

»
pβ(x) or y = ±

»
pα(x)∓ ι

»
pβ(x)

}
. (6.1)

This surface defines a four-sheeted covering of X → C, (x, y) 7→ x. At x =∞, the terms of x of
highest power in f(x, y) approximate y, i.e.

y ≈ ±xn/2 ± ιxm/2 respectively y ≈ ∓xn/2 ± ιxm/2,

where m,n ≥ 2 are even. So in a small open neighborhood U of∞, z : U → C with z = 1
x is a local

coordinate of X centered at x =∞. Then X◦ can be compactified such that the compactification X
has four different smooth points over x =∞ and the covering X 7→ CP 1, (x, y) 7→ x is unbranched
at these points.
We want to determine the branch points of this covering together with their order, compare
Definition 2.32. Because this definition is given for a polynomial f of second degree in y, we here
also have to assure that the second derivative of f into the direction of y is unequal to zero. So it
is necessary to take the following partial derivatives of f into account:

∂f

∂y
(x, y) = 4y3 − 4y(pα(x)− pβ(x)),

∂f

∂x
(x, y) = 2y2(p′α(x)− p′β(x)) + 2(pα(x) + pβ(x))(p′α(x) + p′β(x)),

∂2f

∂y2 (x, y) = 12y2 − 4(pα(x)− pβ(x)).

For αn 6= β1, i = 1, . . . , n and j = 1, . . . ,m it is pα(βj), pβ(αi), p′α(βj), p′α(αi), p′β(αi), p′β(βj) 6= 0,
whereby the formulas for the derivatives hold since pα, pβ are polynomials which have only zeros
of first order, so the interval between each two neighbored zeros of pα respectively pβ contains a
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6.2. Real potentials

Figure 6.6.: Depicting the cuts between αn−1, αn = β1 and β2 on all four sheets X1, . . . , X4 to
determine the winding number of (αn, 0) as 2.

zero of the derivative and there are no other zeros. Therefore, one has

∂f

∂y

(
αi,±ι

»
pβ(αi)

)
= 4

(»
pβ(αi))

)3
− 4

»
pβ(αi)pβ(αi) = 0,

∂f

∂y

(
βj ,±

»
pα(βj)

)
= 4

(»
pα(βj)

)3
− 4

»
pα(βj)pα(βj) = 0,

∂f

∂x

(
αi,±ι

»
pβ(αi)

)
=

4pβ(αi)p′β(αi) 6= 0,

4pβ(αi)p′α(αi) 6= 0,

∂f

∂x

(
βj ,±

»
pα(βj)

)
=

4pα(βj)p′α(βj) 6= 0,

4pα(βj)p′β(βj) 6= 0,
∂2f

∂y2

(
αi,±ι

»
pβ(αi)

)
= −8pβ(αi) 6= 0,

∂2f

∂y2

(
βj ,±

»
pα(βj)

)
= 8pα(βj) 6= 0,

whereby the degree of ∂f/∂y shows that ∂f/∂y has no other zeros then the one above.
Let αn 6= β1. Over an interval of the form x ∈ [α2i−1, α2i] respectively [β2i−1, β2i], each two sheets
of the four sheets meet. Accordingly, the covering X → CP 1, (x, y) 7→ x has two branch points of
order one at each x = αi for i = 1, . . . , n and each x = βj for j = 1, . . .m. So the total branching
order is b = 2n+ 2m.
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6. The isospectral set for regular finite type potentials

Let now αn = β1. Due to y(αn) = pα(αn) = pβ(β1) = 0, one has

∂f

∂x
(αn, 0) = 0 and ∂f

∂y
(αn, 0) = 0

and the point on X corresponding to x = αn is a singularity of X in which all four sheets meet.
By determining the winding number around αn = β1, we show next that the corresponding point
on the normalization is a ramification point of order one. For this, take a look at Figure 6.6: To
determine the winding number, we cut X at x ∈ [αn−1, αn] and x ∈ [β1, β2]. We then encircle
αn = β1 once. Let us denote the four sheets of X with all branching lines cut out by X1, . . . , X4,
whereby

X1 :=
{

(x, y) ∈ C2 | y =
»
pα(x) + ι

»
pβ(x)

}
,

X2 :=
{

(x, y) ∈ C2 | y = −
»
pα(x)− ι

»
pβ(x)

}
,

X3 :=
{

(x, y) ∈ C2 | y =
»
pα(x)− ι

»
pβ(x)

}
,

X4 :=
{

(x, y) ∈ C2 | y = −
»
pα(x) + ι

»
pβ(x)

}
.

The cut in [αn−1, αn] connects X1 with X4 and X2 with X3 while the cut in [β1, β2] connects
X1 with X3 and X2 with X4. We consider a simple closed curve as depicted in Figure 6.6 and
count how often it has to wind around the singularity until it closes. Without loss of generality,
we assume that this circle starts on X1 at the point indicated by 4 and ends on X1 at the point
indicated by 1, continues on X3 at the point indicated by 1 to the point indicated by 2, then
continues on X2 at the point indicated by 2 and ending at the point indicated by 3, further
continues on X4, starting at the point indicated by 3 and ending at the point indicated by 4 back
to the starting point indicated by 4 on X1. So the winding number around (αn, 0) = (β1, 0) equals
two. Accordingly, the branching order at this point is one. So the total branching order of the
covering X → CP 1, (x, y) 7→ X is b = 2(n − 1) + 2m. Due to the Riemann-Hurwitz Formula
[Forster, 1981, Theorem 17.4], it is

2g − 2 = b− 8 =

2n+ 2m− 8 for αn 6= β1,

2n+ 2m− 10 for αn = β1,

and so the genus of X is given by

g =

n+m− 3 for αn < β1,

n+m− 4 for αn = β1,

where g > 0 since n,m ≥ 2. The coefficients of pα and pβ are real and (x, y) 7→ (x,−y) is an
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Figure 6.7.: Schematic sketch in a local coordinate in C of the four cuts meeting in (αn, 0) =
(β1, 0). The cut between (αn−1, y1(αn−1)) and (αn−1, y2(αn−1)) (red line) yields the
oval over [αn−1, αn].

involution of X. Thus, also the antiholomorphic map

τ : X → X, (x, y) 7→ (x̄,−ȳ),

defines an involution on X. The connected components of the fixed point set of τ in X are exactly
the ovals for which x ∈ R and y ∈ ιR. This is the case for pα ≤ 0 and pβ ≥ 0, i.e. the ovals are
corresponding to the intervals [α2i−1, α2i] for i = 1, . . . , n/2. If α1 6= βn, then there are n ovals
on X. For α1 = βn, each two contours on X corresponding to [α2i−1, α2i] for i = 1, . . . , n2 − 1
yield n− 2 ovals. However, it is necessary to take a closer look on the form of X over the interval
[αn−1, αn]: At αn−1, only the sign of pα changes while at αn, pα and pβ are equal to zero, so
all four sheets meet in this point. Following the gluing structure as indicated in Figure 6.6, one
sees that this yields precisely one oval on X over [αn−1, αn], compare Figure 6.7. So the total
number of ovals in this case equals n − 1. Furthermore, τ interchanges the sheets given by X1

and X4 as well as the sheets given by X2 and X3 since ±
»
pα(αi) + ι

»
pβ(αi) = ι

»
pβ(αi) and

±
»
pα(αi)− ι

»
pβ(αi) = −ι

»
pβ(αi).

We denote the set of ovals of X by Xτ . Then X \ Xτ = (X1 ∪ X3)◦ ∪ (X2 ∪ X4)◦ with (X1 ∪
X3)◦ ∩ (X2 ∪X4)◦ = ∅. So (X, τ) is a real curve of separating type and the topological type of
(X, τ) equals (g, k, 1), where

k =

n for αn < β1,

n− 1 for αn = β1.

On X, we define the correspondence

τβ : X → X,
(
x,±

»
pα(x)± ι

»
pβ(x)

)
7→
(
x,±

»
pα(x)∓ ι

»
pβ(x)

)
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which maps X1 to X3 and X2 to X4. By the definition of X in (6.1), we see that this map defines
an involution which commutes with τ . The involution τβ pairwise transposes the ovals for αn < β1

and preserves exactly the oval corresponding to [αn−1, αn] for αn = β1 and transposes the other
ones. Let us number the ovals c1, . . . , ck such that τβ[ci] = ck+1−i for i = 1, . . . , k2 in the case
αn 6= β1 and for i = 1, . . . , k−1

2 in the case αn = β1, whereby then τβ[ck] = ck. We assume that
there is a real differential ω that is non-negative on the ovals c1, . . . , c` with ` ≥ n

2 and is positive
or non-negative on the other ovals. Then there is no oval on which the differential ω + τ∗βω is
negative. The involution τ induces an antiholomorphic involution τ̃ : X̃ → X̃ on the surface
X̃ = X/ ∼τβ , where p, q ∈ X obey p ∼τβ q if and only if p = q or p = τβ(q). Then (X̃, τ̃) is an
M-curve of genus (n/2)− 1. Since ω + τ∗βω is invariant under τβ , the differential ω + τ∗βω induces
a real differential on the curve (X̃, τ̃) that is negative on no oval. This contradicts Theorem 6.24
which says that any holomorphic real differential is always negative on one oval and positive on
another one. Thus, we have shown that there is no such differential ω on X.

Remark 6.26. On X as in the foregoing theorem, one can also define another correspondence

τα : X → X,
(
x,±

»
pα(x)± ι

»
pβ(x)

)
7→
(
x,∓

»
pα(x)± ι

»
pβ(x)

)
which commutes with τ as well as τβ. The involution τα preserves each of the ovals. This is also
indicated in the proof given in [Natanzon, 2004]. Because we cannot see where this is necessary
for the proof, we remark it here to describe the full symmetry of X.

6.2.4. The Jacobian variety of a real curve

Let X be a compact Riemann surface of genus g and

{Ai, Bi | i = 1, . . . , g} ∈ H1(X,Z)

a symplectic homology basis as in (4.9), i.e for the intersection numbers of the elements of this
basis holds

Ai ? Aj = Bi ? Bj = 0 and Ai ? Bj = δij .

Let ω1, . . . , ωg be a basis of the space of holomorphic differentials on X which is in this section
normalized as ∮

ak

ωj = 2πιδkj . (6.2)

In this case, the matrix B = (Bkj)gk,j=1, given by Bkj =
∮
bk
ωj , is symmetric and has negative-

definite real part Re(B) = (ReBkj)gj,k=1, compare [Farkas and Kra, 2012, Proposition III.2.8].
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6.2. Real potentials

Therefore, one can define a θ-function θ : Cg → C by

θ(z) = θ(z | B) =
∑
N∈Zg

exp
®

1
2〈BN,N〉+ 〈N, z〉

´
,

compare [Farkas and Kra, 2012, Section VI.1.1 with τ = B]. As in Section 4.2.2, let Λ be the
group generated over Z by the vectors

ΩAk := 2πι(δk1, . . . , δkg)T and ΩBk := (Bk1, . . . , Bkg)T for k = 1, . . . , g

such that Jac(X) = Cg/Λ. Let Φ : Cg → Jac(X) be the natural projection. In the rest of this
section, we use some notation which is for example introduced in [Farkas and Kra, 2012, Sections
III.11.8 and III.11.9]. Let Sk be the set of all positive divisors of degree k. Since X is compact, Sk
is a complex compact manifold, see [Farkas and Kra, 2012, Section III.11.9]. We further define

Srk := {D ∈ Sk | dimH0(X,OD) ≥ r + 1}.

Due to the Riemann-Roch Theorem, dimH0(X,OD)−dimH1(X,OD) = degD−g+1. Accordingly,

Sg = S0
g , S0

g−1 = {D ∈ Sg−1 | dimH1(X,OD) ≥ 1},

S1
g = {D ∈ Sg | dimH1(X,OD) ≥ 1}, S1

g−1 = {D ∈ Sg−1 | dimH1(X,OD) ≥ 2},

Sg \ S1
g = {D ∈ Sg | dimH1(X,OD) = 0}, S0

g−1 \ S1
g−1 = {D ∈ Sg−1 | dimH1(X,OD) = 1}.

As already done in Section 4.2.2, we can use the Abel map to map Sk → Jac(X). Since this map
is not independent of the choice of a basepoint q ∈ X unless k = 0, compare [Miranda, 1995, p.
250], and we will hereinafter use that we can choose q ∈ Xτ , we introduce this map a bit more
detailed than before: For arbitrary p, q ∈ X, let γqp denote a fixed path starting at q and ending
at p. We then fix a path which connects each point of a divisor D = ∑

i pi with q and denote it
by γqD := ∑

i γqpi . Let us choose a point q on X as base point of the map ›Abq : Sk → Cg which
maps a divisor D = ∑k

i=1 pi ∈ Sk to›Abq(D) :=
(∫

γqD

ω1, . . . ,

∫
γqD

ωg

å
=

k∑
i=1

Ç∫
γqpi

ω1, . . . ,

∫
γqp

ωg

å
.

This map is not unique on Cg since it depends on the chosen paths γqpi . However, if two different
paths γqpi and γ̃qpi both start at q and end at pi, then γqpi − γ̃qpi ∈ H1(X,Z), where the chosen
basis of H1(X,Z) corresponds to the basis elements of Λ in Cg. Let again Φ : Cg → Jac(X) = Cg/Λ

be the natural projection. With this, the Abel map Abq : Sk → Jac(X) is uniquely defined as

Abq(D) := Φ

Ç∫
γqD

ω1, . . . ,

∫
γqD

ωg

å
= Φ

(
k∑
i=1

Ç∫
γqpi

ω1, . . . ,

∫
γqpi

ωg

å)
∈ Jac(X).
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6. The isospectral set for regular finite type potentials

By the Jacobi Inversion Theorem, Abq(Sg) = Jac(X) and the Abel map Abq is invertible at a
generic point D ∈ Sg \ S1

g , see for example [Farkas and Kra, 2012, Proposition III.11.11 (a) and
Proposition III.11.12].
We further define Wn := Abq[Sn] ⊂ Jac(X). Then Wn ⊂ Wn+1 for all n ∈ N0 since Abq(D) =
Abq(D + q) for every divisor D ∈Wn. Furthermore, we define W r

n as the set of points in Jac(X)
which are images of divisors D ∈ Sn with dimH0(X,OD) ≥ r + 1 and set Wn := W 0

n . Then

W 1
g = {Abq(D) | D ∈ Sg and dimH1(X,OD) ≥ 1},

Wg \W 1
g = {Abq(D) | D ∈ Sg and dimH1(X,OD) = 0},

Wg−1 = {Abq(D) | D ∈ Sg−1 and dimH1(X,OD) ≥ 1},

W 1
g−1 = {Abq(D) | D ∈ Sg−1 and dimH1(X,OD) ≥ 2},

Wg−1 \W 1
g = {Abq(D) | D ∈ Sg and dimH1(X,OD) = 1}.

For n ≤ g, Wn is an irreducible subvariety of Wg = Jac(X) of dimension n, see [Farkas and
Kra, 2012, III.11.13]. Furthermore, it follows for example from [Farkas and Kra, 2012, Propotion
III.6.5] that Wg \W 1

g is open and dense in Wg and for n ≤ g, the set of singularities of Wn is
a subvariety of Wn which equals W 1

n , compare [Farkas and Kra, 2012, Proposition III.11.11(c)].
Hence, Wn \W 1

n is also for n < g open and dense in Wn. The projection Φ(Kq) to Jac(X) of the
vector (K1

q , . . . ,K
g
q ) ∈ Cg with components

Kj
q = 2πι+Bjj

2 − 1
2πι

∑
` 6=j

∮
a`

Ç
ω`(p)

∫ p

q
ωj

å
is called the vector of Riemann constants, see [Farkas and Kra, 2012, Theorem VI.2.4]. It is shown
in [Farkas and Kra, 2012, Theorem VI.3.1] that the set (θ) = Abq[Sg−1] +Kq ⊂ Jac(X) coincides
with the image of the set of zeros of the θ-function in Jac(X) and is called the θ-divisor.

Definition 6.27. A subset Σ ⊂ Jac(X) is said to be singular if Σ ∩Wg−1 6= ∅. Otherwise, Σ is
called non-singular.

Recall that due to Abq(q) = 0, every divisor D such that q ∈ suppD implies that Abq(D) ⊂Wg−1.
So Wg−1 ⊂Wg. In this case, we write D = D̃ + q ∈ Sg−1 + q with D̃ ∈ Sg−1. Therefore, a subset
Σ ⊂ Jac(X) is also-called singular if Σ ∩Abq[Sg−1 + q] 6= ∅. That means that Σ +Kq contains a
zero of the θ-function if and only if Σ is singular. Because the elements of Wg−1 are exactly the
image of the special divisors in Sg under Abq, see [Farkas and Kra, 2012, Proposition III.11.11(c)],
a subset of Jac(X) is called singular if it contains elements x ∈ Jac(X) which is the image of a
divisor D such that dimH1(X,OD) ≥ 1. After these preliminaries, we start now to introduce the
objects necessary to describe the real part of the Jacobian variety.
Let (X, τ) be a real curve such that Xτ 6= ∅ and choose the base point of the Abel map as q ∈ Xτ .

164



6.2. Real potentials

Figure 6.8.: Sketch of the construction of a real homology basis for a curve X of type (2, 1, 0),
whereby the A-cycles are depicted red and the B-cycles blue.

We define a symplectic basis {Ai, Bi | i = 1, . . . , g} of H1(X,Z) that agrees with τ .

Definition 6.28. For curves of type (g, k, 0), a basis {Ai, Bi | i = 1, . . . , g} of H1(X,Z) is called
real homology basis if its elements have the following properties:

(a) τ [Ai] = Ai for i = 1, . . . , g, τ [Bi] = −Bi for i = 1, . . . , k − 1 and τ [Bi] = −Bi + Ai for
i = k, . . . , g.

(b) The oval containing the point q is homologous to ∑g
i=1Ai.

For curves of type (g, k, 1), a basis {Ai, Bi | i = 1, . . . , g} of H1(X,Z) is called real homology basis
if its elements have the following properties:

(a) τ [Ai] = Ai, τ [Bi] = −Bi for i = 1, . . . , k − 1, τ [Ai] = Ai+m and τ [Bi] = −Bi+m for i =
k, . . . , k+m−1, τ [Ai] = Ai−m and τ [Bi] = −Bi−m for i = k+m, . . . , g, wherem := 1

2(g+1−k).

(b) The oval containing the point q is homologous to ∑k−1
i=1 Ai.

We show next that such a real homology basis exists for every possible topological type (g, k, ε) of
a real curve (X, τ). Hereby, we extended the proof given in [Natanzon, 2004] by also showing this
assertion for ε = 1.

Lemma 6.29 ([Natanzon, 2004, Lemma 2.8.1]). For every real curve of admissible type (g, k, ε),
a real homology basis exists.

Proof. Let (X, τ) be a real curve of type (g, k, 0). Then by Lemma 6.13, there is a set of pairwise
disjoint simple closed contours c0, c1, . . . , cg such that τ [ci] = ci, Xτ = ∑k−1

i=0 ci and X \ (∑g
i=0 ci)

decomposes into two disjoint sets X+ and X−. Let us number the contours such that q ∈ c0
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6. The isospectral set for regular finite type potentials

and define Ai := [ci] ∈ H1(X,Z) for i = 1, . . . , g. So let γi ⊂ X+ join q ∈ c0 and a point
pi ∈ ci. We set Bi := [γi − τ]γi] ∈ H1(X,Z) for i = 1, . . . , k − 1 and for i = k, . . . , g, we set
Bi := [γi + ri − τ]γi] ∈ H1(X,Z), where ri ⊂ ci joins pi and τ(pi). Similar as in the proof of
Lemma B.16, this yields a basis of H1(X,Z). By definition, these cycles obey condition (a) for
ε = 0. Since the boundary of X+ is homologous to zero, the oval c0 containing q is homologous to
g∑
i=1

ci, so the same holds for the corresponding equivalence classes Ai.
The case (g, k, 1) can be treated similarly. Let again q ∈ c0. Then for i = 1, . . . , k − 1, the
cycles Ai ∈ H1(X,Z) are the equivalence classes of ovals c1, . . . , ck−1 of τ and the cycles Bi are
constructed in exactly the same manner as for ε = 0. Furthermore, X \ Xτ decomposes into
two disjoint compact Riemann surfaces X+ and X− with boundary ∑k−1

j=0 cj , whereby each is of
genus m = (g + 1 − k)/2 and τ [X+] = X−, compare Example 6.7. Each of these two surfaces
has a symplectic cycle basis given by {A+

i , B
+
i , C

+
j | i = 1, . . . ,m and j = 1, . . . , k − 1} for X+

and {A−i , B−i , C−j | i = 1, . . . ,m and j = 1, . . . , k − 1} for X−, where the C-cycles correspond to
the boundary components of X+ respectively X−. We enumerate the A- and B-cycles of this
basis in such a way that τ(A+

i ) = A−i and τ(B+
i ) = B−i . The A- and B-cycles of these bases

can be interpreted as elements of a real symplectic basis of H1(X,Z): We set Ak−1+i := A+
i ,

Bk−1+i := B+
i , Ak−1+m+i := A−i and Bk−1+m+i := B−i for i = 1, . . . ,m. These elements obey

the relations for a symplectic basis: obviously, it is Ai ? Bj = δi,j and all other intersections are
zero. Moreover, this basis obeys by definition property (a) in Definition 6.28 and the boundary of
X+ equals ∑k−1

i=0 ci. So c0 is homologous to ∑k−1
i=1 ci. Thus, the same holds for the corresponding

equivalence classes in H1(X,Z).

From now on, we will make no notation difference anymore whether we consider the equivalence
classes of paths in H1(X,Z) or the paths as representants of an equivalence class and write Ai, Bi
respectively Cj for both. Furthermore, we assume in the rest of this section that all considered
homology bases are real. To express how complex conjugation acts on ΩAj and ΩBj for ε = 1, it is
convenient to define the g × g-matrix

M :=

Ü
1(k−1)×(k−1) 0 0

0 0 1m×m

0 1m×m 0

ê
, (6.3)

where m = 1
2(g + 1 − k). We will see on the action of τ∗ on the basis of the holomorphic

differential forms normalized as in (6.2) that this is necessary. This is not mentioned in [Natanzon,
2004]. Therefore, we modified and extended the version of the following lemma in comparison to
[Natanzon, 2004].

Lemma 6.30 (Extension of [Natanzon, 2004, Lemma 2.8.2]). Let (X, τ) be a real curve of
type (g, k, ε), {Ai, Bi | i = 1, . . . , g} a real basis of H1(X,Z) and let ω1, . . . , ωg be the basis of
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6.2. Real potentials

holomorphic differential forms on (X, τ) which are normalized with respect to A1, . . . , Ag as in
(6.2).

(a) For ε = 0, there holds τ∗ω̄j = −ωj as well as ΩAj = −ΩAj for j = 1, . . . , g and

ΩBj =

ΩBj for j = 1, . . . , k − 1,

ΩBj −ΩAj for j = k, . . . , g.

(b) For ε = 1, one has with m = 1
2(g + 1− k) that

τ∗ω̄j =


−ωj for j = 1, . . . , k − 1,

−ωj+m for j = k, . . . , k +m− 1,

−ωj−m for j = k +m, . . . , g,

ΩAj = −ΩAj =


−M ·ΩAj for j = 1, . . . , k − 1,

−M ·ΩAj+m for j = k, . . . , k +m− 1,

−M ·ΩAj−m for j = k +m, . . . , g

and

ΩBj =


M ·ΩBj for j = 1, . . . , k − 1,

M ·ΩBj+m for j = k, . . . , k +m− 1,

M ·ΩBj−m for j = k +m, . . . , g.

Proof. We first show the transformation behavior of the 1-forms which follows immediately from
the fact that the chosen basis of H1(X,Z) is real: Since τ and ω̄i are both antiholomorphic,
τ∗ω̄i is a holomorphic 1- form and can be written as a linear combination of the chosen basis of
holomorphic 1-forms as

τ∗ω̄j =
g∑
l=1

clωl,

where cl ∈ C. For ε = 0 with i, j = 1, . . . , g and for ε = 1 with j = 1, . . . , k − 1 and i = 1, . . . , g, it
is ∮

Aj

τ∗ω̄i =
∮
τ]Aj

ω̄i =
∮
Aj

ωi = −2πιδij = −
∮
Aj

ωi,

so cl = 0 for l 6= j and cj = −1. For ε = 1, j = k, . . . , g +m− 1 and i = 1, . . . , g, one has

∮
Aj

τ∗ω̄i =
∮
τ]Aj

ω̄i =
∮
Aj+m

ωi = −2πιδ(j+m),i = −
∮
Aj+m

ωi,

so cl = 0 for l 6= j +m and cj+m = −1. Analogously one obtains for ε = 1 and j = k +m, . . . , g
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6. The isospectral set for regular finite type potentials

that cl = 0 for l 6= j −m and cj−m = −1. So the asserted action of τ∗ on ω̄i follows.
Obviously, because ΩAj = 2πιe(j), where e(j) is the j-th unit vector (0, . . . , 0, 1, 0, . . . , 0) in Cg, it
is ΩAj = −ΩAj for ε = 0. Likewise we obtain for ε = 1 and j = 1, . . . , k − 1, that

ΩAj =
(∮
Aj
ω̄i
)g
i=1

=
(∮
τ]Aj

τ∗ω̄i
)g
i=1

=
(∮
Aj
τ∗ω̄i

)g
i=1

=

Ü
−
∮
Aj
ωi|k−1

i=1

−
∮
Aj
ωi|gi=k+m

−
∮
Aj
ωi|k+m−1

i=k

ê
= −M ·ΩAj ,

where the first equality holds since applying τ] to the path of integration and τ∗ on the differential
form simultaneously leaves the value of the integral invariant. For j = k, . . . , k +m− 1, it is

ΩAj =
(∮
Aj
τ∗ω̄i

)g
i=1

=

Ü
−
∮
Aj+m

ωi|k−1
i=1

−
∮
Aj+m

ωi|gi=k+m

−
∮
Aj+m

ωi|k+m−1
i=k

ê
= −M ·ΩAj+m .

Analogously ΩAj = −M ·ΩAj−m for j = k +m, . . . , g. Furthermore,

ΩBj =
Ç∮

Bj

ωi

åg
i=1

=
Ç∮

Bj

ω̄i

åg
i=1

=
Ç∮

τ]Bj

τ∗ω̄i

åg
i=1

.

So the transformation behavior of a real symplectic cycle basis of H1(X,Z) yields for ε = 0 and
j = 1, . . . , k − 1

ΩBj =
Ç∮
−Bj
−ωi

åg
i=1

=
Ç∮

Bj

ωi

åg
i=1

= ΩBj

and for j = k, . . . , g

ΩBj =
Ç∮
−Bj+Aj

−ωi
åg
i=1

=
Ç∮

Bj

ωi −
∮
Aj

ωi

åg
i=1

= ΩBj −ΩAj .

For ε = 1, the transformation behavior of a real symplectic cycle basis of H1(X,Z) gives for
j = 1, . . . , k − 1 that

ΩBj =

Ü ∮
−Bj −ωi |

k−1
i=1∮

−Bj −ωi+m |
k+m−1
i=k∮

−Bj −ωi−m |
g
i=k+m

ê
=

Ü ∮
Bj
ωi |k−1

i=1∮
Bj
ωi |gi=k+m∮

Bj
ωi |k+m−1

i=k

ê
= M ·ΩBj .

Because of τ(Bj) = Bj−m, it is for j = k, . . . , k +m− 1

ΩBj =

Ü ∮
−Bj+m −ωi |

k−1
i=1∮

−Bj+m −ωi+m |
k+m−1
i=k∮

−Bj+m −ωi−m |
g
i=k+m

ê
=

Ü ∮
Bj+m

ωi |k−1
i=1∮

Bj+m
ωi |gi=k+m∮

Bj+m
ωi |k+m−1

i=k

ê
= M ·ΩBj+m

and ΩBj = M ·ΩBj−m for j = k +m, . . . , g.
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We denote the natural involution Sg → Sg implied by τ also by τ . This is defined at the beginning
of Section 4.2. For both, ε = 0 and ε = 1, we consider an involution τR : Cg → Cg which is defined
by its action on the basis {ΩAi , ΩBi | i = 1, . . . , g} of the space R2g ' Cg. For ε = 0, we define
this involution via the R-linear map

ΩAj 7→ −ΩAj = ΩAj for j = 1, . . . , g, ΩBj 7→ −ΩBj =

−ΩBj for j = 1, . . . , k − 1,

−ΩBj +ΩAj for j = k, . . . , g

(6.4)
and for ε = 1 by the R-linear map

ΩAj 7→ −M ·ΩAj =


ΩAj for j = 1, . . . , k − 1,

ΩAj+m for j = k, . . . , k +m− 1,

ΩAj−m for j = k +m, . . . , g,

ΩBj 7→ −M ·ΩBj =


−ΩBj for j = 1, . . . , k − 1,

−ΩBj+m for j = k, . . . , k +m− 1,

−ΩBj−m for j = k +m, . . . , g,

(6.5)

where the last equality as well as the property that τR : Cg → Cg is an antiholomorphic involution
follows from M2 = 1.

Proposition 6.31. Let (X, τ) be a real curve of genus g and D ∈ Sg. Then there exists an
unique antiholomorphic involution τR : Jac(X)→ Jac(X) such that Abq(τ(D)) = τR(Abq(D)) for
D ∈ Sg. Let x ∈ Jac(X). Then for ε = 0, this map is given by τR(x) = −x̄ and for ε = 1 by
τR(x) = −M · x̄.

Proof. It is ›Abq(τ(D)) =
∑
p∈D

(∫
τ]γqp

ωi
)g
i=1

=
∑
p∈D

(∫
γqp

τ∗ωi
)g
i=1

.

Hence, Lemma 6.30(a) implies for ε = 0 that›Abq(τ(D)) =
∑
p∈D

(
−
∫
γqp

ωi
)g
i=1

= −›Abq(D).

For ε = 1, Lemma 6.30(b) yields

›Abq(τ(D)) =
∑
p∈D

Ü
−
∫
γqp

ωi |k−1
i=1

−
∫
γqp

ωi+m |k+m−1
i=k

−
∫
γqp

ωi−m |gi=k+m

ê
= −M ·›Abq(D).

So the involution τR on Cg is defined as claimed, but it still depends on the chosen path γqp. In
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6. The isospectral set for regular finite type potentials

(6.4) and (6.5), we have seen that τR[Λ] ⊂ Λ, so τR : Cg → Cg induces an involution on Jac(X)
which we also denote by τR : Jac(X)→ Jac(X).

Definition 6.32. The real part or real points JacR(X) of the Jacobian variety Jac(X) of the
curve (X, τ) is defined as the set of fixed points of the involution τR on Jac(X).

Theorem 6.33 ([Natanzon, 2004, Theorem 2.8.1]). The real part JacR(X) of the Jacobian variety
of a real curve (X, τ) of type (g, k, ε) with k > 0 decomposes into 2k−1 real tori of the form
Φ(TR + δ), where

δ = 1
2

k−1∑
j=1

δjΩBj , δj ∈ {0, 1}, (6.6)

TR = ιRg for ε = 0 and for ε = 1

TR = {(x1, . . . , xg) ∈ Cg | xj ∈ ιR for 1 ≤ j ≤ k − 1, x̄j = −xj+m for k ≤ j ≤ k +m− 1}.

Such a torus is non-singular in sense of Definition 6.27 if and only if ε = 1, k = g + 1 and
δ1 = · · · = δg = 1.

In the proof of this theorem given in [Natanzon, 2004], most steps shown here are completely
missing. Neither the exact form of the real tori TR is shown there nor an argumentation why there
is only one possibility for a non-singular torus is given in a way that we understand it. So we
extended that proof in hope that these steps are now more comprehensible.

Proof. The fixed points of τR on Jac(X) are a submanifold of real dimension g, compare [Schneps,
2003, Lemma 3.5]. Let ε = 0. Then the fixed points of τR are spanned by the basis elements ΩAj
since τR leaves ιRg invariant. Due to τ(q) = q and Lemma 6.30(a), it is(∫

γqp
ωi +

∫
τ]γqp

ωi,
)g
i=1

=
(∫
γqp

(ωi + τ∗ωi)
)g
i=1

=
(∫
γqp

(ωi − ωi)
)g
i=1
∈ TR.

Recall that the ovals of (X, τ) are given by {c1, . . . , ck} and that these are representants of the
A-cycles A1, . . . , Ak. One sees in the construction of the B-cycles of a real homology basis as in
the proof of Lemma 6.29 that there is a p′ ∈ cj such that Bj = γqp′ − τ]γqp′ for j = 1, . . . , k − 1.
Since (∫

γqp′
ωi

)g
i=1

= Re
(∫

γqp′
ωi

)g
i=1

+ ι Im
(∫

γqp′
ωi

)g
i=1

and

Re
(∫
γqp′

ωi
)g
i=1

= 1
2
(∫
γqp′

ωi +
∫
γqp′

ωi
)g
i=1

= 1
2
(∫
γqp′

ωi +
∫
τ]γqp′

τ∗ω̄i
)g
i=1

= 1
2
(∫
γqp′

ωi −
∫
τ]γqp′

ωi
)g
i=1

= 1
2
(∫
γqp′−τ]γ(qp′) ωi

)g
i=1

= 1
2ΩBj ,
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it is
(∫
γqp′

ωi
)g
i=1

= 1
2ΩBj +TR. To see that the same holds for arbitrary p ∈ cj with j = 0, . . . , k−1,

let p, p′ ∈ cj and γpp′ be one of the two paths on cj connecting p and p′. Then Re(
∫
γp′p

ωi)gi=1 = 0
because τ = 1 on cj and thus Lemma 6.30(a) yields that ωi|cj = −ω̄i|cj for i = 1, . . . , g. Again,
due to Lemma 6.30 (a), one has

Ä∫
γpq

ωi
äg
i=1
∈ 1

2ΩBj +TR for arbitrary p ∈ cj with j = 1, . . . , k− 1
and

Ä∫
γpq

ωi
äg
i=1
∈ TR for j = 0.

The determination of the fixed point set of τR in the case ε = 1 follows also directly from the
definition of τR: since τR leaves ΩAi invariant for i = 1, . . . , k− 1 and maps the j-th coordinate to
the negative and complex conjugate of the (j + k)-th coordinate for j = k, . . . , k +m− 1, TR is
given as above. For ε = 1, Lemma 6.30(b) gives for a fixed path γqp thatÇ∫

γqp

ωi +
∫
τ]γqp

ωi,

åg
i=1

=
Ç∫

γqp

ωi + τ∗ωi

åg
i=1

=

=

Ü ∫
γqp

ωi − ωi |k−1
i=1∫

γqp
ωi − ωi+m |k+m−1

i=k∫
γqp

ωi − ωi−m |gi=k+m

ê
=

Ü ∫
γqp

ωi − ωi |k−1
i=1∫

γqp
ωi − ωi+m |k+m−1

i=k
−
∫
γqp

ωi − ωi+m |k+m−1
i=k

ê
∈ TR.

Due to the action of τ on the A-cycles shown in Lemma 6.30(b), it is ωi|Aj = −ω̄i|Aj for
j = 1, . . . , k−1, ωi|Aj = −ω̄i+m|Aj for i = k, . . . , k+m−1 and ωi|Aj = −ω̄i−m|Aj for i = k+m, . . . , g.
Hence, for p, p′ ∈ aj with j = 0, . . . , k − 1, (

∫
γp′p

ωi)gi=1 = 0 + TR. So also in this case
(∫
γqp

ωi
)g
i=1

does not depend on the chosen point p ∈ cj and for arbitrary p ∈ cj , it is

(∫
γqp

ωi
)g
i=1

= 1
2
(∫
γqp

ωi +
∫
τ]γqp

τ∗ωi
)g
i=1

= 1
2

â (∫
γqp

ωi −
∫
τ]γqp

ω̄i
) ∣∣∣k−1

i=1(∫
γqp

ωi −
∫
τ]γqp

ω̄i+m
) ∣∣∣k+m−1

i=k(∫
γqp

ωi −
∫
τ]γqp

ω̄i−m
) ∣∣∣g

i=k+m

ì
=

= 1
2

â (∫
γqp

ωi +
∫
−τ]γqp ωi +

∫
τ]γqp

(ωi − ω̄i)
) ∣∣∣k−1

i=1(∫
γqp

ωi +
∫
−τ]γqp ωi +

∫
τ]γqp

(ωi − ω̄i+m)
) ∣∣∣k+m−1

i=k(∫
γqp

ωi +
∫
−τ]γqp ωi +

∫
τ]γqp

(ωi − ω̄i−m)
) ∣∣∣g

i=k+m

ì
=

= 1
2ΩBj + 1

2

Ü ∫
τ]γqp

(ωi − ω̄i) |k−1
i=1∫

τ]γqp
(ωi − ω̄i+m) |k+m−1

i=k

−
∫
τ]γqp

(ωi − ω̄i+m) |k+m−1
i=k

ê
,

so again
(∫
γqp

ωi
)g
i=1

= 1
2ΩBj + TR. We define for δj ∈ {0, 1} and j = 1, . . . , k − 1

Rδ := {D ∈ Sg | τD = D and deg(D ∩ cj) = δj mod 2 for j = 1, . . . , k − 1}.
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We show next that x ∈ Φ(TR + δ) if and only if x = Abq(D) with D ∈ Rδ. Let x = Abq(D)
with D ∈ Rδ. Every divisor D ∈ Rδ can contain two different kinds of points: either points
contained in the ovals ci for i = 0, . . . , k − 1 or points on X \Xτ . The equality τ(D) = D implies
that p ∈ D ∩ (X \Xτ ) if and only if τ(p) ∈ D ∩ (X \Xτ ). Accordingly, every divisor D can be
decomposed as

D = ‹D + τ(‹D) +D′

where D′ = D∩
k−1∑
i=0

ci and supp(‹D), supp(τ(‹D)) ∈ (X \Xτ ). It follows from the above calculations

that x ∈ Φ(TR + δ) since for p ∈ D ∩ c0, it is
Ä∫
γqp

ωi
äg
i=1
∈ TR, and so

x =
∑
p∈D̃

Ç∫
γqp

ωi +
∫
τ]γqp

ωi

åg
i=1︸ ︷︷ ︸

∈TR

+
∑
p∈D′

Ç∫ p

q
ωi

åg
i=1︸ ︷︷ ︸

∈δ+TR

mod Λ ∈ Φ(TR + δ),

which shows that Abq[Rδ] ⊂ Φ(TR + δ).
To see that the other inclusion also holds, we show that Abq|Rδ : Rδ → Φ(TR + δ) is surjective.
This is done in two steps. Remember that the compactness of X yields that Sg is also a compact,
complex manifold, compare [Farkas and Kra, 2012, Section III.11.9]. Every closed subset of a
compact set is compact and Abq is continuous, so the image of any closed subset of Sg is also
closed in Jac(X). Moreover, the compactness of Sg yields that the restriction of Abq to Sg is a
closed map. So to see that the image of Rδ under Abq is closed in Φ(TR + δ), it is necessary to
show that Rδ is a closed subset of Sg: For this purpose, let (Dn)n∈N be a sequence such that
Dn ∈ Rδ for every n ∈ N which converges in Sg. Since there are only finitely many ovals and
the support of Dn is also finite for every n ∈ N, there are only finitely many possibilities for
the distribution of the divisor points on Dn ∩ ci such that δi does not change. So we can find
a convergent subsequence (Dm)m∈N of (Dn)n∈N such that the number of divisor points on all
ovals is constant. So δi remains constant on all Dm with m ∈ N. Furthermore, the limit of
this subsequence restricted to ci, i.e. the limit of (Dm ∩ ci)m∈N, is contained in ci because the
ovals are compact. Accordingly, δi also remains constant in the limit of this sequence. Since τ
is continuous on X, and so also continuous on Sg, compare [Farkas and Kra, 2012, Proposition
III.11.9], τ(D) = τ(limm→∞Dm) = limm→∞ τ(Dm) = limDm = D. So Rδ is compact, and
therefore closed in Sg.
Secondly, we show that Abq[Rδ∩ (Sg \S1

g )] is dense in Φ(TR+δ)∩ (Wg \W 1
g ). Note thatWg \W 1

g is
open and dense in Wg = Jac(X). We use this to show that also J̃acR(X) := JacR(X)∩ (Wg \W 1

g )
is non-empty and dense in JacR(X). Moreover, we exploit that W 1

g equals the zeros of the
θ-divisor on Jac(X). Due to [Schneps, 2003, Lemma 3.5], JacR(X) is a non-empty, connected real
submanifold of Jac(X). Let us assume that θ(x + Kq)|JacR(X) ≡ 0. By [Farkas and Kra, 2012,
Theorem VI.3.1], the values x are then contained in Wg−1, and therefore describe the special
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6.2. Real potentials

divisors. Since θ : Jac(X) → C is holomorphic, see [Farkas and Kra, 2012, VI.2.3], it can be
represented as a Taylor series, where all coefficients vanish identically in every open neighborhood
in JacR(X) around any point p ∈ JacR(X). Taking open neighborhoods of p ∈ JacR(X) in
Jac(X) yields that also all Taylor coefficients of θ vanish on this open neighborhood of p. Hence,
also the restriction of θ to this open neighborhood in Jac(X) is identically zero. Then, by the
identical principle for holomorphic functions in several variables, θ ≡ 0 on Jac(X). However,
θ 6≡ 0 on Jac(X) and thus θ does also not vanish on any connected component of JacR(X). So
the set J̃acR(X) is open and dense in JacR(X) and there exist non-special points in Φ(TR + δ)
for every admissible δ. Furthermore, Abq|Sg\S1

g
: Sg \ S1

g → Wg \W 1
g is an isomorphism, and

therefore injective, see [Farkas and Kra, 2012, Proposition III.11.11(c)]. This yields that also
Abq|Rδ∩(Sg\S1

g) is injective. Let x ∈ Φ̃(TR+ δ) := Φ(TR+ δ)∩ (Wg \W 1
g ). Then there exists exactly

one element D ∈ Sg \ S1
g such that Abq(D) = x. Furthermore, the injectivity of Abq|Rδ∩(Sg\S1

g)

implies τ(D) = D for x ∈ Φ̃(TR + δ) and Abq(D) = x. Due to the definition of δ in (6.6), one has

τR(δ) = τR

Ç
1
2

k−1∑
j=1

ΩBjδj

å
= 1

2

k−1∑
j=1

τR(ΩBj )δj = −1
2

k−1∑
j=1

ΩBjδj = −δ = δ mod Λ.

Altogether we see that D ∈ Rδ ∩ (Sg \ S1
g ). Thus, Φ̃(TR + δ) ⊂ Abq[Rδ ∩ (Sg \ S1

g )] and Φ(TR + δ)
equals the closure Abq[Rδ ∩ (Sg \ S1

g )] of Abq[Rδ ∩ (Sg \ S1
g )], where

Abq[Rδ ∩ (Sg \ S1
g )] = Abq[Rδ ∩ (Sg \ S1

g )] = Abq[Rδ].

Next, we show that only for k = g + 1, the torus TR + δ with δ = (1, . . . , 1) is non-singular. To do
so, we first prove that Rδ ∩ Sg−1 = ∅ if and only if Abq[Rδ] ∩Abq[Sg−1] = ∅.
The first step of this is to show that Abq[Rδ] ∩Wg−1 = ∅ if and only if Rδ ∩ (Sg−1 + q) = ∅: Note
that Abq(q) = 0 implies Abq[Rδ∩(Sg−1 +q)] ⊂ Abq[Rδ]∩Wg−1. In particular, Abq[Rδ]∩Wg−1 = ∅
implies Rδ ∩ (Sg−1 + q) = ∅.
To see that the other implication also holds, we show the surjectivity of the map Abq|Rδ∩(Sg−1+q) :
Rδ ∩ (Sg−1 + q) → Abq[Rδ] ∩Wg−1. This implies that Abq[Rδ ∩ (Sg−1 + q)] ⊃ Abq[Rδ] ∩Wg−1,
wherefore emptiness of Rδ∩ (Sg−1 +q) implies that also Abq[Rδ]∩Wg−1 = ∅. As in the proof of the
surjectivity of Abq|Rδ : Rδ → Φ(TR + δ) above, one sees that Rδ ∩ (Sg−1 + q) is a closed subset of
the compact set Rδ and hence also compact. So the image of Rδ ∩ (Sg−1 + q) under the continuous
map Abq is compact, and therefore closed in Abq[Rδ] ∩Wg−1. We use that the set of singularities
of Wg−1 is – as a subvariety of Jac(X) – given by W 1

g−1 and Abq|Sg−1\S1
g−1

is an isomorphism to
Wg−1 \W 1

g−1, compare [Farkas and Kra, 2012, Proposition III.11.11(c)]. Hence, the set of points
x ∈Wg−1 with preimage D + q ∈ Sg−1 + q under Abq such that dimH1(X,OD) = 1 is open and
dense in Wg−1 and again, the injectivity of Abq|Sg−1\S1

g−1
yields that also Abq|Rδ∩(Sg−1\S1

g−1) is
injective. Now, let x = τ(x) ∈ Abq[Rδ ∩ (Wg−1 \W 1

g−1)]. Due to the isomorphy of Sg−1 \ S1
g−1
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6. The isospectral set for regular finite type potentials

and Wg−1 \ W 1
g−1 via Abq, there exists a divisor D = Ab−1

q (x) ∈ (Sg−1 \ S1
g−1) + q. Since

Abq(D) = x = τR(x) = Abq(τ(D)), the injectivity of Abq on Sg−1 \ S1
g−1 yields τ(D) = D, and so

τ(Sg−1 + q) ⊂ Sg−1 + q. Furthermore, D ∈ Rδ ∩ (Sg−1 + q) implies that τ(D) ∈ Rδ ∩ (Sg−1 + q).
Due to the closeness of Abq[Rδ ∩ (Sg−1 + q)] in Abq[Rδ]∩Wg−1 and since Abq[Rδ]∩ (Wg−1 \W 1

g−1)
is dense in Wg−1, it follows as in the step before that Abq[Rδ] ∩Wg−1 ⊂ Abq[Rδ ∩ (Sg−1 + q)].
Thus, Abq|Rδ∩(Sg−1+q) is surjective to Abq[Rδ] ∩Wg−1. Altogether we see that Rq(Sg−1 + q) = ∅
implies that Abq[Rδ] ∩Wg−1 = ∅.
Finally, we show that Rδ ∩ (Sg−1 + q) = ∅ if and only if

k−1∑
i=1

δi > g − 1,

i.e. if and only if k = g + 1 and δ1 = · · · = δg = 1. That Rδ ∩ Sg−1 = ∅ for k = g + 1 and
δ1 = · · · = δg = 1 is obvious because in this case all divisor points are contained in c1, . . . , cg. This
means that q 6∈ D, and so D 6∈ Sg−1 + q. On the other hand, let Rδ ∩ (Sg−1 + q) = ∅. Then no
divisor in Rδ contains q. To avoid the existence of such a divisor in Rδ via linear equivalence,
for all divisors in Rδ must hold suppD ∈ ∑k−1

j=i ci. This is only ensured for k = g + 1 and
δ1 = · · · = δg = 1.

6.2.5. Prym varieties of real curves

From now on, we consider real curves which are additionally equipped with a holomorphic involution.
The next two definitions can be found at the beginning of [Natanzon, 2004, Section 9.1], whereas
the two next Lemmata and the corollary afterwards are implicitly claimed to be valid, but not
shown.

Definition 6.34. A real curve with involution (X, τ1, σ) is a compact Riemann surface X of genus
2g with an antiholomorphic involution τ1 and a holomorphic involution σ such that τ1 ◦ σ = σ ◦ τ1

and such that σ has exactly two fixed points Q+ and Q− with τ1(Q+) = Q−. We set τ2 := τ1 ◦ σ.

Let X be a real curve with involution (X, τ1, σ) of genus 2g as in Definition 6.34. We assume
that among the ovals of the involution τi with i ∈ {1, 2}, there are ri ovals that are invariant
with respect to σ and 2ti ovals that are pairwise transposed by σ. These are the only cases that
can occur since otherwise (X, τ) is not invariant under σ. Let Xσ be the quotient surface as in
Definition 4.14 and πσ : X → Xσ be the corresponding two-sheeted covering. Then τ1 induces
an involution on Xσ as follows: The involutions τ1 and σ commute. Let p, q ∈ X with p ∼σ q,
i.e. either p = q or p = σ(q). Then τ1(p) is either τ1(q) or τ1(σ(q)) = σ(τ1(q)). Hence, also
τ(p) ∼σ τ(q), wherefore τ induces an involution τσ on Xσ.

Lemma 6.35. For a real curve with involution (X, τ1, σ) of genus 2g, the curve (Xσ, τσ) is a
real curve of type (g, k, ε), where k = t1 + r1 + t2 + r2. The preimage of the set Xτσ

σ under the
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6.2. Real potentials

two-sheeted covering πσ : X → Xσ coincides with Xτ1 ∪Xτ2. This preimage decomposes X into
two parts if and only if ε = 1.

Proof. The surface Xσ is a Riemann surface of genus g since σ has exactly two fixed points on
X, compare Proposition A.1 and Lemma 4.13. By definition, Xσ is invariant under σ and for
i ∈ {1, 2}, each pair of the 2ti ovals on X – which are interchanged by τi – are mapped to one
oval of τσ on Xσ and the ri ovals of τi are each mapped to one oval of τσ on Xσ. So Xσ has
t1 + t2 + r1 + r2 ovals in total and (Xσ, τσ) is a real curve of topological type (g, k, ε).
It remains to show that ε = 1 if and only if Xτ1 ∪Xτ2 decomposes X into two parts. Let ε = 1.
Then Xσ \Xτσ

σ consists of two disjoint sets which are interchanged by τσ. Each of these components
has a preimage in X. Assume that the intersection of these preimages is not empty, i.e. that
X \ (Xτ1 ∪Xτ2) does not compose into two parts. Then there exists an element in X \ (Xτ1 ∪Xτ2)
which is contained in the intersection of the preimage of these two sets. The covering X → Xσ

maps each point in X to exactly one point in Xσ. Accordingly, this element is mapped to one
element on Xσ which has to be in both connected disjoint components of Xσ \Xτσ

σ . This contradicts
ε = 1.
Conversely, let X \ (Xτ1 ∪ Xτ2) consist of two open connected components X+ and X− with
Q+ ∈ X+ and Q− ∈ X−. Then σ : X± → X± does not interchange those components, and so πσ
maps them to disjoints sets X+

σ and X−σ , where Xτ1 ∪Xτ2 is mapped to Xτσ
σ under this map. So

ε = 1.

Definition 6.36. The set (g, ε, t1, r1, t2, r2) is the topological type of the real curve with involution
(X, τ1, σ).

As in Examples 6.7 and 6.8, one can construct models of real curves with involution (X, τ1, σ) of a
certain topological type and show that all real curves with involution of this type are topological
equivalent to that model if the genus of X is bigger or equal to four. So our next aim is to consider
the construction given in [Natanzon, 2004, Example 2.9.1]. Therefore, a certain two-sheeted
covering π̃ : X → X̃ is necessary, where X̃ and X are Riemann surfaces and the genus of X̃ is
bigger or equal to two. Recall that every Riemann surface of genus g ≥ 2 has the upper half space
H as universal covering with a group of deck transformations Λ such that X̃ = H/Λ. Furthermore,
there is an isomorphism between Λ and π1(X, q), compare [Hatcher, 2002, Proposition 1.40]. For
a more precise explanation, see Appendix B.

Lemma 6.37. Let X̃ be a compact Riemann surface of genus g with boundary which consists of the
simple closed contours c1, . . . , cJ , d1, . . . , dL. Then there exists a two-sheeted covering π : X → X̃

such that the genus of X is 2g and the preimages of each of the boundary components c1, . . . , cJ

consist of each two simple closed contours on which the covering is one-sheeted and the preimages of
each of the d1, . . . , dL consist of each one simple closed contour on which the covering is two-sheeted
if and only if L = 0 mod 2.
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6. The isospectral set for regular finite type potentials

Proof. Let
{ai, bi, cj , d` | i = 1, . . . , g, j = 1, . . . , J, ` = 1, . . . , L}

be a set of generators of the fundamental group G := π1(X̃, q̃) with q̃ ∈ d1. This basis is chosen
such that the representatives ai, bi correspond to the cycles which originate from the genus g of X̃
and cj , d` correspond to the boundary cycles of X̃. We first show that

{ai, d1a
−1
i d−1

1 , bi, d1b
−1
i d−1

1 , cj , d1cjd
−1
1 , dmdn | i = 1, . . . , g, j = 1, . . . , J, m, n = 1, . . . , L}

generates a normal subgroup H of G with (G : H) = 2. Then this subgroup generates a
covering π̃ : X → X̃, see [Hatcher, 2002, Theorem 1.38]. Hereby, let π̃ : X → X̃ be a map
taking the basepoint q ∈ X of H1(X, q) to the basepoint q̃ ∈ X̃ of H1(X̃, q̃). Then π̃ induces
a homomorphism π∗ : π1(X, q) → π1(X̃, q̃), defined by composing loops f : I → X based at q
with π̃, that is π̃∗[f ] = [π̃ ◦ f ]. A more detailed description on this homomorphism can be found
in [Hatcher, 2002, Chapter 1 – Induced Homomorphisms, page 34]. Then π̃∗π1(X, q) = H with
q ∈ π−1[{q̃}], compare [Hatcher, 2002, Theorem 1.38]. We can deduce two things if we have shown
that the index of H in G equals two: First of all, it implies that the covering π̃ generated by H is
two-sheeted, compare [Hatcher, 2002, Proposition 1.32]. Secondly, it implies that H is normal. To
see the last assertion, let G be a group and H be a subgroup of G with index 2 and let g be any
element of G. If g ∈ H, then gH = H = Hg. If g 6∈ H, then the two left cosets are given by H and
gH and the two right cosets are given by H and Hg. Since (G : H) = 2 and g 6∈ H, i.e. gH 6= H as
well as Hg 6= H, one has gH = Hg. Thus, the left and right cosets of H coincide, so H is normal.
Therefore, the associated covering π̃ : X → X̃ is a normal covering, i.e. for each p̃ ∈ X̃ and each
pair of lifts p, p′ ∈ X of p̃, there is a deck transformation in Λ carrying p to p′. Then the group of
deck transformations of X on H is isomorphic to G/H, compare [Hatcher, 2002, Proposition 1.39].
In other words, normality implies that the choice of this subgroup is independent from the choice
of q since usually, as q varies over the fiber π̃−1[{q̃}], the set of subgroups π̃∗π1(X, q) ⊂ π1(X̃, q̃) is
exactly one conjugacy class of H, see [Lee, 2010, Theorem 11.19], and the only subgroup conjugate
to a normal subgroup H is H itself.
G fulfills equation (B.4), i.e. ∏g

i=1 aibia
−1
i b−1

i

∏J
j=1 cj

∏L
`=1 d` = 1. Because H is a subgroup of G,

it has to be compatible with this relation. Moreover, remember that H 6= G. Assume that L = 1
mod 2. This yields that for m ∈ {1, . . . , l}, it is

dm =
g∏
i=1

aibia
−1
i b−1

i

J∏
j=1

cj

L∏
`=1

d` · dm ∈ H

since the product of all d-factors can be decomposed into products of the form didj ∈ H with
i, j ∈ {1, . . . , L}. In that case, H is a subgroup of G containing all generators of G, and therefore
equal to G. This contradicts the assumption that H 6= G. Conversely, l = 0 mod 2 implies
that equation (B.4) applied to H contains an uneven number of factors of dm and thus dm is not
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contained in H for m = 1, . . . , L. So H is a subgroup of G which does not equal G if and only if
` = 0 mod 2.
This can now be used to show that (G : H) = 2 since d1 ∈ G\H. We claim that H ∪d1H = G. To
see this, we first show that H ∪ d1H is a group. Therefore, we only have to show that H ∪ d1H is
closed. Note that all generators of d−1

1 Hd1 are contained in H: since d1aid
−1
1 = (d1a

−1
i d−1

1 )−1 ∈ H
and d2

1, d
−2
1 ∈ H, also d−1

1 aid1 ∈ H and d−1
1 d1a

−1
i d−1

1 d1 = a−1
i ∈ H for i ∈ {1, . . . , g}. Analogously

d−1
1 bid1, d

−1
1 d1bid

−1
1 d1 ∈ H for i ∈ {1, . . . , g} and d−1

1 cjd1, d
−1
1 d1cjd

−1
1 d1 ∈ H for j ∈ {1, . . . , J}.

Finally, d−1
1 dmdnd1 = (dmd1)−1d2

m(dnd1) ∈ H for m,n ∈ {1, . . . , L}, and so d−1
1 Hd1 ⊂ H.

Repeating these observations the other way around yields that also all generators of H can
be written as elements of d−1

1 Hd1, wherefore d−1
1 Hd1 = H. We use this equality to show the

closedness of H ∪ d1H: It is hd1h
′ = d1d

−1
1 hd1h ∈ d1H and d1hd1h

′ = d1hd
−1
1 d2

1h
′. Accordingly,

for all h, h′ ∈ H, one has

hh′ ∈ H ⊂ H ∪ d1H, d1hd1h
′ ∈ H ⊂ H ∪ d1H,

hd1h
′ ∈ d1H ⊂ H ∪ d1H, d1h

′h ∈ d1H ⊂ H ∪ d1H,

whereby H ∪ d1H is a group. This group contains all generators of G because d1 ∈ H ∪ d1H,
and so also d−1

m = d1(dmd1)−1 ∈ d1H for m = 2, . . . l. So H ∪ d1H is a subgroup of G which
contains all generators of G, i.e. H ∪ d1H = G. Since H ∩ d1H = ∅, this yields (G : H) = 2. The
preimage of the basepoint q̃ ∈ d1 of π1(X̃, q̃) contains two elements q1, q2 which are connected by
d1 which is not contained in H, and therefore does not correspond to a loop on X. Furthermore,
H contains the elements ai and d1aid

−1
1 . These correspond to the two elements in π1(X) which

cover ai ∈ π1(X̃). The same holds for the preimages of bi and cj under π̃. The elements d` for
` = 1, . . . l are not contained in H, so each preimage of these under π̃ yields a path which is not
closed in X. However, d2

` is contained in H, so the covering over d` is two-sheeted.

Corollary 6.38. Let X̃ be a compact Riemann surface of genus g with boundary consisting of the
simple closed contours c1, . . . , cJ , d1, . . . , dM and a marked point Q̃ which is not contained in the
boundary. Then there exists a two-sheeted covering π̃ : X → X̃ with exactly one ramification point
in X such that the genus of X is 2g and the preimages of each of the c1, . . . , cJ consist of each
two simple closed contours on which the covering is one-sheeted and the preimages of each of the
d1, . . . , dM consist of each one simple closed contour on which the covering is two-sheeted if and
only if M = 1 mod 2.

Proof. Let D be a small closed disc containing Q̃ which does not intersect ∂X̃ and let z : D → C be
a local coordinate centered at Q̃+. Then the surface X̃ \D◦ has J +M + 1 boundary components,
where the new boundary component is just ∂D. This means that we are exactly in the situation of
Lemma 6.37 if we set L = M + 1 in the notation of the Lemma. So there is a two sheeted covering
X → X̃ such that the preimage of ∂D on X consists of one simple closed contour. We glue the
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6. The isospectral set for regular finite type potentials

disc D into the preimage of the boundary component ∂D and use z2 : D → C as local coordinate
on this disc. This runs twice through the boundary of ∂D, and therefore also is a chart describing
the preimage of ∂D – remember that we have seen in the proof of the foregoing Lemma that the
boundary contours with one preimage in X are covered twice by this preimage. Moreover, the
choice of the local chart yields that Q̃ is a simple branch point on X̃ of the covering X → X̃, and
therefore the preimage of Q̃ with respect to this covering is a simple ramification point on X.

Example 6.39 ([Natanzon, 2004, Example 2.9.1]). Let (X̃, τ̃) be a real curve of type (g, k, 1) and
let k = t1 + r1 + t2 + r2, where r1 + r2 = 1 mod 2. Let us consider a connected component X̃+

of the set X̃ \ X̃ τ̃ . This is a compact Riemann surface with boundary ∂X̃+ = ∪ki=1ci. Due to
Corollary 6.38, there exists a two-sheeted covering π+ : X+ → X̃+ with a unique ramification
point Q+ ∈ X+ which is two-sheeted on the r1 + r2 boundary contours c1, . . . , cr1+r2 ∈ ∂X+

and one-sheeted on the other boundary contours cr1+r2+1, . . . , ck̃, where k̃ = r1 + r2 + 2t1 + 2t2.
Using the construction of Example 6.7, we can tinker a real curve (X̂, τ̂) such that X̂ τ̂ = ∑k̃

i=1 ci

decomposes X̂ into X̂+ and X̂− = τ̂ [X+]. The covering π+ induces a two-sheeted covering
π̂ : X̂ → X̃ such that π̂ ◦ τ = τ̃ ◦ π+. Let σ : X̂ → X̂ be the involution which is defined by the
transposition of the two sheets of this covering. This involution commutes with τ̂ and has exactly
the two fixed points Q+ and Q− = τ̂(Q+). As it is done in Example 6.7, we cut the surface X̂
along the contours cr1+1, . . . , cr1+r2 and cr1+r2+2t1+1, . . . , ck̃ and paste these boundary contours
back together in accordance with the map σ ◦ τ̂ . On the surface X obtained like this, the involution
τ̂ induces an involution τ1 : X → X that commutes with σ. We set τ2 := σ ◦ τ1. It follows from
the construction of (X, τ1, σ) that this is a real curve with involution of type (g, 1, t1, r1, t2, r2).
Example 6.40 ([Natanzon, 2004, Example 2.9.2]). Let (X̃, τ̃) be a real curve of type (g, k, 0) and let
k = t1 + r1 + t2 + r2, where r1 + r2 = 1 mod 2. Using Lemma 6.13, we construct a set of pairwise
disjoint simple closed contours c1, . . . , cg+1 such that τ̃ [ci] = ci and X̃ τ̃ = ∑k

i=1 ci. Let us consider
a connected component X̃+ of the set X̃ \ ⋃g+1

i=1 ci and a two-sheeted covering π+ : X+ → X̃+

with a single ramification point Q+ ∈ X+ that is two-sheeted on the contours c1, . . . , cr1+r2 and
one-sheeted on the other contours cr1+r2+1, . . . , cr1+r2+2t1+2t2 which again exists due to Corollary
6.38. Using the construction of Example 6.8, we form a real curve (X̂, τ̂) such that X̂ \∑g+1

i=1 ci

decomposes X̂ into X̂+ and X̂− = τ̂ [X̂+] with X̂ τ̂ = ∑k̂
i=1 ci, where k̂ = r1 + r2 + 2t1 + 2t2.

Repeating the cuts and pastings together described in Examples 6.8 and 6.39, we obtain a real
curve with involution (X, τ1, σ) of type (g, 0, t1, r1, t2, r2).
The topological equivalence of real curves with involutions follows from the topological equivalence
of the real curves Xσ shown in Theorems 6.11 and 6.14. The proof of the following lemma is
missing in [Natanzon, 2004].

Lemma 6.41 ([Natanzon, 2004, Lemmata 2.9.1 and 2.9.2]). The construction of Example 6.39
produces all real curves with involution of type (g, 1, t1, r1, t2, r2). The construction of Example
6.40 produces all real curves with involution of type (g, 0, t1, r1, t2, r2).
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Proof. Lemma 6.35 yields that for every real curve with involution, the quotient (Xσ, τσ) is a real
curve of topological type (g, k, ε), where k = t1 + r1 + t2 + r2 and we know from Theorems 6.11 and
6.14 that the topological type of Xσ determines this curve uniquely up to topological equivalence.
So let Xσ be a real curve of type (g, k, 1). Then X+

σ , whereby Xσ \Xτσ
σ = X+

σ ∪X−σ , is a Riemann
surface with boundary which obeys the preliminaries of Corollary 6.38. We use the notation of
this Corollary. Hereby, all pairs (J,M) ∈ N0 ×N with M odd are admissible. Then J = t1 + t2

and M = r1 + r2. So we can apply the construction of a real curve with involution from one of the
two foregoing examples and choose whether one of the boundary components is covered by one or
by two cycles. Repeating the construction as in Example 6.39 first yields a curve X̂ which has
L+ 2M ovals of τ1. Then there are finitely many combinations such that we can – by the same
construction as in Example 6.39 – cut an arbitrary number of these ovals open again and identify
the generated boundary contours via τ2 = σ ◦ τ1. So we can achieve all admissible combinations of
topological types. Lifting the homomorphism between the curve (Xσ, τσ) of a certain topological
type and the model curve in Example 6.7 to a homomorphism between X and the model space by
appropriate combination with σ and the respective covering maps from Corollary 6.38 yields that
also all real curves with involution of one admissible topological type are topologically equivalent.
The proof for ε = 0 is analogous.

For the rest of this section, let (X, τ1, σ) be a real curve with involution of type (g, ε, t1, r1, t2, r2).
A symplectic basis {Ai, σ]Ai, Bi, σ]Bi | i = 1, . . . , g} of H1(X,Z) is said to be symmetric if σ]
maps Ai to σ]Ai and Bi to σ]Bi for i = 1, . . . , g. Let k = t1 + r1 + t2 + r2 and m = 1

2(g + 1− k).

Definition 6.42. A symplectic, symmetric basis of H1(X,Z) of a real curve with involution
(X, τ1, σ) of type (g, ε, t1, r1, t2, r2) is a symmetric real basis if its generators {Ai, σ]Ai, Bi, σ]Bi |
i = 1, . . . , g} obey for ε = 0

τ1]Ai = Ai, τ1]σ]Ai = σ]Ai for i = 1, . . . , g,

τ1]Bi = −Bi, τ1]σ]Bi = −σ]Bi for i = 1, . . . , k − 1,

τ1]Bi = −Bi +Ai, τ1]σ]Bi = −σ]Bi + σ]Ai for i = k, . . . , g

and for ε = 1

τ1]Ai = Ai, τ1]σ]Ai = σ]Ai for i = 1, . . . , k − 1,

τ1]Ai = Ai+m, τ1]σ]Ai = σ]Ai+m for i = k, . . . , k +m− 1,

τ1]Ai = Ai−m, τ1]σ]Ai = σ]Ai−m for i = k +m, . . . , g,

τ1]Bi = −Bi, τ1]σ]Bi = −σ]Bi for i = 1, . . . , k − 1,

τ1]Bi = −Bi+m, τ1]σ]Bi = −σ]Bi+m for i = k, . . . , k +m− 1,

τ1]Bi = −Bi−m, τ1]σ]Bi = −σ]Bi−m for i = k +m, . . . , g.

Lemma 6.43. Let (X, τ1, σ) be a real curve with holomorphic involution. Then a real basis of
H1(X,Z) exists.
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Proof. We have seen in Proposition A.1 and Lemma 4.13 that Xσ is a Riemann surface of genus
g and that πσ : X → Xσ is a two-sheeted covering with the only ramification points being Q+

and Q−. Furthermore, we have also seen in Section 4.2.2 that a symplectic, symmetric basis of
H1(X,Z) can be obtained by pulling back a symplectic basis of H1(Xσ,Z) via π. Then a basis of
H1(X,Z) consists of each two preimages of the chosen basis of H1(Xσ,Z) since Q+ and Q− are
the only ramification points of π. Because (Xσ, τσ) is a real curve of genus g, all the 2g elements
in H1(Xσ,Z) obey the relations in Definition 6.28. Hence, denoting and enumerating the pulled
back cycles in H1(X,Z) in the obvious way, the elements of H1(X,Z) obey the relations given in
Definition 6.42.

The map σ : X → X induces an involution σ : Sg → Sg as defined at the beginning of Section 4.2.
Here, we consider the Abel map AQ+ which transfers this involution to an involution σ on Jac(X).
The subset

Prym(X,σ) = {x ∈ Jac(X) | σ(x) = −x}

as in Definition A.12 is called the Prym variety of the surface X with holomorphic involution
σ. Remember that Prym(X,σ) ' Cg/Λ−, compare Definition A.12 where Λ− is a g-dimensional
lattice. We now remind again how the lattice Λ− is obtained: It is shown in Proposition A.9,
that H1(X,Z)− – the part of the first homology group which is antisymmetric with respect to
σ – is generated by A−i := Ai − σ]Ai and B−i := Bi − σ]Bi for i = 1, . . . , g. The corresponding
basis of antisymmetric holomorphic differential forms is for i = 1, . . . , g, as in (4.12), given by
ω−i := 1

2(ωi − σ∗ωi), whereby σ∗ωi = ωg+i. So the lattice Λ− is, as in (4.14), generated by
{Ω−Aj , Ω

−
Bj
| j = 1, . . . , g}, where

Ω−Aj =
(∮
Aj−σ]Aj ω

−
i

)g
i=1

and Ω−Bj =
(∮
Bj−σ]Bj ω

−
i

)g
i=1

.

The basis of the 2g holomorphic differential forms on X shall now be normalized as∮
Aj

ωi = 2πιδij ,
∮
Aj

ωi+g = 0,
∮
σ]Aj

ωi = 0,
∮
σ]Aj

ωi+g = 2πιδi+g,j (6.7)

for i, j = 1, . . . , g.

Lemma 6.44. Let (X, τ1, σ) be a real curve with involution of type (g, ε, t1, r1, t2, r2), let the set
{Ai, Bi, σ]Ai, σ]Bi | i = 1, . . . , g} be a symmetric, real basis of H1(X,Z) and let ω1, . . . , ω2g be the
basis of holomorphic differential forms on (X, τ) which are normalized with respect to A1, . . . , Ag,

σ]A1, . . . , σ]Ag as in (6.7).

(a) For ε = 0, τ∗1ω−j = −ω−j as well as Ω−Aj = −ΩAj for j = 1, . . . , g and

Ω−Bj =

Ω
−
Bj

for j = 1, . . . , k − 1,

Ω−Bj −Ω
−
Aj

for j = k, . . . , g.
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(b) For ε = 1,

τ∗1ω
−
j =


−ω−j for j = 1, . . . , k − 1,

−ω−j+m for j = k, . . . , k +m− 1,

−ω−j−m for j = k +m, . . . , g,

,

Ω−Aj = −Ω−Aj =


−M ·Ω−Aj for j = 1, . . . , k − 1,

−M ·Ω−Aj+m for j = k, . . . , k +m− 1,

−M ·Ω−Aj−m for j = k +m, . . . , g

and

Ω−Bj =


M ·Ω−Bj for j = 1, . . . , k − 1,

M ·Ω−Bj+m for j = k, . . . , k +m− 1,

M ·Ω−Bj−m for j = k +m, . . . , g,

where M is the matrix defined in equation (6.3).

Proof. Due to
∮
Ai
ωj+g = 0 and

∮
Aj
ωi = 2πιδi,j , it is for i, j = 1, . . . , g

Ω−Aj =
(∮
Aj−σ]Aj ω

−
i

)g
i=1

= 1
2
(∮
Aj−σ]Aj (ωi − σ

∗ωi)
)g
i=1

= 1
2
(∮
Aj
ωi −

∮
Aj
σ∗ωi −

∮
σ]Aj

ωi +
∮
σ]Aj

σ∗ωi
)g
i=1

=
(∮
Aj
ωi
)g
i=1

.

Repeating this calculation for Ω−Bj yields

Ω−Bj =
(∮
Bj−σ]Bj ω

−
i

)g
i=1

=
(∮
Bj

(ωi − σ∗ωi)
)g
i=1

.

Using this together with the transformation behavior of ω−i under σ∗ and repeating the proof of
Lemma 6.30 gives the assertions.

We define an involution τ1,R : Cg → Cg via its action on the basis {Ω−Ai , Ω
−
Bi
| i = 1, . . . , g} of the

space R2g = Cg. As before, we define this involution for ε = 0 as the R-linear map

Ω−Aj 7→ −Ω
−
Aj

= Ω−Aj for j = 1, . . . , g,

Ω−Bj 7→ −Ω
−
Bj

=


−Ω−Bj for j = 1, . . . , k − 1,

−Ω−Bj +Ω−Aj for j = k, . . . , g.

(6.8)
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and for ε = 1 with M as in (6.3) by the R-linear map

Ω−Aj 7→ −M ·Ω
−
Aj

=


Ω−Aj for j = 1, . . . , k − 1,

Ω−Aj+m for j = k, . . . , k +m− 1,

Ω−Aj−m for j = k +m, . . . , g,

Ω−Bj 7→ −M ·Ω
−
Bj

=


−Ω−Bj for j = 1, . . . , k − 1,

−Ω−Bj+m for j = k, . . . , k +m− 1,

−Ω−Bj−m for j = k +m, . . . , g,

(6.9)

Definition 6.45. Let (X, τ1, σ) be a real curve with involution. The intersection of the Prym
variety Prym(X,σ) ⊂ Jac(X) with JacR(X) is called the real part of the Prym variety PrymR(X,σ)
of (X, τ1, σ). The connected components of this part are called real tori of the Prym variety of
(X, τ1, σ).

The real tori of PrymR(X,σ) equals the set of fixed points of the involution τ1,R|Prym(X,σ) :
Prym(X,σ)→ Prym(X,σ).

Theorem 6.46 ([Natanzon, 2004, Theorem 2.9.1]). The real part of the Prym variety of a real
curve with involution (X, τ1, σ) of type (g, ε, t1, r1, t2, r2) decomposes into 2k−1 real tori of dimension
g, where k = t1 + r1 + t2 + r2 > 0.

Proof. Let {Ai, Bi, σ]Ai, σ]Bi | i = 1, . . . , g} be a symmetric real basis of H1(X,Z) as in Definition
6.42 such that the projections of these cycles to Xσ yield a real basis of H1(Xσ,Z) in sense of
Definition 6.28. We denote the set of the basis of H1(Xσ,Z), mapped to Cg analogously as it is
done for Λ in Section 4.2.2, as Λσ. This lattice over Z is generated by ΩAσ,i , ΩBσ,i with i = 1, . . . , g
and it is the lattice of the Jacobian variety Jac(Xσ) ' Cg/Λσ. As we have seen in Lemma 6.35, the
real curve (Xσ, τσ) is of type (g, k, ε). As above, let {Ω−Ai , Ω

−
Bi
| i = 1, . . . , g} be the generators of

the lattice Λ− of the Prym variety of a real curve with involution (X, τ1, σ) that corresponds to the
given basis of H1(X,Z). In these bases, the involution τ1,R|Prym : Cg → Cg acts on the generators
of Λ− as in (6.8) for ε = 0 and as in (6.9) for ε = 1. Likewise the action of τσ,R : Cg → Cg on the
generators of Λσ is given in (6.4) for ε = 0 and in (6.5) for ε = 1. So the maps τ1,R and τσ,R are
both R-linear mappings on Cg, where τ1,R acts on the given basis {Ω−Ai , Ω

−
Bi
| i = 1, . . . , g} of Cg

in the same way as τσ,R acts on the basis given by {ΩAσ,i , ΩBσ,i | i = 1, . . . , g}. We use Cg ' R2g.
Then a real-linear vector space isomorphism which maps Λσ to Λ− is given by

Jac(Xσ)→ Prym(X,σ), ΩAσ,i 7→ Ω−Ai and ΩBσ,i 7→ Ω−Bi .

Because the R-linear map τ1,R : Cg → Cg acts on the elements of Λ− and τσ,R : Cg → Cg acts on
the elements of Λσ, the above isomorphism yields a bijection from the fixed point set of τσ,R on
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Jac(Xσ) to the fixed point set of τ1,R on Prym(Xσ). So the fixed point sets of the involutions
τ1,R : Prym(X,σ) → Prym(X,σ) and τσ,R : Jac(Xσ) → Jac(Xσ) have equally many connected
components.

Let (X, τ1, σ) be a real curve with involution of type (g, ε, t1, r1, t2, r2). The ovals aj1, . . . , a
j
2tj+rj

of the involution τj for j = 1, 2 shall be enumerated in such a way that σ]aji = ajtj+i for i ≤ tj . We
define

E := {D ⊂ Sg | τ1(D) = D and either D + σ(D) is the divisor of zeros of a meromorphic

differential ωD on X that is holomorphic away from Q+ and Q− and has

poles of order 1 at these points or D + σ(D)−Q+ −Q− is the zero divisor

of a holomorphic differential ωD on X}.

In [Natanzon, 2004], the definition of the above set E is a bit different, but we think we interpreted
the definition given here in the way it is meant in [Natanzon, 2004]. We want to define positive
respectively negative definiteness of a differential form on an oval of (X, τ1, σ). This is also done
in [Natanzon, 2004] and then used to analyze whether the connected component of the real Prym
variety are singular or not. We do not understand the definition of definiteness of a 1-form on
the ovals of a real curve which is given in [Natanzon, 2004]. We modified it in a way that fits
to the setup such that the parts hereinafter, for which this definition is necessary, can be shown
with our definition. To motivate our definition, note that if D + σ(D)−Q+ −Q− is the divisor of
a holomorphic differential ωD on X, then ωD has zeros of odd order at Q+ and Q− since then
Q+, Q− ∈ suppD and thus also in supp(σ(D)). Accordingly, D + σ(D) contains an even number
of Q+ and of Q−. The following two Lemmata show that the definition of positive respectively
negative definiteness we will give hereinafter is feasible.

Lemma 6.47. Let (X, τ1, σ) be a real curve with involution of type (g, ε, t1, r1, t2, r2), let Q+ 6=
Q− ∈ X be the only fixed points of σ and τ(Q+) = Q− and let πσ : X → Xσ be the two-sheeted
covering, where (Xσ, τσ) is a real curve of type (g, k, ε) with k = t1 + r1 + t2 + r2. Let the ovals of
Xσ be denoted by ci with i ∈ {1, . . . , k} such that the following holds:

• For j ∈ {1, 2} and i = 1, . . . , tj, the preimage of ci contains two ovals aji and a
j
t1+i of τj,

• For j ∈ {1, 2} and i = t1 + 1, . . . , t1 + r1 respectively i = t1 + r1 + t2 + 1, . . . , k, the preimage
of ci contains one oval aji of τj.

Furthermore, let ωσ be a differential on Xσ which is non-negative on an oval ci with i ∈ {t1 + r1 +
1, . . . , k} and non-negative on an oval ci with i ∈ {t1 + 1, . . . , t1 + r1}. Then for the zero divisor
of the pulled back differential ω := π∗ωσ, which is due to Proposition A.4 of the form D + σ(D),
holds:
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(a) ω is non-negative on the ovals a2
i and a2

i+t2 for i ∈ {1, . . . t2} and non-negative on the oval a2
i

for i ∈ {2t2 + 1, . . . , 2t2 + r2} as an oval of the real curve (X, τ2, σ).

(b) (i) Let p ∈ D∩a1
i for i ∈ {2t1 +1, . . . , 2t1 +r1} and let γp be the open arc on a1

i between p and
σ(p) which starts in counter-clockwise direction at p such that a1

i \ {p, σ(p)} = γp + σ]γp.
Then

χi(D) :=



(−1)deg(D∩γp) = −(−1)deg(D∩σ]γp) if ω is positive in a small neighbor-

hood of p restricted to γp,

−(−1)deg(D∩γp) = (−1)deg(D∩σ]γp) if ω is negative in a small neighbor-

hood of p restricted to γp

is independent of the choice of p ∈ D ∩ a1
i .

a) If D ∩ a1
i 6= ∅ for an i ∈ {2t1 + 1, . . . , 2t1 + r1} , then D ∩ a1

i can always be transformed
in such a way that the corresponding transformed divisor D̃ obeys D̃ = σ(D̃) and
χi(D) = χi(D̃).

Proof. (a) We have to show that ω can only have zeros of even order on a2
i with i = 1, . . . , 2t2 + r2.

Note that τ2(D) = σ(τ1(D)) = σ(D). So for p ∈ D ∩ a2
i , there holds

σ(p) = τ2(p) = p

and since the divisor of zeros of the pulled back differential ω is of the form D + σ(D), p is a
zero of even order of ω. Since we consider ω as a real differential of the curve (X, τ2, σ), the
values of ω on a2

i are purely imaginary and the assertion follows.

In the proofs of the next two assertions, we consider the r1 ovals of τ1 which are invariant under
σ. So let i ∈ {2t1 + 1, . . . , 2t1 + r1}. We assume without loss of generality that the multiplicity
of all points in (D + σ(D)) ∩ a1

i equals one. This situation can always be obtained by a small
deformation of a given divisor D.

(b) A 1-form ωσ is globally defined on Xσ, and therefore has to have an even number of sign
changes on any simple closed contour. So the number of zeros of ωσ on an oval on Xσ is
always even. Moreover, we know from Corollary 6.38 that πσ : X → Xσ restricted to a1

i is
two-sheeted. Thus, every point pσ ∈ ci has two preimages p, σ(p) ∈ a1

i . Together this yields
that the number of zeros of ω on a1

i is divisible by four.
Let γp be the open arc on a1

i as defined in the lemma. Then γp ∪ σ]γp = a1
i \ {p, σ(p)} as in

Figure 6.9a. To see that

deg((D + σ(D)) ∩ γ) = deg((D + σ(D)) ∩ σ]γ) = 1 mod 2,
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(a) (b) (c)

Figure 6.9.: Depicting the different curves on an oval a1
i for i = 1, . . . , r1.

let n ∈ N such that 4n = deg((D+σ(D))∩a1
i ). Then deg((D+σ(D))∩a1

i \{p, σ(p)}) = 4n−2.
Since deg((D + σ(D)) ∩ γ) = deg((D + σ(D)) ∩ σ]γ), the number of points of D + σ(D) on
each one of the arcs γp and σ]γp equals 2n− 1. Therefore, either

deg(D∩γ) = deg(σ(D)∩σ]γ) = 0 mod 2 and deg(D∩σ]γ) = deg(σ(D)∩γ) = 1 mod 2

or conversely,

deg(D∩γ) = deg(σ(D)∩σ]γ) = 1 mod 2 and deg(D∩σ]γ) = deg(σ(D)∩γ) = 0 mod 2.

The divisor points lie discrete and we have assumed that the multiplicity of all points in
(D + σ(D)) ∩ a1

i is one. So there is a small open neighborhood Up of p such that ω is either
positive or negative on Up ∩ γp and has opposite sign on Up ∩ σ]γp. We define

χi,p(D) :=

(−1)deg(D∩γp) = −(−1)deg(D∩σ]γp) if ω is positive in Up ∩ γp,

−(−1)deg(D∩γp) = (−1)deg(D∩σ]γp) if ω is negative in Up ∩ γp.

To show that this sign is independent from the chosen reference point p, let p′ 6= p ∈ D ∩ a1
i .

Then p′ and σ(p′) also decompose a1
i into two open arcs γp′ and σ]γp′ , where γp′ starts again

in counter-clockwise direction from p′, compare Figure 6.9b. Without loss of generality we
assume that p′ ∈ γp. We denote the open arc between p and p′ on a1

i as γpp′ . Then σ]γpp′ is
the open arc between σ(p) and σ(p′) and there is also a small open neighborhood Up′ of p′ such
that ω does not change its sign on γp′ ∩ Up′ and σ]γp′ ∩ Up′ . To see that χi,p(D) = χi,p′(D),
it remains to determine deg(D ∩ γ′p). It is deg(D ∩ σ]γpp′) = deg(σ(D) ∩ γpp′) as depicted in
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6. The isospectral set for regular finite type potentials

Figure 6.9c. Furthermore, p′ is in D ∩ γp, but p ∈ D ∩ σ]γp′ . So

deg(D ∩ γp′) = deg(D ∩ γp)− deg(D ∩ γpp′) + deg(D ∩ σ]γpp′) + 1

= deg(D ∩ γp)− deg(D ∩ γpp′) + deg(σ(D) ∩ γpp′) + 1.

Therefore,

χi,p′(D) = −χi,p(D)(−1)(deg(D+σ(D))∩γpp′ )+1(−1)deg(σ(D)∩γpp′ )

(−1)deg(D∩γpp′ )
= χi,p(D)

and χi,p(D) does not depend on p ∈ D ∩ a1
i . So we can set χi(D) := χi,p(D).

(c) To show the last assertion, let D ∈ E and ω be a differential corresponding to D with
D ∩ ai 6= ∅ as defined in E . We first transform D such that

• the number of divisor points on a1
i remains constant,

• the transformed divisor stays in E ,

• the multiplicity of all deformed divisor points stays one.

Let us denote a divisor transformed like this by D̃ and the corresponding differential by
ω̃. We will see that χi(D̃) = χi(D). Let D̃ be a transformed divisor such that only the
points inside of γp and σ]γp are transformed. In this case, it follows from the definition of
χi(D) that χi(D) = χi(D̃). So it can only happen that χi(D̃) 6= χi(D) if a point q ∈ a1

i ∩D
passes p respectively σ(p) under the transformation, whereby p is the point which is used to
determine χi(D). In this case, σ(q) passes σ(p) respectively p. If q passes p, the sign of ω̃ is
opposite to the sign of ω on γp ∩ Up, but also

deg(D̃∩γp) = deg(D∩γp)+1 mod 2 as well as deg(D̃∩σ]γp) = deg(D∩σ]γp)+1 mod 2
(6.10)

So χi(D̃) = χi(D). If q passes σ(p), σ(q) passes p, and so the sign of ω̃ on γp ∩Up is opposite
to the sign of ω and (6.10) also holds. Accordingly, χi(D̃) = χi(D). Thus, χi(D) is invariant
under all considered transformations of D.
We have seen in the proof of (b) that deg((D + σ(D)) ∩ a1

i ) is divisible by four. So by the
above transformations one can always sort the points in (D + σ(D)) ∩ a1

i into pairs (q′, σ(q))
with q 6= q′ such that χi(D) remains constant. Now moving these points together yields a
divisor D̃ such that σ(D̃) = D̃ on a1

i . That means the divisor D can be transformed into a
divisor D̃ which originates from the square of a spinor and which is non-positive, respectively
non-negative on a1

i .

Lemma 6.47 justifies the following definition.
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Definition 6.48. Let (X, τ1, σ) be a real curve with involution of type (g, ε, t1, r1, t2, r2). A
differential ωD on X with D ∈ E is positive definite on an oval a1

i with i = 2t1 + 1, . . . , 2t1 + r1 if
one of the following conditions holds:

(i) ωD is non-negative on a1
i .

(ii) The total number of points in D ∩ a1
i divided by two is even and χi(D) = 1.

(iii) The total number of points in D ∩ a1
i divided by two is odd and χi(D) = −1.

Otherwise, we say that ωD is negative definite on a1
i . The differential ωD is positive respectively

negative definite on an oval a2
i with i = 1, . . . , 2t2 + r2 if it is non-negative respectively non-positive

on this oval as a real differential of the curve (X, τ2, σ).

Statement (a) in comparison to (b) and (c) of Lemma 6.47 shows that the conditions for definiteness
on the ovals of τ2 is easier than the condition on the ovals a1

i of τ1 with i = 2t+ 1 + 1, . . . 2t1 + r1.
This is because for D holds τ2(D) = σ(D). Since we do not have this additional structure on the
ovals of τ1, we can only define the complicated version of definiteness as above and for the ovals a1

i

with i = 1, . . . , 2t1 we cannot at all define definiteness because any real holomorphic differential on
Xσ lifted to X can also have zeros of first order on these ovals.
Since every real spinor η obeys that (η2) = 2(η) ∈ E , the question arises how χi(D) yields the
orientation which a spinor η induces on an oval a1

i . We show in the following Lemma why we
think that our modified version of the definiteness makes sense.

Lemma 6.49. Let (X, τ1, σ) be a real curve of type (g, ε, t1, r1, t2, r2) and D ∈ E. Then for
i = 2t1 + 1, . . . , 2t1 + r1, the divisor D ∩ a1

i can be transformed into the divisor of a non-negative
square of a spinor on a1

i if and only if any ωD associated with D ∈ E is positive definite on a1
i .

Proof. Let Dm be the zero divisor of a differential ωm = π∗ωσ,m such that the number of points
in (D + σ(D)) ∩ a1

i equals 4m with m ≥ 1. As in the foregoing proof of Lemma 6.47, we assume
without loss of generality that the multiplicity of all points in Dm + σ(Dm) equals one. We have
also seen in this proof that one always can deform Dm into a divisor D̃m with χi(Dm) = χi(D̃m)
and all points on (D̃m +σ(D̃m))∩ a1

i are sorted into pairs of pairs ((p, σ(q)), (q, σ(p))) with p 6= q.
Again, let Up be a small open neighborhood around p such that the sign of ωm is constant on
Up ∩ γp as well as on Up ∩ σ]γp. For m = 1, one has that D1 = p + q. Then either q ∈ γp or
q ∈ σ]γp. Moving q into the direction of p and σ(q) into the direction of σ(p) is not possible since
the transformed divisor D̃1 can only be obtained as the square of a real spinor. So to transform
D1 = p+ q in such a way that the transformed divisor D̃1 is the divisor of a differential ω̃1 which
is obtained by squaring a spinor, one has to move q towards σ(p) and σ(q) to p. This square has
the divisor 2D̃1. Then D̃1 can only be contained in E if D̃1 = σ(D̃1). For q ∈ γp, the sign of ω1 on
Up ∩ γp is opposite to χi(D1). The corresponding situation is depicted in Figure 6.10a on the next
page. Moving p and σ(q) as well as q and σ(p) together yields a divisor D̃1 of the form D̃1 = σ(D̃1)
and the sign of ω1 on γp∩Up equals the sign of the corresponding square of a spinor ω̃1 with divisor
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6. The isospectral set for regular finite type potentials

(a) Depicting the case m = 1 for q ∈ γp with ω > 0
on γp ∩ Up. Then χi(D1) = −1.

(b) Depicting the case m = 1 for q ∈ σ]γp with ω > 0
on γp ∩ Up. Then χi(D1) = 1.

(c) Depicting that the sign of the square of the spinor by which Dm is induced equals
the sign of the spinor by which Dm−1 is induced. The ±-signs indicate the sign of
ωm respectively ωm−1 on the oval.

Figure 6.10.: Sketch corresponding to Lemma 6.49: In (a) and (b), we sketch the two possible
situations to deform a divisor D1 + σ(D1) on an oval a1

i with D1 ∩ a1
i = p+ q into

a divisor which is the square of a spinor. The arrows denote the direction in which
q and σ(q) are transformed and the sign of the differential form ω1 with divisor
D1 + σ(D1) on the different parts of a1

i is indicated by the ±-signs.
In (c) is sketched why the sign of ωDk on a small open neighborhood Up̃∩a1

i of some
point p̃ ∈ D ∩ a1

i with p̃ 6= p, q, σ(p) equals the sign of ωDk−1 on this neighborhood.

2D̃1. For q ∈ σ]γp as depicted in Figure 6.10b, χi(D) equals the sign of ω1 on Up ∩ γp. However,
in case σ(q) ∈ γp, the sign of ω1 on γp ∩ Uσ(p) equals the sign of the corresponding square of a
spinor ω̃1. So in both cases, ω̃1 is the square of a spinor which is non-positive on a1

i if χi(D1) = 1
and which is non-negative on a1

i if χi(D1) = −1.
For m > 1, we assume that the points of the divisors Dm are already sorted into pairs of pairs of
the form ((p, σ(q)), (q, σ(p))) with p 6= q, σ(q) and denote the divisor Dm with one such pair of
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pairs taken away as Dm−1. The sign of the differential ωDm−1 switches four times less on a1
i than

the sign of ωDm on a1
i . Accordingly, the sign of the square of the spinor by which Dm is induced

equals the sign of the spinor by which Dm−1 is induced, compare Figure 6.10c. So if we choose a
pair (p̃, σ(p̃)) with p̃, σ(p̃) 6= q, p, then the sign of ωDm equals the sign of ωDm−1 on γp̃ ∩ Up̃ with
Up̃ a sufficiently small neighborhood of p̃. Together with deg(Dm−1 ∩ γp̃) = deg(Dm ∩ γp̃)− 1, this
yields

χi(Dm) = −χi(Dm−1).

Successively leaving in total m− 1 pairs of pairs of points in Dm away yields a divisor D1 such
that

χi(Dm) = (−1)m−1χi(D1)

Hence, for m even, χi(Dm) = −χi(D1) and for m odd, χi(Dm) = χi(D1), so the assertion follows.

Let us decompose the set {a1
2t1+1, . . . , a

1
2t1+r1 , a

2
1, . . . , a

2
2t2+r2} into subsets A+ and A− such that

A+ ∪A− = {a1
2t1+1, . . . , a

1
2t1+r1 , a

2
1, . . . , a

2
2t2+r2} and A+ ∩A− = ∅.

We define
δ := (δ1, . . . , δt1) ∈ (Z2)t1

and denote by E(δ, A+, A−) the subset of E consisting of the divisors D ∈ E such that ωD or
−ωD is positive definite on all ovals in A+, negative definite on all ovals in A− and such that for
i = 1, . . . , t1, there holds

deg(D ∩ a1
i )

2 mod 2 = δi.

Corollary 6.38 yields that r1 + r2 = 1 mod 2, so A+ = A− = ∅ is not possible. Here, we extended
the proof given in [Natanzon, 2004] – which comprises a bit more than half a page – a lot.

Lemma 6.50 ([Natanzon, 2004, Lemma 2.9.3]). Each of the sets E(δ, A+, A−) is non-empty if
not simultaneously A+ = ∅ and A− = ∅.

Proof. Let (X, τ1, σ) be a real curve with involution of type (g, ε, t1, r1, t2, r2) with r1 + r2 = 1
mod 2. To see these assertions, we have to show the existence of holomorphic differential forms
which have the properties encoded by E(δ, A+, A−) on X. This will be done by showing the
existence of certain holomorphic 1-forms ωσ on (Xσ, τσ) which we can pull back to X such that
ω := σ∗ωσ has the desired properties. To do so, we first show the existence of certain holomorphic
1-forms for any real curve (X̃, τ̃) and then apply these results to (Xσ, τσ).
So let (X̃, τ̃) be a real curve of type (g, k, ε) with ovals c1, . . . , ck and let k := k+ + k− + k0 with
k0 < g and k+ ·k− 6= 0. We show that for any pair of points Q̃+ 6= Q̃− ∈ X̃ such that Q̃− = τ̃(Q̃+),
there is a real differential ω̃ with the following properties:
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6. The isospectral set for regular finite type potentials

(i) ω̃ is either a holomorphic differential on X or a meromorphic differential on X which is
holomorphic on X \ {Q̃+, Q̃−} and has at most poles of degree one at Q̃+ and Q̃−.

(ii) ω̃ is non-negative on ci for i ≤ k+, non-positive on ci for k+ < i ≤ k+ + k− and has zeros on
ci for i > k+ + k− such that the order of these zeros divided by two is odd.

For this purpose, we will now construct another real curve out of X̃ with k + 1 ovals. This is done
by cutting out small open discs around Q̃+ and Q̃− which yields a surface with two boundary
components. These boundary components we glue back together such that the ‘glueing contour’
yields an additional oval of τ̃ on the new real curve. To this new real curve we can apply the
results from Section 6.2.2. We then degenerate the new oval to obtain the above assertions.
For the glueing procedure, it is necessary to define the small discs and a local chart to identify
the boundaries of these discs with each other. So let z be a local coordinate centered at Q̃+.
Then τ̃∗z̄ is a local coordinate centered at Q̃−. We define disjoint open disks Dt(Q̃±) ⊂ X̃ as the
preimage of {z ∈ C | |z| < t} under z respectively τ̃∗z̄, where t ∈ (0, ε+ ε̃) and 0 < ε̃ < ε. Since τ̃
is an isometry on X̃, these discs obey τ̃ [Dt(Q̃±)] = Dt(Q̃∓). In order to identify the boundaries
∂Dt(Q̃+) and ∂Dt(Q̃−) of the surface X̃ \ (Dt(Q̃+) ∪ Dt(Q̃−)) for t ∈ (0, ε) by means of the
involution τ̃ such that the surface X̃t obtained like this is a Riemann surface, it is necessary to find
local charts on the boundary components ∂Dt(Q̃±) such that we can glue ∂Dt(Q̃+) and ∂Dt(Q̃−)
together. The local coordinate z from above defines a local chart on Dt+ε̃(Q̃+) \Dt(Q̃+). Then
t2

τ̃∗z̄ defines a local chart for Dt+ε̃(Q̃−) \Dt(Q̃−). The local chart z maps ∂Dt(Q̃+) isomorphically
to {z ∈ C | |z| = t} and the image of Dt+ε̃(Q̃+) \Dt(Q̃+) under z is contained in {z ∈ C | |z| > t}.
Likewise the local chart t2

τ̃∗z̄ maps ∂Dt(Q̃−) also isomorphically to {z ∈ C | |z| = t}, but the image
of Dt+ε̃(Q̃−) \ Dt(Q̃+) is contained in {z ∈ C \ {0} | |z| < t}. By means of these local charts,
we can identify the boundaries ∂Dt(Q̃+) and ∂Dt(Q̃−) with each other, whereby we identify the
images of p ∈ ∂Dt(Q̃+) and τ̃(p) ∈ ∂Dt(Q̃−) with each other. For each t ∈ (0, ε), we denote the
compact Riemann surface constructed like this by X̃t and the involution indicated by τ̃ on X̃t

by τ̃t. This involution acts on the local charts as z 7→ t2

z̄ and the ‘glueing contour’ is constructed
in such a way that it is an oval ct,g+1 of τ̃t on X̃t. So for t ∈ (0, ε), we have tinkered a family of
real curves (X̃t, τ̃t) with an additional oval ct,g+1 and ovals ct,i = ci for i = 1, . . . , g. Each of these
curves is a real curve of type (g + 1, k + 1, ε).
Let t ∈ (0, 1). Without loss of generality, we assume that k+ 6= 0 on (X̃t, τ̃t) and set kt,− := k−+ 1.
With kt,0 = k0, kt,+ = k+ and kt = kt,+ + kt,− + kt,0 = k + 1, it is kt,+ · kt,− 6= 0 and kt,0 < g + 1.
By Theorem 6.19, there exists a real holomorphic differential ω̃t on X̃t which is non-positive on
ck+1,t and with the desired properties on the ovals ct,1, . . . , ct,k as described in (ii). In the proof
of Theorem 6.19 it becomes clear that these 1-forms are squares of real spinors in the sense of
Definition B.37.
Next we consider the limit (X̃0, τ̃0) of (X̃t, τ̃t) for t→ 0. On (X̃0, τ̃0), the oval ck+1 is degenerated
to an ordinary double point Q̃. By the construction of (X̃0, τ̃0), the normalization of this curve
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equals (X̃, τ̃) which is a real curve of type (g, k, ε) and the preimages of Q̃ on X̃ are just Q̃+ and
Q̃−. Let us now consider the behavior of ω̃t in this limit.
For t ∈ (0, 1), there exists a real differential ω̃t on each curve (X̃t, τ̃t) which is holomorphic on
X̃t with the behavior prescribed by (ii) on the ovals. We normalize these differentials such that
‖ω̃t‖L2(Xt) = 1. This does not influence the properties in (ii). We want to show that these
normalized ω̃t converge to a real differential ω̃0 on (X̃0, τ̃0). Since ω̃t with t ∈ (0, ε) defines a
uniformly bounded family of holomorphic functions, Montel’s Theorem [Krantz, 2012, Theorem
8.4.3] assures that this sequence has a convergent subsequence. The limit ω̃0 of this subsequence is a
real differential form on (X̃0, τ̃0). We claim that ω̃0 is a regular differential form on X0. This means
that we have to show that the residue of ω̃0 at the double point Q̃ multiplied with an arbitrary
regular function on X̃0 equals zero. As already mentioned, π : X̃ → X̃0 is the normalization of X̃0

with π−1(Q̃) = {Q̃+, Q̃−}. The regular functions at the ordinary double point Q̃ are precisely the
holomorphic functions of the normalization of this double point which take the same values at Q̃+

and Q̃−, compare [Klein et al., 2016, Example 2.5.1]. Let f be a regular function on X̃0. Then it
is π∗f(Q+) = π∗f(Q−). We have to show that

ResQ̃ (f lim
t→0

ω̃t) = 0. (6.11)

The function f |X̃t is not a holomorphic function on X̃t, but ft := f |X̃t\ck+1,t
is holomorphic. Let

γ± be the boundary components of a small tubular neighborhood of ck+1,t on Xt. Representing
ft by its Taylor series in an open neighborhood of Q̃ yields that for p ∈ γ±, ft(p) converges
due to Riemann’s Theorem of Removable Singularities to the holomorphic function f on X0 and
limt→0

∮
γ± ftω̃t = f(Q̃)

∮
γ± ω̃t. Inserting this into (6.11) yields

ResQ̃ (f lim
t→0

ω̃t) = f(Q̃)ResQ̃ lim
t→0

ω̃t.

By the Residue Theorem, it is
∮
γ+
ω̃t +

∮
γ−
ω̃t = 0. Then ResQ̃(fω̃t) = 0 for all t ∈ (0, ε). By

continuity, also ResQ̃ limt→0(fω̃t) = 0. Accordingly, ω̃0 is a regular differential form on X̃0. Because
Q̃ is an ordinary double point of X̃0, the regular 1-forms at this point are, in a local coordinate
z centered at Q̃, generated by 1

z and z. So the differential ω̃0 is either holomorphic at Q̃ or has
a pole of first order at this double point. Since the deformation of Xt for t → 0 is continuous,
also the differentials on all deformed curves can only change continuously. We know already that
ω̃ε is the square of a real spinor on X̃ε for t ∈ (0, ε). The set of real spinors on X̃t only contains
elements whose square is an element of the cotangent bundle, so it is discrete on X̃t. Therefore,
the number of zeros of ω̃t on the ovals does not change. So if property (ii) holds for ω̃ε, then it
also holds for ω̃t with t ∈ (0, ε). Altogether, this yields that the differential ω̃0 := limt→0 ωt obeys
property (ii) and has at most a pole of first order at Q̃.
Summarizing, we have now seen that the normalization of (X̃0, τ̃0) equals the curve (X̃, τ̃), that
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the preimage of Q̃ on this normalization are exactly the points Q̃+ and Q̃− and that the pullback
of ω̃0 to X̃ is a real differential ω̃ with the desired properties (i) and (ii).
We now consider a real curve with holomorphic involution (X, τ1, σ) of type (g, ε, t1, r1, t2, r2) and
apply the foregoing observations on the existence of a real differential on (X̃, τ̃) to (Xσ, τσ). For
i = 1, . . . , t1, let the ovals ci be the images of the ovals a1

i and σ]a1
i under πσ : X → Xσ. The

remaining ovals of (X, τ1, σ) are either contained in A+ or in A−. We denote the set of the images
of the ovals contained in A+ under πσ by Aσ+ and the set of the images of the ovals contained in
A− by Aσ−. Applying the above result to the real curve (Xσ, τσ), we find a differential ωσ on Xσ

that is either meromorphic on Xσ and holomorphic away from Q+
σ := πσ(Q+) and Q−σ := πσ(Q−)

with at most simple poles at these points or which is holomorphic on all of Xσ. Furthermore, by
appropriate enumeration of the ovals of Xσ, ωσ is non-negative on the ovals in Aσ+ and non-positive
on the ovals in Aσ− and for i ∈ {1, . . . , t1}, the images of the ovals a1

i and σ]a1
i with δi = 1 are

ovals ci ⊂ Xσ such that k+ + k− < i < k+ + k− + k0 and the ovals which are images of a1
i and

σ]a
1
i with δi = 0 are somehow contained in the set of ovals ci with i ≤ k+ + k−.

Using the two-sheeted covering πσ, we can pull back ωσ to a 1-form ω = π∗σωσ on X as in
Proposition A.4. The pullback ω = π∗σωσ is a differential which is – due to Lemmata 6.47 and
6.49 – positive definite on the ovals in A+ and negative definite on the ovals in A−. Moreover, ωσ
is the square of a real spinor, compare the proof of Theorem 6.19. Therefore, all zeros of ωσ on
Xσ \ {Q+

σ , Q
−
σ } are of even order. Accordingly, the divisor of zeros of ω = π∗σωσ intersected with

a1
i ∪ σ]a1

i for i ≤ t1 has positive degree which is divisible by four and is symmetric with respect to
σ. So the number of zeros on a1

i respectively σ]a1
i is even for i ∈ {1, . . . , t1}. This number divided

by two is odd if the index i of the image ci of these ovals on Xσ obeys k+ + k− < i < k+ + k−+ k0.
Let z be a local coordinate centered at Q+

σ respectively Q−σ . Then ωσ reads in these coordinates as
f(z)dz, see the proof of Proposition A.1. Since Q±σ are branch points of the covering πσ, we can
choose these local coordinates in such a way that ω = π∗σωσ can be represented locally around Q±

as f(z2)dz2 = 2f(z2)zdz. We know from the above considerations that ω either is holomorphic or
has a pole of first order at Q±σ , i.e. f(z) either is holomorphic or has a pole of first order at z = 0.
If f(z) is holomorphic with f(0) 6= 0, then also f(z2) is holomorphic and has no zero at z = 0.
However, in this case f(z2)z has a zero of first order at z = 0. If f(0) = 0 and this zero is of order
n, then f(z2) has a zero of order 2n at z = 0, and so f(z2)z has a zero of order 2n+ 1 at z = 0.
Analogously if f(z) has a pole of first order at z = 0, then f(z2) has a pole of second order at
z = 0 and thus f(z2)z has a pole of first order at z = 0. So ω = π∗σωσ is either a meromorphic
differential that is holomorphic away from Q+ and Q− and has simple poles at these points or is
holomorphic on X with zeros of odd order at Q+ and Q−.
Next, we show that one can apply Theorem 6.19 to obtain a differential for every choice of
E(δ, A+, A−) 6= E(δ, ∅, ∅). Therefore, let (Xσ, τσ) → (X̃0, τ̃0) be the normalization of the real
curve with one double point constructed at the beginning of this proof and let (X̃t, τ̃t) be the
corresponding curves with one extra oval. We want to show that certain real spinors as in Definition
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B.37(b) with prescribed zero order respectively orientation on the ovals ct,i exists on X̃t for t ∈ (0, ε)
to obtain by Theorem 6.19 that there exists a real differential ω̃t with certain properties on the
ovals of X̃t. From this, we can deduce the existence of a differential ω̃0 on X̃0 with the same
properties on the ovals c1, . . . ck as ω̃t has on c1,t, . . . , ck,t. This is possible because only the oval
ck+1,t is deformed in the limit t → 0. Then also the pullback ωσ of this differential to (Xσ, τσ)
under the normalization map has the same properties on the ovals c1, . . . , ck. We then consider the
divisor of ωσ on Xσ and show that for any admissible configuration of E(δ, A+, A−), there exists
an ωσ constructed like above, such that the corresponding divisor is an element of E(δ, A+, A−).
We define Ãσ+ := Aσ+ and Ãσ− := Aσ− ∪ {ck+1}. Furthermore, we use the notation for αi and m as
well as the results from Theorems B.42 and B.43. These assert the following for fixed t ∈ (0, ε):

• Let the real curve (X̃t, τ̃t) be of type (g + 1, k + 1, 0) with oriented ovals c1,t, . . . , ck+1,t and
let 0 ≤ m ≤ k + 1, α1, . . . , αk+1 ∈ Z2 and ∑k+1

i=1 αi ≡ g + 1 mod 2. Then it is shown in
Theorem B.42 that there exists a real spinor η on (X̃t, τ̃t) such that the orientation of the
oval ci,t generated by η coincides with the original orientation of X̃t \ X̃ τ̃t

t if and only if i ≤ m
and such that the number of zeros of the spinor η modulo 2 on the oval ci,t is equal to αi.

• Let the real curve (X̃t, τ̃t) be of type (g + 1, k + 1, 1), let its ovals c1,t, . . . , ck+1,t be oriented
as parts of the boundary of a connected component X̃+

σ of the set X̃σ \ X̃τσ
σ and let the set

{α1, . . . , αk+1} with αi ∈ Z2, α1 = αk+1 = 0 contain evenly many zeros. Then it is shown
in Theorem B.43 that for every m with 1 ≤ m < k + 1 and ∑m

i=1 αi ≡ m+ 1 mod 2, there
exists a real spinor η on (X̃t, τ̃t) such that the orientation generated on the oval ci,t by η
coincides with the orientation of ci,t induced by the orientation of X̃+

t if and only if i ≤ m
and the number of zeros of η modulo 2 on ci,t is equal to αi.

Note that on the ovals in X̃t corresponding to the ovals in Xσ which are images of a1
i and σ]a1

i

with i ≤ t1 under πσ, the values αj in Theorems B.42 and B.43 equals δi for i = 1, . . . t1 and for
the remaining ovals in Aσ+ and Aσ−, the value αj is not determined by this classification. Hence,
we can choose them arbitrarily in Z2.
Let us first consider ε = 0: If ∑t1

i=1 δi = g + 1 mod 2, we set αi = 0 for i = t1 + 1, . . . , k + 1.
If ∑t1

i=1 δi = g mod 2, we set αk+1 = 1 and αi = 0 for i = 1, . . . , k. In both cases, this yields∑k+1
i=1 αi = g + 1 mod 2. We also have k0 ≤ t1 < g + 1 since r1 + r2 = 1 mod 2. Hence, Theorem

B.42 can be applied and yields a spinor η on the curve X̃t such that ω̃t = η2. Degenerating the oval
ck+1 on X̃t and considering the differential on the normalization Xσ of X̃0 yields a differential ωσ
on Xσ such that ω = π∗σωσ has the desired properties. Thus, for ε = 0, any admissible configuration
of E(δ, A+, A−) can be achieved.
For ε = 1, there has to hold

m∑
i=1

αi = m+ 1 mod 2,
k+1∑
i=1

αi = k + 1 mod 2 and α1 = αk+1 = 0.
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6. The isospectral set for regular finite type potentials

We will now consider all admissible cases for the choices of (δ, A+, A−). Hereby, it is sufficient to
consider only A− = ∅ since the considerations for A+ = ∅ follow analogously by considering −ω
instead of ω. For brevity, we write ∑Ãσj

αi if we take the sum over the elements αi corresponding
to the ovals in Ãαj for j = 1, 2.

• Let δ = ∅ and A− = ∅. Then the number of ovals in Ãσ+ equals k ≥ 1 since we assumed that
Xτ 6= ∅, and therefore also Xτσ

σ 6= ∅, compare Lemma 6.35. Hence, k0 = 0 < g + 1. The
number of ovals of X̃t is k + 1. Setting m = k in Theorem 6.19 yields that for k+ and k− in
Theorem 6.19 holds k+ · k− 6= 0. We further set α1 = 0 and αk+1 = 0 and all other values
αi = 1. This yields a combination of α1, . . . , αk such that the total number of zeros of them
is even and such that ∑m

i=1 αi = ∑k+1
i=1 αi = k + 1 mod 2 = m + 1 mod 2. So applying

Theorem B.43 yields a real spinor η on X̃t such that, by Theorem 6.19, η2 is a holomorphic
differential on X̃t. Due to the explanations above, the corresponding differential ωσ on Xσ

can then be pulled back to X such that the divisor of ω = π∗σωσ is an element of E(∅, A+, ∅).

• Let δ = ∅ and A+, A− 6= ∅. Again, k0 = 0 < g + 1. Let us enumerate the ovals of X̃σ in
such a way that c1, . . . , cm ∈ Aσ+ and cm+1, . . . , ck ∈ Aσ− with 1 < m < k. Since there are no
obstructions on the number of zeros on these ovals, we can set set α1 = αk+1 = 0. Then∑m
i=1 αi = m+ 1 mod 2 can always be obtained as follows: For m = 1, this equality holds

due to α1 = 0 and for m ≥ 2, we set αi = 1 for 1 < i ≤ m. To see that also ∑k+1
i=1 αi = k + 1

mod 2 can be obtained, we have to consider two different cases: For m+ 1 = k + 1 mod 2,
we set αi = 0 for m < i ≤ k. For m = k mod 2, we use the fact that A− 6= ∅. Then also
Aσ− 6= ∅, and so we can set αm+1 = 1 and αi = 0 for m+ 1 < i ≤ k. Then there is at least
one negatively orientated oval with assigned α-value 0 and the preliminaries of Theorem
B.43 are fulfilled As in the first case, this yields a differential ω on X whose divisor in an
element of E(∅, A+, A−).

For the other cases, i.e. δ 6= ∅, note that we seek a spinor which also induces an orientation on
the ovals a1

i for i = 1, . . . , 2t1 corresponding to c1, . . . , ct1 . This orientation is not specified by the
given δ on these ovals, so we can choose it. That means we can determine freely whether an oval
belongs to the part of the oval with index smaller, equal or larger than m, where m is defined in
Theorem B.42.

• Let δ 6= ∅ and A− = ∅. We set Ãσ− = {ck+1}. Then k0 ≤ t1 < k + 1 since k+ · k− 6= 0.
Because Ãσ+ = Aσ+ contains at least one element and the total number of ovals of X̃σ is
k + 1 < g + 2, it is k0 < g + 1. Let the elements in Ãσ+ be denoted by c1, . . . , ck−t1 . For
i ≤ t1, let the ovals which are images of a1

i and σ]a1
i be denoted by ck−t1+1, . . . , ck. We set

α1 = 0 and m equals the number of ovals contained in Ãσ+. Again, there has to hold

k+1∑
i=1

αi = k + 1 mod 2 and
m∑
i=1

αi = m+ 1 mod 2
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and for at least one oval ci with m < i ≤ k + 1, there has to hold αi = 0. As before, we set
α2 = · · · = αk−1 = 1. Then the equality on the left hand side holds. To see that the equality
on the right hand side can also always be achieved, note that one of the two cases

t1∑
i=1

δi =
k∑

i=k−t1+1
αi =

t1 mod 2,

t1 + 1 mod 2

has to hold, whereby the second case implies that there exists at least one i ≤ t1 such that
δi = 0. In both cases, the spinor we construct shall induce negative orientation on ci with
i = k − t1 + 1, . . . , k + 1. In the first case, we set αk+1 = 0, so

k+1∑
i=1

αi =
t1∑
i=1

αi +
k+1∑

i=t1+1
αi = t1 +m+ 1 = k + 1 mod 2.

If ∑t1
i=1 δi = t1 + 1 mod 2, we know that there exists at least one δi which equals zero. So

we can set αk+1 = 1 which yields

k+1∑
i=1

αi =
k−t1∑
i=1

αi +
k∑

i=k−t1+1
αi + 1 = m+ 1 + t1 + 1 + 1 = k + 1 mod 2.

As before, this yields a differential ω on X whose divisor is an element of E(δ, A+, ∅).

• Let now δ 6= ∅ as well as A+, A− 6= ∅. We enumerate the ovals nearly as in the previous
step, where the ovals in Ãσ− are indexed by i = ](Ãσ+), . . . , ](Ãσ+ + Ãσ−) and the ovals on X̃σ

corresponding to a1
i and σ]a1

i on X with i ≤ t1 by ](Ãσ+ + Ãσ−) + 1, . . . , k. Hereby, ] shall
denote the number of elements in the respective sets. Furthermore, we orientate all ovals
corresponding to i < t1 negatively, set α1 = αk+1 = 0, m = ]Aσ+ and α2, . . . , α]Aσ+ = 1. Then∑
Ãσ+

αi = m+ 1 mod 2 and one of the following two cases has to hold:

∑
Ãσ+

αi =

k + 1 mod 2,

k mod 2.

If ∑Ãσ+
αi = k + 1 mod 2, we set α]Aσ++1, . . . , αk = 0. If ∑Ãσ+

αi = k mod 2, we set
α](Ãσ+)+1 = 1 and the remaining αi = 0. The latter is possible since Aσ− contains at least one
element. In both cases, it is ∑k+1

i=1 αi = k + 1 mod 2. As before, this yields a differential ω
on X whose divisor is an element of E(δ, A+, A−).

So for all choices of (δ, A+, A−) with not both A+ = A− = ∅, it is E(δ, A+, A−) 6= ∅.
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6. The isospectral set for regular finite type potentials

Theorem 6.51 ([Natanzon, 2004, Theorem 2.9.2]). Let (X, τ1, σ) be a real curve with involution
of type (g, ε, t1, r1, t2, r2), where k = t1 + r1 + t2 + r2 > 0. Then the following assertions hold:

(a) For ε = 0, all real tori of the Prym variety are singular.

(b) For ε = 1, there is at most one non-singular real torus of the Prym variety.

(c) For ε = 1 and k = g + 1, a non-singular real torus of the Prym variety always exists.

(d) For ε = 1 and t1 + r1 <
k
2 for k even and t1 + r1 <

k−1
2 for k odd, there are curves (X, τ1, σ)

of type (g, ε, t1, r1, t2, r2) such that there is a non-singular torus among the real tori of their
Prym varieties.

Proof. By definition, it is E(δ, A+, A−) ∩ E(δ′, A′+, A′−) 6= ∅ if and only if δ′ = δ, A′+ = A− and
A′− = A+ and in this case, these sets coincide. Because δ ∈ (Z2)t1 and all ovals in A+ ∪ A−
can be in either one of these sets, the number of disjoint sets of the form E(δ, A+, A−) is equal
to 2k−1. On the other hand, the real part of the Prym variety of a real curve with involution
(X, τ1, σ) coincides with AQ+(E(δ, A+, A−))−KQ+ . By Theorem 6.46, PrymR(X,σ) consists of
2k−1 connected components. By Lemma 6.50, none of the sets Ω(δ, A+, A−) is empty, so each real
torus of the Prym variety is of the form AQ+(E(δ, A+, A−))−KQ+ . The torus is singular if and
only if there is a D ∈ E(δ, A+, A−) such that D + σ(D) is the divisor of zeros of a holomorphic
differential on X, i.e. if Q+ and Q− are contained in D since then AQ+(D) ∈W 1

g , see Definition
6.35 and the discussion after that.

(a) Let ε = 0 and let T = AQ+(E(δ, A+, A−))−KQ+ be an arbitrary real torus of the Prym variety.
Let again Aσ± be the image of the set A± under πσ on the real curve (Xσ, τσ). By Theorem
6.19, there exists a holomorphic real differential ωσ on (Xσ, τσ) that is non-negative on Aσ+,
non-positive on Aσ− and may have zeros of second order on the other ovals. Lemmata 6.47
and 6.49 show that its preimage ω = π∗ωσ on X is a holomorphic differential that is positive
definite on the ovals of A+ and negative definite on the ovals of A−. The divisor of the zeros
of this differential intersected with a1

i ∪ σ]a1
i for i < t1 has positive degree which is divisible

by four and is symmetric with respect to σ. Hence, there is a differential D ∈ E(δ, A+, A−)
such that ωD = ω and T is a singular torus.

(b) Let ε = 1 and let T = AQ+(E(δ, A+, A−))−KQ+ be a torus that differs from AQ+(E(δ, A+, ∅))−
KQ+ , where δ = (1, . . . , 1). Repeating the arguments used for ε = 0 yields that T is a singular
torus.

(c) Let ε = 1 and k = g+1. We prove that for δ = (1, . . . , 1), the real torus AQ+(E(δ, A+, ∅))−KQ+

is non-singular. Indeed, otherwise there must be a real holomorphic differential ω on X that
is positive definite on all ovals of the involutions τ1 and τ2 and such that σ∗ω = ω. This
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differential induces a holomorphic real differential ωσ on the M -curve (Xσ, τσ) that is positive
on all ovals on which it has no zeros. However, by Theorem 6.24, there are no such differentials.

(d) Let ε = 1, t1 + r1 <
k
2 for k even respectively t1 + r1 <

k−1
2 for k odd and let T be a real

torus of the form AQ+(E(δ, A+, ∅))−KQ+ , where δ = (1, . . . , 1). If T is singular, then we find
– repeat the reasoning used in the case of k = g + 1 – a holomorphic differential ωσ on the
real curve (Xσ, τσ) that is positive on the t2 + r2 ≥ k

2 images of the ovals in A+ for k even
respectively t2 + r2 ≥ k−1

2 images for k odd and either has zeros or is positive on the other
ovals of the curve. Lemma 6.41 together with example 6.39 shows that we can take (Xσ, τσ) to
be any real curve to obtain a real curve with involution from it. In particular, also the curve
constructed in Theorem 6.25 on which there are no such differentials. So there are curves
(X, τ1, σ) such that there is a non-singular torus among the real tori of their Prym varieties.

To give a more complete picture of the topological type of the normalizations F (u)/Γ ∗, we now
consider the topological type of Fermi curves with constant potential. The considerations we
made so far are only valid for g ≥ 4. The three types of real curves which remain to consider
are real curves of genus 0, where the normalization has one or two connected components – this
corresponds to the normalization of Fermi curves with zero or constant potential – and real
curves with involution of genus 2, such that Xσ is a hypersurface. We here only consider the first
part. So let X(0) be the compactified normalization of F (0)/Γ ∗ and X(u0) be the compactified
normalization of F (4π2u0)/Γ ∗, see Section 1.4. Hereby, the shape of the curve X(u0) depends on
the absolute value of u0 6= 0. In particular, the constant potential leads to a shape of X(u0) which
differs from the shape of X(0). The latter curve has a double point at k = (0, 0), whereas X(u0)
has a handle in the neighborhood of k = (0, 0) which leads to a simple closed curve in the shape of
a circle around (0, 0) intersected with R2 respectively ιR2. The radius of this circle depends on
|u0| and which precise position in C2 it has depends on the choice of u0. This is illuminated in the
following lemma.

Lemma 6.52. For u0 ∈ R, the compactified normalization X(u0) of the Fermi curve X ′(u0) is a
real curve with holomorphic involution in sense of Definition 6.34.

(a) For u0 = 0, the topological type is (0, 1, 0, 0, 0, 0) and for the preimages kν,± ∈ X(0) of the
double points k±ν ∈ X ′(0), there holds τ1(kν,±) = kν,∓ for ν ∈ Γ ∗ that.

Let now u0 6= 0, ν ∈ Γ ∗ \ {0} and kν,± ∈ X(u0) be the two preimages of k±ν (u0) ∈ X ′(u0) as
defined in (1.20).

(b) For u0 > 0, the topological type of X(u0) is given by (0, 1, 0, 1, 0, 0) and τ1(kν,±(u0)) =
kν,∓(u0). Moreover, there exists no ν 6= ν̃ ∈ Γ \ {0} such that kν,±(u0) = kν̃,±(u0) or
kν,±(u0) = kν̃,∓(u0).
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(c) For −minν∈Γ∗\{0} ‖ν‖2
4 < u0 < 0, the topological type of X(u0) is given by (0, 1, 0, 0, 1, 0) and

τ1(kν,±(u0)) = kν,∓(u0). Moreover, there exists no ν 6= ν̃ ∈ Γ ∗ such that kν,±(u0) = kν̃,±(u0)
or kν,±(u0) = kν̃,∓(u0).

(c) For u0 < −
minν∈Γ∗\{0} ‖ν‖2

4 , the topological type of X(u0) is given by (0, 1, 0, 0, 1, 0). For
ν ∈ Γ ∗ \ {0} with ‖ν‖2 > −u0

4 , it is τ1(kν,±(u0)) = kν,±(u0) and τ2(kν,±(u0)) = kν,±(u0) for
‖ν‖2 < −u0

4 . Furthermore, the latter set of double points lays on the oval of τ2 which is
described by {(k1, k2) ∈ R2 | k2

1 + k2
2 = −u0}. For ν 6= ν̃ with ‖ν‖2 ≤ −u0

4 and

u0 = − ‖ν‖2‖ν̃‖2

2‖ν‖2|ν̃|2 − 2〈ν, ν̃〉
Ä
‖ν‖2 − 2〈ν, ν̃〉+ ‖ν̃‖2

ä
,

it is k±ν (u0) = k±ν̃ (u0) = k±ν−ν̃(u0).

Proof. For u0 = 0, we know from Lemma 1.18 that X(0) is given by two complex planes which
can be described by the set of all (k1, k2) ∈ C2 such that either k1 + ιk2 = 0 or k1 − ιk2 = 0. The
involutions τ1 and τ2 interchange these sheets, so there are no ovals on X(0) and the topological
type of (X(0), τ1, σ) in sense of Definition 6.36 is given by (0, 1, 0, 0, 0, 0) Furthermore, with k±ν as
in (1.16), it is

τ1(k±ν ) = −1
2(±ν1 − ιν2, ιν1 ± ν2) = 1

2(∓ν1 + ιν2,−ιν1 ∓ ν2) = k∓ν .

Next, we consider the topological type for the different cases in (b) to (d). We know from Lemma
1.20 that the Fermi curve for constant potential u0 ∈ R is given by the set

{(k1, k2) ∈ C2 | k2
1 + k2

2 = −u0}.

Hence, for u0 > 0, the involution τ2 : k 7→ k̄ has no fixed points and there is one oval of τ1 given by

c := {(k1, k2) ∈ ιR2 | k2
1 + k2

2 = −u0}. (6.12)

This oval is left invariant by σ : k 7→ −k and X(u0) \ c decays into two disjoint connected
components. So the topological type of (X(u0), τ1, σ) in sense of Definition 6.36 is given by
(0, 1, 0, 1, 0, 0) for u0 > 0.
Analogously for u0 < 0, there are no fixed points of τ1 : k 7→ −k̄ on X(u0) and there is one
σ-invariant oval of τ2 given by the set

c := {(k1, k2) ∈ R2 | k2
1 + k2

2 = −u0}. (6.13)

Accordingly, for u0 < 0, the topological type of (X(u0), τ1, σ) in sense of Definition 6.36 is given
by (0, 1, 0, 0, 0, 1).
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Next, we show the assertion on the preimages kν,±(u0) ∈ X(u0) of the double points k±ν (u0) ∈
X ′(u0) determined in (1.20). The behavior of those depends on whether the square root ξ(ν, u0) :=√

1 + 4u0
‖ν‖2 is contained in R or ιR. We first consider the setting of (b) and (c), i.e. u0 > 0

respectively u0 ∈
(
−minν∈Γ ∗\{0} ‖ν‖

2

4 , 0
)
. In both cases, it is ξ(ν, u0) ∈ ιR. Thus,

τ1(k±ν (u0)) = −1
2(±ν1 − ιξ(ν, u0)ν2, ιξ(ν, u0)ν1 ± ν2) = k∓ν (u0). (6.14)

So the double points are interchanged by τ1. It is impossible that kν,± with ν ∈ Γ ∗ \ {0} is
contained in the oval of τ1 in (6.12) since

‖k±ν (u0)‖ = 1
2

√
‖ν‖2 + ‖ν‖2

Ç
1 + 4 u0

‖ν‖2

å
= 1

2
»

2‖ν‖2 + 4u0 >
»
|u0|.

Assume that kν,±(u0) = kν̃(u0),± for some ν, ν̃ ∈ Γ ∗ \ {0} with ν 6= ν̃. Then the real parts of the
corresponding double points k±ν (u0) would have to be equal, i.e. (ν1,±ν2) = (ν̃1,±ν̃2). This can
hold if and only if ν = ν̃. So in both cases (b) and (c), it is not possible that the preimage of
two different double points kν,±(u0) and kν̃,±(u0) are identical for ν, ν̃ ∈ Γ ∗ \ {0} with ν 6= ν̃.
Analogously one shows that there also exist no ν 6= ν̃ ∈ Γ ∗ \ {0} such that kν,±(u0) = k ˜ν,∓(u0).
Let now u0 < −minν∈Γ ∗\{0} ‖ν‖

2

4 . As in (6.14), one sees that for ‖ν‖2 ≥ −u0
4 , the involution τ1

interchanges the points kν,−(u0) and kν,+(u0). Let ν ∈ Γ ∗ with ‖ν‖2 < −u0
4 . Then ξ(ν, u0) ∈ ιR

and kν,±(u0) ∈ R2 are fixed points of τ2.
Let us now take a closer look at the set {k±ν (u0) | ‖ν‖2 ≤ −u0

4 }. This set comprises all preimages
of double points of X ′(u0) which are contained in the oval of τ2 in (6.13). For these, it can
happen that two double points k±ν (u0) and k±ν̃ (u0) with ν 6= ν̃ ∈ Λ∗ are equal. Obviously, this
can only occur if ν and ν̃ are linearly independent. Let ν ∈ Λ∗ with ‖ν‖2 ≥ −u0

4 be given. To
determine ν̃ such that k±ν̃ (u0) = k±ν (u0), the following three equations with k = (k1, k2) have to
hold simultaneously:

k2 = −u0, (k + ν)2 = −u0, (k + ν̃)2 = −u0.

Subtracting the first equation from the second as well as from the third yields that these three
equations can hold simultaneously if and only if

2〈k, ν〉+ ‖ν‖2 = 0 and 2〈k, ν̃〉+ ‖ν̃‖2 = 0. (6.15)

Due to the linear independence of ν and ν̃, there exists a dual basis γ, γ̃ ∈ Λ corresponding to ν
and ν̃ such that

〈ν, γ〉 = 1, 〈ν, γ̃〉 = 0, 〈ν̃, γ̃〉 = 1, 〈ν̃, γ〉 = 0.
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Then every k ∈ C2 which is of the form k = −‖ν‖
2

2 γ − ‖ν̃‖
2

2 γ̃ solves the two equations in (6.15)
simultaneously. Inserting this into k2 = −u0 yields

k2 = ‖ν‖
4

4 ‖γ‖2 + ‖ν‖
2‖ν̃‖2

2 〈γ, γ̃〉+ ‖ν̃‖
4

4 ‖γ̃‖2 = −u0. (6.16)

To represent k in terms of the dual lattice, we have to determine ‖γ‖2, ‖γ̃‖2 and 〈γ, γ̃〉 in dependency
of ν and ν̃. Since γ, γ̃ are a dual basis of ν, ν̃, we have

‖ν‖2‖γ‖2 = 〈γ, γ〉〈ν, ν〉 = 〈〈γ, γ〉ν, ν〉 = 〈〈γ, ν〉ν, γ〉 = 1,

〈ν, ν̃〉〈γ, γ̃〉 = 〈〈ν, ν̃〉γ, γ̃〉 = 〈〈ν, γ〉ν̃, γ̃〉 = 1,

‖ν‖2〈γ, γ̃〉 = 〈ν, ν〉〈γ, γ̃〉 = 〈〈ν, ν〉γ, γ̃〉 = 〈〈ν, γ〉ν, γ̃〉 = 0

and analogously ‖ν̃‖2‖γ̃‖2 = 1 as well as ‖ν̃‖2〈γ, γ̃〉, ‖γ‖2〈ν, ν̃〉, ‖γ̃‖2〈ν, ν̃〉 = 0. Therefore,

1
‖ν‖2‖ν̃‖2 − 2〈ν, ν̃〉

(
‖ν̃‖2 −〈ν̃, ν〉
−〈ν, ν̃〉 ‖ν‖2

)
=
(
‖ν‖2 〈ν, ν̃〉
〈ν̃, ν〉 ‖ν̃‖2

)−1

= 1
2

(
‖γ‖2 〈γ, γ̃〉
〈γ̃, γ〉 ‖γ̃‖2

)
.

Comparing the coefficients of the matrices on the left hand side and on the right hand side of this
equation yields that

‖γ‖2 = 2‖ν̃‖2
‖ν‖2‖ν̃‖2 − 2〈ν, ν̃〉 , ‖γ̃‖2 = 2‖ν‖2

‖ν‖2‖ν̃‖2 − 2〈ν, ν̃〉 , 〈γ̃, γ〉 = −2〈ν, ν̃〉
‖ν‖2‖ν̃‖2 − 2〈ν, ν̃〉 .

By inserting this into equation (6.16), we finally obtain that for

u0 = − 1
‖ν‖2|ν̃|2 − 2〈ν, ν̃〉

Ç
‖ν‖4

2 |ν̃|2 − ‖ν‖2|ν̃|2〈ν, ν̃〉+ |ν̃|
4

2 ‖ν‖
2
å

= −1
2
‖ν‖2|ν̃|2|ν − ν̃|2

‖ν‖2|ν̃|2 − 2〈ν, ν̃〉 ,

it is k±ν (u0) = k±ν̃ (u0) = k±ν−ν̃(u0).

Moreover, the following Lemma holds by the same arguments as in Lemmata 6.1 and 6.3.

Lemma 6.53.

(a) The set of divisors D of degree 0 such that D + σ(D) ' K +Q+ +Q− and τ1(D) = (D) acts
transitively on the set of positive divisors D obeying D + σ(D) ' K +Q+ +Q−, where K is
the canonical divisor on X.

(b) Let (X, τ1, σ) be a real curve with involution and let D be a positive divisor of degree g on X
which obeys additionally to the conditions in (a) that dimH1(X,OD−Q± ⊗ Lh(x, y)) = 0 for
all (x, y) ∈ R2, where Lh(x, y) is defined below (5.3). The set of all such D is open in the set
of all positive divisors obeying D + σ(D) ' K +Q+ +Q− and τ1(D) = D.
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Outlook

Even though this thesis is answered many questions concerning the direct and the inverse problem
of finite type Fermi curves for the double-periodic Schrödinger equation, we see that the problems
are of such rich variety that there are several possibilities to explore further from this point.
One way to go would be to try to transfer the results for finite type potentials to the more general
case of arbitrary potentials. Concerning this direction, we mention here only that one big step
towards this generalization would be to show that the finite type potentials are dense in the set of
all potentials.
Another direction to proceed is to answer the questions for finite type potentials which are either
yet not answered in this thesis or raised by the results in this work. Below, we mention the points
which we consider of most interest for finite type potentials to continue the research.
First of all, it would be very interesting to figure out whether it is possible to extend the
discussion presented in this work for regular finite type potentials to the broader class of all
finite type potentials. For that, one would have to show an analogon to the linear equivalence
D + σ(D) ' K + Q+ + Q− from Lemma 4.13 for the generalized divisor S as in Definition 3.7
respectively a generalized divisor on some unique one-sheeted covering of the Fermi curve similar
to the middleding in 4.4. One possibility would be to analyze whether or in which cases σ acts
on the middleding. If that is not the case, we suspect that it could be a good idea to consider
another unique one-sheeted covering X̃, distinct from the middleding, to define an analogon S̃ to
the generalized divisor SM from Definition 4.4. A good candidate for this might be the unique
one-sheeted covering so that the holomorphic functions of this new covering act on both, S and
σ∗S. Instead of the canonical divisor one should consider the sheaf of regular 1-forms Ω(X̃) on
this covering, compare Definition 3.4. Then the linear equivalence itself would be expressed by an
isomorphism of vector spaces between the sheaf ΩX̃ +Q+ +Q− and the sheaf which is generated
by all multiples of S̃ and σ∗S̃. However, if the analogon to the linear equivalence can be shown,
then the results on the construction of the Baker Akhiezer function should also hold for the Baker
Akhiezer function on the corresponding singular curve X̃ as defined in [Klein et al., 2016, Chapter
8].
To transfer also the statement that the number of fixed points of σ on X̃ is two if and only if the
above sheaves are isomorphic, one would also have to take the fundamental group of the singular
curve X̃ into account. We suspect that this could become complicated.
In Section 3.3, concerning the construction of a regular operator 1-form on the Fermi curve out
of the spectral projection, we see at least one more possibility for an interesting question to be
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answered. Before we formulate this question, we want to explain the analogous setup for integrable
systems with one periodic and one trivial flow as described in [Klein et al., 2016, Case 2 on page
32]. To do so, let k ∈ C, A(k) be a holomorphic n × n-matrix and let X be the curve which is
parametrized by all values (k, λ) ∈ C2 so that there exists a ψ which obeys (A(k)− λ)ψ = 0. For
this situation, a general procedure is known to obtain a regular operator-valued 1-form with help
of the spectral projection as it was done in this work in Section 3.3, i.e. by taking the eigenfunction
and the dual eigenfunction into account, compare [Schmidt, 1996, Chapter 3]. Out of this 1-form,
one usually obtains a linear equivalence similar to the one shown in Lemma 4.13. More precisely,
one can show a relation between the divisor of the eigenfunction and of the dual eigenfunction of
the considered differential operator such that the sum of these is linear equivalent to the canonical
divisor on X plus maybe some points at infinity. Here, the number of marked points which have
to be added in this linear equivalence depends on the considered differential equation.
However, besides the Schrödinger equation considered in this thesis, there are many other infinite
dimensional integrable systems with two periodic flows, compare [Klein et al., 2016, Case 3 on
page 32]. In these cases, a similar situation occurs in which one takes the kernel of a holomorphic
n × n-matrix A(k1, k2) with k1, k2 ∈ C into account. So the question one can ask for these
situations are the following: First of all, is there also a standard procedure, similar to the case of
one periodic and one constant flow, to obtain a regular operator-valued 1-form if X is the curve
which is defined by all values (k1, k2) ∈ C2 such that there exists a ψ with A(k1, k2)ψ = 0? And
secondly, does such an operator-valued 1-form always lead to a relation between the divisor D of the
normalized eigenfunction and its transposed similarly to (4.3)? We suspect that both questions can
be answered positively. More precisely, our expectation is that it should be possible to generalize
the method presented in Section 3.3 to construct this 1-form for the Schrödinger operator. The
standard procedure should comprise the following steps: First, one considers the Bloch variety
i.e. another curve Y which is parametrized by all (k1, k2, λ) such that there exists a ψ that obeys
(A(k1, k2)− λ1)ψ = 0 with λ ∈ C. On this Bloch variety, one can define the spectral projection P
as it is done for the Schrödinger operator in (3.4) and show that P dk1 ∧ dk2 is an operator-valued
regular 2-form on Y . From this, it should be possible to define a modified projection-valued
2-form P̃ dk1 ∧ dλ and show its regularity in the same as we have defined P∂ dk1 ∧ dλ, i.e. by
exploiting a connection between the enumerators of P̃ and P , whereby ∂λ

∂k2
is taken into account

as it was done in Proposition 3.15. With this, the regularity of the corresponding operator-valued
2-form P̃ dk1 ∧ dλ on Y should follow from the regularity of the operator-valued 2-form Pdk1 ∧ dk2.
We suspect that this can be shown in a similar way as for P∂ in Lemma 3.16. Then restricting
P̃ dk1 ∧ dλ to X should yield the desired regular 1-form.
Other interesting questions in the case of regular finite type potentials which still remain open
concern the non-speciality of the divisors which are contained in the isospectral set. In the case of
complex-valued potentials, it would be interesting to find out whether there is a divisor D such
that all translations by divisors D̃ of degree 0 with D̃ = −σ(D̃) are non-special. Similar assertions
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have been shown in the unpublished paper [Schmidt, 2002, Section 2.5.1] for the Dirac operator.
However, the Fermi curve of the Dirac operator obeys additional symmetries which do not hold
for the Fermi curve corresponding to the Schrödinger operator. Therefore, it is not possible to
transfer these results to the case considered in this work. Still, it would be interesting to figure
out statements on the codimension of the subvariety of special divisors in the Prym variety –
considered as a subset of the Picard group – such that the space of global sections is at least two
dimensional. Like this, it might be possible to show the existence of a divisor such that the divisor
itself and all its translations by Lh(x, y), as defined in Section 4.2.5, are non-special. This question
is closely related to the inquiry whether the set of non-special divisors is dense in the set of all
divisors parametrizing the isospectral set of a given potential.
In the real case, it is shown in Theorem 6.51 that there exists at most one connected component
of the real Prym variety of a given real curve with involution (X, τ, σ) which contains no special
divisors if g ≥ 4, where g is the genus of X. Here, it would be interesting to consider several
questions: First of all, is it possible to give a more detailed description for which types of potentials
u there always exists a connected component that does not contain special divisors? And if this
could be answered positively: Which of the several connected components is that? In case this
connected component could be determined, how to see whether all divisors D which correspond to a
Schrödinger operator with regular finite type potential are contained in this connected component?
One approach which might at least lead to the beginning of an answer to these questions is to
consider small deformations of the Fermi curves with constant or zero potential and to determine
for which deformations the corresponding quotient Xσ of the normalization X of the deformed
curve is anM -curve. In that case, we know at least for sure that exactly one non-singular connected
component of the real Prym variety exists.
Also in this context, one could try to answer the questions we answered in this work for the real
isospectral sets of Fermi curves of finite type whose compactified normalization has genus larger
than 2 for the case where the normalization has genus 2. In this case, the quotient surface Xσ has
genus 1 and thus is a hyperelliptic curve. The connection between the real spinors and the liftings
of real Fuchsian groups employed in this thesis to explore the existence or non-existence of certain
holomorphic 1-forms on a real curve X of genus g > 2 do not apply anymore, because in this case
the universal covering of Xσ is not given by H anymore. However, we think that the necessary
statements can be shown directly like the ones for hyperelliptic curves in Section 6.2.
Another question that arises is how to transfer the results we have made for a real curve as a
Riemann surface to the more general case of complex curves such that one can embed the whole
setup for finite type potentials as considerations on the modified middleding we introduced above.
Finally, we ask ourselves one more question concerning the moduli problem: Let F (u)/Γ ∗ be a
given Fermi curve and let X be the corresponding curve to deform, i.e. on X exists a non-special
divisor so that also all of its translations by Lh(x, y) are non-special for (x, y) ∈ R2 as defined in
Section 4.2.5. Does such a divisor always exist on the fibers of the deformed spaces, at least in a
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small open neighborhood of X? We believe that one has to understand the deformations of the
Jacobian variety to get insight into this.
Summarizing, we can say that still many interesting questions concerning the direct and the inverse
problem of the two-dimensional Schrödinger operator of finite type remain open, whereby for some
we cannot predict whether there is an answer. We hope that this thesis provides the foundations
to continue research on this topic and that the results presented here can be helpful to answer at
least some of the above questions.
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A. The Jacobian and the Prym Variety

To understand what the Prym variety is, certain basics about Abelian Varieties and Complex
Tori are helpful. These can be found in [Lange and Birkenhake, 1992, Chapters 1,4,10 and 11].
However, the concrete results and definitions that are used in this work are mainly oriented on
[Mumford, 1974]. We will now summarize some properties of X and Xσ, where Xσ is defined at
the beginning of Section 4.2.2.

Proposition A.1. Let X be a compact Riemann surface and σ : X → X a holomorphic involution
with σ 6= 1. Let further Xσ be the space defined by the quotient Xσ := X/ ∼σ, where p ∼σ q if
p = q or p = σ(q) for p, q ∈ X. Then Xσ is also a compact Riemann surface and the natural map
πσ : X → Xσ is a two sheeted covering.

Proof. Because σ 6= 1, there exists at least one p ∈ X such that p 6= σ(p). Then the holomorphy
of σ yields that the map p 7→ p−σ(p) has discrete roots on X, and therefore the set of fixed points
is also discrete. Equipping Xσ with the quotient topology which is induced by the definition of Xσ

yields that Xσ is a topological space. Obviously, as X is compact, the quotient space Xσ is also
compact. The quotient topology defines an atlas on Xσ, where all points that are no fixed points of
σ have two charts which are induced by the open sets on X. Since the involution σ is holomorphic,
these charts are compatible with each other. Accordingly, it suffices to define charts around the
images of the fixed points of σ on Xσ under the natural map πσ : X → Xσ to show that Xσ is a
Riemann surface. To do so, let p ∈ X be a fixed point of σ, U a small open neighborhood of p and
let z : U → C be a local chart centered at p, i.e. z(p) = 0. Since p = σ(p), it is also σ∗z(p) = 0.
Let z̃ := z−σ∗z

2 . Then z̃ : U → C is a local coordinate centered at p which obeys σ∗z̃ = −z̃ and z̃2

is invariant under σ. Moreover, only (±z̃)2 = z̃2. Therefore, only elements which are in the same
equivalence class of ∼σ are mapped to the same element in C by z̃2. This map is an injective
map from a small open neighborhood of pσ := πσ(p) to C. It is also an open map because all
small discs around 0 ∈ C contain both, z̃ and −z̃. So zσ := (z̃)2 is a bijective map from a small
open neighborhood of pσ = πσ(p) to a small open ball Br(0) ⊂ C. This defines a chart around the
image of a fixed point of σ. Therefore, Xσ is a Riemann surface. By the definition of Xσ, the map
πσ is a two-sheeted covering which is unbranched on X \ {p ∈ X | σ(p) = p} and branched over
the fixed points of σ.

Whenever we speak of πσ : X → Xσ, this denotes the compact Riemann surfaces X and Xσ and
the covering from the previous proposition. We have shown in Section 4.2.2 how to construct
a basis of H1(X,Z) from a cycle basis of H1(Xσ,Z) and the branch points of σ. Thereby, is is
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used that the intersection number of the lifted cycles on X can only become smaller compared
to the intersection number of the non-lifted cycles on Xσ. The proof of this standard assertion
can for general lifting of paths be found in [Miranda, 1995, Section III.4]. It is repeated in the
next Lemma for the situation described in Section 4.2.2. We use the notation of the subsection ‘A
two-sheeted covering’.

Lemma A.2. The absolute value of the intersection number of two paths γσ,1, γσ,2 in Xσ \ ([s1] ∪
· · · ∪ [sn−1]∪ [t1]∪ · · · ∪ [tn−1]) cannot raise due to lifting these via π∗ to X, where si and ti are the
paths connecting the two branch points in Xσ as defined in the construction of a basis of H1(X,Z)
from a basis of H1(Xσ,Z), compare Section 4.2.2.

Proof. By assumption, none of the lifts of the curves γσ,1 and γσ,2 contains a ramification point of
X. The covering π is unbranched on the two sheets U and σ[U ] of X \π−1[[s1]∪ · · ·∪ [sn−1]∪ [t1]∪
· · · ∪ [tn−1]] and the restriction to each of these sheets is locally biholomorphic to Xσ \ ([s1]∪ · · · ∪
[sn−1] ∪ [t1] ∪ · · · ∪ [tn−1]). Hence, over every path in Xσ \ ([s1] ∪ · · · ∪ [sn−1] ∪ [t1] ∪ · · · ∪ [tn−1]),
there are two paths in X: one on U and one on σ[U ]. The intersection number of two paths γ1

and γ2 lifted to different sheets equals zero, since neither γ1 nor γ2 contains a ramification point
of X, and so they cannot change from one sheet to another.
Let now γ1 and γ2 be two paths which originate from lifting γσ,1 and γσ,2 to the same sheet U
respectively σ[U ]. Without loss of generality, we consider the lifts to U . Then the intersection
number of γ1 and γ2 equals the intersection number of γσ,1 and γσ2 . This can be seen by considering
the lift

X

[0, 1] Xσ

π
γ1,γ2

γσ,1,γσ,2

where t ∈ [0, 1] and π ◦ γi = γσ,i for i ∈ {1, 2}. We define the set of intersection points as
I := {t ∈ [0, 1] | γσ,1(t) = γσ,2(t)}. On the one hand, there holds π ◦ γ1(t) = π ◦ γ2(t) for all t ∈ I
and because π is locally biholomorphic on U and γ1, γ2 both lie in U , one has γ1(t) = γ2(t). On
the other hand, let t ∈ [0, 1] such that γ1(t) = γ2(t), but γσ,1(t) 6= γσ,2(t). Then there exists a
pσ ∈ Xσ such that π(γi(t)) = pσ ∈ supp(γσ,i) for i = 1, 2 because γσ,i = π ◦ γi. In other words,
pσ ∈ supp(γσ,1 ∩ γσ,2) which contradicts the assumption that γ1 ∩ γ2 = ∅. So the absolute value of
the intersection number of two cycles cannot raise if the cycles are lifted to the same sheet and do
not contain a branch point.

Therefore, the lifted A- and B-cycles do not intersect any of the C- and D-cycles on X in the
cycle basis constructed in Section 4.2.2.
Furthermore, we will consider meromorphic functions f as well as meromorphic 1-forms ω on X
which are the pullback of meromorphic functions fσ respectively 1-forms ωσ on Xσ by π. We
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remember thatM(X) is the set of the global meromorphic functions on X andM(Xσ) is the set
of global meromorphic functions on Xσ.

Definition A.3. The set of symmetric global meromorphic functions on X is defined asM+(X) :=
{f ∈M(X) | f = σ∗f}.

Note thatM(Xσ) 'M+(X), compare [Forster, 1981, Section 8.1]. Furthermore, all meromorphic
1-forms on X which are invariant under σ are the pullback of a meromorphic 1-form on Xσ.

Proposition A.4. A meromorphic 1-form ω on X obeys ω = σ∗ω if and only if there exists a
meromorphic 1-form ωσ on Xσ such that ω = π∗ωσ. This assignment is unique.

Figure A.1.: The locally biholomorphic mappings πi for i = 1, 2 from the proof of proposition
A.4 with Ui = σ[Uj ] and σ∗ω|Ui = ω|Uj for i 6= j ∈ {1, 2}.

Proof. Let ωσ be a meromorphic 1-form on Xσ. Then ω := π∗ωσ is uniquely defined. The definition
of Xσ yields

σ∗ω = σ∗π∗ωσ = (π ◦ σ)∗ωσ = π∗ωσ = ω.

Conversely, let ω be a meromorphic 1-form on X which is invariant under σ. We show that there
exists a meromorphic 1-form ωσ on Xσ such that ω = π∗ωσ. Therefore, let U be an open covering
of Xσ \ bπσ , where bπσ is the set of branch points of the covering πσ as in Definition 4.15. We
define ωσ by defining ωσ|U for all U ∈ U and then showing that these local definitions coincide on
all non-empty intersections of open sets contained in U . This yields that ωσ is a global 1-form on
Xσ \ bπ. So let U ⊂ Xσ \ bπ. Since the branch points are discrete, one can choose U small enough
such that π−1[U ] consists of two disjoint sets in X, compare Figure A.1. Hence, for all U ∈ U ,
there are two disjoint embeddings

π−1
σ,1 : U → X and π−1

σ,2 : U → X

which invert πσ locally. The set π−1
σ [U ] consists of two disjoint open sets U1 := π−1

σ,1[U ] and
U2 := π−1

σ,2[U ] such that σ[Ui] = Uj for i 6= j ∈ {1, 2}. That means for all points p ∈ U ⊂ Xσ \ bπσ ,
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one has π−1
σ,1(p) = σ(π−1

σ,2(p)). These maps can be chosen such that σ ◦ π−1
σ,i |U = π−1

σ,j |σ[U ] for
i 6= j ∈ {1, 2}. With this choice, one has as above

(π−1
σ,1)∗ω|U1 = (σ ◦ π−1

σ,2)∗ω|U1 = (π−1
σ,2)∗σ∗ω|U2 = (π−1

σ,2)∗ω|U2 .

So on each U ∈ U , there exists a unique form ωσ|U . Furthermore, there holds for i ∈ {1, 2}

ω|Ui = (π−1
σ,i ◦ πσ)∗ω|Ui = π∗σ(π−1

σ,i )∗ω|Ui = (π∗σωσ|U )Ui .

Therefore, ω|π−1
σ [U ] = π∗σωσ|U . From the construction of ωσ, it is clear that for W ⊂ U , one has

ωσ|W = (ωσ|U )|W . Accordingly, for all U, V ∈ U , it is (ωσ|U )U∩V = ωσ|U∩V = (ωσ|V )|U∩V and
hence ωσ|U is the restriction of a global meromorphic 1-form on Xσ \ bπσ . Since the meromorphic
1-form ωσ is known on Xσ \ bπσ , it can be continued uniquely to all of Xσ, and so the claim
follows.

We now want to define mappings between the Jacobi varieties of X and Xσ which are defined as

Jac(X) := H0(X,Ω)∗
H1(X,Z) and Jac(Xσ) := H0(Xσ, Ω)∗

H1(Xσ,Z) ,

where H0(X,Ω)∗ := L(H0(X,Ω),C) and H0(Xσ, Ω)∗ := L(H0(Xσ, Ω),C). The elements of
H1(X,Z) can be interpreted as elements of H0(X,Ω)∗ with help of the injective mapping

H1(X,Z)→ H0(X,Ω)∗, γ 7→
Ç
ω 7→

∫
γ
ω

å
:=
∫
γ
.

The interpretation of elements of H1(Xσ,Z) as elements of H0(Xσ, Ω)∗ is defined analogously. Let
γp0,p be an arbitrary path starting at p0 and ending at p.

Theorem A.5 (Abels Theorem, [Forster, 1981, Satz II.21.7]). Let X be a compact Riemann
surface of finite genus g <∞ and let D ∈ Div0(X) a divisor of degree 0 on X. For a fixed base
point p0 ∈ X, we consider the map

Div0(X)→ Jac(X),
∑
p∈D

npp 7→
∑
p∈D

∫
γp0,p

mod H1(X,Z).

This mapping induces an isomorphism on the classes of divisors modulo principal divisors and the
Jacobian variety Jac(X) by

Pic0(X) ∼−→ Jac(X),

∑
p∈D

npp

 7→ ∑
p∈D

∫
γp0,p

mod H1(X,Z).

With this isomorphism, a Riemann surface X can be embedded into Jac(X) respectively Pic0(X)
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by
Ab : X −→ Jac(X), p 7→

∫ p

p0
mod H1(X,Z)

respectively
Ab : X → Pic0(X), p 7→ [p− p0].

For πσ : X → Xσ, we define the respective maps for X with base point p0 ∈ X and for Xσ with
base point pσ,0 := πσ(p0) ∈ Xσ.
With help of the holomorphic involution σ, one can split Jac(X) into two parts: a symmetric
part Jac(X)+ and an antisymmetric part we call the Prym variety Prym(X,σ). We want to give
insight why the symmetric part is isomorphic to Jac(Xσ) and why the direct sum of Jac(X)+ and
Prym(X,σ) is not isomorphic to Jac(X). Hereby, we orientate our presentation on [Adler et al.,
2010, Section 2.5.4].

Definition A.6. An element ω+ ∈ H0(X,Ω) is called symmetric if ω+ = σ∗ω+. The space of all
symmetric elements of H0(X,Ω) is denoted as H0(X,Ω)+. An element ω− ∈ H0(X,Ω) is called
antisymmetric if ω− = −σ∗ω−. The space of all antisymmetric elements of H0(X,Ω) is denoted
as H0(X,Ω)−. We define the projections

P± : H0(X,Ω)→ H0(X,Ω)±, ω 7→ ω ± σ∗ω
2

to the symmetric respectively antisymmetric part of H0(X,Ω). Furthermore, we define

H0(X,Ω)∗± := {` ∈ H0(X,Ω)∗ | `(ω∓) = 0 for all ω∓ ∈ H0(X,Ω)∓}

and
P± : H0(X,Ω)→ H0(X,Ω)∗±, ω 7→ ker(` ◦ (ω ∓ σ∗ω)).

Classically, the even divisors are defined as all divisors D on X such that D − σ(D) ' 0 and
the odd divisors as D on X such that D + σ(D) ' 0, compare [Adler et al., 2010, Section 5.2.4].
Let now Ab be the abelian mapping Ab : Pic → Jac(Xσ) × Z as defined in [Miranda, 1995,
Section XI.4, The Jacobian]. With help of this map one can express the above relations on the
Jacobian variety as Ab(D−σ(D)) = (0, 2 deg(D)) ∈ Jac(Xσ)×Z for the even divisors respectively
Ab(D + σ(D)) = (0, 2 deg(D)) ∈ Jac(Xσ)×Z for the odd divisors.

The subsets of the even respectively uneven divisors are subgroups of Div(X). For H0(X,Ω)∗,
there is the following decomposition.

Lemma A.7.
H0(X,Ω)∗ ' H0(X,Ω)∗+ ⊕H0(X,Ω)∗−.

Proof. Every ω ∈ H0(X,Ω) can be written as ω = P+(ω) +P−(ω) = ω+ +ω−. This decomposition
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is direct since

im(P+) ∩ im(P−) = {ω ∈ H0(X,Ω) | (ω = σ∗ω) ∧ (ω = −σ∗ω)} = {0} ∈ H0(X,Ω).

Moreover, im(P±) = ker(P∓) because P±(ω∓) = 0 and for ω ∈ ker(P±), one has

ω ± σ∗ω = 0 ⇔ ω = ∓σ∗ω ⇔ ω ∈ H0(X,Ω)∗∓,

so H0(X,Ω) = H0(X,Ω)+ ⊕H0(X,Ω)−. This direct sum carries over to the dual space

H0(X,Ω)∗ = (H0(X,Ω)+ ⊕H0(X,Ω)−)∗ = H0(X,Ω)∗+ ⊕H0(X,Ω)∗−

since H0(X,Ω)+ ⊕H0(X,Ω)− is a direct sum of vector spaces and every linear mapping `± ∈
H0(X,Ω)∗± is extendable to a linear mapping ¯̀± ∈ H0(X,Ω)∗ by setting ¯̀±[H0(X,Ω)∓] = 0.
Then

¯̀± ∈ H0(X,Ω)◦∓ := {` ∈ H0(X,Ω)∗ | `[H0(X,Ω)∓] = 0},

where H0(X,Ω)◦∓ is the annihilator of H0(X,Ω)∓. The maps

H0(X,Ω)∗± → H0(X,Ω)◦∓, `± 7→ ¯̀±

are isomorphisms which inverse maps are the restrictions of ¯̀± onto H0(X,Ω)±. Therefore,
H0(X,Ω)◦± ' H0(X,Ω)∗∓. Every linear function in H0(X,Ω)∗ can be written as a sum of a linear
function annihilating H0(X,Ω)− and a linear function annihilating H0(X,Ω)+. More precisely,
(H0(X,Ω)+ ⊕H0(X,Ω)−)∗ = H0(X,Ω)◦− ⊕H0(X,Ω)◦+. The sum on the right hand side is direct
since H0(X,Ω)◦+ ∩H0(X,Ω)◦− = {0}. In addition P+ + P− = 1. So

` = ` ◦ (P+ + P−) = (` ◦ P+) + (` ◦ P−) ∈ H0(X,Ω)◦− ⊕H0(X,Ω)◦+.

Consequently, H0(X,Ω)∗ ⊆ H0(X,Ω)∗+ ⊕ H0(X,Ω)∗−. As also H0(X,Ω)∗+ ⊕ H0(X,Ω)∗− ⊆
H0(X,Ω)∗, the assertion follows.

To get a decomposition of H1(X,Z) similar to the decomposition of H0(X,Ω)∗ into symmetric
and antisymmetric part, we define

Definition A.8. The symmetric and antisymmetric cycles of H1(X,Z) are defined as

H1(X,Z)± := {γ ∈ H1(X,Z) | σ]γ = ±γ}.

Proposition A.9. Let gσ be the genus of Xσ and 2n be the number of branch points of πσ on Xσ.
Then the cycles A+

i := Ai+σ]Ai and B+
i := Bi+σ]Bi with i = 1, . . . gσ define a symplectic basis of

H1(X,Z)+ and dimH1(X,Z)+ = 2gσ. The cycles A−i := Ai − σ]Ai, B−i := Bi − σ]Bi, C−j := Cj

212



and D−j := Dj with i = 1, . . . gσ and j = 1, . . . , n− 1 define a symplectic basis of H1(X,Z)− and
dimH1(X,Z)− = 2(gσ + n− 1). Furthermore, H1(X,Z)± ⊆ H1(X,Z) ∩H0(X,Ω)∗±.

Proof. The intersection numbers of the two cycle bases can be calculated immediately with the
results from the construction of the cycle basis of H1(X,Z) in Section 4.2.2. By definition, the
A+- und B+-cycles are contained in H1(X,Z)+ and for ω− ∈ H0(X,Z)−, it is∫

A+
i

ω− =
∫
Ai

ω− +
∫
σ]Ai

ω− =
∫
Ai

ω− +
∫
Ai

σ∗ω− =
∫
Ai

ω− − ω− = 0

and analogously
∫
B+
i
ω− = 0. So H1(X,Z)+ ⊆ H1(X,Z) ∩ H0(X,Ω)∗+. Let γ ∈ H1(X,Z)+,

i.e. σ]γ = γ. Since γ ∈ H1(X,Z), it can be represented as

γ =
gσ∑
i=1

(aiAi + biσ]Ai + ciBi + diσ]Bi) +
n−1∑
j=1

(ejCj + fjDj)

with ai, bi, ci, di, ej , fj ∈ Z. Due to Lemma 4.18, one has

σ]γ =
gσ∑
i=1

(aiσ]Ai + biAi + ciσ]Bi + diBi) +
n−1∑
j=1

(ejσ]Cj + fjσ]Dj)

=
gσ∑
i=1

(aiσ]Ai + biAi + ciσ]Bi + diBi)−
n−1∑
j=1

(ejCj + fjDj)

and since Ai, σ]Ai, Bi, σ]Bi, Cj and Dj form a symplectic cycle basis of H1(X,Z), it is ai = bi,
ci = di and ej = fj = 0. Therefore, a basis of H1(X,Z)+ is given by

¶
A+
i , B

+
i | i = 1, . . . , gσ

©
.

We have already seen in Lemma 4.18 that for j = 1, . . . , n− 1, it is Cj , Dj ∈ H1(X,Z)−. As above,
also Ai − σ]Ai and Bi − σ]Bi are elements of H1(X,Z)− ⊂ H0(X,Ω)∗−. The rest of the proof for
the antisymmetric parts is shown analogously.

Likewise for the symmetric and antisymmetric 1-forms the following proposition holds.

Proposition A.10. A basis of H0(X,Ω)+ is given by ω+
1 , . . . , ω

+
gσ and a basis of H0(X,Ω)− is

given by ω−1 , . . . , ω−gσ+n−1 which are defined in (4.12).

Proof. One has
dim(H0(X,Ω)+) = dim(H0(Xσ, Ω)) =: gσ

Using the Riemann-Hurwitz Theorem [Forster, 1981, Theorem 17.14], dim(H0(Xσ, Ω)) = gσ and
dim(H0(X,Ω)) = g = 2gσ + n− 1 yields

dim(H0(X,Ω)−) = dim(H0(X,Ω))− dim(H0(X,Ω)+) = g − gσ = gσ + n− 1.
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Appendix A. The Jacobian and the Prym Variety

For i = 1, . . . , gσ, it is

σ∗ω+
i = σ∗(ωi + ωg+i) = σ∗ωi + σ∗ωg+i) = ωg+i + ωi = ω+

i .

Hence, ω+
i ∈ H0(X,Ω)+ and analogously σ∗ω−i = −ω−i . The normalization of the differential

forms yields that also the remaining n − 1 1-forms ωgσ+j with j = 1, . . . , n − 1 are elements of
H0(X,Ω)−:

1 =
∫
Cj

ω−gσ+j = −
∫
σ]Cj

ω−gσ+j =
∫
Cj

−σ∗ω−gσ+j .

The proof that every element ω± ∈ H0(X,Ω)± can be generated by the claimed bases follows by
similar calculations as done in the corresponding part of the proof of proposition A.9.

The next Lemma shows that Jac(Xσ) can be embedded into Jac(X).

Lemma A.11.
Jac(Xσ) ' H0(X,Ω)∗+

H1(X,Z)+
=
Ç
H0(X,Ω)∗
H1(X,Z)

å
+

=: Jac(X)+.

Proof. We know from Proposition A.4 that H0(Xσ, Ω) ' H0(X,Ω)+ and since H0(X,Ω) and
H0(Xσ, Ω) are finite dimensional, it is

H0(Xσ, Ω)∗ ' H0(Xσ, Ω) ' H0(X,Ω)+ ' H0(X,Ω)∗+.

Furthermore, it follows from the considerations in the construction of the cycle basis in Section
4.2.2 that H1(X,Z)+ ' H1(Xσ,Z). We combine these two results to prove that there is an
embedding Jac(Xσ) ↪→ Jac(X) by showing that they lead to

Jac(Xσ) = H0(Xσ, Ω)∗
H1(Xσ,Z) '

H0(X,Ω)∗+
H1(X,Z)+

.

Now, it is clear that H0(X)∗+
H1(X,Z)+

⊂
(
H0(X)∗
H1(X,Z)

)
+
. Conversely, for

î∫
γ

ó
∈
(
H0(X)∗
H1(X,Z)

)
+
, one has [γ] = [σ]γ].

Accordingly, it is with some linear combination δ ∈ H1(X,Z)

2
ñ∫

γ

ô
=
∫
γ+δ+σ](γ+δ)

=
∫
γ+σ]γ

+
∫
δ+σ]δ

,

where δ + σ]δ ∈ H1(X,Z)+. So
(
H0(X)∗
H1(X,Z)

)
+
⊂ H0(X)∗+

H1(X,Z)+
. Taking these two inclusions together

gives Jac(Xσ)+ = H0(X)∗+
H1(X,Z)+

.

Moreover, we can define the Prym variety with the above notation.

Definition A.12. The Prym variety of X with respect to the holomorphic involution σ is defined
as

Prym(X,σ) := H0(X,Ω)∗−
H1(X,Z)−

⊂ Jac(X).
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It is shown in [Adler et al., 2010, Section 5.2.4] that Prym(X,σ) is a polarized Abelian variety
which inherits a polarization of type (1, . . . , 1, 2 . . . , 2) with n − 1 times 1 and gσ times 2 from
Jac(X). So especially in the case of exactly two branch points, it follows from the considerations
in Section 4.2.2 that Prym(X,σ) ' Jac(Xσ) as R-linear vector spaces. Seen as divisors, we know
fromM(X)+ 'M(Xσ) that every divisor D such that D − σ(D) ' 0 is the pullback of a divisor
Dσ on Jac(Xσ) under πσ. Furthermore, for a divisor D such that D + σ(D) ' 0, one has

Ab(D) =
Å∫

D
ωi

ãg
i=1

=
Å∫

D

ωi + σ∗ωi
2 + ωi − σ∗ωi

2

ãg
i=1

The first summand vanishes since∫
D

ωi + σ∗ωi
2 = −

∫
σ(D)

ωi + σ∗ωi
2 = −

∫
D

ωi + σ∗ωi
2 .

So Ab(D) ⊂ Prym(X,σ). Conversely, let P+(D) = 0. Then the definition of P+ yields that
D + σ(D) ' 0.
Now one sees why

Jac(X) 6' Jac(Xσ)⊕ Prym(X,σ)

by interpreting all elements of H1(X,Z) as a lattice in H0(X,Ω)∗ as it is done in (4.14). The
elements of H1(X,Z)+ ⊕H1(X,Z)− cannot generate all elements of H1(X,Z), compare figure
A.2. In fact,

H1(X,Z) ) H1(X,Z)+ ⊕H1(X,Z)−. (A.1)

The inclusion is obvious. To see the inequality, take for example an element Ai of the canonical
basis of H1(X,Z). Then there is no linear combination of the cycles generating H1(X,Z)+

and H1(X,Z)− which is equal to Ai since all linear combinations of these cycles either contain
even multiples of Ai respectively σ]Ai or combinations of Ai and σ]Ai. Therefore, Jac(Xσ) ⊕
Prym(X,σ) 6' Jac(X). This problem can be removed by dividing out additional points on the

Figure A.2.: Sketch of one complex dimension in Cg spanned by ΩAi and Ωσ]Ai as defined in
(4.14), This sketch shows which elements of H1(X,Z) are missing in H1(X,Z)+ ⊕
H1(X,Z)−, where Ai and σ]Ai.
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Appendix A. The Jacobian and the Prym Variety

right hand side of (A.1) to add additional points to the the lattice generated by the direct sum,
such that this quotient is just fine enough to get an isomorphism between the finer lattice obtained
like this and H1(X,Z). Which points are appropriate to divide out is proven in [Mumford, 1974,
Theorem 2.1]. In [Mumford, 1974, Section I.2], the linear injection ψ : H1(Xσ,Z)→ H1(X,Z)− is
defined as

ψ

Å
Aσ,i

2

ã
= Ai − σ]Ai

2 , ψ

Å
Bσ,i

2

ã
= Bi − σ]Bi

2 ,

where {Aσ,i, Bσ,i | i = 1, . . . , gσ} is a symplectic basis of H1(Xσ,Z). To gain an isomorphism
relating the two spaces H1(X,Z) and H1(Xσ,Z) ⊕ H1(X,Z)−, we need to take into account
that H1(X,Z)+ ' H1(Xσ,Z) and that one has to divide the cycles Ai, σ]Ai, Bi and σ]Bi for
i ∈ {1, . . . , gσ} from the direct sum. Those can be split up into a cycle belonging to H1(Xσ,Z)
and a cycle belonging to H1(X,Z)−:

γ = γ + σ]γ

2︸ ︷︷ ︸
∈H1(X,Z)+

+ γ − σ]γ
2︸ ︷︷ ︸

∈H1(X,Z)−

for all γ ∈ H1(X,Z).

Thus, γ ∈ H1(X,Z) can always be represented as (γσ, ψ(γσ)) with γσ ∈ H1(Xσ,Z) as it is done in
[Mumford, 1974]. The element corresponding to γ+σ]γ

2 in H1(Xσ,Z) then equals πσ,]
Ä
γ+σ]γ

2
ä

= γ
2 .

Let
Jac2(Xσ) := {p ∈ Jac(Xσ) | 2p = 0},

i.e. the set which contains all elements in (ΛXσ/2, Λ−/2) which are not contained in (ΛXσ , Λ−).
With this notation and α ∈ Jac2(Xσ), it is

H1(X,Z) = (H1(Xσ,Z)⊕H1(X,Z)−)
(α,ψ(α)) .

In [Mumford, 1974, Theorem 2.1] this is proven as

Lemma A.13 (Part of Corollary 1 in Mumford [Mumford, 1974].). There is a surjective mapping

Jac(Xσ)× Prym(X,σ)→ Jac(X)

with kernel {(α,ψ(α)) |α ∈ Jac2(Xσ)}.
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B. Toolbox for real holomorphic 1-forms

This appendix contains the main tools which are applied in Section 6.2.2 to show the existence of
holomorphic differentials which either have a certain orientation or a prescribed number of zeros
on the ovals of a real curve (X, τ). Large parts of the corresponding parts in [Natanzon, 2004] were
more or less correct despite they are not always worked out entirely. So we decided to attach a
worked-out version in this appendix to give a more complete picture of the used method to describe
the real Prym variety. We will give a review of some results from [Natanzon, 2004] concerning a
1-1 connection between so-called real Arf-functions and spinors, i.e. sections of a rank 1 spinor
bundle, on a real curve (X, τ). Spinors are section of bundles whose square is the cotangent bundle
and Arf functions are used to indicate an orientation on the ovals of the real curve (X, τ). What
exactly we understand under these objects and what the meaning of the respective additional
structures due to the realness-condition is we will explain hereinafter in Sections B.3 and B.4. In
this work, we will only show the mentioned 1-1-connection to the extend that we think is necessary
to understand intuitively why it exists. The bridge between these two objects is build by so-called
real Fuchsian groups. So we will introduce the latter first.

B.1. Real Fuchsian groups

Fuchsian models are a well known concept to represent Riemann surfaces. A good introduction is
for example given in [Imayoshi and Taniguchi, 2012, Chapter 2.4]. However, for self-containedness,
we will now give a brief introduction of Fuchsian groups and Fuchsian models of Riemann surfaces
of genus g ≥ 2 before we define what a real Fuchsian group is.
For g ≥ 2, the universal covering space [Imayoshi and Taniguchi, 2012, Section 2.2.1] is the upper
half plane H. For a given universal covering map π : H → X the universal covering group Λ on
H is isomorphic to the fundamental group π1(X, p0), compare [Munkres, 2000, § 52, page 331],
which is defined as the set of simple closed curves on X starting and ending at a given fixed point
p0 up to homotopy. The universal covering H is constructed from a given Riemann surface by
considering the homotopy classes of all paths on X also starting at p0. We do not make any
difference whether we consider an element as an equivalence class or as a representant of this
equivalent class. The fundamental group π1(X, p0) acts on H as follows: Let γ ∈ X be a path
starting at p0 and ending at p and α ∈ π1(X, p0). Then α acts on γ as γ 7→ α + γ and for two
elements α, β ∈ π1(X, p0), one has (α+ β) + γ = α+ (β + γ), and therefore π1(X, p0) defines a
group action on H. Obviously, this group action is discrete and free. To get insight into how τ
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Appendix B. Toolbox for real holomorphic 1-forms

acts on π1(X, p0) respectively H, let δ be a path starting at p0 and ending at τ(p0). Then

τ(α) = δ + τ ◦ α and τ(γ) = δ + τ ◦ γ (B.1)

for α ∈ π1(X, p0) and γ ∈ H. We extend π1(X, p0) as follows:

π̃1(X, p0) := {a ∈ Aut(H) | π ◦ a = π or π ◦ a = τ ◦ π}.

Because the two maps τ and 1 generate a group, also π̃1(X, p0) generates a group which contains
π1(X, p0) as a subgroup and the cardinality of π̃1(X, p0) is just twice the cardinality of π1(X, p0).

Proposition B.1. Let a ∈ π1(X, p0) and δ ∈ H an element which connects p0 with τ(p0). Then
there is an element α ∈ π̃1(X, p0) \ π1(X, p0) such that

α ◦ a ◦ α−1 = δ + τ(a) + δ−1.

Proof. To see this, we write α, a and α−1 as diffeomorphisms on H, i.e. as diffeomorphisms on
homotopy classes of paths on X. Let γ be an arbitrary element of H, i.e. a finite and connected
path starting at p0. As already mentioned, any a ∈ π1(X, p0) acts on H as γ 7→ a + γ. Due to
equation (B.1), α acts as γ 7→ δ + τ(γ), where δ ∈ H connects p0 with τ(p0). To determine α−1,
we consider the map

α2 : γ 7→ δ + τ(δ + τ(γ)) = δ + τ(δ) + γ = β + γ,

where β is a closed path in X starting and ending at p0, and therefore a representant of an element
of π1(X, p0) and α2 is invertible with inverse map β−1 : γ 7→ −β + γ. Hence,

α−1 = α ◦ α−2 : γ 7→ δ + τ(−β + γ).

This yields together with τ(δ)− β = −δ that

α ◦ a ◦ α−1 : γ 7→ δ + τ(a+ δ + τ(−β + γ)) = (δ + τ(a)− δ) + γ.

So τ acts on elements γ ∈ H as conjugation with the element α ∈ π̃1(X, p0) \ π1(X, p0).

Furthermore, we can define a map π1(X, p0)→ H1(X,Z) since H1(X,Z) is just the abelianization
of π1(X, p0), compare [Hatcher, 2002, Theorem 2A.1]. Also because H1(X,Z) is the abelianization
of π1(X, p0), it is α ◦ a ◦ α−1 = τ(a) in H1(X,Z). By taking the quotient Z2 = Z/2Z, we can
define a projection which is necessary for the sequel as

Pr : Λ→ π1(X,Z)→ H1(X,Z)→ H1(X,Z2). (B.2)
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Appendix B.1. Real Fuchsian groups

In case that X carries a metric, the isometries of X always constitute a group of transformations.
For the upper half space, this group is defined as follows.

Theorem B.2 ([Jost, 2013, Theorem 2.3.4]). We define PSL(2,R) by
(
a b

c d

)
∈ PSL(2,R) := SL(2,R)/{±1},

where

SL(2,R) :=


(
a b

c d

) ∣∣∣∣∣∣ a, b, c, d ∈ R and ad− bc = 1

 .
Then PSL(2,R) is a transformation group of H. The operation is transitive, i.e. for any z1, z2 ∈ H,
there is a g ∈ PSL(2,R) with g(z1) = z2, and effective, i.e. if g(z) = z for all z ∈ H, then g = e.

Note that for G acting properly discontinuous, the orbit {g(p) | g ∈ G} of every p ∈ X is discrete,
compare [Jost, 2013, Definition 2.3.7 and Lemma 2.4.1]. In the sequel, we will mainly consider
properly discontinuous subgroups Λ of PSL(2,R), where Λ acts on H as a group of isometries. It is
basic knowledge of Möbius transformations that SL(2,R) decomposes into three different types of
elements, compare [Jost, 2013, Lemma 2.4.2]: Let γ =

(
a b
c d

)
∈ SL(2,R) and define tr(γ) := a+ d.

Then the following classification is for example illuminated nicely after [Jost, 2013, Lemma 2.4.2]:

γ is elliptic: There is one fixed point of γ in H and tr(γ) < 2.

γ is parabolic: There is one fixed point of γ on the extended real line ∂H := R ∪ {∞} and
tr(γ) = 2.

γ is hyperbolic: There are two fixed points of γ on ∂H and tr(γ) > 2. Furthermore, every
hyperbolic element is Aut(H)-conjugate to an element of the form γ̃ =

(√
λ 0

0
√
λ
−1

)
with

λ > 1 and γ̃ leaves the geodesic connecting these two points, namely the imaginary axis,
invariant. On that geodesic, γ̃ operates as a translation, i.e. shifts points along it by the
distance log(λ2).

In the sequel, we will mainly consider hyperbolic elements of PSL(2,R). The reason for that is
formulated in the next Lemma.

Lemma B.3 ([Jost, 2013, Lemma 2.4.4]). Let H/Λ be a compact Riemann surface for a subgroup
Λ of PSL(2,R). Then all elements of Λ are hyperbolic.

So let the Λ be the universal covering transformation group of H. Then Λ is a discrete subgroup
of the automorphisms Aut(H) of H and called a Fuchsian model of X, compare [Imayoshi and
Taniguchi, 2012, Theorem 2.15]. Hereby, Aut(H) denotes the holomorphic automorphisms of H
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which are called real Möbius transformations. The hyperbolic or real elements of γ ∈ Aut(H) are
of the form

γ(z) = az + b

cz + d
,

where a, b, c, d ∈ R with ad − bc = 1, see [Imayoshi and Taniguchi, 2012, Lemma 2.8(iv)],
i.e. γ ∈ PSL(2,R). The two fixed points α, β ∈ R ∪ {∞} are determined by C(z) = z which yields

α, β =
(a− d)±

»
(a− d)2 + 4bc
2c .

Then γ can equivalently be represented as

γ(z) = (λα− β)z + (1− λ)αβ
(λ− 1)z + (α− λβ) , (B.3)

whereas 0 < λ = 1
(α−β)2 6= 1 since

1 = det
(
λα− β (1− λ)αβ
λ− 1 α− λβ

)
= (λα− β)(α− λβ) + (1− λ)2αβ = λ(α− β)2.

It is

γ′(z) = (λα− β)(λz − z + α− λβ)− (λ− 1)(λαz − βz + αβ − λαβ)
((λ− 1)z + (α− λβ))2

= λ(α− β)2

((λ− 1)z + (α− λβ))2 = 1
((λ− 1)z + (α− λβ))2 ,

and therefore |γ′(α)| = 1
λ and |γ′(β)| = λ. So if we consider λ > 1, then the repelling fixed

point of γ is given by β and the attracting fixed point by α, compare [Morosawa, 2000, § 2.6,
Definition page 209]. Since γ is a Möbius transformation with two fixed points, it is known that
γ is Aut(H)-conjugate to a Möbius transformations γ0(z) = λz for some λ ∈ R ∪ {∞}, i.e. it
acts as a pure rotation-dilation, which corresponds to the matrix

(√
λ 0

0
√
λ
−1

)
. This can be seen

by considering another Möbius transformation φ ∈ PSL(2,R) which maps α to 0 and β to ∞
such that φ ◦ γ ◦ φ−1 has the two fixed points 0 and ∞ and can be represented as z 7→ λz. Let
`(γ) ⊂ H be the unique geodesic in the metric of H which joins α and β and is oriented from
β to α, compare [Jost, 2013, Lemma 2.4.4]. The automorphism γ preserves the line `(γ) while
shifting it in the direction of the orientation. We explain the geometric correspondence between X
and its group of universal covering transformations Λ as it is done in [Imayoshi and Taniguchi,
2012, Section 2.4.2]. Hereby, we use a fundamental domain F for Λ. An open set F of H is a
fundamental domain of Λ if it satisfies the following three properties:

(i) For every C ∈ Λ with C 6= 1, it is C(F ) ∩ F = ∅.
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(ii) H = ⋃
C∈ΛC(F ) where F is the closure of F .

(iii) The boundary of F in H has measure zero with respect to the two-dimensional Lebesgue
measure.

Then X = H/Λ can be considered as F , where the points of ∂F are identified under the covering
group Λ, compare [Imayoshi and Taniguchi, 2012, Section 2.4.2]. For a Fuchsian model of X,
this fundamental domain is constructed by cutting X along suitable smooth paths on X to get
a simply connected domain X0. Then F is the inverse image π−1[X0] under the covering map
π : H → X. Since we only consider Riemann surfaces of genus g with n boundary components
which are all isomorphic to S1, every fundamental domain is a combination of one of the following
two examples in (a) and (b). This can be seen in example (c).

Example B.4 (Fundamental Group and Fuchsian Group of a Riemann surface).

(a) ([Imayoshi and Taniguchi, 2012, Example 5 of Section 2.4.2]) Let X be a compact Riemann
surface of genus g and let {Ai, Bi | i = 1, . . . , g} be a canonical system of generators of the
fundamental group π1(X, p0) with base point p0 ∈ X. Then all Ai and Bi are smooth simple
closed curves starting and ending at p0. Cutting X along all these contours yields a simply
connected domain X0 which preimage F = π−1[X0] is again a fundamental domain, compare
Figure B.1a for g = 2. The lattice Λ is generated by ‹A1, ‹B1, . . . , ‹Ag, ‹Bg. The generators of
π1(X, p0) are called canonical if they satisfy the fundamental relation

g∏
i=1

AiBiA
−1
i B−1

i = 1,

so the generators of Λ satisfy the analogon

g∏
i=1

‹Ai‹Bi‹A−1
i
‹B−1
i = 1.

(b) ([Imayoshi and Taniguchi, 2012, Example 6 of Section 2.4.2]) Let X be a domain in C bounded
by n boundary cycles C1, . . . , Cn of X. Then one takes a point p0 ∈ X and cuts X along
n smooth curves D1, . . . , Dn. This yields a simply connected domain X0 which preimage
F = π−1[X0] is again a fundamental domain. Compare Figure B.1b for n = 3. In this case, Λ
is generated by C1, . . . , Cn−1 and the fundamental relation in this case is given by

n−1∏
j=1

Cj = 1 respectively
n−1∏
j=1

‹Cj = 1.

(c) Combining examples (a) and (b) yields a Riemann surface of genus g with n boundary cycles.
Thus, the fundamental group π1(X, p0) is generated by A1, B1, . . . , Ag, Bg, C1, . . . , Cn−1, where
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(a) Fundamental domain F of Example B.4(a) with g = 2 as in [Imayoshi and Taniguchi, 2012, Fig. 2.2].

(b) Fundamental domain F of Example B.4 (b) with n = 3. as in [Imayoshi and Taniguchi, 2012, Fig. 2.3].

Figure B.1.: Sketch how to construct the fundamental domain F of a Fuchsian model.

the canonical generators satisfy the fundamental relation

g∏
i=1

AiBiA
−1
i B−1

i

n−1∏
j=1

Cj respectively
g∏
i=1

‹Ai‹Bi‹A−1
i
‹B−1
i

n−1∏
j=1

‹Cj . (B.4)

Next, we want to define a Fuchsian groups on real curve. More precisely, we want to introduce
some extra structure which reflects the realness condition on the universal covering. Therefore, we
need some definitions and notation from [Natanzon, 2004, § 1-§ 5]. We will see that real curves of
genus g ≥ 2 can be uniformized by discrete groups of isometries of the metric |dz|Im z of the upper
half space H, see [Imayoshi and Taniguchi, 2012, Remark in Section 3.1.2, page 53].

Definition B.5. The group fiAut(H) of isometries on H consists of the holomorphic automorphisms
that form the group Aut(H) and of the antiholomorphic automorphisms.

We only consider discrete subgroups Λ̃ ⊂fiAut(H) with certain properties which are given in the
next definition.
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Definition B.6 ([Natanzon, 2004, Beginning of Section 2.2.1]). A real Fuchsian group is a discrete
subgroup Λ̃ ⊂fiAut(H) such that

• Λ := Λ̃ ∩Aut(H) is a Fuchsian group that consists of hyperbolic automorphisms,

• Λ 6= Λ̃ and X = H/Λ is a compact Riemann surface.

A real Fuchsian group Λ̃ must have twice the cardinality of Λ. Otherwise, Λ̃ would not be a group.
Let γ1, γ2 ∈ Λ̃ \ Λ. Then γ2 ◦ γ−1

1 ∈ Λ acts trivially on X = H/Λ and γ2 = γ2 ◦ γ−1
1 ◦ γ1. So all

elements of Λ̃ \ Λ induce the same map on X. Since γ2
1 ∈ Λ, this map is an involution on X. We

denote it by τ : X 7→ X. By definition, τ is antiholomorphic. Thus, a real Fuchsian group Λ̃

generates a real curve (X, τ).

Lemma B.7 ([Natanzon, 2004, Lemma 2.2.1]). Every real curve is generated by a real Fuchsian
group.

Proof. Let Λ ⊂ Aut(H) be a Fuchsian group uniformizing the Riemann surface X and let
Φ : H → X = H/Λ be the natural projection defined by p 7→ [p]. Since H is simply connected,
the paths corresponding to τ ∈ fiAut(X) \ Aut(X) can be lifted to H. This is is an element
α ∈fiAut(H) \Aut(H) such that Φ ◦ α = τ ◦ Φ, compare [Imayoshi and Taniguchi, 2012, Lemma
2.3]. Then the group Λ̃ which is generated by Λ and τ corresponds to (X, τ) and thus is a real
Fuchsian group.

B.2. Arf functions on real curves

Let X be a compact Riemann surface with boundary of genus g ≥ 2 with k boundary components.

Definition B.8. A basis B = {Ai, Bi, Cj | i = 1, . . . , g, j = 1, . . . , k} of the group H1(X,Z2) is
said to be standard if the generators Cj correspond to the boundary cycles of the surface X and if
the only non-trivial intersections of elements of B are given by Ai ? Bj = 1 for i 6= j = 1, . . . , g,
where

? : H1(X,Z2)×H1(X,Z2)→ H0(X,Z2) = Z2

is the homology intersection number, compare [Bredon, 2010, Section VI.11].

Definition B.9. (a) An Arf function on X is a function ω : H1(X,Z2) → Z2 such that for all
A,B ∈ H1(X,Z2), there holds

ω(A+B) = ω(A) + ω(B) +A ? B. (B.5)

(b) An Arf function ω is even if there is a standard basis B such that for all Ai, Bi ∈ B, there
holds

g∑
i=1

ω(Ai)ω(Bi) ≡ 0 mod 2. (B.6)
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For an even Arf function we set δ = δ(X,ω) = 0. Otherwise we set δ = δ(X,ω) = 1 and say
that ω is odd.

(c) We denote by kα = kα(X,ω) with α ∈ Z2 the cardinality of the set of elements Cj of a
standard basis B such that ω(Cj) = α.

(d) The quadruplet (g, δ, k0, k1) is called the topological type of the Arf function ω.

(e) Two Arf functions ω1 and ω2 on X are topologically equivalent if there is a homeomorphism
ψ : X → X that induces an automorphism ψ̃ : H1(X,Z2)→ H1(X,Z2) satisfying the relation
ω1 = ω2 ◦ ψ̃.

That two Arf functions are topological equivalent if and only if they have the same topological
type is shown in [Natanzon, 2004, Theorem 1.8.1].

Proposition B.10. Let ω : H1(X,Z2) → Z2 be an Arf function. Then for all γ ∈ H1(X,Z2),
there holds

ω(0) = ω(2γ) = 0 mod 2 and ω(−γ) = ω(γ) mod 2.

Proof. Assume that ω(0) = 1. Then (B.5) yields that for all γ ∈ H1(X,Z2), it is

ω(γ) = ω(γ + 0) = ω(γ) + ω(0) + γ ? 0 = ω(γ) + 1.

So ω(0) = 0 in Z2. Likewise,

ω(2γ) = ω(γ) + ω(γ) = 0 mod 2.

Due to ω(0) = 0 mod 2, it is

0 = ω(γ − γ) = ω(γ) + ω(−γ) + γ ? (−γ) ⇔ ω(−γ) = −ω(γ)

and since −1 = 1 mod 2, the second assertion follows.

Lemma B.12 gives insight into when a quadruplet (g, δ, k0, k1) is the topological type of an Arf-
function. In the proof of this Lemma, certain transformations on the basis elements of a standard
basis B = {Ai, Bi, Cj | i = 1, . . . , g, j = 1, . . . k} of H1(X,Z2) are used such that the transformed
cycles again yield a standard basis of H1(X,Z2) and such that δ corresponding to B is invariant
under most of these transformations. In [Natanzon, 2004] it is neither shown that the image of B
under these transformations yields again a standard basis nor the invariance of δ under some of
these transformations. Furthermore, the transformation in [Natanzon, 2004, Lemma 1.8.1(3)] has
wrong indices. So we catch up on this proof in the next Lemma.
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Lemma B.11. Let B := {Ai, Bi, Cj | i = 1, . . . , g, j = 1, . . . , k} be a standard basis of H1(X,Z2)
as in Definition B.8. For fixed i 6= l ∈ {1, . . . , g} and j,m ∈ {1, . . . , k} we consider the transfor-
mations

(i) Ãi = Ai +Bi,

(ii) Ãi = Bi and B̃i = Ai,

(iii) Ãi = Ai +Al, B̃l = Bi +Bl,

(iv) Ãi = Ai + Cj,

(v) C̃j = Cm and C̃m = Cj,

where the other elements of the basis remain unchanged. Then all transformations yield again a
standard system of generators of H1(X,Z2) and transformations (i)-(iii) as well as (v) preserve δ
in (B.6).

Proof. Let B̃ := {Ãi, B̃i, C̃j | i = 1, . . . , g, j = 1, . . . , k} be the image of B under the particular
transformation in (i) to (v).

(i) For the transformed elements of B̃, there holds Ãi ? B̃i = (Ai + Bi) ? Bi = Ai ? Bi since
Ai, Bi ∈ B. All other intersections between elements of B̃ remain the same as the for the
non-transformed elements in B, so B̃ is again a standard system of generators of H1(X,Z2).
To see that δ does not change under this transformation, note that for i ∈ {1, . . . , g}, it is

g∑
l=1

ω(Ãl)ω(B̃l) =
g∑
l=1

ω(Al)ω(Bl) + ω(Ai +Bi)ω(Bi)− ω(Ai)ω(Bi), (B.7)

where due to (B.5)

ω(Ai+Aj)ω(Bi) = ω(Ai)ω(Bi)+ω(Bi)ω(Bi)+(Ai?Bi)ω(Bi) = ω(Ai)ω(Bi)+ω2(Bi)+ω(Bi)

and ω(Bi)2 + ω(Bi) = 0 mod 2. Inserting this into (B.7) yields

g∑
l=1

ω(Ãl)ω(B̃l) =
g∑
l=1

ω(Al)ω(Bl) + ω(Ai)ω(Bi)− ω(Ai)ω(Bi) =
g∑
l=1

ω(Al)ω(Bl) mod 2.

(ii) Since Ai ? Bi = Bi ? Ai mod 2 for i ∈ {1, . . . , g}, B̃ is again a standard system of generators
of H1(X,Z2) and equation (B.6) holds.
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(iii) For i, l ∈ {1, . . . , g}, it is

Ãi ? B̃i = (Ai +Al) ? Bi = Ai ? Bi +Al ? Bi = Ai ? Bi,

Ãl ? B̃l = Al ? (Bi +Bl) = Al ? Bl,

Ãi ? B̃l = (Ai +Al) ? (Bi +Bl) = Ai ? Bi +Al ? Bi +Ai ? Bl +Al ? Bl = 0 mod 2.

For n ∈ {1, . . . , g} with n 6= i, l, the intersection product of Ãn and B̃n with Ãi respectively
B̃l is equal to zero. So B̃ is a standard system of generators of H1(X,Z2). To see that δ is
preserved under this deformation, note that for i, l ∈ {1, . . . , g}, one has

g∑
n=1

ω(Ãn)ω(B̃n) =
g∑

n=1
ω(An)ω(Bn) +ω(Ãi)ω(B̃i) +ω(Ãl)ω(B̃l)−ω(Ai)ω(Bi)−ω(Al)ω(Bl),

where

ω(Ãi)ω(B̃i) + ω(Ãl)ω(B̃l) = ω(Ai +Al)ω(Bi) + ω(Al)ω(Bi +Bl)

= ω(Ai)ω(Bi) + ω(Al)ω(Bi) + ω(Al)ω(Bi)︸ ︷︷ ︸
=0 mod 2

+ω(Al)ω(Bl)

= ω(Ai)ω(Bi) + ω(Al)ω(Bl) mod 2.

(iv) That B̃ is a standard system of generators of H1(X,Z2) is obvious since Cj ? Bi = 0 for
j ∈ {1, . . . , k} and i ∈ {1, . . . , g}.

(v) Again, B̃ is a standard system of generators of H1(X,Z2). This holds since the transformation
only interchanges C-cycles. Moreover, δ is independent of the transformed Cj and Cm with
j,m ∈ {1, . . . , k}, so the transformation preserves δ.

Now, we gathered the tools which are necessary deduce the conditions that have to hold such that
(g, δ, k0, k1) is the topological type of an Arf function. Since the proof given in [Natanzon, 2004] is
not very precise, we will formulate it here as well:

Lemma B.12. [Natanzon, 2004, Lemma 1.8.1] A set (g, δ, k1, k0) is the topological type of an Arf
function if and only if

(i) k1 = 0 mod 2, (ii) δ = 0 for k1 > 0.

If these conditions are satisfied, then there exists a standard basis B = {Ai, Bi, Cj | i = 1, . . . , g, j =
1, . . . , k} of H1(X,Z2) with k0 +k1 = k such that ω(Ai) = ω(Bi) = 0 for i > 1, ω(A1) = ω(B1) = δ,
ω(Cj) = 0 for j = 1, . . . , k0 and ω(Cj) = 1 for j = k0 + 1, . . . , k.
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Proof. Due to Proposition B.10, it is ω(0) = 0. Moreover, the ∑k
i=1Ci is the sum over the

boundary components of X, i.e. homologous to zero, and so

k∑
i=1

ω(Ci) = ω

(
k∑
i=1

Ci

)
= ω(0) = 0.

This implies k1 = 0 mod 2. Let i ∈ {1, . . . , g}. To obtain a basis such that ω(Ai) = ω(Bi) = 0 and
ω(A1) = ω(B1) = δ, one can use transformations (i)-(iii) from Lemma B.11: If ω(Ai) = ω(Bi) = 0
for all i ∈ {1, . . . , g}, the assertion holds. If ω(Ai) = 1 and ω(Bi) = 0, one can use transformation
(i) to obtain a new basis B such that ω(Ãi) = 0 and ω(B̃i) = 0. If conversely ω(Bi) = 1 and
ω(Ai) = 0, then we use transformation (ii) to get into the former situation. So let us assume
there exists at least one i ∈ {1, . . . , g} such that ω(Ai) = ω(Bi) = 1. We are done if i = 1. We
impose that the basis elements are enumerated in such a way that ω(A1) = ω(B1) = 0 and assume
that ω(Ai) = ω(Bi) = 1 for i 6= 1. If there are evenly many i such that the above relation holds
for the corresponding basis elements, then δ = 0. For oddly many i, it is δ = 1. So we have to
distinguish between an even and an odd number of i such that the above assumption holds for
the corresponding basis elements. Let ω(Ai) = ω(Bi) = ω(Aj) = ω(Bj) = 1 for i 6= j ∈ {2, . . . , g}.
Applying transformation (iii) from Lemma B.11 yields a new standard basis B of H1(X,Z) such
that ω(Ãi) = ω(B̃j) = 0 and ω(B̃i) = ω(Ãj) = 1. As above, we can apply transformation (i) and
(ii) to this new standard basis B which yields again another basis of H1(X,Z2) which we also
denote by B and which obeys ω(Ãi) = ω(B̃j) = ω(B̃i) = ω(Ãj) = 0. If the total number of i such
that ω(Ai) = ω(Bi) = 1 holds is odd, we set all values of ω for Ai and Bi with i > 1 to zero with
this procedure.
To see that there has to hold δ = 0 for k1 > 0, assume that δ = 1 and that there exists at
least one basis element Cj such that ω(Cj) = 1. Without loss of generality, we can assume
that we have already transformed the given basis B in such a way that ω(A1) = ω(B1) = 1 and
ω(Ai) = ω(Bi) = 0 for i ∈ {2, . . . , g}. We apply transformation (iv) to A1 and B1 and obtain
Ã1 = A1 + Cj and B̃1 = B1 + Cj . Using again (B.5) yields

1 = ω(A1)ω(B1) = ω(A1 + Cj − Cj)ω(B1 + Cj − Cj)

= (ω(A1 + Cj) + ω(Cj))(ω(B1 + Cj) + ω(Cj))

= ω(A1 + Cj)ω(B1 + Cj) + ω(A1 + Cj) + ω(B1 + Cj)

= ω(A1 + Cj)ω(B1 + Cj) + ω(A1) + ω(Cj) + ω(B1) + ω(Cj)︸ ︷︷ ︸
=0 mod 2

= (ω(A1) + ω(Cj))(ω(B1) + ω(Cj))

= ω(A1)ω(B1) + ω(Cj)ω(B1) + ω(A1)ω(Cj) + ω2(Cj) = 1 + 1 + 1 + 1 = 0 mod 2.

Therefore, the type (g, 1, k0, k1) with k1 > 0 is not realizable. Conversely, for k1 = 0 or δ = 0,
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all transformations in Lemma B.11 preserve δ and their application leads to a standard basis of
the given type. Therefore, under the constraints (i) and (ii), one can define an Arf function on
the constructed cycle basis which can be extended to all of H1(X,Z2) by postulating that (B.5)
holds.

Next, we define an Arf function on a real curve (X, τ) and analyze some of its properties. In
what follows, a simple contour and the homology class of this contour in H1(X,Z2) are denoted
by the same symbol. The involution τ] : H1(X,Z2) → H1(X,Z2) is induced by the involution
τ : X → X. This is defined analogous to σ] on H1(X,Z) in (4.8). If we consider the image of a
representant γ of an element of H1(X,Z) under τ as a set of points on X, then we write τ [γ]. The
next definitions are taken from [Natanzon, 2004, Section 2.3.1]

Definition B.13. A real Arf function, i.e. an Arf function on a real curve (X, τ), is an Arf function
ω : H1(X,Z2)×H1(X,Z2)→ Z2 such that τ∗ω = ω.

Definition B.14. An Arf function ω on (X, τ) is said to be singular if there is a simple closed
contour c such that τ [c] = c with c ∩Xτ = ∅ and ω(c) = 0.

For a real curve (X, τ) of type (g, 1, k), one can see in the constructions of these curves in Example
6.7 that there are no invariant simple closed contours which are no ovals on X. So all Arf functions
are non-singular on such a real curve. The remaining part of this section can also be found
completely in [Natanzon, 2004]. For self-containedness of this work, we present these results here
anyways.

Lemma B.15 ([Natanzon, 2004, Lemma 2.3.2]). If Xτ 6= ∅, then any real Arf function on (X, τ)
is non-singular.

Proof. Let c ⊂ X be a simple closed contour such that τ [c] = c and c ∩Xτ = ∅, where X is a real
curve of type (g, 0, k). Let c′ ⊂ Xτ be an oval of the real curve (X, τ). By Theorem 6.14, there
exists a set of pairwise disjoint simple closed contours c1, . . . , cr ∈ X \ (c ∪ c′) such that τ [ci] = ci

and the set X \ (c∪ c′ ∪⋃ri=1 ci) decomposes into the surfaces X+ and X− with τ [X+] = X−. Let
us join the τ -invariant simple closed contour c and the oval c′ of τ by a curve γ ⊂ X+ without self
intersections.
Let moreover d be a simple closed contour of the form d = γ + r − τ]γ, where r ⊂ c. Analogous
calculations as in (B.8) yield τ]d = −d+ c. By construction of d, it is c ? d = 1 mod 2. Together
with the realness of ω this yields ω(d) = ω(d+c) = ω(d)+ω(c)+1 and hence ω(c) = 1 mod 2.

Lemma B.16 ([Natanzon, 2004, Lemma 2.3.3]). A singular real Arf function vanishes on all
τ -invariant simple closed contours.

Proof. Let ω be a singular Arf function on a real curve (X, τ) of type (g, 0, ε). Then Xτ = ∅
by Lemma B.15. Suppose that there is a τ -invariant simple closed contour c0 on X such that
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Figure B.2.: Sketch how to get insight that {ci, di | i = 1, . . . , g+1} defines a basis forH1(X,Z2).

ω(c0) = 1. By Lemma 6.13 there exists a complete system of τ -invariant simple closed contours
c0, . . . , cg such that X \ (c0 ∪ · · · ∪ cg) decomposes into two disjoint curves X+ and X− with
τ [X+] = X−. Let γi ⊂ X+ be the path which starts at some point pi ∈ ci and ends at some point
p0 ∈ c0 for i = 1, . . . , g. Again, we denote the path in ci starting at pi and ending at τ(pi) as ri
and the path in c0 starting at p0 and ending at τ(p0) by r0. We then define the simple closed
contours

di := γi + r0 − τ]γi − ri.

Let D ⊂ X+ be a disk. As in the proof of Lemma 6.50, identifying the boundary cycles of the
surface X \ (D ∪ τ [D]) via the involution τ yields another real curve (X̃, τ̃) with exactly one oval
cg+1 = ∂D. We denote the path joining the simple closed contours cg+1 and c0 by γg+1. This path
starts at pg+1 ∈ cg+1 and ends at p0 ∈ c0. The path in c0 starting at p0 and ending at τ(p0) we
denote by r0. Then

dg+1 := γg+1 + r0 − τ]γg+1

is a simple closed contour. One has ci ? cj = 0 and di ? dj = 0 for i, j = 1, . . . g + 1. Next, we show
that ci?dj = δij for i, j = 1, . . . , g+1. As indicated in Figure B.2, one can add 0-homologous simple
closed contours starting at pi, passing through τ(pi) before returning to pi to di for i = 1, . . . , g+ 1
and also 0-homologous simple closed contours starting at p0 and passing τ(p0) before returning
to p0. This procedure leads to closed curves bi for i = 1, . . . g + 1 such that by the construction
of bj , one has ci ? bj = δij . Because the only difference between bj and dj are zero-homologous
cycles, also ci ? dj = δij . So the simple closed contours {ci, di | i = 1, . . . , g + 1} define a basis of
H1(X̃,Z2). We define an Arf-function ω̃ on H1(X̃,Z2) by defining the images of this basis as

ω̃(ci) = ω(ci) for i = 1, . . . , g and ω(cg+1) = 0,

ω̃(di) = ω(di) for i = 1, . . . , g and ω(dg+1) = 0
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and by setting ω̃(a+ b) = ω̃(a) + ω̃(b) + a ? b for a, b ∈ H1(X̃,Z2). Then

ω̃(cg+1) =
g∑
i=1

ω̃(ci) =
g∑
i=1

ω(ci) = ω(cg+1) = 1.

Moreover, it is

τ]dg+1 = τ]γg+1 + τ]r0 − γg+1 = −γg+1 − r0 − τ]γg+1 + r0 + τ]r0 = −dg+1 + c0, (B.8)

and therefore

ω̃(τ]dg+1) = ω(−dg+1 + c0) = ω(dg+1) + ω(c0) + dg+1 ? c0 = ω(dg+1) + 1 + 1 = ω(dg+1).

Together with ci = τ [ci] for i = 1, . . . , g + 1 and ω̃(di) = ω(di) = ω(τ]di) = ω̃(τ]di) for i = 1, . . . g,
the above calculation shows that ω̃ is real. So by Lemma B.15, ω̃ equals 1 on all τ -invariant simple
closed contours on X̃ \ {cg+1}. These are c1, . . . , cg. Since ω̃(ci) = ω(ci) for i = 1, . . . , g, this yields
that ω is non-singular.

Lemmata B.15 and B.16 immediately imply the following theorem:

Theorem B.17 ([Natanzon, 2004, Theorem 2.3.1]). A singular Arf function on a real curve (X, τ)
of type (g, k, ε) exists if and only if k = ε = 0. This singular Arf function is even.

Proof. Lemma B.15 yields the condition k = ε = 0 for a singular Arf-function. To see that
the other direction also holds, suppose that k = ε = 0. Let us consider the standard basis
{ci, di | i = 1, . . . g} of H1(X,Z2) as constructed in the proof of Lemma B.16. The elements of this
basis obey τ]ci = ci and τ]di = −di+ ci+ c0 = −di+ ci−

∑g
i=1 ci. For i = 1, . . . , g, we set ω(ci) = 0

and assign arbitrary values in Z2 to ω(di). As before, ω extends to an Arf-function on H1(X,Z2)
by imposing equation (B.5). By analogous calculations as in (B.8), it is τ]di = −di + ci + c0.
Together with the fact that ∑g

j=0 cj is homologous to zero, this yields

ω(τ]di) = ω(−di + ci + c0) = ω(di) + ω(ci + c0) + (−di ? ci)︸ ︷︷ ︸
=1

+ (−di ? c0)︸ ︷︷ ︸
=1

= ω(di) + ω(ci)︸ ︷︷ ︸
=0

+ω

Ç g∑
j=1

cj

å
︸ ︷︷ ︸

=0

= ω(di).

Accordingly, ω is a singular real Arf-function. Due to ω(ci) = 0 for i = 1, . . . , g, it is∑g
i=1 ω(ci)ω(di) =

0, so ω is even.

Similar as for Arf functions without reality condition one can also define the topological type
of a non-singular real Arf function on (X, τ). In this case, one has to distinguish between the
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Figure B.3.: Figure taken from [Natanzon, 2004, Figure 2.3.1] depicting the construction of the
contour d.

classification for curves of type (g, k, ε) with ε = 0 and with ε = 1, which results from the different
conditions on the existence of Arf functions on a real curve given in Lemma B.12 and the role
which k0 and k1 play now in terms of the ovals and the τ -invariant simple closed contours. To do
so, we need the following Lemma.

Lemma B.18 ([Natanzon, 2004, Lemma 2.3.1]). Let (X, τ) be a real curve, ω an arbitrary Arf
function on (X, τ) and let c1, c2 ⊂ X be simple closed contours such that τ [ci] = ci and ci∩Xτ = ∅
for i = 1, 2 as well as c1 ∩ c2 = ∅. Then ω(c1) = ω(c2).

Proof. By the construction of (X, τ) for ε = 1, it is clear that there are no simple closed contours
c with τ [c] = c and c ∩Xτ = ∅. So let ε = 0. By Theorem 6.14, there is a set of pairwise disjoint
simple closed contours c3, . . . , cr belonging to X \ (c1 ∪ c2) with τ [ci] = ci for i = 3, . . . , r such that
the set X \∑r

i=1 ci decomposes into two surfaces X+ and X− with τ [X+] = X−. Let us join the
contours c1 and c2 by a path γ ∈ X+ without self-intersections which starts at p1 ∈ c1 and ends
at p2 ∈ c2, compare Figure B.3. Furthermore, let r1 be a path from p1 to τ(p1) which is contained
in c1 and r2 be a path from p2 to τ(p2) which is contained in c2. We define d as the simple closed
contour

d := γ + r2 − τ]γ − r1.

Without loss of generality we assume that c1 = −r1 − τ]r1 and c2 = r2 + τ]r2 since c1 and c2 are
oriented into the same direction as boundary contours of X+. Analogous calculations to (B.8)
yield τ]d = −d+ c1 + c2. Due to Proposition B.10, it is

ω(τ]d) = ω(−d+ c1 + c2) = ω(−d) + ω(c1 + c2) + (−d) ? (c1 + c2)︸ ︷︷ ︸
=0

= ω(d) + ω(c1) + ω(c2) + c1 ? c2︸ ︷︷ ︸
=0 mod 2

mod 2
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and hence
ω(τ]d) = ω(d) ⇔ ω(c1) = ω(c2).

Theorem B.19 ([Natanzon, 2004, Theorem 2.3.2]). A set (g, δ, k0, k1) is the topological type of a
non-singular Arf function on (X, τ) if and only if k = k0 + k1 ≤ g and k0 = g + 1 mod 2.

Proof. One has k ≤ g since ε = 1, compare Theorem 6.14. Basically, we prove this assertion by
exploiting that there exists a set of g + 1 closed contours c1, . . . , cg+1 such that X \ {c1, . . . , cg+1}
decomposes into two spheres X+ and X− with each g+1 boundary cycles. Then ω|X+ is considered.
It is shown in Lemma B.12 that ω takes the value 1 on evenly many boundary cycles. The number
on τ -invariant closed contours which are not ovals of τ is g + 1− k. Since we assumed that ω is
non-singular, the value of ω on all these τ -invariant contours equals one. So k1 + (g + 1− k) = 0
mod 2, and therefore k0 = k − k1 = g + 1 mod 2. Let now (g, δ, k0, k1) be an arbitrary set such
that k0 + k1 = k ≤ g and such that k0 = g + 1 mod 2. The rest of the proof follows with
help of simple closed contours di which are constructed by connecting ci with cg+1 as it is for
done in Lemma B.18. One has τ]di = −di + cg+1 for i = 1, . . . , k and τ]di = −di + ci + cg+1 for
i = k + 1, . . . , g + 1. Next, we set ω(ci) = 0 for an arbitrary choice of k0 many contours out of
{c1, . . . , ck} and ω(ci) = 1 for the remaining contours in {c1, . . . , cg}. Since k0 = g + 1 mod 2, it
is g − k0 = 1 mod 2. So there exists at least one cr ∈ {c1, . . . , cg} such that ω(cr) = 1. For i 6= r,
we assign arbitrary values of ω to di and define

ω(dr) := δ −
g∑
i=1
i 6=r

ω(ci)ω(di).

Then ∑g
i=1 ω(ci)ω(di) = δ. Again, by imposing (B.5), ω can be extended to the entire space

H1(X,Z2). This yields the assertion.

For ε = 1, one gets another classification. In this case, X \Xτ = X+ ∪X−. Connecting two ovals
ci, cj ∈ Xτ by a path γij ⊂ X+ yields a simple closed contour dij = γij − τ]γij . We call ci and
cj ω-similar on (X, τ) if ω(dij) = 0. In [Natanzon, 2004, Theorem 2.3.3], it is shown that this
defines an equivalence relation which splits the ovals into at most two equivalence classes. With
this definition, the topological type of a non-special real Arf function on a separating real curve is
defined as follows, compare [Natanzon, 2004, Section 2.3.3].

Definition B.20. (a) Let c ∈ Xτ and let Bc be the set of ovals ci which are ω-similar to c and
let α ∈ {0, 1}. We denote the number of ovals in Bc with ω(ci) = α by k0

α. and the number of
ovals ci ∈ Xτ \Bc such that ω(ci) = α holds by k1

α.

(b) The topological type of a real Arf function ω on a real curve (X, τ) of type (g, k, ε) is the set
(g, δ̃, k0

0, k
0
1, k

1
0, k

1
1), where δ̃ := δ(X+, ω|X+) with X \Xτ = X+ ∪X−.
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Theorem B.21. [Natanzon, 2004, Theorem 2.3.4] A set (g, δ, k0
0, k

0
1, k

1
0, k

1
1) is the topological type

of an Arf function on the real curve (X, τ) of type (g, k, 1) if and only if (g̃, δ̃, k0
0 + k1

0, k
0
1 + k1

1) is
the topological type of an Arf function on a surface of genus g+ = 1

2(g − k + 1) with k boundary
cycles. Furthermore, δ = k0

1 mod 2.

Proof. Obviously, if (g, δ, k0
0, k

0
1, k

1
0, k

1
1) is the topological type of an Arf function on a real curve

(X, τ) of type (g, k, 1), then the set (g+, δ, k
0
0 +k1

1, k
0
1 +k1

1) is the topological type of an Arf function
ω|X+ : H1(X+,Z2)→ Z2, where X+∪X− = X \Xτ and g+ is the genus of X+, compare Example
6.7.
Conversely, suppose (X, τ) is a real curve of type (g, k, 1). Then X \ Xτ = X+ ∪ X−. Let
ω+ : H1(X+,Z2)→ Z2 be an Arf function on X+ of type (g+, δ, k

0
0 + k1

0, k
0
1 + k1

1). We now show
how to extend ω+ to H1(X,Z2). Therefore, {Ai, Bi, Cj | i = 1, . . . , g̃, j = 1, . . . , k} be a standard
basis of H1(X+,Z2), where the oval cj is a representant of the equivalence class Cj . We arbitrarily
sort the ovals ci into groups G0

0, G1
0, G0

1 and G1
1, where Gγα contains kγα contours in an arbitrary

way for γ, α ∈ {0, 1}. For i = 1, . . . , g−1, we connect the ovals ci and ck by a line segment γi ⊂ X+

and set di = γi− τ]γi. We impose that ω(ci) = α if ci ∈ G0
α ∪G1

α and ω(di) = 0 if ci and ck belong
to the same subset Gγ0 ∪G

γ
1 and otherwise ω(di) = 1. Let ω : H1(X,Z)→ Z2 be defined by the

values of the basis {Ai, Bi, τ]Ai, τ]Bi | i = 1, . . . g+} of H1(X,Z) as ω(τ]Ai) = ω(Ai) := ω+(Ai)
and ω(τ]Bi) = ω(Bi) := ω+(Bi). We then again impose that (B.5) holds for ω. Again, this extends
ω to H1(X+,Z2). Since the classification of the ck into the sets Gγα was arbitrary,t his construction
yields all non-singular real Arf functions on (X, τ). The Arf function is even if k1 = 0 and for
k1 > 0, δ coincides with the number of elements in G0

1 mod 2 since k0
1 + k1

1 is even.

B.3. Real Arf functions and liftings of real Fuchsian groups

Let J : SL(2,R) → PSL(2,R) = Aut(H) be the natural projection. Moreover, let Λ ⊂ Aut(H)
be a Fuchsian group that consists of hyperbolic automorphisms. As in [Natanzon, 2004, Section
2.4.1], we introduce the lifting of Λ.

Definition B.22. A subgroup Λ∗ ⊂ SL(2,R) is called a lifting of Λ if J(Λ∗) = Λ and J |Λ∗ : Λ∗ → Λ

is an isomorphism.

By [Natanzon, 2004, § 7], there corresponds a unique Arf function

ωΛ∗ : H1(H/Λ,Z2)→ Z2

to the lifting Λ∗ which can be defined as follows: Let a′ ∈ Λ and let a ∈ H1(H/Λ,Z2) be the image
of a′ under the projection in (B.2). Note that J−1(a′) contains two elements which differ by their
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orientation and that only one of these elements is contained in Λ∗. Therefore, let

A := J−1(a′) ∩ Λ∗.

With this choice, we can associate exactly one matrix A ∈ SL(2,R) with each a′ ∈ Λ. Let further
Tr(A) be the trace of the matrix A ∈ SL(2,R). We set

ωΛ∗(a) =

0 for Tr(A) < 0,

1 for Tr(A) > 0.
(B.9)

By [Natanzon, 2004, Theorem 7.2], the correspondence Λ∗ 7→ ωΛ∗ between the liftings of the group
Λ and the Arf functions on X = H/Λ defined as in (B.9) is 1-to-1. To transfer this to analogous
results for real curves (X, τ), we consider the group

SL±(2,R) = {A ∈ GL(2,R) | detA = ±1}.

The projection J extents to a homomorphism J : SL±(2,R)→fiAut(H) by setting

J(A) = az̄ + b

cz̄ + d
for A =

(
a b

c d

)
and detA = −1.

Let Λ̃ be a real Fuchsian group.

Definition B.23. (a) A subgroup Λ̃∗ ⊂ SL±(2,R) is called a lifting of Λ̃ if J(Λ̃∗) = Λ̃ and
J |Λ̃∗ : Λ̃∗ → Λ̃ is an isomorphism.

(b) Two liftings Λ̃∗+ and Λ̃∗− of a real Fuchsian group Λ̃ are said to be similar if Λ̃∗− \Λ∗ = −Λ̃∗+ \Λ∗.

Obviously, a lifting Λ̃∗ of the group Λ̃ induces a lifting Λ∗ = Λ̃∗ ∩ SL(2,R) of the group Λ =
Λ̃ ∩ Aut(H) and hence an Arf function ω

Λ̃∗
= ωΛ∗ : H1(H/Λ,Z2)→ Z2.

Lemma B.24 ([Natanzon, 2004, Lemma 2.4.1.]). The Arf function ωΛ̃∗ is a non-singular Arf
function on the real curve (X, τ) induced by Λ̃.

Proof. We first show that the Arf function ωΛ̃∗ is real. Let α ∈ Λ̃∗ \ Λ∗ arbitrary, a′ ∈ Λ and
a = Pr(a′) with Pr as defined in (B.2). Due to Proposition B.1, τ]a ∈ H1(X,Z2) corresponds to
α−1 ◦ (J−1(a′) ∩ Λ∗) ◦ α. Because the trace is invariant under conjugation, this yields

Tr(α−1 ◦ (J−1(a′) ∩ Λ∗) ◦ α) = Tr(J−1(a′) ∩ Λ∗) ⇒ ω
Λ̃∗

(τ]a) = ω
Λ̃∗

(a).

Next we prove that ω
Λ̃∗

is non-singular. Therefore, let c ⊂ X \Xτ be a simple closed contour
such that τ [c] = c and let C ∈ Λ be its image under the natural isomorphism π1(X, p)→ Λ, where

234



Appendix B.3. Real Arf functions and liftings of real Fuchsian groups

X = H/Λ. For a given real curve (X, τ) with covering H and Fuchsian group Λ, τ can be lifted to
an antiholomorphic self-mapping τ : H → H, see Proposition B.1. This lifting is not necessarily an
involution anymore, but it satisfies τ2 ∈ Λ. In particular, the map τ : H → H is a glide reflection of
H onto itself, i.e. a hyperbolic Möbius transformation

√
C followed by a reflection at the geodesic

corresponding to the two fixed points of this Möbius transformation C =
√
C

2, see [Seppälä, 2001,
Section 1]. This composition is an orientation-reserving isometry of H. So let C̄ be the reflection
at the geodesic corresponding to C, i.e. connecting the two fixed points α, β ∈ R of C,

√
C be a

hyperbolic automorphism such that (
√
C)2 = C and C̃ := C̄

√
C. Then the corresponding lift of C̃

is given by

C̃∗ = J−1(C̃) ∩ Λ̃∗ =
(
a b

c d

)

and

J−1(C) ∩ Λ∗ = (C̃∗)2 =
(
a b

c d

)2

.

Since
√
C ∈ PSL(2,R), it is ad − bc = 1 and a + d > 2, where the latter because

√
C is a

holomorphic hyperbolic automorphism, compare [Jost, 2013, Lemma 2.4.2]. Then ω(c) = 1 because

Tr(J−1(C) ∩ Λ∗) = a2 + d2 + 2bc = (a+ d)2 − 2 > 0.

Obviously, there are always exactly two elements in each similarity class of a lift of a real Fuchsian
group Λ∗.

Lemma B.25 ([Natanzon, 2004, Lemma 2.4.2]). Let ω be a non-singular Arf function on (X, τ)
generated by Λ̃. Then there are exactly two liftings Λ̃∗ of the group Λ̃ for which ω

Λ̃∗
= ω and these

liftings are similar.

Proof. By [Natanzon, 2004, § 7], there exists a unique lifting Λ∗ ⊂ SL(2,R) of the group
Λ = Λ̃ ∩ Aut(H) with ωΛ∗ = ω. Because ωΛ∗ is a real Arf function, any lifting Λ̃∗ of the group
Λ̃ with ω

Λ̃∗
= ω is generated by Λ∗ and a matrix α such that J(α) ∈ Λ̃ \ Λ. If J(α)(z) = az̄+b

cz̄+d ,

then α = ±
(
a b

c d

)
. The invariance of the trace under conjugation yields Tr(αAα−1) = Tr(A) for

A ∈ Λ∗ and hence αΛ∗α−1 = Λ∗. Thus, the group Λ̃∗ generated by Λ∗ and α is a lifting of the
group Λ̃.

Lemmata B.24 and B.25 imply the following assertion.

Theorem B.26 ([Natanzon, 2004, Theorem 4.1.]). The correspondence Λ̃∗ 7→ ωΛ̃∗ between simi-
larity classes of liftings of a real Fuchsian group Λ̃ and non-singular Arf functions on a real curve
(X, τ) generated by Λ̃ is 1-to-1.
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Remark B.27. The isomorphism π1(H/Λ, p) → Λ sends each free homotopy class of a contour
c ∈ X = H/Λ to a conjugacy class Λc ⊂ Λ which does not depend on the choice of p. Thus, to
each geodesic simple closed contour c ∈ X there corresponds a set Λc ⊂ Λ with Φ(`(C)) = c if
C ∈ Λc and Φ : H → X is the natural projection.
Let now Λ̃ be a real Fuchsian group and c an oval of a curve (X, τ) which is generated by
Λ̃. We consider C ∈ Λc. Replacing the group Λ̃ by a conjugate group, we may assume that
`(C) = I = {z ∈ H | Re(z) = 0}. Then Λ̃ contains the involution β(z) = −z̄. A lifting Λ̃→ Λ̃∗

maps β into a matrix of the form α

(
−1 0
0 1

)
, where α = ±1. If α = 1, then we endow the half-line

I with the orientation in which Im(z) increases and for α = −1 with the opposite orientation. The
projection Φ : H → X transfers the orientation to the contour c = Φ(I). The latter’s orientation is
completely determined by the lifting Λ̃∗ of Λ̃.

Definition B.28. The orientation on c which is induced by the lifting Λ̃∗ is called the orientation
generated on the oval by the lifting Λ̃∗.

Theorem B.29 ([Natanzon, 2004, Theorem 2.4.2]). Let Λ̃∗ be a lifting of a real Fuchsian group Λ̃
and let (X, τ) be a real curve of type (g, k, 0) generated by Λ̃. Let (c1, . . . , cg) be a set of pairwise
disjoint simple closed contours such that Xτ = ⋃k

i=1 ci and τ [ci] = ci for i = 1, . . . , g. Then
there is an invariant simple closed contour cg+1 which is disjoint from the above contours so that
X \⋃gi=1 ∪c = X+∪X−, where X± are spheres with g+1 boundary cycles. Hereby, c can be chosen
in such a way that the orientation of c1, . . . , cg generated by Λ̃∗ coincides with their orientation as
parts of the boundary of one of the surfaces X+ and X−.

Proof. Without loss of generality, we show that there exists a curve cg+1 such that the orientation
of c1, . . . , cg generated by Λ̃∗ coincides with the orientation as parts of the boundary of X+. By
Lemma 6.13, there is a set of pairwise disjoint invariant contours c1, . . . , cg+1 belonging to X
such that Xτ = ⋃k

i=1 ci and the set X \
Ä⋃g+1

i=1 ci
ä
decomposes into two spheres X+ and X− with

each g + 1 boundary cycles. Let us endow the contours c1, . . . , cg with the orientation generated
by the lifting Λ̃∗ in the sense of Definition B.28. Their images on the surface X̃ := X \ ⋃gi=1 ci

are represented by pairs of simple closed contours c′i and c′′i of opposite orientation, where c′i
and c′j belong to the same connected components of the surface X̃ \ c, compare Figure B.4. We
then modify the simple closed contour c symmetrically as shown in Figure B.4. More precisely,
if the orientation of one of the ovals c′i as a connected component of the boundary of X̃+ does
not coincide with the orientation generated by Λ∗, we pass from c to a symmetric simple closed
contour c̃ that separates the simple closed contours of different orientation, i.e. it surrounds c′i and
c′′i in such a way that X \ (⋃gi=1 ci ∪ c̃) also decomposes into two parts X+ and X−, where c′′i is a
connected component of the boundary of the new curve X+ and c′i is a connected component of
the boundary of the new X−. Successively repeating this modification yields after at most g − 1
steps the desired orientation on the ovals as boundaries of X+ and X−.
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Figure B.4.: Depicting the symmetric modification of c from the proof of Theorem B.29, taken
from [Natanzon, 2004, Figure 2.4.2] .

Lemma B.30 ([Natanzon, 2004, Lemma 2.4.3]). Let Λ̃∗ be a lifting of a real Fuchsian group Λ̃
and let (X, τ) be the real curve corresponding to Λ̃. Let further c1 and c2 be ovals of the involution
τ endowed with the orientation generated by Λ̃∗ as in Definition B.28 and let a ⊂ X be an oriented
simple closed contour which intersects c1 and c2 in such a way that τ]a = −a. Then a has the
same intersection numbers with c1 and c2 if and only if ω

Λ̃∗
(a) = 1.

Proof. Replacing the group Λ̃ by a conjugate group, we may assume that A ⊂ Λa where A(z) = λz

and λ > 1. Because ci ∩ a 6= ∅, c1 ∩ c2 = ∅, we can further assume without loss of generality that
the attracting fixed point of the hyperbolic automorphism corresponding to ci is given by αi ∈ R
and the repelling fixed point by −αi. Since a has the same intersection numbers with c1 and c2,
we can further assume that 0 < α2 < α1. This situation is depicted in Figure B.5. Also without
loss of generality, we can assume that

√
λ = α1

α2
> 1. Then the corresponding element in PSL(2,R)

is given by
A(z) =

(√
λ 0

0
√
λ
−1

)
=
Å α1
α2

0
0 α2

α1

ã
and τ]a = −a holds because a corresponds to the map z 7→ λz and hence τ]a to z 7→ λ(−z̄) = −λz̄.
In this case, we have Λci ⊃ Ci, where Λci is the element of Λ induced by ci ∈ P τ under the
isomorphism H1(X,Z)→ Λ as in Remark B.27. By equation (B.3), it is

Ci(z) = αi(λi + 1)z + α2
i (λi − 1)

(λi − 1)z + αi(λi + 1) , λi > 1.

Since `(Ci) is a half circle in H with radius αi, the automorphism of H which mirrors points of H
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Figure B.5.: Depicting the images of the geodesics in H corresponding to A, C1 and C2 for
c1 ? a = c2 ? a. Taken from [Natanzon, 2004, Figure 2.4.1].

at `(Ci) with respect to the hyperbolic metric is described by

C̄i(z) = α2
i

|z|2
z = α2

i

z̄
.

and

A(z) =

Ñ√
λ 0

0
√
λ
−1

é
=
(
α1
α2

0
0 α2

α1

)
=
(

0 −α1

α−1
1 0

)
·
(

0 −α2

α−1
2 0

)
= C1 ◦ C2.

We set A∗ = J−1(A) ∩ Λ̃∗ and C∗i = J−1(Ci) ∩ Λ̃∗. By Definition B.28, we obtain with the
orientation induced by Λ̃∗ that

C
∗
i = −

(
0 αi

α−1
i 0.

)

Hence, A∗ = C
∗
1C
∗
2. Then Tr(A∗) = α1

α2
+ α2

α1
> 0, and so ω

Λ̃∗
(a) = 1.

Conversely, let ω
Λ̃∗

(a) = 1. By the definition of ω
Λ̃∗

in (B.9), this implies Tr(A∗) = α1
α2

+ α2
α1
> 0.

So the attracting fixed points α1 and α2 must have the same sign and thus also the repelling fixed
points −α1 and −α2 have the same sign. Therefore, c1 ? a = c2 ? a, compare Figure B.5.

B.4. Rank one spinors on real curves

Let e : E → X be a locally trivial line bundle over a Riemann surface X = H/Λ with Λ ∈ PSL(2,R)
a Fuchsian group. This bundle can be pulled back to a bundle ẽ : ‹E → H which is called the
induced bundle, see [Steenrod, 1951, § 10]. The latter admits a trivialization, i.e. there is a
biholomorphic map Φ̃ : ‹E → H× C taking ẽ to the natural projection λ̃ : (H× C)→ H. So e is
isomorphic to a bundle that can be obtained by a factorization of the trivial bundle on H × C
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modulo an action of the group Λ. Then γ ∈ Λ ⊂ PSL(2,R) acts on H× C according to the rule

γ̃(z, x) :=
Å
az + b

cz + d
, f(γ, z) · x

ã
,

where f : Λ × H → C \ {0} is the transition function and γ(z) = az+b
cz+d . If E is the cotangent

bundle, one can choose the projection λ̃ such that

f(γ, z) =
Å
dγ

dz

ã−1
= (cz + d)2,

where the last equality follows from det
(
a b

c d

)
= 1, see [Jost, 2006, Definition 1.5.9 and the

abstract after that]. To see that this bundle induces a bundle on X = H/Λ, we have to consider
how the group Λ acts on the fibers of e. Therefore, we use the group representation of Λ as
hyperbolic Möbius transformations. So let γ1, γ2 ∈ Λ be represented as

γ1(z) = a1z + b1
c1z + d1

and γ2(z) = a2z + b2
c2z + d2

.

Then (γ1 ◦ γ2)(z) = ãz+b̃
c̃z+c̃ with

(
ã b̃

c̃ d̃

)
=
(
a1 b1

c1 d1

)
·
(
a2 b2

c2 d2

)
=
(
a1a2 + b1c2 a1b2 + b1d2

c1a2 + d1c2 c1b2 + d1d2

)
.

Therefore,

γ̃1γ̃2(x, z) =
Ç
ãz + b̃

c̃z + d̃
, (c̃z + d̃)2

å
.

Conversely, it is

γ̃1(γ̃2(z, x)) = γ̃1(γ2(z), (c2z + d2)2x)

=
Ç
ãz + b̃

c̃z + d̃
,

Å
c1

Å
a2z + b2
c2z + d2

ã
+ d1

ã2
(c2z + d2)2x

å
,

whereÅ
c1

Å
a2z + b2
c2z + d2

ã
+ d1

ã2
(c2z + d2)2 = c2

1(a2z + b2)2 + 2c1(a2z + b2)(c2z + d2)d1 + d2
1(c2z + d2)2

= c2
1((a2z)2 + 2a2b2z + b22) + 2c1d1(a2c2z

2 + a2d2z + b2c2z + b2d2) + d2
1((c2z)2 + 2c2d2z + d2

2)

= (c2
1a

2
2 +2c1a2d1c2 +d2

1c
2
2)z2 +2(c2

1a2b2 +c1a2d1d2 +d1c2c1b2 +d2
1c2d2)z+c2

1b
2
2 +2c1b2d1d2 +d2

1d
2
2

= ((c1a2 + d1c2)z + (c1b2 + d1d2)2

= (c̃z + d̃)2.

239



Appendix B. Toolbox for real holomorphic 1-forms

That means that the representation of Λ acts on E, and therefore induces a bundle on H/Λ,
compare [Gunning, 1967, §9].

Definition B.31. A line bundle E → X is called a spinor bundle if its tensor square E ⊗E → X

is isomorphic to the cotangent bundle.

If the transition functions f and g correspond to two mappings E → X, then the transition
functions corresponding to the tensor product E ⊗ E → X is f · g. Thus, the transition function
of a spinor bundle has the form f(γ, z) = α(a, b, c, d)(cz + d) with α(a, b, c, d) ∈ {−1, 1}. Then
f(γ, z) · f(γ, z) = (cz+ d)2 which is just the transition function of the cotangent bundle introduced
above. We associate the matrix

J∗f (γ) = α(a, b, c, d)
(
a b

c d

)
∈ SL(2,R)

to a map γ(z) = az+b
cz+d ∈ Λ. The next lemma is concerned with this map. We just cite it without

repeating its proof since the corresponding calculations are the same as the ones above which show
that e induces a bundle on H/Λ.

Lemma B.32 ([Natanzon, 2004, Lemma 1.10.1]). The map J∗f : Λ→ SL(2,R) is well defined and
it is a monomorphism.

Due to this Lemma, J∗f (Λ) is a lifting of Λ. The next theorem [Natanzon, 2004, Theorem 1.10.1]
then establishes the 1− 1-correspondence between liftings Λ∗ of a Fuchsian group Λ and the spinor
bundles on X = H/Λ:

Theorem B.33 ([Natanzon, 2004, Theorem 1.10.1]). The map f 7→ J∗f establishes a 1 − 1-
correspondence between spinor bundles and liftings Λ∗ of Λ.

Proof. To show this, it suffices to associate to each lifting J∗ : Λ → SL(2,R) a unique spinor
bundle with transition function f so that J∗f = J∗. Since line bundles are uniquely determined
by an open covering and the corresponding transition functions, see [Jost, 2013, Definition 5.6.2],

every spinor bundle can be reconstructed from its transition functions f . For J∗(γ) =
(
a b

c d

)
, let

the seeked transition function be given by f(γ, z) := cz + d.

Due to Theorem B.26, there is a unique Arf function ωΛ∗ : H1(H/Λ,Z2)→ Z2 corresponding to
Λ∗. Combining this with the 1-to-1 connection between real spinors and Λ∗ shown in Theorem
B.33, we see that also the correspondence e→ ωΛ∗ between spinor bundles and Arf functions on
X = H/Λ is 1-to-1, where e : E → X is a spinor bundle. The next step is to transfer this to real
curves (X, τ). This leads to a modified version of this correspondence which takes the additional
structure given by the realness of X into account.
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Definition B.34 ([Natanzon, 2004, Section 2.5.2]). (a) A real spinor bundle, i.e. a spinor bundle
on a real curve (X, τ), is a pair (e, β), where e : E → X is a spinor bundle and β : E → E is
an antilinear involution such that e ◦ β = τ ◦ e.

(b) Two spinor bundles (e1, β1) and (e2, β2) on real curves (X1, τ1) and (X2, τ2), respectively, are
isomorphic if there are biholomorphic maps φE : E1 → E2 and φX : X1 → X2 such that

e2 ◦ φE = φX ◦ e1, β2 ◦ φE = φE ◦ β1, τ2 ◦ φX = φX ◦ τ1.

We do not distinguish between isomorphic bundles. With any lifting Λ̃∗ of a real Fuchsian group
Λ̃, we associate a spinor bundle e

Λ̃∗
on the real curve (X, τ) corresponding to Λ̃. By definition,

the bundle e
Λ̃∗

is of the form (e
Λ̃∗
, β
Λ̃∗

), where β
Λ̃∗

: (H× C)/Λ∗ → (H× C)/Λ∗ is generated by
the map

(z, x) 7→
Å
az̄ + b

cz̄ + d
, (cz̄ + d)x̄

ã
,

(
a b

c d

)
∈ Λ̃∗ \ Λ̃∗. (B.10)

As shown above for the line bundle on X without holomorphic involution, this also defines an
action on H× C.

Lemma B.35 ([Natanzon, 2004, Lemma 2.5.1]). The correspondence Λ̃∗ 7→ ẽΛ∗ between similarity
classes of liftings Λ̃∗ of a real Fuchsian group Λ̃ and real spinor bundles on (X, τ) corresponding to
Λ̃ is 1-to-1.

Proof. Let (e, β) be an arbitrary spinor bundle on (X, τ). By Theorem B.33, there is a unique
lifting Λ∗ of the group Λ = Λ̃ ∩Aut(H) such that

e : (H× C)/Λ∗ → H/Λ.

Remember that g ≥ 2, and therefore only the hyperbolic Möbius transformations are deck
transformations of H. Thus, we can replace the group Λ̃ by a conjugate group and assume that Λ̃
contains a map of the form

z 7→ −µz̄,

where µ ≥ 1. Let µ∗ be the minimal value of all these possible µ’s. We set ν = √µ∗. Then the

group Λ∗ and the matrices ±
(
−ν 0
0 ν−1

)
generate some liftings Λ̃∗+ and Λ̃∗− of the group Λ̃ in

sense of Definition B.23. These are the only liftings of Λ̃ that contain Λ∗. Moreover, e
Λ̃∗±

= e and
an isomorphism between e

Λ̃∗+
and e

Λ̃∗−
is generated by the involution (z, x) 7→ (z,−x).

Together with Lemma B.7 and Theorem B.26, this finally yields the desired connection between
real spinors and non-singular Arf functions.
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Theorem B.36 ([Natanzon, 2004, Theorem 2.5.1]). The correspondence e 7→ ωe between spinor
bundles and non-singular Arf functions on a real curve (X, τ) is 1-to-1.

Let (e, β) be a spinor bundle on a real curve (X, τ). Applying Lemmata B.7 and B.35, we construct
an isomorphism

(e, β)→ (e
Λ̃∗
, β
Λ̃∗

),

where Λ̃∗ is a lifting of a real Fuchsian group Λ̃ and (X, τ) is the real curve generated by Λ̃. Let
us endow the ovals and the invariant simple closed contours of (X, τ) which are disjoint from the
ovals with the orientation induced by Λ̃∗ as in Definition B.28. Thus, a spinor bundle (e, β) on a
real curve (X, τ) generates an orientation on the ovals and on the invariant simple closed contours
of (X, τ) which are disjoint from the ovals. This orientation is defined up to its simultaneous
reversal on all ovals and invariant simple closed contours.

Definition B.37. (a) A holomorphic section η : X → E of a spinor bundle e : E → X is called a
spinor.

(b) A section η of a spinor bundle (e, β) on a real curve (X, τ) is called a real spinor if β ◦η = η ◦ τ .

Let {Λ̃∗1, Λ̃∗2} be the similarity classes that correspond to the bundle (e, β) by Lemma B.35. Then
the spinor η can be regarded as a section of the spinor bundle induced by Λ∗ = Λ̃∗+ ∩ Λ̃∗−, i.e. the
intersection of the two liftings of Λ̃ with Aut(H/Λ) ∩ Λ̃∗+ = Aut(H/Λ) ∩ Λ̃∗−. Moreover, η is
invariant with respect to one of the involutions β

Λ̃∗±
and anti-invariant with respect to the other

one. Without loss of generality, let β
Λ̃∗1
◦ η = η ◦ τ .

Definition B.38. The orientation generated by the lifting Λ̃∗+ on the ovals and invariant simple
closed contours of (X, τ) as in Definition B.28 is called the orientation generated by the spinor η.

Remember that Definition 6.16 of a real chart implies z(p) = z(τ(p)) = z(p) for p ∈ U ∩Xτ and
hence z(U ∩Xτ ) ⊂ R.

Definition B.39. The local chart z on an open neighborhood of p0 ∈ c with c ∈ Xτ agrees with
the spinor η if the spinor generates an orientation of the oval c which contains p0 that passes under
the action of z into the orientation of increasing real values on R ⊂ C.

A local chart on a Riemann surface defines a local trivialization of the cotangent bundle, and
therefore a local trivialization of the spinor bundle. Thus, in the local chart z, a complex-valued
transition function f ◦ z corresponds to the spinor.

Lemma B.40 ([Natanzon, 2004, Lemma 2.5.2]). Let (e, β) be a spinor bundle on a real curve
(X, τ) and let η be a real spinor of this bundle. Then the spinor η is described by a function f ◦ z
such that f ◦ z ◦ τ = f ◦ z in any real chart z : U → C that agrees with the spinor η.
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Proof. We set ιe : (z, x) 7→ (ιz, x). By Lemma B.7, we may assume that (X, τ) corresponds to Λ̃
and by Lemma B.35, we may assume that e : (H×C)/Λ∗ → (X, τ). As before, we can replace the
group Λ̃ by a conjugate group and assume that Λ̃ contains a map of the form(

−ν 0
0 ν−1

)
∈ Λ̃∗ \ Λ∗ with ν ≥ 1,

where this matrix is either element of the similarity class Λ∗+ or Λ∗−. Furthermore, we may assume
that e◦ιe : (−ιH×0)→ X generates a real chart z that agrees with η in sense of Definition B.39. In
this chart, η can be represented in the form (z, f(z)) for every z ∈ R. Thus, η◦τ can be represented
as (z ◦ τ, f ◦ z ◦ τ) and since z ◦ τ = z̄, β ◦ η can be represented as (z ◦ τ, f ◦ z) = β

Λ̃
(z, f ◦ z).

So due to equation (B.10), it is f ◦ z̄ : z 7→ az+b
cz+d = az̄+b

cz̄+d , where the last equality holds due to
a, b, c, d ∈ R. Therefore, the relation β ◦ η = η ◦ τ reads as

(z ◦ τ, f ◦ z) = β
Λ̃∗

(z, f ◦ z) = (z ◦ τ, f ◦ z ◦ τ),

and hence f ◦ z = f ◦ z ◦ τ . A passage to any other real chart that agrees with η preserves this
relation.

Theorem B.41 ([Natanzon, 2004, Theorem 2.5.2]). Let (e, β) be a spinor bundle on a real curve
(X, τ), let η be a real spinor of this bundle and let c be an oval of the curve (X, τ). Then the number
of zeros of η on c equals 1− ωe(c) mod 2, where ωe is the unique Arf function corresponding to
the spinor bundle e.

Proof. As in the proof of the Lemma before, we may assume by Lemmata B.7 and B.35 that (X, τ)
corresponds to Λ̃,

e : (H× C)/Λ∗ → X and
(
−ν−1 0

0 ν

)
∈ Λ̃∗ \ Λ∗ with ν ≥ 1.

Let I := {z ∈ H | Re(z) = 0}. Since c is an oval, there exists at least one γ ∈ Λ such that γ[I] ⊂ I.
So we may assume further that

c = I/{γ | γ ∈ Λ and γ[I] ⊂ I}.

In the local chart z generated by the projection e : (H × 0) → X, the spinor η is represented
in the form (z, f ◦ z), where z ∈ H and f is a holomorphic function. Due to Lemma B.32, it is
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γ(x, z) =
Ä
αz+β
γz+δ , (γz + δ)x

ä
, where z ∈ H. So for any element

(
α β

γ δ

)
∈ Λ∗, there holds

f

(
αz + β

γz + δ

)
= f(z)(γz + δ). (B.11)

Since the oval c induces a hyperbolic element of PSL(2,R), c corresponds to the matrix

C = α(c)

Ñ√
λ 0

0
√
λ
−1

é
∈ Λ∗

with
√
λ > 1 and the sign α(c) is determined by the value of the corresponding value of the unique

Arf function ωΛ∗(c). The latter is given by Λ∗. Then ωΛ∗ determines the sign of the trace of C as
in (B.9). So

α(c) =

1 for ω(c) = 1,

−1 for ω(c) = 0.

Since C ∈ Λ∗ and f obeys equation (B.11), this implies that f(λz) = α(a)f(z)
√
λ
−1 with

√
λ ≥ 0.

Moreover, the natural projection H → H/Λ establishes a 1-to-1 correspondence between the
interval (v, λv] ∈ I and the contour c. Hence, the number of zeros of the spinor η on c is equal
to the numbers of zeros of the function f(z) on the interval (v, λv] ∈ I. Conversely, the map
e : (H× 0)→ X generates a real chart in a neighborhood of each point of the oval c and hence, by
Lemma B.40, f(z) is real and continuous on (v, λv] ∈ I. For α(c) = 1, the signs of f(v) and f(λv)
are the same and these signs differ for α(c) = −1. So by the Intermediate Value Theorem, the
number of zeros of f in (v, λv] ∈ I is even for α(c) = 1 and odd for α(c) = −1.

Theorem B.42 ([Natanzon, 2004, Theorem 2.5.3]). Let c1, . . . , ck be oriented ovals of a real curve
(X, τ) of type (g, k, 0). Let 0 ≤ m ≤ k, α1, . . . , αk ∈ Z2 and let ∑k

i=1 αi ≡ g + 1 mod 2. Then
there is a real spinor η on (X, τ) such that

(a) the orientation of the oval ci generated by η coincides with the original orientation if and only
if i ≤ m,

(b) the number of zeros of the spinor η modulo 2 on the oval ci is equal to αi.

Proof. By Theorem 6.14, there is a set {c1, . . . , cg+1} of pairwise disjoint and τ -invariant simple
closed contours which decomposes X into spheres X+ and X− with g + 1 boundary cycles. The
orientation of X+ generates an orientation on ∂X+ = {c1, . . . , cg+1} which can be different from
the original orientation given on c1, . . . , ck, compare Lemma B.30. Without loss of generality, we
may assume that the orientation of c1 oriented as a part of ∂X+ coincides with the orientation
induces by Λ̃ corresponding to (X, τ).
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We define a real Arf-function on (X, τ) to show that there always exists an odd real Arf-function
on (X, τ). The existence of this odd Arf-function then implies that there is a real spinor bundle
on (X, τ) which has a non-trivial holomorphic section. This section can be used to construct a
non-trivial real holomorphic section, see [Atiyah, 1971, Proposition 3.2]. We then show that this
real section has the properties claimed in the theorem.
To define an Arf-function ω : H1(X,Z2)→ Z2, we define this function on the elements of a basis
of H1(X,Z2). One part of this basis consists of the contours c1, . . . , cg. It is shown in Lemma
B.16 that one obtains the other basis elements of H1(X,Z2) by joining the contours ci and cg+1

by a path γi ∈ X+ to define

di := γi + rg+1 − τ]γi for 1 ≤ i ≤ k

and
di := γi + rg+1 − τ]γi − ri for k < i ≤ g.

So the set {ci, di | i = 1, . . . g} yields a basis of the vector space H1(X,Z2). We define a unique
Arf-function ω on H1(X,Z2) through the images of these basis elements under ω and by assuming
that equation (B.5) holds. We define these values as

ω(ci) = 1− αi for i ≤ k,

ω(ci) = 1 for k < i ≤ g,

ω(di) = 0 for 1 ≤ i ≤ m,

ω(di) = 1 for m < i ≤ k,

ω(di) = 0 for k < i ≤ g.

Due to ∑k
i=1 αi ≡ g + 1 mod 2, it is

ω(cg+1) = ω

( g∑
i=1

ci

)
=

g∑
i=1

ω(ci) =
k∑
i=1

(1− αi) +
g∑

i=k+1
1 = g − (g + 1) = 1 mod 2.

As in the proof of Lemma B.16, one has τ]di = −di + cg+1 for 1 ≤ i ≤ k and τ]di = −di + cg+1 + ci

for k < i ≤ g. So in the former case, it is

ω(τ]di) = ω(−di + cg+1) = ω(di) + ω(cg+1) + (−di, cg+1) = ω(di) + 1 + 1 = ω(di) mod 2
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and in the latter case one also obtains

ω(τ]di) = ω(−di + ci + cg+1) = ω(di) + ω(ci + cg+1) + (−di, ci + cg+1)︸ ︷︷ ︸
=0 mod 2

= ω(di) + ω(ci) + ω(cg+1)

= ω(di) + 1 + 1 = ω(di) mod 2.

Therefore, the Arf-function ω is real and of type (g, δ, k0, k1) in the sense of Definition B.9(d) with
k0 = ∑k

i=1 αi = g + 1 mod 2 and k = k0 + k1 ≤ g. Hence, ω exists due to Theorem B.17.
By Lemma B.16, ω is non-singular since it does not vanish on all ovals of X. By Lemma B.7, (X, τ)
is the real curve corresponding to the real Fuchsian group Λ̃. Then the 1-to-1 correspondence
between spinor bundles on real curves and real Arf-functions in Theorem B.36 yields also a spinor
bundle (e

Λ̃∗
, β
Λ̃∗

) which corresponds uniquely to ω
Λ̃∗
.

Along with ω, we consider another real Arf function ω′ such that ω′(ci) = ω(ci) and ω′(di) = 1−
ω(di). Another real spinor bundle (e′, β′) corresponds uniquely to ω′. Moreover, it is∑k

i=1 αi ≡ g+1
mod 2 and ω(di) = 1 holds if and only if ω′(di) = 0. Inserting this into the definition of the
evenness of an Arf-function B.9 (b) yields

δ(ω) + δ(ω′) =
g∑
i=1

ω(ci)ω(di) +
g∑
i=1

ω(ci)(1− ω(di)) =
g∑
i=1

ω(ci)

=
k∑
i=1

(1− αi) +
g∑

i=k+1
1 = g − g + 1 = 1 mod 2.

Hence, either δ(ω) = 1 or δ(ω′) = 1. Without loss of generality, let δ(ω) = 1. By [Atiyah, 1971,
Section 5.2], this implies that the bundle e has a non-trivial holomorphic section ω. So one of
the sections η = ω + βω and η̃ = ι(ω − βω) is a non-zero real section of the bundle (e, β). Now
di − di+1 is a simple closed curve which connects ci and ci+1 for i = 1, . . . , k− 1. The involution τ
acts on these simple closed curves as

τ](di − di+1) = τ]di − τ]di+1 = −di + cg+1 + di+1 − cg+1 = −(di − di+1)

and hence obey the assumptions on the simple closed curve connecting two ovals in the preliminaries
of Lemma B.30. Due to di ? di+1 = 0 for i = 1, . . . , g − 1, one has ω(di − di+1) = ω(di) + ω(di+1)
and hence ω(di−di+1) = 0 for 1 ≤ i < m and for m < i < g, whereas ω(dm−dm+1) = 1. Together
with Lemma B.30 this shows that the section obeys property (a) since ω(di−di+1) = 0 implies that
the orientation of the ovals ci and ci+1 induced by η are equal and ω(di − di+1) = 1 implies that
these orientations are opposite to each other. Accordingly, the ovals ci have the same orientation
as c1 for 1 ≤ i ≤ m and the opposite orientation of c1 for m < i ≤ k. Property (b) of η follows
from Theorem B.41 which says that the number of zeros of η on an oval ci modulo 2 equals
1− ω(ci) = 1− 1 + αi = αi.
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Theorem B.43 ([Natanzon, 2004, Theorem 2.5.4]). Let (X, τ) be a real curve of type (g, k, 1).
Let its ovals c1, . . . , ck be oriented as parts of the boundary of a connected component X+ of the set
X \Xτ . Consider a set {α1, . . . , αk} ∈ Zk2 that has evenly many zeros and for which α1 = αk = 0.
Let 1 ≤ m < k and let ∑m

i=1 αi ≡ m+ 1 mod 2. Then there is a real spinor η on (X, τ) such that

(a) the orientation generated on the oval ci by η coincides with the orientation induced on ci by
the orientation as a boundary part of X+ if and only if i ≤ m,

(b) the number of zeros of η modulo 2 on ci is equal to αi.

Proof. The proof of this theorem equals in wide parts the proof of Theorem B.42, i.e. we are
seeking for a non-singular Arf function on (X, τ) such that there is a unique real spinor due to the
1-to-1 correspondence shown in Theorem B.36. The only essential difference is the choice of the
values of the Arf-function since the conditions for the existence of an Arf-function of a certain
type for ε = 1 differ from the conditions for ε = 0. Due to Theorem B.21, a real Arf function
on a real curve (X, τ) with ε = 1 only exists if k0

α + k1
α = 0 mod 2 for α ∈ {0, 1}, where we use

the notation from this theorem. To ensure that this holds for arbitrary choices of k0
1 + k1

1 > 0,
there has to hold that at least one αi for i ≤ m and one αi for i > m equals zero. Therefore, we
choose α1 = αk = 0. Since ε = 1, the ovals c1, . . . , ck decompose X into two Riemann surfaces
X+ and X− of genus g+ = 1

2(g − k + 1) with boundary cycles c1, . . . , ck. We now define an
Arf-function ω+ on H1(X+,Z) by setting ω+(ci) = 1− αi. Since α1, . . . , αk contains evenly many
zeros, i.e. {ci | ω̃(ci) = 1} consists of k1 ≥ 2 elements and {ci | ω+(ci) = 0} consists of k0 elements
with k0 + k1 = 1 and k1 = 0 mod 2, Lemma B.12 implies the existence of such an Arf function as
well as the existence of a standard basis {ai, bi, cj | i = 1, . . . , g+, j = 1, . . . , k − 1} of H1(X+,Z2)
such that ω(ai) = ω(bi) = 0 and ω(ci) = ω+(ci). To extend this to a basis of H1(X,Z2), join
the ovals ci and ck by a path γi ⊂ X+ starting at ci and ending at ck and set di := γi − τ]γi for
i = 1, . . . , k − 1. Then H1(X,Z2) consists of cycles ai, bi, τ(ai), τ(bi) with i = 1, . . . , g+ and cj , dj
with j = 1, . . . k − 1. As in the proof of Theorem B.21 one can extend ω+ to an Arf function ω
on H1(X,Z2) by setting ω(τ]ai) = ω(ai) = 0, ω(τ]bi) = ω(bi) = 0, ω(cj) = 1− αi and ω(dj) = 1
if and only if i ≤ m and assuming that equation (B.5) holds. Due to ∑k

i=1 ci = 0, there has to
hold ∑k

i=1 ω(ci) = 0. This is ensured by the assumption that the number of zeros in (α1, . . . , αk)
is even because

k∑
i=1

ω(ci) =
k∑
i=1

(1− αi) = k − (k − 2j) = 2j = 0 mod 2.

Then ω(τ]ci) = ω(ci) and ω(τ]di) = ω(di) for i = 1, . . . , k, so ω is real, i.e. ω(τw) = ω(w) for
w ∈ H1(X+,Z2). Furthermore, ω is odd since

δ(ω) =
g̃∑
i=1

(ω(ai)ω(bi)+ω(τ]ai)ω(bi)+ω(ai)ω(τ]bi)+ω(τ]ai)ω(τ]bi))+
g∑
i=1

ω(ci)ω(di) =
m∑
i=1

ωci = 1.

The rest of the proof coincides with the corresponding part of the proof of Theorem B.42.
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The question how the module space of a given Fermi curve looks like is answered in a more general
setting in the so far unpublished paper [Carberry and Schmidt, 2017]. So we cannot just cite
it here. To give a rather full picture of the inverse problem of the two-dimensional Schrödinger
operator, we attach the necessary theory here in accordance with one of the authors. We add the
corresponding citations with respect to the current preprint version of [Carberry and Schmidt,
2017].
The aim of this appendix is to describe the moduli space of deformations for Fermi curves with
arithmetic genus ga < ∞ that obey the conditions (F1) to (F3) which are formulated at the
beginning of Chapter 5. That means the space of data (X,Q+, Q−, dĉ, dč, σ), where X is a one-
dimensional compact complex analytic space of arithmetic genus ga <∞ with two smooth marked
points Q+ and Q−, dĉ as well as dč are meromorphic differentials on X which are holomorphic on
X \ {Q+, Q−} with poles of second order at Q+ and Q− and with prescribed periods and σ is a
holomorphic involution on X such that Q+ and Q− are the only fixed points of this involution.
To consider also deformations of Fermi curves X corresponding to real-valued potentials, X shall
furthermore be endowed with an antiholomorphic involution τ2 = τ1 ◦ τ2 with τ2(Q±) = Q∓. We
have decided to consider τ2 in this chapter instead of τ1 because otherwise, we would have to be
more careful with some sign in front of the considered Weierstraß polynomials under the action of
τ1 hereinafter. These remain unchanged under τ2. It is explained hereinafter why it is better to
consider τ2 = σ ◦ τ1 = τ1 ◦ σ : X → X, k 7→ k̄ instead of τ1 in this appendix. In [Carberry and
Schmidt, 2017], it is shown that the space of universal local deformations is parametrized by a
finite-dimensional manifold. Universal means that up to isomorphisms, every deformation can be
described by it and local means in the neighborhood of the given data.
In Chapter 5, we reconstructed a unique potential and the corresponding eigenfunctions for spectral
data obeying conditions (F1) to (F3) on a given Riemann surface which could then be considered as
the normalization of the Fermi curve. Thereby, the additional assumption is necessary that on X,
there exists a divisor D which obeys conditions (D1) to (D3) from Chapter 5. Here, deformations
which conserve the conditions (F1) to (F3) and the arithmetic genus ga are considered. On these
deformations, one can always find a divisor D which obeys (D1) and (D2). However, it is unclear
whether there always exists a divisor obeying all three conditions on the deformed curves. But the
divisors obeying conditions (D1) to (D3) form an open set of the divisors which are mapped by
the Abel mapping to the Prym variety, see Lemma 6.3 for complex-valued potentials and Lemma
6.53 for real-valued potentials. In the sequel, we assume that this condition is also open on the
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space of deformations. Due to this assumption, there always exists a divisor D obeying (D1) to
(D3) on small deformations of a given Fermi curve.
The key to the theory presented in [Carberry and Schmidt, 2017] is to consider first a larger class
of deformations, so-called ĉ-deformations, where only the periods of one of the two differentials
is conserved. The space of these ĉ-deformations is comparatively easy to construct and we will
see that it is just Cr with some r > 0. The deformations which conserve two differentials are a
subfamily of the former ones. So it is possible to determine the tangent space of these deformations
inside the tangent space of the ĉ-deformations. Integrating the directions of the tangent space of
this subfamily then yields the desired space of deformations.
We will not repeat the proofs of the results shown in [Carberry and Schmidt, 2017]. It will for
sure be published in near future. So we only explain roughly how these deformations take place
and add how we can embed the Fermi curve into the setting used in [Carberry and Schmidt, 2017].
Moreover, we make a short remark on the isomorphism classes of infinitesimal deformations which
conserve not only both differentials, but also the lattice Γ .

C.1. The curve to be deformed

In this appendix, elements in the following spaces are frequently considered.

Definition C.1 ([de Jong and Pfister, 2012, Introduction of Chapter 1 and Definition 7.3.6]). The
ring of convergent series in ĉ and č over C is denoted by C{ĉ, č}, C{ĉ}[č] denotes the ring over C
which elements are polynomials in č and convergent series in ĉ. For a germ B0 of a complex space
B at 0 ∈ B, we denote by (C{ĉ, č} ⊗̂OB)(0,0) the stalk of the holomorphic functions on C2 × B at
(ĉ, č, b) = (0, 0, 0).

Another central idea presented in [Carberry and Schmidt, 2017] is that the curve to be deformed
obeys the following property.

Definition C.2 ([Carberry and Schmidt, 2017, Definition 2.6]). An open complex curve X◦ with
two regular coordinate functions ĉ, č : X◦ → C is called locally planar if for each p ∈ X◦, the
germs ((ĉ− ĉ(p))p, (č− č(p))p) map the space germ Xp of X at p biregularly onto the zero set of
some fp ∈ C{ĉ, č}.

The Fermi curve X ′(u) = F (u)/Γ ∗ is a one-dimensional variety in C2/Γ ∗, see Corollary 1.15 and
Theorem 2.28(a). Hence, it is a locally planar curve. As already discussed in Section 4.2, the
arithmetic genus of X ′(u) is generically infinite. In this case, X ′(u) cannot be compactified. For a
finite type potential u, it might be considered as a good idea to take the middleding M(u) as in
Section 4.2 as the curve to be deformed. However, there are two reasons which speak against this:
first of all, it might happen that M(u) is not locally planar. Secondly, the deformation theory
presented in [Carberry and Schmidt, 2017] is based on local deformations around the singularities
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of a curve. And the more desingularized the considered curve to deform is, the smaller is the
moduli space obtained by these deformations. Hence, the moduli space of M(u) might not describe
the moduli space of X ′(u) completely.
One appropriate choice which we consider in this work is the following: Let u be a finite type
potential and δ > 0 be sufficiently small such that the only singularities of X ′(u) ∩ C2

δ/Γ
∗

are double points, compare Theorem 2.34. Remember that for a finite type potential, X◦(u)
denotes the normalization of X ′(u) with normalization map π : X◦(u) → X ′(u). We define
X ∩ (C2 \ C2

δ)/Γ ∗ := X ′(u) ∩ (C2 \ C2
δ)/Γ ∗ and X ∩ C2

δ := X◦(u) ∩ C2
δ/Γ

∗. In other words, we
glue the normalization X◦(u) to the open ends of the Fermi curve X ′(u). This is possible since for
δ > 0 sufficiently small, all singularities of X ′(u) are double points. Out of these, at most finitely
many are contained in X ′(u) ∩ C2

δ/Γ
∗. Note that for two representants k, k′ ∈ [k], there always

holds Im(k) = Im(k′), because Γ ∗ is a real two-dimensional lattice. By varying δ a bit if necessary,
we can achieve that no double points are contained in X ′(u) ∩ {[k] ∈ C2/Γ ∗ | ‖ Im([k])‖ = δ−1}
since they are contained in the excluded domains around the double points k±ν of the free Fermi
curve which are discrete and equidistant, compare Section 1.4 and Theorem 2.34. Therefore, an
appropriate choice of δ yields that the Fermi curve and its normalization can be considered as the
same on a small open tube around X ′(u) ∩ {[k] ∈ C2/Γ ∗ | ‖ Im([k])‖ = δ−1}. Hence, we can glue
these two curves together along this boundary. The curve we obtain like this we call X◦ in the
sequel and its compactification we denote as X. As in Chapter 4, X = X◦ ∪ {Q+, Q−}. We also
denote X as a Fermi curve in the rest of this chapter.
Furthermore, at any preimage kν,± of a double point k±ν (u) ∈ X ′(u) under π with ν ∈ Γ ∗δ and δ > 0
sufficiently small, there exists a biregular map (ĉ, č) from the normalization to C2. This is because
in a small open neighborhood Uν,± of a preimage kν,± of k±ν (u), there are maps such that one of
the derivatives into the direction of ĉ or č of the germ describing the normalization is unequal to
zero. We then can apply the Inverse Function Theorem to obtain that the normalization of Uν can
be described by the Weierstraß covering corresponding to (ĉ, č) 7→ ĉ. So also the normalization is
locally planar in the preimage of a double point. Since the only preimages of singularities contained
in the part of X◦(u) ∩ C2

δ are the preimages of double points, the corresponding part of the curve
X◦ is locally planar. So the curve X tinkered above is compact and locally planar. Another
advantage of this choice is that by shrinking δ > 0, one can add more double points of X ′(u) to
the considered X, i.e. increase the number of singularities in X. Like this, one can increase the
size of the moduli space, whereas the possible deformations of the compact part of X ′(u) which
also contains other singularities then double points remains unchanged in the modified X. The
constructed curve X together with the involutions σ and τ2 always obeys the following definition.

Definition C.3 ([Carberry and Schmidt, 2017, Definition 2.9]). Let X be a compact one-
dimensional complex space with smooth points Q+ and Q−, σ a holomorphic involution on
X and let dĉ and dč be meromorphic differentials on X. Then (X,Q+, Q−, dĉ, dč, σ) is called
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locally planar Fermi curve data if the following conditions hold:

(A) The meromorphic differentials dĉ and dč are holomorphic on X◦ = X \ {Q+, Q−} with poles
of second order at Q+ and Q− with no residues.

(B) X◦ is locally planar with respect to the local antiderivatives ĉ, č ∈ OX◦,p of dĉ and dč.

(C) The integrals of dĉ and dč along closed path of X◦ take values in Z.

(D) The holomorphic involution σ has exactly the two fixed points σ(Q±) = Q± and transforms
dĉ and dč as σ∗dĉ = −dĉ and σ∗dč = −dč.

For real-valued potential u : R2/Γ → R, there holds additionally

(E) On X, there exists an antiholomorphic involution τ2 with τ2(Q±) = Q∓ which transforms dĉ
and dč as τ∗2 dĉ = dĉ and τ∗2 dč = dč.

From Lemma 4.2 and Sections 4.3 and 1.3 we know that for a finite type potential u, the local
planar curve X as constructed above together with the two smooth points Q±, the meromorphic
differentials dĉ and dč as defined in (4.24) and the involution σ from Lemma 1.17(a) with fixed
points Q±, see Corollary 4.3, yield locally planar Fermi curve data.

C.2. Definitions of the deformations

Before we start to explain the construction of the deformation space, we give an overview of
the necessary definitions of the considered deformations used hereinafter. These are oriented on
[Greuel et al., 2007, Chapter II], whereas the definitions in [Greuel et al., 2007] are formulated
for deformations of space germs. In the upcoming definitions, we will assume that certain maps
are flat. Let Y be a fiber bundle over a base space B. Then flatness used here is a concept from
algebraic geometry which ensures that the fibers of the map Y � B depend in a regular way on
the points in B. Therefore, these fibers can be considered as deformations of a special fiber which
is the curve X in our case, compare [Grauert et al., 1994, Chapter II, §2]. We will point out more
advantages of the flatness-property when they show up hereinafter.

Definition C.4. (a) A deformation of a compact complex analytic space X is a pair of complex
analytic spaces, the total space Y and the base space B, together with a marked point b0 ∈ B
and a flat and proper map Y � B such that the preimage of the point b0 in Y is isomorphic
to X. The fibers over b ∈ B in Y are denoted by X(b), where X = X(b0) is called the special
fiber.

(b) A morphism from the deformation X ↪→ Y � B 3 b0 to X ↪→ Z � T 3 t0 is a commutative
diagram of holomorphic maps
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X Y B 3 b0

X Z T 3 t0
ψ ϕϕ

such that the surjective horizontal maps are flat.

(c) Two deformations are isomorphic if there exist two morphisms which are inverse to each other.

(d) For any deformation X ↪→ Y � B 3 b0 and any open neighborhood O ⊂ B of b0, let
U ⊂ Y � B be the preimage of O. The resulting deformation X ↪→ U � O 3 b0 is called
restriction of X ↪→ Y � B 3 b0 to O.

(e) A local deformation X ↪→ Y � B0 is a deformation for which the base space is the germ of a
complex space B at a point b0 ∈ B.

(f) A deformation X ↪→ Z � T 3 t0 is called complete if for any deformation X ↪→ Y � B 3 b0,
there exists a germ of a map ϕ which maps b0 to t0 such that the pullback of the flat map
Z � T under this germ is isomorphic to X ↪→ Y � B 3 b0.

(g) A deformation X ↪→ Z � T is called universal if it is complete and if for any deformation
X ↪→ Y � B, there exists a unique germ of a map ϕ : B → T such that the pullback of Z � T
with respect to this germ is isomorphic to X ↪→ Y � B.

All these definitions can be found in [Carberry and Schmidt, 2017, Section 3.1]. Two deformations
defined on subsets of B which both contain 0 define the same local deformation at 0 if and only
if their restrictions to some open neighborhood of 0 are isomorphic. If we deform a space germ,
we only consider local deformations. These are, as in [Carberry and Schmidt, 2017], denoted by
deformations of the space germ. The fact that the map Y � B in Definition C.4(a) is flat ensures
that the arithmetic genus of all fibers X(b) ⊂ Y over b ∈ B is constant, compare [Grauert et al.,
1994, Chapter III, Theorem 4.7 (b)]. Moreover, all deformed curves are also compact because we
assumed that the covering map Y � B is proper. Then the preimage of the points in B, i.e. the
fibers in Y , are compact.
By pulling a deformation back with ϕ : B → B̃, we mean that the fibers in the preimage of the
map ‹Y → {b̃ ∈ B̃ | ∃ b ∈ B : ϕ(b) = b̃} are attached to the corresponding point on b ∈ B. By
saying that the pullback of a deformation is isomorphic to another one, we mean that the fiber
attached to b by the pullback has to be isomorphic to the corresponding fiber in the preimage of
Y � B at b.
Furthermore, the deformation X ↪→ Y � B 3 b0 and its restriction to neighborhoods U of b0
are not distinguished. In particular, the base space B turn out to be a complex analytic space
germ in Cr at b0. Without loss of generality, b0 is always considered to be 0 ∈ Cr and will often
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be neglected. To define the deformations of data (X, dĉ, dč) such that only the periods of dĉ
are preserved, the following concept of deformations of space germs of complex analytic spaces
relative to the trivial deformation C0 ↪→ C0 � {0} is necessary. Moreover, the space germ which
is defined by the zero set of a germ f ∈ C{ĉ, č} respectively F ∈ C{ĉ, č} ⊗̂OB is denoted by V (f)
respectively V (F ).

Definition C.5. (a) For f ∈ C{ĉ, č}, a ĉ-deformation of V (f) is a space germ B at 0 ∈ B and
F ∈ C{ĉ, č} ⊗̂OB such that V (F ) is at b = 0 equal to V (f). The deformation is endowed with
the following morphism of deformations of space germs:

V (f) V (F ) B

C0 C0 {0}
ĉ (ĉ, 0)

(b) A ĉ-morphism from the ĉ-deformation V (f) ↪→ V (F ) � B with f ∈ C{ĉ, č} and F ∈
C{ĉ, č} ⊗̂OB to the ĉ-deformation V (g) ↪→ V (G) � T with g ∈ C{ĉ, č} and G ∈ C{ĉ, č} ⊗̂OT
is a morphism of deformations

V (f) V (F ) B

V (g) V (G) T
ψ ϕ

which composition with the morphims of V (g) ↪→ V (G) � T to C0 ↪→ C0 � {0} is equal to
the corresponding morphism of V (f) ↪→ V (F ) � B.

Due to [Greuel et al., 2007, Corollary II.1.6], all deformations of V (f) with f ∈ C{ĉ, č} are of the
form V (f) ↪→ V (F ) � B with F ∈ C{ĉ, č} ⊗̂OB. Furthermore, the map V (F )→ V (G) is of the
form (ĉ, č, b) 7→ (ĉ, u(ĉ, č, b), ϕ(b)) with u ∈ C{ĉ, č} ⊗̂OB and there exists a unit H ∈ C{ĉ, č} ⊗̂OB
with

H(ĉ, č, b)G(ĉ, u(ĉ, č, b), ϕ(b)) = F (ĉ, č, b)

Since we can consider Hf instead of f , we may assume that F (ĉ, č, 0) = f(ĉ, č) such that
V (f) ↪→ V (F ) is an embedding. Evaluating u and H at s = 0 yields the map V (f)→ V (g) such
that (ĉ, č) → (ĉ, u(ĉ, č, 0)) with u(ĉ, č, 0), H(ĉ, č, 0) ∈ C{ĉ, č}. For V (f) = V (g), we may assume
that f = g with u(ĉ, č, 0) = č. Since we assume F (ĉ, č, 0) = f(ĉ, č) as well as G(ĉ, č, 0) = g(ĉ, č),
this yields H(ĉ, č, 0) = 1. Furthermore, the construction of a universal deformation of data
(X,Q+, Q−, dĉ, dč, σ) will be based on so-called infinitesimal deformations of the Fermi curve,
i.e. deformations up to first order.

Definition C.6 ([Carberry and Schmidt, 2017, Definition 3.7]). An infinitesimal deformation is a
deformation whose base space has the holomorphic functions Π = C{ε}/〈ε2〉 ' C[ε]/〈ε2〉.
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C.3. Deformations of curves with one differential

Let Xp denote the space germ of X at p ∈ X and (dĉ)p the germ of the 1-form dĉ at p. Analogously,
C0 denotes the space germ of C at 0 ∈ C. The next definition contains weaker conditions which
also hold for Fermi curve data (X,Q+, Q−, dĉ, dč, σ) as in Definition C.3.

Definition C.7 ([Carberry and Schmidt, 2017, Definition 3.1]). Let X be a compact one-
dimensional complex curve with smooth marked points Q+ and Q− and let dĉ be a meromorphic
1-form on X and σ : X → X a holomorphic involution. (X,Q+, Q−, dĉ, σ) is called locally planar
with prescribed poles if the following conditions hold:

(A1) For both, Q+ and Q−, there exists z± ∈ OX,Q± which vanishes at Q± and maps XQ±

biregularly onto C0 such that (dĉ)Q± = d(z−1
± ).

(B1) For each q ∈ X◦, there exists (ĉq, čq) ∈ OX,q × OX,q which vanishes at q and maps Xq

biregularly onto the zero set of some fq ∈ C{ĉ, č}. Further, it is required that (dĉ)q = d(ĉq)

(D1) On X, there exists a holomorphic involution σ with σ(Q±) = Q± and no other fixed points
which acts as

ĉσ(q) = −σ∗ĉq, čσ(q) = −σ∗čq, z± = −σ∗z±.

If in addition the following condition holds, (X,Q+, Q−, dĉ, σ) is said to be real:

(E1) On X, there exists an antiholomorphic involution τ2 with τ2(Q+) = Q− which acts as

ĉτ2(q) = τ∗2
¯̂cq, čτ2(q) = τ∗2

¯̌cq, z± = τ∗2 z̄∓, fτ2(q)(ĉ, č) = f̄q(¯̂c, ¯̌c). (C.1)

Condition (A1) guarantees that Q± are smooth points of X and that X has at most two connected
components. The germ z± of the local coordinate in (A1) of X at Q± is determined by the 1-form
dĉ and the condition that the germ of dĉ at Q± is equal to d(z−1

± ) at Q±. Due to (B1), one has
d(ĉq − ĉq′) = dĉ− dĉ = 0 for q, q′ ∈ X. Therefore, ĉq has an analytic continuation along all paths
in X◦ such that ĉq′ = ĉq − ĉq(q′) holds in OX,q′ along the path. The germ of this difference is the
germ of a constant function. So ĉq is holomorphic at all q′ nearby q and the case that all integrals
over closed paths of dĉ take values in Z – as formulated in (C) – is included in this condition. (D1)
and (E1) ensure that the differentials dĉ and dč have the behavior as described in (D) respectively
(E). It will turn out in Lemma C.11 that the ĉ-deformations are completely determined by the
local deformations in small open neighborhoods of the singularities of X and of the zeros of dĉ.
Because X is compact, these are finitely many points q1, . . . , qL. For brevity, the index ql is for
each l = 1, . . . , L denoted by l and the space germs in a neighborhood of ql on X by Xl := Xql . In
particular, ĉl = ĉql , čl = čql and fl = fql . Since all Fermi curves X are subvarieties in C2/Γ ∗, the
Weierstraß Preparation Theorem [de Jong and Pfister, 2012, Theorem 3.2.4] yields that one can
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describe them locally as Weierstraß coverings over ĉ ∈ C. More precisely, for every fl ∈ C{ĉ, č},
it follows from the Weierstraß Preparation Theorem [de Jong and Pfister, 2012, Theorem 3.2.4]
that for all p ∈ X, there exists a unique Weierstraß polynomial fl ∈ C{ĉ}[č] of degree dl in č for
l = 1, . . . , L with highest coefficient equal to 1 and all lower coefficients vanishing at ĉ = 0. In
[Carberry and Schmidt, 2017], an open ball B around 0 ∈ Ck and δ1 > 0 is chosen such that the
polynomials Fl are holomorphic on (ĉ, ˜̌c, b) ∈ Bδ1(0) × C × B. For l = 1, . . . , L and sufficiently
small δ1, there exist disjoint open neighborhoods Ol := {(ĉ, ˜̌c) ∈ Bδ1(0)× C | fl(ĉ, ˜̌c) = 0} of ql in
X such that the maps in (B1) extend to biregular maps

Ol → Ul, (ĉ, ˜̌c) 7→ ĉ. (C.2)

Hence, Ol → Bδ1(0) is a Weierstraß covering with a fixed number of dl sheets and a single
branch point at (0, 0). The germs fl ∈ C{ĉ, č} are replaced by the unique Weierstraß polynomial
fl ∈ C{ĉ}[č] of degree dl, compare [de Jong and Pfister, 2012, Theorem 2.3.4]. The involution
σ : (ĉ, č) 7→ (−ĉ,−č) induces an involution σ∗ on C{ĉ, č}. One can decompose f ∈ C{ĉ, č} uniquely
into f = f+ + f− with f± = 1

2(f ± σ∗f). Therefore, C{ĉ, č} = C+{ĉ, č} ⊕ C−{ĉ, č}. Analogously,
also C{ĉ}[č] = C+[ĉ]{č}⊕C−[ĉ]{č}. So it is necessary to take the behavior of the function fl under
σ into account. Moreover, the function germ locally describing X at σ(ql) is denoted by fσl.

Lemma C.8 ([Carberry and Schmidt, 2017, Beginning of Section 6]). Let fl ∈ C{ĉ}[č] be the
unique Weierstraß polynomial of degree dl whose zero set locally describes X in a neighborhood of
ql ∈ X. If none of the points q1, . . . , qL is a fixed point of σ, then the q1, . . . , qL can be sorted into
pairs such that σ(ql) = qσl with l 6= σl ∈ 1, . . . , L and

σ∗fl = (−1)dlfσl. (C.3)

with dl = dσl.

Next, the conditions on ĉ-deformations as in Definition C.5(a) which correspond to local planar
Fermi curve data (X,Q+, Q−, dĉ, σ) obeying conditions (A1), (B1) and (D1) are defined. Therefore,

X ↪→ Y
b
� B

is a deformation together with a meromorphic 1-form dĉY on Y . Hereby, b denoted the map which
maps a fiber X(b) to the corresponding element b ∈ B.
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Definition C.9 ([Carberry and Schmidt, 2017, Definition 3.4]). A deformation

(X, dĉ) ↪→ (Y, dĉY ) � B (C.4)

of locally planar (X,Q+, Q−, dĉ, σ) with prescribed poles is given by a deformation X ↪→ Y
b
� B

of the complex space X together with a meromorphic 1-form dĉY on Y such that the following
conditions hold:

(A1’) For Q+ and Q−, the germ z± of Definition C.7(A1) extends to zY,± ∈ OY,Q± such that
(zY,±, b) maps YQ± biregularly onto (C× B)(0,0) and dĉY,Q± = d(z−1

Y,±).

(B1’) For each q ∈ X◦, the germs ĉY,q and čY,q which are induced by the deformation

(X◦, ĉq, čq) ↪→ (Y ◦, ĉY ◦,q, čY ◦,q)
b
� B

are elements of OY,q such that (ĉY,q, čY,q, b) maps Yq biregularly onto V (Fq) with Fq ∈
C{ĉ, č} ⊗̂OB and dĉY,q = (dĉ)Y,q.

(D1’) The involution σ extends to an involution on Y and B which acts as

σ∗dĉY = −dĉY , σ∗dčY = −dčY , σ∗ĉY,q = −ĉY,σ(q), σ∗čY,q = −čY,σ(q),

σ∗Fq(ĉ, č, b) = (−1)dlFσ(q)(ĉ, č, b)),

where dl is the degree of the Weierstraß polynomial fl describing the germ Xq. The involution
σ acts trivially on B and commutes with the maps X ↪→ Y � B.

(E1’) If (X,Q+, Q−, dĉ, σ) is real, i.e. if in addition C.7 (E1) holds, then τ2 extends to an involution
of Y and B which acts as

ĉY,τ2(q) = τ∗2
¯̂cY,q, čY,τ2(q) = τ∗2

¯̌cY,q, zY,τ2(q) = τ∗2 z̄Y,q,

Fτ2(q)(ĉ, č, b) = F q(¯̂c, ¯̌c, τ2(b)).
(C.5)

The involution τ2 commutes with the maps X ↪→ Y � B.

Here, Yp denotes for all p ∈ X the space germ of Y at p and dĉY,p denotes the germ of the 1-form
dĉY at p. Analogously, (C× B)(0,0) denotes the space germ of C× B at (0, 0) ∈ C× B.

Again, (A1’) guarantees that Q± are smooth points of Y and zY,± is uniquely determined by dĉy.
Then for q, q′ ∈ X◦, one has dĉY,q = dĉY = dĉY,q′ , and therefore one has – as in the undeformed
case – that d(ĉY,q − ĉY,q′) = 0. So ĉY,q − ĉY,q′ is constant, and therefore independent from the
deformation parameter b ∈ B. As before, this yields that ĉY,q has an analytic continuation along
all paths in X◦ starting at q and along these paths, the equality of germs of holomorphic functions
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ĉY,q′ = ĉY,q − ĉY,q(q′) holds. Since ĉY,q as well as ĉY,q′ are germs, this remains valid in a small open
neighborhood of X in Y . These considerations enforce that the periods of dĉ are preserved along
the fibers of the deformation. So condition (C) also holds on all deformed curves X(b) ⊂ Y for
b ∈ B and B sufficiently small. Due to (D1’), σ defines a holomorphic involution σ : X(b)→ X(b)
on all fibers over B. So the differential dĉY transforms as σ∗dĉY = −dĉY . Moreover, (D1’) ensures
that each fiber X(b) of a ĉ-deformation is also endowed with a holomorphic involution σ with two
fixed points Q±(b) which equal (0, b) with respect to the coordinates (zY,±, b), i.e. these points
are the deformations of the points Q+ and Q− in X(b) and also fixed points of σ on the fiber
X(b). Finally, (E1’) implies that dĉY transforms as τ∗2 dĉY = dĉY and that all fibers X(b) are
also endowed with an antiholomorphic involution τ2 which interchanges Q+(b) and Q−(b). So
both involutions σ and τ2 extend to involutions on Y respectively B which are also denoted by σ
respectively τ2. To describe the morphisms of these deformations, let

(X, dĉ) ↪→ (Y, dĉY ) � B, (X, dĉ) ↪→ (‹Y , dĉ
Ỹ

) � B̃ (C.6)

be two such deformations and let the holomorphic maps ϕ : B → B̃ and ψ : Y → ‹Y define the
following morphism:

X Y B

X ‹Y B̃

ψ ϕ (C.7)

The deformations of the space germs at the marked points Q± and the points q ∈ X◦ have to be
analyzed separately. This is because X is not locally planar in a small open neighborhood of Q±,
but locally biregular to an open set in C2. For Q±, let XQ± , YQ± and ‹YQ± be the space germs
of X, Y and ‹Y at Q±. The morphism (C.7) induces the following morphism of deformations of
space germs:

XQ± YQ± B0

XQ±
‹YQ± B̃0

ψ± ϕ0

It is imposed that this is an ĉ-morphism with respect to the morphisms (z±, zY,±, 0) and (z±, zỸ ,±, 0)
to the trivial deformation of space germs C0 ↪→ C0 � {0}. This is equivalent to ψ∗±zỸ ,± = zY,±.
Analogously, for all other points q ∈ X◦, let Xq, Yq and ‹Yq denote the space germs of X, Y and ‹Y
at q. The morphism (C.7) also induces a morphism of deformations of space germs:

Xq Yq B0

Xq
‹Yq B̃0

ψq ϕ0
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This shall be a ĉ-morphism with respect to the morphisms (ĉq, ĉY,q, 0) and (ĉq, ĉỸ ,q, 0) to the trivial
deformation of space germs C0 ↪→ C0 � {0}. This is equivalent to ψ∗q ĉỸ ,q = ĉY,q.

Definition C.10. ([Carberry and Schmidt, 2017, Definition 3.5]) Let X have properties (A1),
(B1), (D1) and optionally (E1). A morphism from the left hand side to the right hand side of (C.6)
is a morphism (C.7) with ψ∗±zỸ ,± = zY,± for Q± and ψ∗q ĉỸ ,q = ĉY,q for q ∈ X◦ and such that σ
commutes with ψ and leaves ϕ invariant. If in addition (E1) and (E1’) hold, then τ2 commutes
with ψ and ϕ.

Note that for p ∈ X, one has (ψ∗dĉỸ ) = d(ĉỸ ◦ ψ) = dĉY . We are interested in the isomorphism
classes of the deformations in (C.4). Since the marked points Q± are smooth, the space germs of
Y at these points are isomorphic to the space germs of (C×B)(0,0). Furthermore, at smooth points
q ∈ X at which dĉq = d(ĉq) does not vanish, ĉq maps Xq biregularly onto C0 and (ĉY,q, b) maps Yq
biregularly onto (C× B)(0,0). From this, it is visible that any deformation should be locally trivial
in the complement of some open neighborhoods of the points q1, . . . , qL of X which are either
singularities or roots of dĉ. In the sequel, let Fl = Fql and the space germs in a neighborhood
of ql on Y is denoted as Yl = Yql . These space germs are biregular to the zero sets Xl ' V (fl)
of fl ∈ C{ĉ, č} and Yl ' V (Fl) of Fl ∈ C{ĉ, č} ⊗̂OB. Hereby, the tie-in between the deformed
and undeformed space germs is given by Fl(ĉ, č, 0) = Hl(ĉ, č)fl(ĉ, č), where Hl ∈ C{ĉ, č} is a
unit. The next Lemma shows that the isomorphism classes of deformations obeying (A1) and
(B1), i.e. which provide the periods of one differential form dĉ, are in one-to-one correspondence
with the ĉ-isomorphism classes of the deformations of space germs V (fl) ↪→ V (Fl) � B0 with
l ∈ {1, . . . , L}. This means that it is indeed sufficient to consider local deformations in the
neighborhood of points which are either non smooth or the points at which dĉ has a root. There-
fore, the number of connected components of the special fiber is preserved under the ĉ-deformations.

Lemma C.11 ([Carberry and Schmidt, 2017, Lemma 3.6]). Let (X,Q+, Q−, dĉ, σ) be locally planar
with prescribed poles and denote the points at which ĉ is not a local coordinate by q1, . . . , qL ∈
X. Moreover, suppose that for each l = 1, . . . , L, there are given deformations (Xl, ĉl, ˜̌cl) ↪→
(Ỹl, ĉỸ ,l, ˜̌cỸ ,l) � B0 . Then there exists a local deformation (X, dĉ) ↪→ (Y, dĉY ) � B0, unique up to
isomorphism, such that for each l = 1, . . . , L, the induced deformation (Xl, ĉl, čl) ↪→ (Yl, ĉY,l, čY,l) ↪→
B0 is ĉ-isomorphic to the given one.

So the meaning of this lemma is two-fold: firstly, it is shown how to tinker a ĉ-deformation of
the whole space X out of the local ĉ-deformations of the singularities of X. Secondly, one sees
that the deformation of the whole space restricted to small neighborhoods of the singularities is
isomorphic to the local ĉ-deformation.
The proof of this lemma is mainly based on the application of the Weierstraß Preparation Theorem
[de Jong and Pfister, 2012, Theorem] in the open neighborhoods Ol of ql, respectively Ul ⊂ C2
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parametrized by (ĉ, č) on the non-deformed space Xl as in (C.2) and open neighborhoods of
(0, 0) ∈ C2 × B parametrized by (ĉ, č, b) ∈ C2 × B and describing Yl locally for l = 1, . . . , L. These
are chosen in such a way that the branch points of the corresponding Weierstraß coverings are
contained in small open balls inside of these neighborhoods and such that there is always is an
annulus contained in these neighborhoods on which the Weierstraß coverings are unbranched. This
and the flatness of the map from the total space to the base space is used to ‘glue’ the space Y
together.

Corollary C.12 ([Carberry and Schmidt, 2017, Parts of Section 6]). Let X be locally planar
with prescribed poles and endowed with σ. Moreover, let q1, . . . , qL ∈ X be the points at which
ĉ is not a local coordinate and let F1, . . . , FL ∈ C{ĉ}[č] ⊗̂OB0 with Fl(ĉ, č, 0) = fl(ĉ, č) be the
unique Weierstraß polynomial describing Y at ql for all l = 1, . . . , L. For fixed b ∈ B, Fl obeys
σ∗Fl = (−1)dlFσl with dl = degč Fl and Y is endowed with an involution σ.

The next step in [Carberry and Schmidt, 2017] is the determination of the isomorphism classes of
infinitesimal ĉ-deformations, compare [Greuel et al., 2007, Section II.1.4]. For the isomorphism
classes of the ĉ-deformations, the following Lemma holds:

Lemma C.13 ([Carberry and Schmidt, 2017, Lemma 3.8]). The ĉ-isomorphism classes of infinites-
imal deformations of a space germ f ∈ C{ĉ, č} with f(0, 0) = 0 are isomorphic to the elements
of

C{ĉ, č}
¬≠

f,
∂f

∂č

∑
. (C.8)

In [Carberry and Schmidt, 2017], it is shown that the space in (C.8) is finite-dimensional for all
l = 1, . . . , L. Hereby, it is used that the Weierstraß Preparation Theorem [de Jong and Pfister,
2012, Theorem 3.2.4] yields that C{ĉ, č}/〈fl, ∂fl∂č 〉

∣∣∣
Ul
' OUl/

∂fl
∂č OUl and that this is a coherent

sheaf with finite support. Then the finite dimensionality follows due to the Noether Normalization
[de Jong and Pfister, 2012, Corollary 3.3.19].
For given X obeying (A1), (B1), (D1) and optionally (E1), the next step is the construction of a
particular deformation (X, dĉ) ↪→ (Z, dĉZ) � T . Hereinafter, it will become visible that this is a
universal deformation, see [Carberry and Schmidt, 2017, Theorem 3.10] with the modifications
due to (D1) proposed in [Carberry and Schmidt, 2017, Section 6]. For each l = 1, . . . , L, let
gl := (gl,1, . . . , gl,r) be tuples of polynomials in C[č] ⊗̂OBδ1 (0) with respect to č of degree less
than dl which induce a basis of C{ĉ}[č]/〈fl, ∂fl∂č 〉 ' C[č] ⊗̂OBδ1 (0)/〈fl, ∂fl∂č 〉. The last isomorphy
holds because in a small open neighborhood Bδ1(0) of ĉ with δ1 > 0, the coefficients of the
Weierstraß polynomials fl ∈ C{ĉ}[č] are holomorphic. Thus, the Weierstraß polynomials f1, . . . , fL

belong to C[č] ⊗̂OBδ1 (0). Due to the action of σ on fl in (C.3), one has σ∗ ∂fl∂č = (−1)dl−1 ∂fl
∂č since

the derivative of a σ-invariant function is also invariant under σ and degč
Ä
∂fl
∂č

ä
= degč(fl) − 1.

Corollary C.12 yields that the deformation behavior at σ(ql) is determined by the deformation
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behavior at ql. Therefore, also the quotient spaces determining the isomorphy classes in (C.8)
have the same dimension at both of these points. Since gl,1, . . . , gl,r are polynomials and σ is
an involution, the same argumentation as in the proof of Lemma C.8 yields that every basis
(gl,1, . . . , gl,r) can be decomposed into a direct sum of a symmetric and an antisymmetric part with
respect to σ, i.e. into a part on which σ acts as σ∗gl,i = gσl,i and into a part on which σ acts as
σ∗gl,i = −gσl,i. To ensure that the deformed spaces X(t) have the same transformation behavior
under σ as X for all t ∈ T , it is necessary to impose that

σ∗gl = (−1)dlgσl,

and therefore (gl,1, . . . , gl,r) forms a basis of the symmetric part of C{ĉ, č}/〈fl, ∂fl∂č 〉 for dl even and
a basis of the antisymmetric part for dl odd. This choice defines the infinitesimal ĉ-deformations of
X endowed with σ, i.e. on Y acts a holomorphic involution σ which leaves T invariant. The number
of generators r depends on l. This basis defines a ĉ-deformation on small open neighborhoods of
the singularities and branch points

Ul(tl) = {(ĉ, č) ∈ Bδ1(0)× C | Gl(ĉ, č, tl) = 0} with

Gl(ĉ, č, tl) = fl(ĉ, č) + tl,1gl,1(ĉ, č) + · · ·+ tl,rgl,r(ĉ, č) =: fl(ĉ, č) + tl · gl(ĉ, č)

of the complex analytic space germs Xl. Due to the choice of gl, one has that σ∗Gl = (−1)dlGσl.
One chooses δ1 sufficiently small and small open balls Tl ⊂ Cr such that the roots of the discriminant
of the polynomial fl + tl · gl with respect to č belong to ĉ ∈ Bδ1/2(0) for all tl ∈ Tl. With

Zl = {(ĉ, č, tl) ∈ Bδ1(0)× C× Tl | Gl(ĉ, č, tl) = 0}, (C.9)

this yields that the Weierstraß coverings Zl → Bδ1(0)× Tl have the fixed number of dl sheets over
(ĉ, tl) ∈ Bδ1(0)×Tl and are unbranched over

Ä
Bδ1(0) \Bδ1/2(0)

ä
×Tl. We want to give insight into

the procedure how this yields a deformation of the whole space. So as in [Carberry and Schmidt,
2017, Proof of Lemma 3.6], let

Al := {(ĉ, č) ∈ Ul | ĉ ∈ Bδ1/2(0)} and Bl := {(ĉ, č, tl) ∈ Zl | ĉ ∈ Bδ1/2(0)}.

Then for each l = 1, . . . , L, the spaces (Ul \Al)×Tl and Zl \Bl are unbranched Weierstraß coverings
with an equal number of sheets over ĉ ∈ Bδ1(0)\Bδ1/2(0)) respectively (ĉ, tl) ∈ (Bδ1(0)\Bδ1/2(0))×
Tl. Therefore, č is a holomorphic function on Ul \Al which depends on ĉ ∈ (Bδ1(0) \Bδ1/2(0)) and
on Zl \Bl, č is also a holomorphic function depending on (ĉ, tl) ∈ (Bδ1(0) \Bδ1/2(0))×Tl. The first
function is equal to the evaluation of the second function at tl = 0. Moreover, the first function
has a unique global extension to all simply connected open subsets of ĉ ∈ (Bδ1(0) \Bδ1/2(0)) and
the second function to all simply connected open subsets of (ĉ, tl) ∈ (Bδ1(0) \Bδ1/2(0))× Tl. Let
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Wl be an open subset of Ul \Al, which is mapped by ĉ onto a simply connected open subset of
(Bδ1(0) \Bδ1/2(0)). The Cartesian product Wl × Tl is also simply connected since Tl is an open
ball in Cr. Hence, there exists a unique biholomorphic map from Wl × Tl onto a simply connected
open subset of Zl \Bl which preserves (ĉ, tl) and is equal to the identity for tl = 0. First, the the
annulus Bδ1(0) \Bδ1/2(0) is covered by finitely many simply connected open subsets such that the
intersection of any two of these open subsets is either empty or connected. Then Ul \Al is covered
by open subsets Wl which are mapped biholomorphically onto the former subsets by ĉ. Hereby,
each Wl×Tl is mapped to an open subset of Zl \Bl as described above. Since Zl \Bl is unbranched
over (ĉ, tl) ∈ (Bδ1(0) \Bδ1/2(0))×Tl, the corresponding biholomorphic maps fit together to form a
unique biholomorphic map ψl : (Ul \ Al)× Tl → Zl \ Bl preserving (ĉ, tl). For each l = 1, . . . , L,
let Cl denote the preimage of Al with respect to the map in (C.2). With T := T1 × · · · × Tl, the
open subsets (Ol \ Cl) × T of X \ (C1 ∪ · · · ∪ CL) × T are mapped biregularly to Z1 ∪ · · · ∪ ZL
by ψl ◦ (ĉ, č, tl). Now, X \ (C1 ∪ · · · ∪ CL) × T and Z1 ∪ · · · ∪ ZL are glued together along the
maps ψl ◦ (ĉ, č, tl) for l = 1, . . . , L. This deformation obeys the conditions in Lemma C.11 and one
obtains the particular deformation

(X, dĉ) ↪→ (Z, dĉZ) � T . (C.10)

If in addition condition (E1) is imposed, then the maps (ĉ, č) : Xl → C2 obey (C.1). We define
an action l 7→ τ2l of τ2 on f1, . . . , fL such that τ2(ql) = qτ2l. Due to (C.1), the unique Weierstraß
polynomials f1, . . . , fL obey fτ2l(ĉ, č) = f̄l(¯̂c, ¯̌c). The basis g1, . . . , gL is chosen in such a way that
its generators also obey gτ2l(ĉ, č) = ḡl(¯̂c, ¯̌c). In particular, for τ2l = l, the coefficients of gl take
purely imaginary values for real ĉl ∈ Bδ1(0). Consequently, the involution τ2 extends to a global
antiholomorphic involution of (C.10) with τ2(tl) = t̄τ2l which is also denoted by τ2. The following
Lemma together with Lemmata C.11 and 3.6 yields that the space of isomorphism classes of
infinitesimal deformations of the fibers is a vector bundle over T . Hereby, the next Lemma shows
that the space of infinitesimal deformations of the fibers of (C.10) has a smoothly varying basis
on T :

Lemma C.14 ([Carberry and Schmidt, 2017, Lemma 3.10 and parts of Section 6]). For sufficiently
small tl ∈ Tl, the elements of gl form a basis of

OUl(tl)
¬
∂Gl
∂č
OUl(tl). (C.11)

Considering the symmetric and antisymmetric part of (C.8) and (C.11) with respect to σ, the
following holds: For degčGl even, the elements of the symmetric part of (C.8) form a basis of the
symmetric part of (C.11) and for degčGl odd, the elements of the antisymmetric part of (C.8)
form a basis of the antisymmetric part of (C.11).

The dimension of the space C{ĉ, č}/〈f, ∂f/∂č〉 counts the number of zeros of ∂f/∂č on V (f). So
for smooth points q ∈ X \ {q1, . . . , qL}, the dimension of C{ĉ, č}/〈f, ∂f/∂č〉 in Lemma C.13 can
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be interpreted as the zero order of dĉ over X which equals the branching order of the covering
X → C, (ĉ, č) 7→ ĉ. Because the form (∂f/∂č)−1dĉ is regular, the zero order of ∂f/∂č on V (f)
equals the zero order of dĉ on V (f). Let us assume that dim(C{ĉ, č}/〈f, ∂f/∂č〉)q = 1. Then dĉ
has a simple zero at q. In this case, deforming a branch point by the ĉ-deformations changes the
ĉ-coordinate of this branch point. If the dimension of this space is higher than one, interpreting a
singularity as several branch points which coincide, these branch points are generically deformed
into different directions. Since the dimension of (C.11) is locally constant, the local number of
branch points stays the same in each fiber. For generic t ∈ T , the zero set of fl is deformed in
such a way that all branch points are zeros of order one of dĉ. The essential ingredient to show
that the ĉ-deformation in (C.10) is universal is that the dimension of the space of infinitesimal
ĉ-deformations is constant along T . Another important ingredient is [Carberry and Schmidt,
2017, Lemma 3.11]. To formulate this, let H denote the Banach space of bounded holomorphic
functions on (ĉ, č) ∈ Bδ1(0)×Bδ2(0) for positive δ = (δ1, δ2) with the uniform norm ‖ · ‖∞. Hereby,
δ2 is chosen in such a way that the corresponding set Ul is a subset of Bδ1(0)×Bδ2(0) for each
1, . . . , L. Furthermore, the deformation spaces Tl are chosen sufficiently small such that Zl in (C.9)
is contained in Bδ1(0)×Bδ2(0)× Tl.

Lemma C.15 ([Carberry and Schmidt, 2017, Lemma 3.11]). For l ∈ {1, . . . , L}, let tl ∈ Tl be
small and let ul ∈ H be a polynomial with respect to č of degree less than dl such that ‖ul − č‖∞
is small. Moreover, let Gl be defined as in (C.3). Then all hl ∈ H have a unique decomposition
into triples (al, bl, cl) with al ∈ H, bl ∈ H a polynomial of degree less than dl with respect to č and
cl ∈ Cr such that hl(ĉ, č) is for all (ĉ, č) ∈ Bδ1(0)×Bδ2(0) equal to

hl(ĉ, č) = al(ĉ, č)Gl(ĉ, ul(ĉ, č), tl) + bl(ĉ, č)
∂Gl
∂ul

(ĉ, ul(ĉ, č), tl) + cl · gl(ĉ, ul(ĉ, č)).

Furthermore (al, bl, cl) depends holomorphically on (hl, ul, tl) ∈ H × H × Tl. If in addition
σ∗ul = −uσl and σ∗hl = (−1)dlhσl hold, then the corresponding triples (al, bl, cl) and (aσl, bσl, cσl)
transform under σ as

σ∗al = aσl, σ∗bl = −bσl, σ∗cl = cσl. (C.12)

In the proof of this lemma, the assumption that ‖ul − č‖∞ is small is essential since it allows
the application of Banach’s Fixed Point Theorem to vl 7→ č − (ul(ĉ, vl) − vl) to construct a
biholomorphic map (ĉ, č) 7→ (ĉ, ul(ĉ, č)) with inverse map (ĉ, č) 7→ (ĉ, vl(ĉ, č)). So one can determine
the undeformed č from the deformation value ul(ĉ, č) in the second component and vice versa. Let
furthermore ul and hl be chosen such that σ∗ul = −uσl and σ∗hl = (−1)dlhσl holds. Since σ does
not change the degree of any of the occurring polynomials in č in (C.12), the action of σ on the
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local coordinates and on Gl as well as gl implies that

σ∗(al(ĉ, č)Gl(ĉ, ul(ĉ, č), tl) + bl(ĉ, č)
∂Gl
∂ul

(ĉ, ul(ĉ, č), tl) + cl · gl(ĉ, ul(ĉ, č))) =

= aσl(ĉ, č)Gσl(ĉ, uσl(ĉ, č), tl) + bσl(ĉ, č)
∂Gσl
∂ul

(ĉ, uσl(ĉ, č), tl) + cl · gσl(ĉ, uσl(ĉ, č)).

Taking the transformation behavior of hl, Gl and gl under σ into account and comparing coefficients
yields that (C.12) holds. This decomposition is used to show in [Carberry and Schmidt, 2017,
Theorem 3.12] that (C.10) defines a universal ĉ-deformation:

Theorem C.16 ([Carberry and Schmidt, 2017, Theorem 3.12]). Let (X,Q+, Q−, dĉ, σ) obey (A1),
(B1) and (D1) with a given deformation (C.4). Then, after reducing the base space B, there exists
a unique holomorphic map ϕ : B → T such that the pullback of (C.10) via ϕ is isomorphic to
(C.4).

In the proof of this theorem, one uses that every 1-deformation is described by the local deformations
around q1, . . . , qL. For an arbitrary 1-deformation (X, dĉ) ↪→ (Y, dĉY ) � B, a map B → T is
defined, where T is the candidate for the base space of the universal deformation as introduced above.
A morphism between these two deformations is given by Hl(ĉ, č, b)Gl(ĉ, ul(ĉ, č), ϕl(b)) = Fl(ĉ, č, b).
The trick in this proof is to apply the decomposition from Lemma C.15 to H−1

l (ĉ, č, b)∂Fl∂b (ĉ, č, b).
This yields a system of ordinary differential equations

∂Hl

∂b
(ĉ, č, b) = al(ĉ, č)Hl(ĉ, č, b),

∂ul
∂b

(ĉ, č, b) = bl(ĉ, č),
∂ϕl
∂b

(b) = cl

with known start values Hl(ĉ, č, 0) = 1, ul(ĉ, č, 0) = č and ϕ(0) = 0. One can show that for
sufficiently small base-space, all requirements for the the Picard-Lindelöf Theorem [Azad and Jost,
2013, Theorem 6.16] are fulfilled which leads to local solutions of the above differential equation.
One can show that this defines the map φ : B → T and that the pull back of X ↪→ Z � T under
φ is isomorphic to X ↪→ Y � B. It is explained in [Carberry and Schmidt, 2017, end of Section 3]
that if condition (E1) is assumed to hold on the special fiber of the deformation (C.15) in Theorem
C.16, then the assumption (E1’) on the deformation space ensures that the involution τ2 extends
to involutions of (C.15) and (C.10) which are both also denoted by τ2. In this case, Theorem C.16
implies that the morphism ϕ commutes with τ2 and that ϕ maps the fixed point set of τ2 in B to
the fixed point set of τ2 in T . In particular, the restriction of (C.10) to the fixed point set of τ2 in
T is a universal deformation of real Fermi curve data (X,Q+, Q−, dĉ, σ).
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C.4. Deformations of Curves with two differentials

The deformations (X,Q+, Q−, dĉ, dč, σ) obeying (A) to (D) are subfamilies of the ĉ-deformations.
We will see in this section that it is possible to construct a universal deformation for the deformations
which preserve the periods of both differentials dĉ and dč as a subfamily of (C.10). Therefore, at
first conditions that shall hold for the deformations preserving both differentials which are similar
to the conditions (A1), (B1), (D1) and (E1) in Definition C.7 are formulated in [Carberry and
Schmidt, 2017, Beginning of Section 5] as follows:
Let X be a compact one-dimensional complex analytic space together with two smooth points
Q+ and Q−, let σ : X → X be a holomorphic involution and let dĉ and dč be two meromorphic
differential on X. We impose that (X,Q+, Q−, dĉ, dč, σ) obey the following properties:

(A2) For Q+ and Q−, there exist z±, w± ∈ OX,Q± which vanish at Q± and map XQ± biregularly
onto C0 such that (dĉ)Q± = d(z−1

± ) and (dč)Q± = d(w−1
± ).

(B2) For each q ∈ X◦, there exist (ĉ, č) ∈ OX,q ×OX,q which vanish at q and map Xq biregularly
onto the zero set of some fq ∈ C{ĉ, č} such that (dĉ)q = d(ĉq) and (dč)q = d(čq).

(D2) On X, there exists a holomorphic involution σ with σ(Q±) = Q±. The local functions (ĉq, čq)
in (B2) and the differential forms dĉ and dč transform as

σ∗dĉ = −dĉ, σ∗dč = −dč, σ∗ĉq = −ĉσ(q), σ∗čq = −čσ(q).

(E2) On X, there exists an antiholomorphic involution τ2 which acts as (C.1) and additionally
wQ± = τ∗2 w̄Q∓ .

In analogy to the ĉ-deformations in Definition C.9, the deformations preserving two differentials
are defined in [Carberry and Schmidt, 2017, Section 5] as follows:
For data (X,Q+, Q−, dĉ, dč, σ) obeying (A2), (B2), (D2) – and additionally (E2) in case of real
data – the corresponding deformations are defined as

(X, dĉ, dč) ↪→ (Y, dĉY , dčY ) � B. (C.13)

This is a complex analytic space Y with two meromorphic differentials dĉY and dčY and base space
B together with a deformation X ↪→ Y � B of complex analytic spaces obeying the following
conditions:

(A2’) For Q+ and Q−, z± and w± in (A2) extend to zY,±, wY,± ∈ OY,Q± such that (zY,±, b) and
(wY,±, b) map YQ± biregularly onto (C× B)(0,0) with dĉY,± = d(z−1

Y,±) and dčY,Q± = d(w−1
Y,±).

(B2’) For each q ∈ X◦, ĉq and čq extend to ĉY,q, čY,q ∈ OY,q such that (ĉY,q, čY,q, b) maps Yq
biregularly onto V (Fq) with Fq ∈ C{ĉ, č} ⊗̂OB and dĉY,q = d(ĉY,q) and dčY,q = d(čY,q).
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(D2’) The involution σ extends to a holomorphic involution on Y which acts as

σ∗dĉY = −dčY , σ∗ dyY = −dčY , σ∗ĉY,q = −ĉY,σ(q), σ∗čY,q = −čY,σ(q).

It commutes with the maps X ↪→ Y � B and acts trivially on B.

For real curves X, the following condition holds additionally:

(E2’) If in addition (E2) is assumed, τ2 extends to an antiholomorphic involution of Y which acts
as (C.5) and wY,± = τ∗2 w̄Y,∓. This involution commutes with the maps X ↪→ Y � B.

Finally, the morphisms of these deformations are defined analogous to Definition C.10.

Definition C.17 ([Carberry and Schmidt, 2017, Definition 5.2]). Let X have properties (A2),
(B2), (D2) and optionally (E2). A morphism ϕ from the left hand side to the right hand side of

(X, dĉ, dč) ↪→ (Y, dĉY , dčY ) � B, (X, dĉ, dč) ↪→ (‹Y , dĉ
Ỹ
, dč

Ỹ
) � B̃

is a morphism (C.7) with z̃
Ỹ ,± ◦ ψQ± = zY,± as well as w̃

Ỹ ,± ◦ ψQ± = wY,± and ĉ
Ỹ ,q
◦ ψq = ĉY,q as

well as č
Ỹ ,q
◦ ψq = čY,q for q ∈ X◦. The involution σ commutes with ψ and leaves ϕ invariant. If

in addition (E2) and (E2’) hold, then τ2 commutes with ψ and ϕ.

To characterize the subfamily of the universal deformations in (C.13) on which dč extends to a
global meromorphic 1-form obeying (A2), (B2) and (D2), one starts again with a characterization
of the infinitesimal deformations similar to Lemma C.13. Here, we include the proof because we
think that it is necessary to understand the proof of the Lemma after that which is not contained
in [Carberry and Schmidt, 2017].

Lemma C.18. ([Carberry and Schmidt, 2017, Lemma 5.3 and parts of Section 6]) The space
of regular 1-forms ω on X◦ with poles of orders at most 3 at Q+ and Q− which obey σ∗ω = ω

parametrizes the isomorphism classes of infinitesimal deformations (C.13).

Proof. Let F1(ĉ, č, ε), . . . , FL(ĉ, č, ε) ∈ C{ĉ, č} ⊗̂Π with Π as in Definition C.6 and chosen such
that Π is invariant under σ. These functions describe the infinitesimal ĉ-deformations of f1, . . . , fL

nearby the points q1, . . . , qL, i.e. for each l = 1, . . . , L, one has σ∗Fl = (−1)dlFσl, where dl is the
degree of fl and

Fl(ĉ, č, ε) = fl(ĉ, č) + εfl,1(ĉ, č) with fl,1 ∈ C{ĉ, č}.

Since σ leaves Π invariant, this yields that σ∗fl,1 = (−1)dlfσl,1. For all q ∈ X◦ \ {q1, . . . , qL}, čY,q
is a holomorphic function of čq and ε, i.e.

čY,q = čq + εčq,1
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with a germ čq,1 of a holomorphic function on X at q. So ω = č1dĉ is holomorphic on X◦ \
{q1, . . . , qL}. By comparing the Taylor coefficients up to first order, Fl(ĉY,q, čY,q, ε) = 0 yields that

fl(ĉ, č) = 0 and ε
∂fl
∂č

(ĉ, č)čl,1(ĉ) + εfl,1(ĉ, č) = 0.

Because fl,1(ĉ, č) is holomorphic, Lemma 3.6 gives that the form

ω = čl,1dĉ = −fl,1(ĉ, č)dĉ
¬
∂fl
∂č

(ĉ, č) (C.14)

is regular at q1, . . . , qL. At Q+ and Q−, the function wY,Q± = w± + εw±,1 = w±(1 + εw−1
± w±,1)

is a holomorphic function of z± and ε with w±, w±,1 ∈ C{z±} both vanishing at z± = 0. For ε
sufficiently small, one has |εw−1

± w±,1| < 1 and since ε ∈ Π, it is

(1 + εw−1
± w±,1)−1 =

∞∑
k=0

(εw−1
± w±,1)k = 1 + εw−1

± w±,1.

Therefore,
čY,Q± = w−1

Y,± = w−1
± − ε(w±)−2w±,1 and ω = −w−2

± w±,1 d(z−1
± ).

Because w± has a zero of first order at Q±, ω has poles of order at most 3 at Q+ and Q−. Since
ω, defined like this, is holomorphic on all other open neighborhoods which cover X◦ \ {q1, . . . , qL},
it defines a global meromorphic 1-form on X which is regular on X◦ with poles of order at most 3
at Q+ and Q−. Furthermore, due to

σ∗dĉY = −dčY , σ∗ dyY = −dčY , σ∗ĉY,q = −ĉY,σ(q), σ∗čY,q = −čY,σ(q)

it is σ∗čq,1 = −čσ(q),1 as well as σ∗dĉ = −dĉ. Therefore, σ∗ω = ω.
Vice versa, since ĉ as well as č are known, a global meromorphic 1-form with these properties
defines čq,1 for all q ∈ X◦, and therefore an infinitesimal deformation obeying (A2’), (B2’) and
(D2’). (A2’) holds since at Q+ and Q−, the pole order of dĉ is given as two and hence the pole
order of čq is given as one. Since it is known how σ acts on ω, č and ĉ, it is also known how σ acts
on čq,1 and (D2’) holds.

In case that (E1) holds for the given data (X,Q+, Q−, dĉ, dč, σ), the complex dimension of
the corresponding vector bundles are halved since the vector bundles can then be obtained by
considering the real part of the complex vector bundles of the deformations without an involution
τ2.
In the deformations described above, we can assume that the lattice Γ is always normalized in
such a way that γ̂ is not deformed. This means that only all deformations of Γ up to rotations and
scaling are described by these deformations. However, this is no obstruction since the Fermi curves
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corresponding to cΓ with c 6= 0 and Fermi curves corresponding to A · Γ , where A is a rotation
matrix in R2, can always be parametrized in such a way that they are Fermi curves corresponding
to Γ . It is also possible to determine the space of infinitesimal deformation which leave Γ fixed.

Lemma C.19. The space of regular 1-forms ω on X◦ with poles of orders at most 1 at Q+ and
Q− which obey σ∗ω = ω parametrizes the isomorphism classes of infinitesimal deformations (C.13)
such that the lattice Γ is not deformed up to scaling.

Proof. Let γ̂, γ̌ ∈ Γ be the generators of Γ . It is known from (4.21) that on small open neighbor-
hoods U± ⊂ X of Q+ and Q− containing only smooth points of X, one has due to the action of σ
on č that for a Fermi curve X holds

č|U+ = γ̌1 − ιγ̌2
z+

+
∞∑
i=0

a+
i z

2i−1
+ and č|U− = γ̌1 + ιγ̌2

z−
+
∞∑
i=0

a−i z
2i−1
− .

So on Y , the first order deformations of the generators γ̂ and γ̌ can be represented as ˜̂γ =
(γ̂1 + bγ̂1,1, γ̂2 + bγ̂2,1), ˜̌γ = (γ̌1 + bγ̌1,1, γ̌2 + bγ̌2,1), where b ∈ Π. On small open neighborhoods
UY,± ⊂ Y of Q± containing only smooth points, this yields

č|UY,+ =
˜̌γ1 − ι˜̌γ2
zY,+

+
∞∑
i=0

a+
i (b)z2i−1

Y,+ = γ̌1 + bγ̌1,1 − ι(γ̌2 + bγ̌2,1)
zY,+

+
∞∑
i=1

a+
i (b)z2i−1

Y,+

as well as

č|UY,− =
˜̌γ1 + ι˜̌γ2
zY,−

+
∞∑
i=0

a−i (b)z2i−1
Y,− = γ̌1 + bγ̌1,1 + ι(γ̌2 + bγ̌2,1)

zY,−
+
∞∑
i=0

a−i (b)z2i−1
Y,− .

Therefore,

∂č

∂b

∣∣∣∣
UY,+

= γ̌1,1 − ιγ̌2,1
zY,+

+
∞∑
i=1

(a+
i )′(b)z2i−1

Y,+ and ∂č

∂b

∣∣∣∣
UY,−

= γ̌1,1 + ιγ̌2,1
zY,−

+
∞∑
i=0

(a−i )′(b)z2i−1
Y,− .

For deformations which preserve Γ , the first term of ∂č∂b
∣∣∣
UY,±

on U±. In that case ω = čY,1dĉ has
poles of at most of first order at Q+ respectively Q−. The same arguments as in the proof of
Lemma C.18 ([Carberry and Schmidt, 2017, Lemma 5.3 together with the modifications in Section
6]) apply, and so the tangent space of infinitesimal deformations of X which leave Γ invariant up
to shrinking and stretching is generated by a vector bundle of degree g

2 + 1.

Similar to Lemma C.13, it is shown in [Carberry and Schmidt, 2017, Lemma 5.4] that the
isomorphism classes of infinitesimal deformations build a vector bundle over T :

Lemma C.20 ([Carberry and Schmidt, 2017, Lemma 5.4 and parts of Section 6]). If Q± are the
only fixed points of σ, the σ-invariant, regular 1-forms on X◦ with poles at Q+ and Q− of orders
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at most 3, respectively 1 for undeformed lattices, build a complex vector bundle E → T of rank
ga
2 + 3 respectively ga

2 + 1, where ga is the arithmetic genus of X. In case that (E1) holds for
the Fermi curve data (X,Q+, Q−, dĉ, dč, σ), these ranks are also ga

2 + 3 respectively ga
2 + 1 as real

vector bundles.

Proof. Is is first shown with help of Lemma 3.6 that the regular 1-forms define a holomorphic
vector bundle over T of rank ga. The proof can be found in [Carberry and Schmidt, 2017]. We
only show how to determine the rank of the vector bundle of σ-invariant regular 1-forms. The rank
of this holomorphic vector bundle E on T is determined with help of the two-sheeted covering
πσ : X 7→ Xσ as in Proposition A.1. The invariance of ω under σ implies by Proposition A.4
that there exists a 1-form ωσ on Xσ such that ω = π∗σωσ. Hence, the rank of the vector bundle
describing the σ-invariant 1-forms equals the rank of the corresponding bundle on Xσ. The map
πσ is two-sheeted in a neighborhood of Q± since these points are fixed points of σ, compare
Proposition A.4. The proof of Proposition A.1 yields that the local coordinates on Xσ centered at
πσ(Q±) and the local coordinates on X centered at Q± can be chosen such that the latter ones
are the square of the former ones. A 1-form with poles of third order at Q± can be represented as

c

z3 dz = c

z2
dz

z
= c

z2
dz2

2z2

with some constant c ∈ C. This shows that the differential ωσ on Xσ has a pole of second
order at πσ(Q±) if and only if ω = π∗σωσ has a pole of third order at Q± and is regular on
X◦σ. So the rank of this vector bundle equals the dimension of H0(Xσ, ΩKσ−Dσ), where Kσ is a
canonical divisor of Xσ. As in the proof of Lemma C.14, the degree of the divisor Dσ of ωσ equals
deg(Dσ) = 2ga,σ− 2 + 4 = 2gσ + 2 > 2ga,σ− 2, where ga,σ is the arithmetic genus of Xσ. Therefore,
dimH1(Xσ,ODσ) = 0. Due to H0(Xσ, ΩKσ−Dσ) ' H0(Xσ,ODσ), the Riemann Roch Theorem
[Forster, 1981, § 16.10] yields that

dimH0(Xσ, ΩKσ−Dσ) = 1− ga,σ + degDσ = 1− ga,σ + 2ga,σ + 2 = ga,σ + 3.

Since 2ga,σ = ga, the meromorphic 1-forms on X which are invariant under σ and have poles of
third order at Q+ and Q− form a holomorphic vector bundle E on T of rank ga

2 + 3. The other
cases follow analogously.

As in the case of ĉ-deformations, it is shown in [Carberry and Schmidt, 2017] how to construct
a particular deformation (C.13) from which can be shown that it is a universal deformation.
This is again done with help of the infinitesimal deformations. To do so, note that the data
(X,Q+, Q−, dĉ, dč, σ) obeying (A2), (B2) and (D2) are always also data (X,Q+, Q−, dĉ, σ) obey-
ing (A1), (B1) and (D1). So let the initial data (X,Q+, Q−, dĉ, σ) of (C.10) correspond to the
given data (X,Q+, Q−, dĉ, dč, σ) obeying (A2), (B2) and (D2). Since the deformation (C.10) is a
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universal ĉ-deformation, any deformation (C.13) is endowed with unique morphisms ϕ : B → T
and ψ : Y → Z of the deformation (C.10). Due to Lemma C.11, the maps ϕ and ψ are completely
determined by the germs Fl describing Yl nearby ql for l = 1, . . . , L. The next Lemma [Carberry
and Schmidt, 2017, Lemma 5.5] shows that the section ω defines again an ordinary differential
equation for these space germs. By the construction of (C.10), the local coordinates ĉY,q for q ∈ X◦

and zY,± at Q± are also given. To obtain the local coordinates čY,q and wy,± one can use another
differential equation than for the ĉ-deformations which depends on ω.
We choose a local trivialization of the vector bundle E → T on a sufficiently small open neighbor-
hood of 0 ∈ T by linear independent sections ω1, . . . , ωR. Moreover, by choosing T small enough,
one can assume that these sections trivialize E over T and that

ω(r) := r1ω1 + · · ·+ rRωR (C.15)

is a holomorphic section of E → T for every r ∈ CR.

Lemma C.21 ([Carberry and Schmidt, 2017, Lemma 5.5 and parts of Section 6]). Let (X,Q+, Q−,

dĉ, dč, σ) obey (A2),(B2), (D2) and optionally (E2), let X ↪→ Z → T be the universal deformation
in Theorem C.16 of (X,Q+, Q−, dĉ, σ) obeying (A1), (B1), (D1) and (E1) if (E2) holds. Every
holomorphic function r = (r1, . . . , rR) ∈ (C{b})R induces a unique deformation (C.13) obeying
(A2),(B2), (D2) and optionally (E2) with base B = Bε(0) ⊂ C such that for all b ∈ B, the
corresponding infinitesimal deformation in Lemma C.18 is given by σ-invariant ω(r(b)) over ϕ(b).
Here, ϕ : B → T denotes the map in Theorem C.16.
Conversely, for any deformation (C.13) with base B = Bε(0) ⊂ C, the infinitesimal deformations
in Lemma C.18 yield a holomorphic section ω of the pullback of E → T with respect to the
corresponding map ϕ : B → T in Theorem C.16. This section is equal to ω(r(b)) in (C.15) with a
unique r ∈ (C{b})R.

This proof is also based on showing the existence of a solution of a differential equation, similar
to the proof of Theorem C.16, whereas the directions in the tangent space of the deformations
preserving two differential forms is a subspace of the tangent space of the ĉ-deformations. Only
this time, the vector field on the space (Fl, Hl, ul, ϕl) ∈ H ×H ×H ×Cr is for l = 1, . . . , L defined
by

∂Hl

∂b
(ĉ, č, b) = al(ĉ, č)Hl(ĉ, č, b)

Ç
ωl(b)
dĉ

å−1
,

∂ul
∂b

(ĉ, č, b) = bl(ĉ, č)
Ç
ωl(b)
dĉ

å−1
,

∂ϕl
∂b

(b) = cl

Ç
ωl(b)
dĉ

å−1
.

(C.16)
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The map tl = ϕl(b) is used to obtain the map between the base spaces of a morphism between
(X, dĉ) ↪→ (Y, dĉ) � B and the universal ĉ-deformation (X, dĉ) ↪→ (Z, dĉ) � T . Hereby, it is
exploited that the meromorphic function ω

dĉ defines for each t ∈ T an isomorphism class in the
even part of C{ĉ, č}/〈f, ∂fl∂č 〉 if deg(fl) even and in the odd part of C{ĉ, č}/〈f, ∂fl∂č 〉 for deg(fl) odd
for l = 1, . . . , L. Due to Lemma C.13, this isomorphism class determines the derivative of the
map B → T which equals the map from the tangent space on B to the space of infinitesimal
ĉ-deformations, i.e. the tangent space of T .
To construct a particular deformation (C.13) which can then be proven to be a universal deformation
for deformations obeying (A2’), (B2’), (D2’) and optionally (E2’), one can define a manifold R for
(X,Q+, Q−, dĉ, dč, σ) obeying (A2), (B2), (D2) and optionally (E2) and the universal ĉ-deformation
(C.10) in Theorem C.16 of (X,Q+, Q−, dĉ, σ) together with a holomorphic map R → T as follows:
There exists ε > 0 such that for all r ∈ R = Bε(0) ⊂ CR, the deformation family in Lemma C.21
in direction of (C.15) exists up to ω(r). Hereby, R is a submanifold of CR of complex dimension
ga
2 + 3, respectively ga

2 + 1 if the lattice Γ is not deformed. Since σ∗ω(r) = ω(r), it is σ∗r = r

and let R be chosen as invariant under σ. It is shown in [Carberry and Schmidt, 2017] that the
solutions (Fl, Hl, ul, ϕl) and the vector field induced by

∂Fl
∂b

(ĉ, č, b) = −∂Fl
∂č

(ĉ, č, b)ωl(b)
dĉ

and (C.16) depends holomorphically on r ∈ R. Furthermore, the local coordinates wW,± exist for
Q± in C{zW,±} ⊗̂OR and for each q ∈ X◦ \ (O1 ∪ · · · ∪ OL), the local coordinates čW,q exist in
C{ĉW,q} ⊗̂OR. The local coordinates at q1, . . . , qL are obtained from Fl as in the proof of Lemma
C.21. This defines a particular deformation (C.13) of the given Fermi curve data denoted by

(X, dĉ, dč) ↪→ (W,dĉW , dčW ) � R. (C.17)

Theorem C.16 yields a unique map χ : R → T such that the deformation of (X,Q+, Q−, dĉ, σ)
corresponding to (C.17) is isomorphic to the pullback of (C.10) with respect to χ.
If condition (E2) is imposed, the antiholomorphic involution τ2 acts on the sections ω of E. Then
ω1, . . . , ωR are chosen in such way that τ∗2ω(r) = ω(r̄) holds. The involution τ2 acts on r as τ∗2 r = r̄.
Choosing R as invariant under the involution τ2 ensures that τ2 acts on (C.17), compare [Carberry
and Schmidt, 2017, before Lemma 5.6]. Then the deformation in (C.17) obeys (E2’).

Lemma C.22 ([Carberry and Schmidt, 2017, Lemma 5.6]). The deformations in Lemma C.21
are equal to the pullbacks of (C.17) with respect to unique maps ξ : B → R.

With help of this lemma, the main theorem can be shown:

Theorem C.23 ([Carberry and Schmidt, 2017, Theorem 5.7]). For (X,Q+, Q−, dĉ, dč, σ) obeying
(A2), (B2), (D2) and optionally (E2), the deformation (C.17) is a universal deformation of the
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deformations (C.13).

Sketch of the proof. One considers the deformations

X

X

X

W

Z

Y

R

T

B

ξ
ϕ

χ

where the deformations in the first and third row are obeying conditions (A2’), (B2’), (D2’) and
optionally both of them (E2’) and the deformation in the middle row is the corresponding universal
ĉ-deformation, so it obeys (A1’), (B1’), (D1’) and (E1’) if (E2’) holds for the other two. Due
to Theorem C.16 and since the deformation in (C.13) of (X,Q+, Q−, dĉ, dč, σ) also induces a
deformation (C.4) of (X,Q+, Q−, dĉ, σ), the map ϕ is unique. Furthermore, the deformation (C.4)
is isomorphic to the pullback of (C.10) via ϕ. Then one shows that there exists a unique map
ξ : B → R with ϕ = χ ◦ ξ and such that the deformation (C.13) is isomorphic to the pullback of
(C.17) with respect to ξ.
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