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Chapter 1

Introduction

The study of minimal surfaces has a long and rich history dating from the
experiments of the Belgian physicist J. Plateau who showed that by the
laws of surface tension the soap film formed by dipping a wire form in a
soap solution represented a surface which was stable with respect to area.
Mathematically this wire can be described by a polygon Γ and thus by in-
vestigating the so-called Plateau Problem one is interested in the existence
of a minimal surface MΓ that has Γ as boundary 1.

The goal of this diploma thesis is to investigate a family of minimal surfaces
Σg going back to Lawson [24, 26]. As Lawson constructs those surfaces us-
ing solutions to the Plateau Problem for a given polygon Γg in S3 that is
patched together by geodesics in S3 we will be dealing with this problem and
the resulting “initial surface” MΓg first. Since those geodesics are serving
as boundary for the “initial surface” it will be convenient to reflect some
conditions posed upon that polygon. Lawson uses the symmetries encoded
in the “initial surface” to construct the whole surface by a reflection princi-
ple explained in [24, 26].

Thus in order to understand the surface one has to understand the symme-
try group arising from reflections across the boundary arcs of the geodesic
polygon in S3. Since every 2-dimensional orientable Riemannian manifold
can be considered as a Riemann surface one might search for another de-
scription of Σg considered as a compact Riemann surface. As all the Σg are
hyperelliptic one can realize them as 2-sheeted cover of CP1 or equivalently
one can construct a function w : Σg → CP1 such that

w2 = P (z) =
2g+2∏

j=1

(z − ej),

1A minimal surface is a surface with a mean curvature of zero.
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8 Chapter 1. Introduction

with P being a polynomial of degree 2g + 2. Equipped with this realization
of the compact Riemann surface Σg one can find the quadratic Hopf differ-
ential Q that together with the mean curvature H and the conformal factor
u uniquely describes an immersion into S3.

We shall for this purpose investigate quadratic differentials and this inves-
tigation will lead to a triangulation of the surfaces Σg. It will turn out that
the zeros of the Hopf differential will play an important role in the follow-
ing part of the thesis. This part will be devoted to the study of conformal
immersions via the concept of moving frames. For globally constant Hopf
differential one has to consider tori and those have been studied very in-
tensively by Bobenko (see [3], [4] and [5]) applying methods from integrable
systems theory. In fact, Bobenko gave explicit formulas for CMC tori for the
spaceforms R3, S3 and H3 in terms of theta-functions. These functions are
described in terms of the so-called spectral curve. The notion of the spectral
curve arises if one considers the eigenvalue-curve of the monodromy that is
explained below.

The situation changes for higher genus g ≥ 2 as one has to deal with discrete
symmetry groups now. It is not clear which object is associated to those
surfaces. However the considerations at the end of this work suggest that
one might find answers when merging the concept of the spectral curves and
the monodromy around distinguished points.

We now give a short overview of the content of the various chapters.

In the second chapter we are going through some notational conventions
as well as the basic concepts of differential geometry such as the first and
second fundamental form or equivalently the three quantities u, Q and H,
that is the conformal factor u, the Hopf differential Q and the mean curva-
ture H. Since the surface Σg is compact this chapter also deals with compact
Riemann surfaces and the notion of the genus g (a topological invariant) and
describes the Riemann-Roch theorem in terms of divisors and sheafs. We
also give a short introduction into Lie group theory and reduce our atten-
tion to the Lie group SU(2) ' S3. Finally the concept of moving frames is
elucidated at the end of this chapter. In particular the relationship between
solutions F to the Lax pair

Fz = FU, Fz̄ = FV

with the compatibility condition Uz̄ −Vz − [U, V ] = 0 and solutions u to the
Gauss and Codazzi equations

2uzz̄ + 2e2u(1 + H2)− 1
2
QQe−2u = 0, Qz̄ = 2Hze

2u
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for given Q and H ≡ const are highlighted.

The third chapter starts with introducing tools needed to construct the
surface Σg, that is the reflection principle, followed by the construction pro-
cedure itself. The focus lies on describing Σg as an algebraic curve and that
is done by investigating the symmetry group first. In this context it will be
necessary to recall some facts about hyperelliptic Riemann surfaces.

In the fourth chapter the Hopf differential Qdz2 is investigated and there-
fore a short introduction into the theory of quadratic differentials is given.
Moreover the notion of a (horizontal) trajectory for a quadratic differential
ϕ(z)dz2 is discussed, i.e. a curve γ parameterized on an open interval (a, b)

of the real axis with ϕ(γ(t))
(

dγ(t)
dt

)2
> 0 for every t ∈ (a, b). This will lead

to a canonical triangulation of Σg. We shall particularly focus on the signif-

Figure 1.1: A Smyth surface in S3. The image is taken from [32].

icance of the zeros of the Hopf differential, as they will play an important
role in the rest of this work.

Finally the fifth chapter deals with Lax pairs for S3 and λ-dependent ex-
tended frames Fλ, where λ is called the spectral parameter. We are inter-
ested in the object associated to Σg and therefore shall investigate the effect
of coordinate transformations on the conformal factor u and the Hopf dif-
ferential Q as well as on the extended frame Fλ. We will also have to recall
some facts from the theory of covering surfaces. Introducing the monodromy
Mλ as an operator that describes the change of the frame as one traverses a
loop δ around a given point via Fλ(δ) = M δ

λFλ, several properties and the
behavior of Mλ at distinguished points are studied.
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There is also a sixth chapter that contains the most important results of
this thesis and gives an outlook on possible interesting further research.

There are many people I am indebted to. First I would like to thank Martin
U. Schmidt for providing me with the topic of this work, for regular fruitful
discussions and his steady encouragement. I also would like to thank my
parents for supporting me, without them all this would not have been possi-
ble. Speaking of my family I also want to thank my brother Marcel (for his
occasional late visits) and my best friend Rainer Jäkel, on whom I can al-
ways count. Special thanks also go to my workmate Vania Neugebauer (for
bearing with me for several months) and to Jörg Zentgraf for proofreading
this work. Finally I would like to thank Anna for her love and for always
standing by my side.



Chapter 2

Preliminaries

In order to understand the construction procedure for the surfaces we need
to look over some notational conventions and recall essential facts from dif-
ferential geometry, the theory of Riemann Surfaces, Lie groups, and the
concept of moving frames.

2.1 Differential geometric preliminaries

Let M be a C∞ Riemannian manifold where at each point p ∈M the metric
in the tangent space Tp(M) at p is denoted by the bracket 〈·, ·〉. Let XM

denote the space of C∞ vector fields on M .

Definition 2.1. A connection on M is a rule which assigns to each X ∈
XM a linear map ∇X : XM → XM such that for all X, Y, Z ∈ XM and all
f, g ∈ C∞(M) we have

1. ∇fX+gY Z = f∇XZ + g∇Y Z,

2. ∇X(fY ) = (Xf)Y + f∇XY .

By “The Fundamental Theorem of Riemannian Geometry” there exists a
unique connection on M , called the Riemannian connection, which sat-
isfies the further conditions:

3. X〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉,

4. ∇XY −∇Y X = [X, Y ].

The third condition states that the Riemannian connection is metric, the
fourth that it is torsion-free.

Let M be a Riemannian m-manifold and M ⊂M a topologically embedded
submanifold of dimension m. Denote the metric on M by 〈·, ·〉 and the

11



12 Chapter 2. Preliminaries

associated Riemannian connection by ∇. For any p ∈ M ⊂ M we have an
orthogonal splitting

Tp(M) = Tp(M)⊕ T⊥p (M)

into the tangent and normal spaces of M at p respectively. With respect to
this splitting we decompose any vector X ∈ Tp(M) as

X = X> + X⊥.

The unique Riemannian connection ∇ of M can then be given as follows.
Denote by Xp the set of tangent vector fields of M each of which is defined
in some neighborhood of p on M . Then for X,X ∈ Xp,

∇XY = (∇XY )>.

Definition 2.2. The local normal vector field at p

BX,Y = (∇XY )⊥

represents a C∞-section of T ∗(M) ⊗ T ∗(M) ⊗ T⊥(M) and is called the
second fundamental form of the submanifold M .

Remark 2.3. At each point p ∈M , BX,Y |p represents a symmetric bilinear
map of Tp(M) into T⊥p (M):

(∇XY )⊥ = (∇Y X + [X, Y ])⊥ = (∇Y X)⊥

and thus
BX,Y = BY,X .

Definition 2.4. For each p

Hp = tr(Bp)

is a smooth field of normal vectors on M called the mean curvature vector
field.

Remark 2.5. Locally H has the form

Hp =
m∑

k=1

(∇Xk
Xk)⊥

for pointwise orthonormal vector fields X1, . . . , Xm. An immersion
f : M →M is called minimal if tr(B) ≡ 0.

We now turn our attention to the case where M = S3 := {x ∈ R4 | |x| = 1}
is the 3-sphere and M is an arbitrary Riemann surface.
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Definition 2.6. A Riemann surface is a pair (M, Σ), consisting of a con-
nected 2-dimensional manifold M with a complex structure Σ, that is an
equivalence class of biholomorphic equivalent collections of charts, that cover
M .

We will be considering 2-dimensional submanifold of S3, i.e. conformal
immersions of the form

f : M −→ S3.

The function f will always be considered as R4-valued with |f |2 = 1.

Now let z = x + iy be a local complex coordinate on M and define

∂ :=
1
2

(
∂

∂x
− i

∂

∂y

)

and ∂̄ respectively by

∂̄ :=
1
2

(
∂

∂x
+ i

∂

∂y

)
.

It will be convenient to reformulate the above considerations in a slightly
different language.

Definition 2.7. Let f : M → S3 be an immersion where S3 is equipped
with the metric defined by restricting the metric h = dx2

1 + dx2
2 + dx2

3 + dx2
4

of R4 to the 3-dimensional tangent spaces of S3. The induced metric
g : TpM × TpM → R is defined by

g(v, w) = h(df(v), df(w)) = 〈df(v), df(w)〉, v, w ∈ TpM, p ∈M

and is called the first fundamental form. Both g and ds2 are commonly
used notations.

Since (x, y) is a coordinate for M and f is an immersion, a basis for TpM
can be chosen as

fx =
(

∂f

∂x

)

p

, fy =
(

∂f

∂y

)

p

,

then the metric g = ds2 is represented by the matrix

g =
(

g11 g12

g21 g22

)
=

(〈fx, fx〉 〈fx, fy〉
〈fy, fx〉 〈fy, fy〉

)
.

In case of a conformal immersion f there exists a function u : M → R, called
the conformal factor such that

ds2 = 4e2udzdz̄ = 4e2u(dx2 + dy2).

Remark 2.8. f : M → S3 is an immersion ⇔ g has positive determinant.
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With the unit normal vector to the surface f(M) defined as

N =
fx × fy

|fx × fy| , |fx × fy|2 = 〈fx × fy, fx × fy〉,

one sees that N is perpendicular to the tangent plane TpM at f(p) for every
point f(p) and we have the following equivalent

Definition 2.9. The symmetric bilinear map b : TpM × TpM → R defined
by

b =
(

b11 b12

b21 b22

)
= −

(〈Nx, fx〉 〈Ny, fx〉
〈Nx, fy〉 〈Ny, fy〉

)
=

(〈N, fxx〉 〈N, fxy〉
〈N, fyx〉 〈N, fyy〉

)

is called the second fundamental form.

The second fundamental form can also be written in terms of symmetric
2-differentials as

b = b11dx2 + b12dxdy + b21dydx + b22dy2.

Converting to the complex coordinate z = x + iy one obtains

b = Qdz2 + Hdzdz̄ + Qdz̄2,

where Q is the complex-valued function

Q :=
1
4
(b11 − b22 − ib12 − ib21)

and H is the real valued function

H :=
1
2
(b11 + b22).

Definition 2.10. The symmetric 2-differential Qdz2 is called the Hopf
differential of the immersion f .

Definition 2.11. The linear map S : TpM → TpM with

S := g−1b.

is called the shape operator of the immersion f .

The eigenvalues k1, k2 and corresponding eigenvectors of the shape operator
g−1b are the principal curvatures and principal curvature directions of the
surface f(M) at f(p). We can now define the Gauss and mean curvature
using the language introduced above.
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Definition 2.12. The determinant and half-trace of the shape operator
S = g−1b of f : M → S3 are the Gauss curvature K and the mean
curvature H, respectively. The immersion f is CMC (i.e. of constant
mean curvature) if H is constant, and is minimal if H is identically zero.

Remark 2.13. We note that the above K is not the same as the intrinsic
curvature.

In the following lemma we state an equivalent minimality-condition that will
be useful later on (see [7]).

Lemma 2.14. The minimal mapping f satisfies the equation

∂∂̄f = −2e2uf.

Proof. Since the immersion f of M in S3 is locally minimal the curvature
vector of f as an immersion in R4

1
2e2u

∂∂̄f

is everywhere orthogonal to S3, i.e. proportional to f . Hence we get

∂∂̄f = λf

for some complex valued function λ. From the fact that |f |2 = 1 we obtain

0 =
1
2
∂∂̄(1) =

1
2
∂∂̄〈f, f〉 =

1
2
(∂(〈∂̄f, f〉+ 〈f, ∂̄f〉))

=
1
2
(〈∂∂̄f, f〉+ 〈∂̄f, ∂f〉+ 〈∂f, ∂̄f〉+ 〈f, ∂∂̄f〉)

= 〈∂∂̄f, f〉+ 〈∂f, ∂̄f〉 = 〈λf, f〉+ 2e2u

= λ〈f, f〉+ 2e2u = λ + 2e2u,

and λ = −2e2u, as asserted.

We will now compute the (intrinsic) Gauss curvature K and make the ob-
servation, that it can be expressed in terms of the conformal factor u.

Lemma 2.15. The Gauss curvature K for a conformal immersed surface
with isothermal coordinates (z, z̄), such that ds2 = 4e2u|dz|2, where u =
u(z, z̄) is a given function, is given by

K = −e−2u∆u,

where ∆ is the Laplacian.
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Proof. The assertion follows from a straight-forward calculation using the
“Theorema Egregium” and the fact that the surface is immersed conformally
such that for F = e2u:

4F 4K = F (4∂F ∂̄F ) + 2F 2(−2∂∂̄F ) = 16F 3∂u∂̄u + 2F 2(−2∂(2e2u∂̄u))
= 16F 3∂u∂̄u− 16F 3∂u∂̄u− 16F 3∂∂̄u,

from which we get K = − 4
F ∂∂̄u = −e−2u∆u.

The quantities u,Q and H obey the well-known Gauss and Codazzi equa-
tions stated below:

2uzz̄ + 2e2u(1 + H2)− 1
2
QQe−2u = 0, Qz̄ = 2Hze

2u.

For a minimal immersion f we have
1
2
tr(S) = 8e−2uH = 4e−2u(b11 + b22) ≡ 0

and therefore b11 = −b22. For the Hopf differential Q one now obtains (since
b12 = b21)

QQ =
1
4
(b11 − ib12)(b11 + ib12) =

1
4
((b12)2 − b11b22).

Since H = 0 the Gauss equation can be restated as follows

QQ = 4e2uuzz̄ + 4e4u = 4e4u(e−2uuzz̄ + 1)
= 4e4u(1−K)

with K being the Gauss curvature. The above curvature equation will help
to understand the meaning of the zeros of the Hopf differential.

Lemma 2.16. If the immersion f is minimal, then the quadratic Hopf
differential ω = Qdz2 is holomorphic on M , where

Q =
1
2
(b11 − ib12) = − i

2e2u
f ∧ ∂f ∧ ∂̄f ∧ ∂2f.

Proof. Since f is conformal and 〈f, f〉 = 1 we have

〈∂f, ∂f〉 = 〈∂̄f, ∂̄f〉 = 0,

〈∂2f, ∂f〉 = 〈∂̄2f, ∂̄f〉 = 0,

〈∂f, ∂̄f〉 = 2e2u.

ω is holomorphic if Q2 is holomorphic since ∂̄Q2 = 2Q∂̄Q. Evaluating
Q2 =

(
1

ie2u f ∧ ∂f ∧ ∂̄f ∧ ∂2f
)2 gives

Q2 = − 1
4e4u

det




〈f, f〉 〈f, ∂f〉 〈f, ∂̄f〉 〈f, ∂2f〉
〈∂f, f〉 〈∂f, ∂f〉 〈∂f, ∂̄f〉 〈∂f, ∂2f〉
〈∂̄f, f〉 〈∂̄f, ∂f〉 〈∂̄f, ∂̄f〉 〈∂̄f, ∂2f〉
〈∂2f, f〉 〈∂2f, ∂f〉 〈∂2f, ∂̄f〉 〈∂2f, ∂2f〉




= 〈∂2f, ∂2f〉.
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By applying ∂̄ and the equivalent minimality-condition stated in lemma 2.14
we obtain

∂̄〈∂2f, ∂2f〉 = 2〈∂(∂∂̄f), ∂2f〉 = −4〈∂(e2uf), ∂2f〉 = 0

and thus that ω is holomorphic.

The next result illustrates the relationship between the holomorphic quadratic
Hopf differential Qdz2 and the (intrinsic) Gauss curvature K.

Lemma 2.17. The Gauss curvature K of a minimal surface in S3 satisfies
K ≤ 1, with equality precisely at the isolated zeros of the holomorphic Hopf
differential Qdz2.

Proof. Since f is minimal we may consider

0 ≤ |Q|2 =
1
4
(b11 − ib12)(b11 + ib12)

=
1
4
((b12)2 − b11b22) = 4e4u(1−K),

where we have made use of the fact that b22 = −b11 and the Gauss curvature
equation. From the last equation the lemma follows immediately.

The Hopf differential Qdz2 will be of central importance to us. Besides the
fact that the investigated surface will be CMC if and only if Q is holomor-
phic, the Hopf differential can also be used to determine the umbilic points
of a surface.

Definition 2.18. Let M be a 2-dimensional manifold. The umbilic points
of an immersion f : M → S3 are the points where the two principal curva-
tures are equal.

Proposition 2.19. If M is a Riemann surface and f : M → S3 is a confor-
mal immersion, then p ∈M is an umbilic point if and only if Q = 0.

Proof. The shape operator corresponding to the conformal immersion f is

S = g−1b =
1

4e2u

(
H + Q + Q̄ i(Q− Q̄)
i(Q− Q̄) H −Q− Q̄

)

with respect to the basis fx and fy of each tangent space of f(M). The
two principal curvatures are then the two eigenvalues of this self-adjoint
operator, i.e. solutions of

4e2u det(S − k · 1) = (H + Q + Q̄− k)(H −Q− Q̄− k) + (Q− Q̄)2

= ((H − k) + (Q + Q̄))((H − k)− (Q + Q̄))− (Q− Q̄)2

= (H − k)2 − (Q + Q̄)2 − (Q− Q̄)2

= (H − k)2 − 4|Q|2 = 0,
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and thus one obtains

k1 = H + 2|Q|, k2 = H − 2|Q|.
Finally one gets k1 = k2 ⇔ |Q| = 0⇔ Q = 0 and the result follows.

2.2 Compact Riemann Surfaces

In this section we will focus on Divisors and the Riemann-Roch Theorem
that will be powerful tools in the following chapters for analyzing the con-
structed surfaces. Most results and terminology are taken from [9] and [11].

Definition 2.20. Let M be a Riemann surface. A divisor on M is a
mapping

D : M → Z

such that for every compact subset K ⊂ M there are only finitely many
points x ∈ K with D(x) 6= 0. With respect to addition the set of all divisors
on M is an abelian group, denoted by Div(M).
For D, D′ ∈ Div(M) we set D ≤ D′ if D(x) ≤ D′(x) for every x ∈M .

For a compact Riemann surface M of genus g ≥ 0 let K(M) denote the field
of meromorphic functions on M . Now suppose that N is an open subset of
M . For a meromorphic function f ∈ K(N) and a ∈ N define

orda(f) :=





0, if f is holomorphic and non-zero at a,

k, if f has a zero of order k at a,

−k, if f has a pole of order k at a,

∞, if f is identically zero in a neighborhood of a.

Thus for any meromorphic function f ∈ K(M)\{0}, the mapping
x 7→ ordx(f) is a divisor on M . It is called the divisor of f and will be
denoted by (f).
The function f is said to be a multiple of the divisor D if (f) ≥ D. Then f
is holomorphic if and only if (f) ≥ 0.

For a meromorphic 1-form ω one can define its order at a point a ∈ N as
follows. Choose a coordinate neighborhood (U, z) of a. Then on U ∩N one
has ω = fdz, where f is a meromorphic function. Set orda(ω) = orda(f).
Again the mapping x 7→ ordx(ω) is a divisor on M , denoted by (ω).

A divisor D ∈ Div(M) is called a principal divisor if there exists a function
f ∈ K(M)\{0} such that D = (f). Two divisors D,D′ ∈ Div(M) are said
to be equivalent if their difference D −D′ is principal divisor.
A canonical divisor is the divisor (ω) of a meromorphic 1-form ω.
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Definition 2.21. For a compact Riemann surface M the mapping

deg : Div(M)→ Z

is called the degree (of the divisor D), whereas

deg D :=
∑

x∈M

D(x).

The mapping deg : Div(M)→ Z is a group homomorphism and deg(f) = 0
for any principal divisor (f) on a compact Riemann surface since a mero-
morphic function has as many zeros as poles.

Before we can state the Riemann-Roch Theorem we have to introduce the
notion of a sheaf and its corresponding cohomology.

Definition 2.22. Suppose M is a topological space and I is the system
of open sets in M . A presheaf of abelian groups on M is a pair (F , ρ)
consisting of

1. a family F = (F(U))U∈I of abelian groups,

2. a family ρ = (ρU
V )U,V ∈I,V⊂U of group homomorphisms (called restric-

tion homomorphisms)

ρU
V : F(U)→ F(V ), where V is open in U,

with the following properties:

ρU
U = idF(U) for every U ∈ I,

ρV
W ◦ ρU

V = ρU
W for W ⊂ V ⊂ U.

Instead of ρU
V (f) for f ∈ F(U) one writes f |V . We can now define a sheaf.

Definition 2.23. A presheaf F on a topological space M is called a sheaf
if for every open set U ⊂M and every family of open subsets Ui ⊂ U, i ∈ I,
with U =

⋃
i∈I Ui, the following conditions are satisfied:

(S1) If f, g ∈ F(U) are elements such that f |Ui = g|Ui for every i ∈ I, then
f = g.

(S2) Given elements fi ∈ F(Ui), i ∈ I, obeying

fi|Ui ∩ Uj = fj |Ui ∩ Uj for all i, j ∈ I,

then there exists f ∈ F(U) such that f |Ui = fi for every i ∈ I.

(S1) and (S2) are called the Sheaf Axioms.
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Definition 2.24. Let M be a topological space and F a sheaf of abelian
groups on M . Let U be an open covering of M , i.e. a family U = (Ui)i∈I

of open subsets of M such that
⋃

i∈I Ui = M . For q = 0, 1, 2, . . . define the
qth cochain group of F , with respect to U , as

Cq(U ,F) :=
∏

(i0,...,iq)∈Iq+1

F(Ui0 ∩ · · · ∩ Uiq).

The elements of Cq(U ,F) are called q-cochains.

Now define coboundary operators

δ : C0(U ,F)→ C1(U ,F)
δ : C1(U ,F)→ C2(U ,F)

as follows:

1. For (fi)i∈I ∈ C0(U ,F) let δ((fi)i∈I) = (gij)i,j∈I where

gij := fj − fi ∈ F(Ui ∩ Uj).

2. For (fij)i,j∈I ∈ C1(U ,F) let δ((fij)i,j∈I) = (gijk) where

gijk := fjk − fik + fij ∈ F(Ui ∩ Uj ∩ Uk).

These coboundary operators are group homomorphisms, so we can define

Definition 2.25. Let

Z1(U ,F) := Ker(C1(U ,F) δ−→ C2(U ,F)),

B1(U ,F) := Im(C0(U ,F) δ−→ C1(U ,F)).

The elements of Z1(U ,F) are called 1-cocycles and those of B1(U ,F) are
called 1-coboundaries.

Definition 2.26. The quotient group

H1(U ,F) := Z1(U ,F)/B1(U ,F)

is called the 1st cohomology group with coefficients in F with respect to
the covering U .

An open covering B = (Vk)k∈K is finer with respect to the covering U =
(Ui)i∈I , denoted by B < U , if every Vk is contained in at least one Ui. Thus
there is a mapping τ : K → I such that

Vk ⊂ Uτ(k) for every k ∈ K.
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We can now define a mapping

tUB : Z1(U ,F)→ Z1(B,F)

in the following way. For (fij) ∈ Z1(U ,F) let tUB((fij)) = (gkl) where

gkl := fτ(k),τ(l)|Vk ∩ Vl for every k, l ∈ K.

This mapping induces a homomorphism of the cohomology groups (also
denoted by tUB) and we are finally ready to define H1(M,F).

Definition 2.27. Given three open coverings such that W < B < U , one
has

tBW ◦ tUB = tUW .

Now define the following equivalence relation ∼ on the disjoint union of the
H1(U ,F), where U runs through all open coverings of M , for two cohomol-
ogy classes ξ ∈ H1(U ,F), η ∈ H1(U ′,F) by

ξ ∼ η :⇔ ∃ open covering B with B < U and
B < U ′ such that tUB(ξ) = tU

′
B (η).

The set of equivalence classes is called the 1st cohomology group of M
with coefficients in the sheaf F :

H1(M,F) =

(⋃

U
H1(U ,F)

)
/ ∼ .

Now suppose D is a divisor on the Riemann surface M . For any open set
U ⊂M define OD(U) to be the set of all meromorphic functions on U which
are multiples of the divisor −D, i.e.

OD(U) := {f ∈ K(U) | ordx(f) ≥ −D(x) for every x ∈ U}.

Together with the natural restriction mappings OD is a sheaf. In the special
case of the zero divisor D = 0 one has O0 = O.

We will recall the definition of the genus of a compact Riemann surface
before we state the theorem that is central in the theory of compact Riemann
surfaces.

Definition 2.28. For a compact Riemann surface M ,

g := dim H1(M,O)

is called the genus of M .
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Theorem 2.29 (The Riemann-Roch Theorem). Suppose D is a divisor on a
compact Riemann surface M of genus g. Then H0(M,OD) and H1(M,OD)
are finite dimensional vector spaces and

dimH0(M,OD)− dimH1(M,OD) = 1− g + deg D.

Proof. See [11, Thm. 16.9].

Definition 2.30. The positive integer

i(D) := dimH1(M,OD)

is called the index of speciality of the divisor D.

We may reformulate the Riemann-Roch Theorem in the following form

dimH0(M,OD) = 1− g + deg D + i(D).

We will now state the Serre Duality Theorem that allows a simpler interpre-
tation of the cohomology groups H1(M,OD) in terms of differential forms.

For this purpose let M be a compact Riemann surface. For any divisor
D ∈ Div(M) we denote by ΩD the sheaf of meromorphic 1-forms which are
multiples of −D. Thus for any open set U ⊂ M the set ΩD(U) consists of
all differential forms ω such that ordx(ω) ≥ −D(x) for every x ∈ U .

Theorem 2.31 (The Duality Theorem of Serre). Any divisor D on a com-
pact Riemann surface M induces an isomorphism

H0(M, Ω−D) ' H1(M,OD)∗.

Proof. See [11, Thm. 17.9].

Remark 2.32. From the Serre Duality Theorem one immediately obtains

dimH1(M,OD) = dimH0(M, Ω−D).

In particular for D = 0 one has

g = dimH1(M,O) = dimH0(M, Ω).

Thus the genus of a compact Riemann surface M is equal to the maximum
number of linearly independent holomorphic 1-forms on M . One can now
formulate the Riemann-Roch Theorem as follows:

dimH0(M,O−D)− dimH0(M, ΩD) = 1− g − deg D.
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Theorem 2.33. The divisor of a non-vanishing meromorphic 1-form ω on
a compact Riemann surface of genus g satisfies

deg(ω) = 2g − 2.

Proof. See [11, Thm. 17.12].

Proposition 2.34. For g ≥ 1 the quadratic Hopf differential Qdz2 defined
in section 2.1 has exactly 4g − 4 zeros to multiplicity.

Proof. Since ω = Qdz2 is holomorphic we have D := (ω) ≥ 0 and therefore

] zeros = deg(ω) = 2(2g − 2) = 4g − 4.

2.3 Lie groups

In order to understand the concept of moving frames and the following
considerations, one has to recall some basic facts about Lie groups.

Definition 2.35. Let G be a Lie group and define left- and right-multiplication
by an element g ∈ G via

Lg : G→ G, h 7→ gh

Rg : G→ G, h 7→ hg

A vector field X : G→ TG is called invariant, if

dhLg(X(h)) = X(gh) for all g ∈ G.

With the above definition one immediately sees that left-invariant vector
fields are uniquely determined through their values at the identity, since

X(g) = d1LgX(1).

Denoting the set of left-invariant vector fields by ΓL(G) one obtains the
following vector space isomorphism

ΓL(G) ∼= T1G

X 7→ X(1),

with inverse map given by T1G 3 v1 7→ X ∈ ΓL(G), X(g) := d1Lg(v1).

Definition 2.36. The Lie algebra g associated to a Lie group G is the
tangent space of G at the identity 1, i.e. g = T1G. Furthermore, there is a
bracket operation g× g→ g defined as

[X, Y ](f) = X(Y (f))− Y (X(f)), X, Y ∈ g, f : G→ R smooth.
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Thus the left-invariant vector fields, equipped with the commutator [·, ·]
correspond to g. Moreover, the tangent bundle of a Lie group is trivial:

TG ∼= G× g

vg 7→ (g, dgL
−1
g (vg)),

where the inverse map of this isomorphism is given by (g, v1) 7→ d1Lg(v).
We may now define the Maurer-Cartan form.

Definition 2.37. The (left) Maurer-Cartan form is the g-valued 1-form
g 7→ θg with

θg : TG → g

vg 7→ dgL
−1
g (vg).

This is often written θ = g−1dg.

Proposition 2.38. The Maurer-Cartan form satisfies the following equation

2dθ + [θ ∧ θ] = 0.

It is called structure equation or Maurer-Cartan equation.

Proof. First we note that

dθ = d(g−1) ∧ dg.

To compute d(g−1), consider the identity e and note that it is the product
of two non-constant functions:

0 = d(e) = d(g−1g) = d(g−1)g + g−1dg.

So, d(g−1) = −g−1(dg)g−1 and thus

dθ = −g−1(dg)g−1 ∧ dg = −(g−1dg) ∧ (g−1dg) = −θ ∧ θ =: −1
2
[θ ∧ θ].

We state the following proposition that will be useful later on.

Proposition 2.39. For a map f : M → G, the pullback α := f?θ also
satisfies the Maurer-Cartan equation, i.e.

2dα + [α ∧ α] = 0.

Proof. A short calculation yields

2dα + [α ∧ α] = 2d(f?θ) + [f?θ ∧ f?θ] = 2f?dθ + f?[θ ∧ θ]
= f?(2dθ + [θ ∧ θ]) = 0.
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It will be convenient to identify S3 with a certain Lie group, namely the
group SU(2),

SU(2) = {A ∈M2×2(C) | det(A) = 1, Āt = A−1}
=

{(
z w
−w̄ z̄

) ∣∣∣ |z|2 + |w|2 = 1
}
∼= S3,

The corresponding Lie algebra is denoted by su(2) and a direct computation
shows that

su(2) =
{
− i

2

( −x3 x1 + ix2

x1 − ix2 x3

) ∣∣∣ x1, x2, x3 ∈ R
}

.

2.4 The concept of moving frames

The fundamental theorem of surface theory states that there exists an im-
mersion f : M → S3 with first fundamental form g and second fundamental
form b if and only if g and b satisfy a pair of equations called the Gauss and
Codazzi equations. Furthermore we know that f is uniquely determined by
g and b up to rigid motions.
The 1-form formulations for g and b are

g = 4e2udzdz̄, b = Qdz2 + Hdzdz̄ + Qdz̄2.

The symmetric 2-form Qdz2 is the Hopf differential as defined before. In
the conformal situation, the Gauss and Codazzi equations can be written in
terms of the functions u,H and Q.

Definition 2.40. Let M be a smooth manifold of dimension n. A frame
is an n-tuple (X1, . . . , Xn) of vector fields such that X1(p), . . . , Xn(p) is an
ordered basis of TpM at every p ∈M .

If one considers a conformal immersion

f : M → S3 ⊂ R4

of a Riemann surface with complex coordinate z, then one has 〈f, f〉 = 1
and

〈fz, N〉 = 〈fz̄, N〉 = 〈f, N〉 = 0, 〈N, N〉 = 1,

where N is a unit normal of f in S3. Then the frame F = (f, fz, fz̄, N)
satisfies the following conditions.
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Proposition 2.41. The frame F = (f, fz, fz̄, N) satisfies

Fz = FU , Fz̄ = FV,

where

U =




0 0 −2e2u 0
1 2uz 0 −H
0 0 0 −1

2Qe−2u

0 Q 2He2u 0


 , V =




0 −2e2u 0 0
0 0 0 −1

2Qe−2u

1 0 2uz̄ −H

0 2He2u Q 0


 .

Proof. Since the immersion is conformal we have

〈fz, N〉 = 〈fz̄, N〉 = 〈f,N〉 = 〈fz, fz〉 = 〈fz̄, fz̄〉 = 0, 〈N, N〉 = 1

and 〈f, f〉 = 1. In addition one has 〈fz, fz̄〉 = 2e2u. Therefore F =
(f, fz, fz̄, N) indeed is a framing and after normalization one obtains

fz = 〈fz, f〉 f

2e2u
+ 〈fz, fz̄〉 fz

2e2u
+ 〈fz, fz〉 fz̄

2e2u
+ 〈fz, N〉N

fz̄ = 〈fz̄, f〉 f

2e2u
+ 〈fz̄, fz̄〉 fz

2e2u
+ 〈fz̄, fz〉 fz̄

2e2u
+ 〈fz̄z̄, N〉N

fzz = 〈fzz, f〉 f

2e2u
+ 〈fzz, fz̄〉 fz

2e2u
+ 〈fzz, fz〉 fz̄

2e2u
+ 〈fzz, N〉N

fzz̄ = 〈fzz̄, f〉 f

2e2u
+ 〈fzz̄, fz̄〉 fz

2e2u
+ 〈fzz̄, fz〉 fz̄

2e2u
+ 〈fzz̄, N〉N

fz̄z̄ = 〈fz̄z̄, f〉 f

2e2u
+ 〈fz̄z̄, fz̄〉 fz

2e2u
+ 〈fz̄z̄, fz〉 fz̄

2e2u
+ 〈fz̄z̄, N〉N

Nz = 〈Nz, f〉 f

2e2u
+ 〈Nz, fz̄〉 fz

2e2u
+ 〈Nz, fz〉 fz̄

2e2u
+ 〈Nz, N〉N

Nz̄ = 〈Nz̄, f〉 f

2e2u
+ 〈Nz̄, fz̄〉 fz

2e2u
+ 〈Nz̄, fz〉 fz̄

2e2u
+ 〈Nz̄, N〉N

Recall that the Hopf differential Q and the mean curvature H are defined
by

Q = 〈fzz, N〉, 2He2u = 〈fzz̄, N〉.
Differentiating the equation

〈fz, fz̄〉 = 2e2u

one obtains
〈fzz, fz̄〉 = 2e2uuz.

Equipped with all these equations one can directly check, that the matrices
U ,V are of the form stated above.
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Theorem 2.42. Let D ⊂ C2 be an open simply connected set containing
(0, 0). For U ,V : D → sl(n,C) there exists a solution F = F (z, z̄) : D →
SL(n,C) of the Lax Pair

Fz = FU , Fz̄ = FV

for any initial condition F (0, 0) ∈ SL(n,C) if and only if

Uz̄ − Vz + [V,U ] = 0 with [U ,V] = UV − VU .

Proof. Assume there exists an invertible solution F (z, z̄). Since Fzz̄ = Fz̄z

one obtains
0 = Fzz̄ − Fz̄z = FUz̄ − FVz + Fz̄U − FzV

and therefore
0 = FUz̄ − FVz + FVU − FUV.

Thus
Uz̄ − Vz + [V,U ] = 0

must hold.

Now suppose that Uz̄ − Vz + [V,U ] = 0 holds. Reworking this into the
coordinates (x, y) we get

Ux + iUy − Vx + iVy − 2[U, V ] = 0.

Then we can solve the ordinary differential equation

(F (x, 0))x = F (x, 0)(U + V)(x, 0)

with initial condition F (0, 0). For each fixed x0 it remains to solve

(F (x0, y))y = F (x0, y)i(U − V)(x0, y)

with initial condition F (x0, 0). Hence F (x, y) is defined and we have
Fy = Fi(U − V) for all x, y.
Since

(Fx − F (U + V))(x, y) = 0

if y = 0 and Fxy = Fyx, we have

(Fx − F (U + V))y = Fxy − Fy(U + V)− F (Uy + Vy)
= (Fi(U − V))x − Fy(U + V)− F (Uy + Vy)
= Fxi(U − V) + Fi(Ux − Vx)− Fy(U + V)− F (Uy + Vy)
= Fxi(U − V) + Fi(2[U, V ])− Fy(U + V)
= Fxi(U − V) + Fi(2[U, V ])− Fi(U − V)(U + V)
= (Fx − F (U + V))i(U − V).
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Set G = Fx − F (U + V). G is a solution of Gy = Gi(U − V) with initial
condition 0. By the uniqueness of the solution G is zero and therefore
Fx − F (U + V) ≡ 0. Hence F is a solution to the Lax pair, since

Fz =
1
2

(Fx − iFy) = FU , Fz̄ =
1
2

(Fx + iFy) = FV.

Considering

det(F ) · tr(F−1Fz) = (det(F ))z and det(F ) · tr(F−1Fw) = (det(F ))w

with U ,V ∈ sl(n,C) we have

(det(F ))z = (det(F ))w = 0

and it follows det(F ) = 1 because det(F (0, 0)) = 1.

The matrices U ,V obey the compatibility condition

Uz̄ − Vz − [U ,V] = 0,

which implies that

2uzz̄ + 2e2u(1 + H2)− 1
2
QQe−2u = 0, Qz̄ = 2Hze

2u.

These are precisely the Gauss equation and Codazzi equation, respectively.
Following this ansatz makes it possible to apply methods from integrable
systems theory, provided that the Hopf differential is constant.

We want to take another point of view and will treat the Gauss and Codazzi
equations as a zero-curvature condition.

For this purpose we identify the 3-sphere S3 ⊂ R4 with

S3 ∼= (SU(2)× SU(2))/D,

where D is the diagonal in SU(2) × SU(2). The Lie algebra of the matrix
Lie group SU(2) is su(2), equipped with the commutator [·, ·].
The Maurer-Cartan form θ : TSU(2) → su(2) satisfies the Maurer-Cartan
equation

2dθ + [θ ∧ θ] = 0.

For a map F : R2 → SU(2), the pullback α = F ∗θ also satisfies the above
equation and conversely, every solution α ∈ Ω1(R2, su(2)) of the above equa-
tion integrates to a smooth map F : R2 → SU(2) with α = F ∗θ.
Setting α = Udz + V dz̄ one obtains the Gauss and Codazzi equations from
the Maurer-Cartan equation for U, V ∈ SU(2). Later we will see how to
rework our Lax pair U ,V into the SU(2)-setting.

If one thinks of θ as a connection form, dθ + θ ∧ θ = dθ + 1
2 [θ ∧ θ] is the

corresponding curvature form. Thus the Maurer-Cartan equation is a zero
curvature condition.
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Construction of Lawson’s
surfaces

We now want to study a construction procedure proposed by H. Blaine Law-
son that generates for every non-negative integer g a minimal embedding of
a compact orientable surface of genus g into S3.
Before stating this procedure we first introduce what Lawson calls the “re-
flection principle”.

3.1 The reflection principle

Let γ be the geodesic in S3 given by x3 = x4 = 0, and let S be the great
2-sphere given by x4 = 0.

Definition 3.1. Define the geodesic reflection across γ via the map
rγ : S3 → S3 where

rγ(x1, x2, x3, x4) = (x1, x2,−x3,−x4)

and analogously geodesic reflection across S via the map rS : S3 → S3 where

rS(x1, x2, x3, x4) = (x1, x2, x3,−x4).

Remark 3.2.

1. These maps can be interpreted as sending a point p to its “opposite”
point on a geodesic through p which meets γ (or S) orthogonally.

2. It is clear that geodesic reflection across an arbitrary geodesic ι is
obtained by conjugation with a rotation φ that maps ι into γ:

ι = φ−1 ◦ γ ◦ φ.

For purposes that will become clear later we state the two following propo-
sitions due to Lawson.

29
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Proposition 3.3. Let f : M → Rn be an immersion and let H be the mean
curvature vector field of f . Then

∆f = H,

where ∆f = (∆f1, . . . ,∆fn).

Proof. Let p ∈M and choose pointwise orthonormal vector fields E1, . . . , Em

on M . Then we have
EiEif = ∇EiEi

with ∇ being the euclidean connection. Thus we have

∆f =
m∑

i=1

∇2
Ei,Ei

f =
m∑

i=1

(∇Ei∇Eif −∇(∇Ei
Ei)f)

=
m∑

i=1

(EiEif −∇EiEif) =
m∑

i=1

(∇EiEi −∇EiEi)

=
m∑

i=1

(∇EiEi)⊥ = H.

Proposition 3.4. Let M be a Riemannian m-manifold and let f : M →
Sn ⊂ Rn+1 be an almost conformal minimal immersion, i.e. a mapping that
fails to be an immersion at isolated points. Then

∆f = −〈∇f,∇f〉f.

Proof. First we observe that for the mean curvature vector fields H∗ in Sn

and H in Rn+1 we have

H∗ =
m∑

i=1

(∇∗Ei
Ei)⊥ =

m∑

i=1

((∇EiEi)>)⊥ =
m∑

i=1

((∇EiEi)⊥)> = (H)>,

where ∇∗,∇ are the connections on Sn and Rn+1, respectively. Since f is
an almost conformal minimal immersion, ∆f(p) is parallel to the normal to
Sn almost everywhere, i.e.

∆f = λf, λ ∈ C∞(M).

Since 〈f, f〉 = |f |2 = 1 one obtains

0 =
1
2
∆|f |2 =

1
2

m∑

i=1

EiEi〈f, f〉 =
m∑

i=1

Ei(〈f, Eif〉)

=
m∑

i=1

(〈f, EiEif〉+ 〈Eif,Eif〉) = 〈f, ∆f〉+ 〈∇f,∇f〉

= λ〈f, f〉+ 〈∇f,∇f〉 = λ + 〈∇f,∇f〉
and thus λ = −〈∇f,∇f〉.
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Proposition 3.5. Let M be a minimal surface with C2-boundary ∂M . If
∂M contains a geodesic arc γ (in S3), M can be continued as an analytic
minimal surface across each non-trivial component of ∂M ∩ γ by geodesic
reflection.

Proof. Let w.l.o.g. γ be given by x3 = x4 = 0 and choose p in the interior
of ∂M ∩ γ. Since ∂M is of class C2 it is of class C1

1 , i.e. the immersion
is µ-Hölder continuous with µ = 1. We can now apply [28, Thm. 9.3.1] to
obtain a conformal map

f̂ : D→ S3 ⊂ R4.

f̂ is a regular representation of M (and of ∂M) in a neighborhood of p with
D := {(x, y) ∈ R2 | x2 + y2 ≤ 1}. Due to [28, Thm. 9.3.1] we may also set

f(0, 0) = p, f3(x, 0) = f4(x, 0) = 0.

Via the Riemann mapping theorem we can transform f̂ to f : D+ → S3

defined on the upper half disk D+ := {(x, y) ∈ R2 | x2 + y2 ≤ 1, y ≥ 0}.
Since f is minimal it follows from proposition 3.4 that

∆f = −〈∇f,∇f〉f

over D+ (∆ is the Laplace-Beltrami operator for the induced metric). Now
we extend f to the entire unit disk by setting (for the lower half disk)

fk(x, y) = (−1)[k/3]fk(x,−y) for k = 1, . . . , 4.

For each k we have fk ∈ C(D). The only interesting points here are those
determined by y = 0. If we apply the minimal surface equation from propo-
sition 3.4 we obtain (for k = 3, 4)

(
∂2

∂x2
fk +

∂2

∂y2
fk

)
(x, 0) =

(
− ∂2

∂x2
fk − ∂2

∂y2
fk

)
(x, 0)

⇔ 2 ·∆fk(x, 0) = 0,

hence we see that the second partial derivatives with respect to x and y
agree on y = 0 since fk(x, 0) = 0 for k = 3, 4. Thus the first derivatives
∂
∂xfk and ∂

∂yfk coincide on y = 0 for k = 3, 4 as well. In particular we have
in this situation

∂

∂y
f3 =

∂

∂y
f4 = 0.

The second partial mixed derivatives obviously agree on y = 0 and so we
have fk ∈ C2(D) for k = 3, 4.
We also have ∂

∂xfk, ∂2

∂x2 fk and (by the chain-rule) ∂2

∂y2 fk ∈ C(D) for k = 1, 2.
We will now show that ∂

∂yf1 = ∂
∂yf2 = 0 on y = 0. Since |f |2 ≡ 1 we have

〈f,
∂

∂x
f〉 = f1 · ∂

∂x
f1 + f2 · ∂

∂x
f2 = 0 = 〈f,

∂

∂y
f〉 = f1 · ∂

∂y
f1 + f2 · ∂

∂y
f2
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on y = 0. Furthermore we have

(
∂

∂x
f1

)2

+
(

∂

∂x
f2

)2

> 0

on y = 0 and thus applying the derivative with respect to x to the equation
above yields ∂

∂yfk = ∂2

∂x∂yfk = 0 on y = 0 for k = 1, 2. It follows that f
satisfies the minimality condition stated in lemma 2.14 and therefore by [26,
Lemma 1.1] it is analytic in D.

3.2 The construction procedure

We now want to apply the methods developed above in order to construct
complete, non-singular minimal surfaces in S3. Roughly speaking the whole
procedure boils down to the solution of the Plateau Problem (see below) for
a given polygon Γ serving as boundary for the desired surface. By choosing a
special polygon Γ obeying some conditions we can extend the resulting sur-
face by geodesic reflection to obtain a family of compact orientable surfaces
of genus g in S3. We shall start with some terminology.

Definition 3.6. For two distinct geodesics γ and δ which meet in S3, let
S(γ, δ) be the unique 2-sphere containing γ ∪ δ.
A subset X ⊂ S3 is bounded by S(γ, δ) if X is contained in one of the two
closed hemispheres determined by S(γ, δ).

Definition 3.7. By a geodesic polygon in S3 we mean a polygon whose
edges are geodesics γ0, γ1, . . . , γn = γ0 having vertices v0, v1, . . . , vn = v0

such that for each 1 ≤ i ≤ n, γi meets γi−1 in vi at an angle of the form
π

ki+1 where ki is a positive integer.
For each i we denote by Ni the geodesic perpendicular to S(γi−1, γi) at vi.

Definition 3.8. A geodesic polygon Γ is called proper if for each i, it is
bounded either by S(γi−1, Ni) or by S(γi, Ni).

Before stating the necessary conditions for the special choice of the geodesic
polygon Γ we have to make another definition.

Definition 3.9. Define the convex hull of Γ by

C(Γ) =
⋂
{H | H is a closed hemisphere containing Γ}.

If Γ ⊂ ∂C(Γ), Γ is called convex. Now set

SΓ = {S | S is a geodesic 2-sphere in S3 such that
S ∩ Γ has at least four components}.



3.2 The construction procedure 33

The polygon Γ is now assumed to be a proper, convex curve satisfying the
following:

(A) Γ lies in an open hemisphere of S3.

(B) For each p ∈ C(Γ)o there is a geodesic 2-sphere Sp containing p such
that Sp /∈ SΓ.

(C) Whenever one of the pair S(γi−1, Ni), S(γi, Ni) fails to bound Γ, we
have ki = 1.

(D) There exists a continuous map π : C(Γ)→ D which is differentiable in
C(Γ)o and carries Γ monotonically onto ∂D such that for each S ∈ SΓ

the differential of the map π|S ∩ C(Γ)o is everywhere of rank 2.

Definition 3.10. Let

XΓ = {f : D→ S3 | f is piecewise C1 and f |∂D is a monotone
parametrization of Γ}

and define the area function A : XΓ → R+∪{∞} by the following integral:

A(f) =
∫∫

D
|fx ∧ fy|dxdy

where |fx ∧ fy|2 = |fx|2|fy|2 − 〈fx, fy〉2.
Definition 3.11. Define the Dirichlet integral by

D(f) =
∫∫

D

(|fx|2 + |fy|2
)
dxdy.

Remark 3.12.

1. We observe that

|fx ∧ fy|2 = |fx|2|fy|2 − 〈fx, fy〉2 ≤ |fx|2|fy|2 ≤ 1
4

(|fx|2 + |fy|2
)2

where equality holds if and only if |fx| = |fy| and 〈fx, fy〉 = 0. Thus
we have

A(f) ≤ 1
2
D(f)

where equality holds if and only if f is conformal almost everywhere
in D.

2. In case of a conformal immersion f we have due to the isoperimetric
inequality for minimal surfaces (see [8, pp. 129-131])

D(f) = 2A(f) ≤ 1
2π

l(Γ)2

where l(Γ) denotes the length of Γ. Thus the Dirichlet integral D(f)
always exists for such f .
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The Plateau Problem for given Γ is now to find a f ∈ XΓ such that
A(f) = AΓ where

AΓ = inf
f∈XΓ

A(f).

We want to state a theorem due to Morrey (see [28]) without proof that
guarantees the existence of a solution to the Plateau Problem for Γ.

Theorem 3.13 (Morrey). Let Γ be a geodesic polygon as constructed above.
Then there exists a continuous immersion

f : D→ S3

that is analytic and almost conformal in Do and minimizes the Dirichlet and
area integral among all maps in C(D, S3)∩H1

2 (D, S3) which represent Γ on
∂D, i.e. f(∂D) = Γ.

Now the construction procedure splits up into the following parts:

1. Let f : D → S3 represent Morrey’s solution to the Plateau Problem
for Γ and setMΓ = f(D).

2. The surfaceMΓ can be analytically continued as a non-singular min-
imal surface across each of its boundary arcs γ0, . . . , γn by geodesic
reflection.

3. If GΓ denotes the subgroup of O(4) generated by the reflections across
the boundary arcs then

MΓ =
⋃

g∈GΓ

g(MΓ)

is a complete, non-singular submanifold. If GΓ is finite, MΓ is compact.

Theorem 3.14 (Lawson). The immersion f : D → S3 from the above
theorem fulfills

f((D)o) ⊂ C(Γ)o.

Proof. This follows immediately from [25, Thm. 2] and f(∂D) = Γ.

Theorem 3.15 (Lawson). The immersion f : D → S3 is non-singular
and one-to-one in (D)o = D and thus f conformally embeds (D)o = D into
C(Γ)o ⊂ S3.

Proof. Due to the previous theorem we have f(D) ⊂ C(Γ)o. Take a point
p ∈ D, then f(p) ∈ C(Γ)o. Condition B implies that there exists a geodesic
2-sphere Sp with f(p) ∈ Sp such that Sp /∈ SΓ, i.e. Sp ∩ Γ has at most
three components. We may now apply [25, Thm. 4 (a)] to deduce that
rank(df |p) = 2, thus f is non-singular in D.
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The second part of the assertion is gained by combining condition D and
Theorem 4 in [25]: Since we are considering an immerson into S3 we have
to set n = 3 in [25, Thm. 4 (d)] and thus there exists at least one geodesic
hypersphere S, containing f(p), such that Γ∩S has at least 2n+1

2 = 4 com-
ponents, i.e. S ∈ SΓ.
Now suppose there exists some p ∈ D such that π(f(p)) 6= p and therefore
rank(dπ|p) < 2. Due to condition (D) there is no S ∈ SΓ with f(p) ∈ S. But
this clearly contradicts the above statement and we see that f is one-to-one
in D.

We need to check that f is analytic on ∂D except at isolated points. The
fact that f is one-to-one is based on the finiteness of D(f) as the following
lemma shows.

Lemma 3.16. The immersion f : D→ S3 is one-to-one on ∂D and analytic
at each point of the boundary which is mapped to the interior of an analytic
sub-arc of Γ.

Proof. Consider a point p on ∂D and the Dirichlet integral over a “wedge”
∆ε in the interior given in polar coordinates r, θ about p such that r ≤ 2ε
for a small ε.

M(2ε) := D(f, ∆) = 2 ·A(f, ∆) =
∫

r≤2ε

∫

θ

(
|fr|2r +

1
r
|fθ|2

)
drdθ.

This integral represents twice the area of the image of this region; hence it
exists and limε→0 M(2ε) = 0. Furthermore for r ≤ ρ < 2ε we have

∫∫

∆ρ

(
|fr|2r +

1
r
|fθ|2

)
drdθ ≤M(2ε).

Now set s = r · θ with ds = rdθ. The last inequality then becomes

M(2ε) =
∫∫

∆ε

(|fr|2 + |fs|2
)
drds ≥

∫ 2ε

0

∫ 2πr

0
|fs|2dsdr

≥
∫ 2ε

ε

∫ 2πr

0
|fs|2dsdr =

∫ 2ε

ε
p(r)dr

where p(r) =
∫ 2πr
0 |fs|2ds. By the mean value theorem, there exists a value

ρ = ρ0 in the range ε ≤ ρ ≤ 2ε such that
∫ 2ε

ε
p(r)dr = p(ρ)

∫ 2ε

ε
dr = p(ρ) · ε = ε

∫ 2πρ

0
|fs|2ds ≤M(2ε)

and therefore
∫ 2πρ
0 |fs|2ds ≤ M(2ε)

ε . Now we consider a sequence (εn)n∈N
with limn→∞ εn = 0. To this sequence corresponds a sequence of radii ρn
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tending to zero, for which the above inequality is satisfied. We now want to
estimate the length ln along an arc given by a fixed ρn.

Applying Schwarz’ inequality we get (ρn ≤ 2ε)

l2n =
(∫ 2πρn

0

√
|fs|2ds

)2

≤ 2πρn
M(2ε)

ε
≤ 4πM(2ε).

Hence ln tends to zero as ρn → 0, and therefore the distance between the
endpoints of an arc γ ⊂ Γ tends to zero. Thus the diameter of this arc tends
to zero and the first assertion is proved.

The second claim follows from [13, Thm. 9.3].

We have seen that f is analytic on ∂D away from the points corresponding
to the vertices of Γ. We now want to investigate the behaviour of f at these
points. For a fixed i, 1 ≤ i ≤ n let

f−1[γi] =: δi ⊂ ∂D

be the pre-image of an arc γi ⊂ Γ. By a conformal mapping we may carry f
into the upper half disk such that δi corresponds to the arc y = 0. Since f
is analytic and one-to-one on δi proposition 3.5 shows that reflection across
δi defines an analytic continuation of f throughout all of D.

Lemma 3.17. For a fixed i there are no points in the interior of δi where
|∇f | = 0.

Proof. Fix a point in the interior of δi, say p = (x, 0) ∈ δo
i , and choose a

small disk Bε(p) ⊂ D around p. Since Γ is convex for each i there is a
geodesic 2-sphere S ⊃ γi which divides S3 into hemispheres H+ and H−

such that f(D+) ⊂ H+.
Applying [25, Thm. 2] yields

f(int(D+)) ⊂ int(H+) and f(int(D−)) ⊂ int(H−).

Thus f(∂Bε(p)) ∩ S consists of exactly two points. Restricting f to Bε(p)
one gets a surface

f |Bε(p) : Bε(p)→ S3

and therefore applying [25, Thm. 4 (a)] shows that |∇f | 6= 0 at p = (x, 0).

If we setMΓ = f(D) for a solution f : D→ S3 to the Plateau Problem for Γ
we can now smoothly continue the surface MΓ across each of its boundary
arcs by geodesic reflection. Reflecting this surface successively 2ki +2 times
around a vertex vi (with two arcs γi and γi−1 intersecting at an angle of
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π
ki+1) yields the original surface MΓ. Hence we get a smooth surface near
vi that may be singular at vi itself.

We will now see that the resulting surface M∗ is smooth and non-singular
at vi.

Lemma 3.18 (Lawson). The surfaceM∗ is smooth at vi.

Proof. We only give a sketch of the proof of this lemma. First we observe
that if we reflectMΓ ki-times at vi we get a surfaceM+ which is bounded
near vi by an unbroken geodesic arc γ. Since S3 is a compact Riemannian
manifold it is geodesically complete and therefore γ is just the continuation
of the arc γi across vi.
Reflection ofM+ thus yields the total surfaceM∗. Let f+ : D+ → S3 be a
conformal, smooth parametrization ofM+ with

f+ ([−1, 1]× 0) = γ and f+(0, 0) = vi.

Due to our previous considerations f+ is smooth on [−1, 1] except possibly
at (0, 0) and we may extend f+ to a map f∗ : D → S3 by reflection across
γ. For any domain D ⊂M∗ we have the rough inequality

A(D) ≤ 2ki + 2
4π

l(∂D)2

resulting from the isoperimetric inequality for MΓ. Let C be a system of
local coordinates for S3 obtained by stereographic projection from the point
−vi. The metric in these coordinates has the form

ds2 =
4

(1 + |X|2)2 |dX|2,

where X = (X1, X2, X3) and |X| denotes the euclidean norm. The Dirichlet
integral for any S3-valued function Φ defined in a plane domain D repre-
sented in such coordinates is

D(Φ, D) =
∫∫

D

4
(1 + |Φ|2)2 |∇Φ|2dxdy.

For f∗(D) =M∗ we can find constants K and µ (see [13, §4]), independent
of r and R, with 0 < µ < 1 such that

(1) f∗ is µ-Hölder continuous in D

(2) For any p ∈ D and any r,R with 0 < r ≤ R one has

D(f∗, Br(p)) ≤ K
( r

R

)µ
D(f∗, BR(p)),



38 Chapter 3. Construction of Lawson’s surfaces

where Br(p) = {z ∈ D | |p− z| < r}.
Over domains in D which parameterize domains onMΓ or one of its images,
f∗ minimizes the Dirichlet integral D. Since f∗ is analytic except possibly
at (0, 0), it represents a weak solution to the Euler-equation

∂

∂x

(
f∗x

(1 + |f∗|2)2
)

+
∂

∂y

(
f∗y

(1 + |f∗|2)2
)

+ 2
|∇f∗x |2

(1 + |f∗|2)3 = 0.

However, this system satisfies the condition (1.10.8”) in [28, p.33] and com-
bining (1) and (2) one can conclude that f∗ is analytic at (0, 0).

Lemma 3.19 (Lawson). We have |∇f∗(0, 0)| 6= 0 and thus the non-singularity
at vi.

Proof. Choose a small disk Bε(0, 0) ⊂ D such that

f∗ (Bε(0, 0)) ⊂ H for an open hemisphere H.

By [25, Thm. 3], we know that |∇f∗(0, 0)| 6= 0 implies that for every
geodesic 2-sphere S containing vi the pre-image (f∗|∂Bε(0, 0))−1(S) has at
least four components. In order to prove the lemma we have to find S for
which this set has only 2 points.

Suppose Γ is bounded by both S(γi−1, Ni) and S(γi, Ni). Then Γ lies in a
region L that is determined by these hyperspheres. Moreover, Mo

Γ ⊂ Lo.
Observe now that there is a tessellation of S3 by 2ki+2 regions congruent to
L each of which meets Ni. When MΓ is reflected at vi each distinct image
lies in a different one of these regions (with its interior in the interior of the
region). The surfaceM∗ meets the interfaces of the regions in great circles
which are parameterized one-to-one. It follows that if S = S(γi, Ni), then
(f∗|∂Bε(0, 0))−1(S) consists of exactly two points.

Suppose on the other hand, that S0 := S(γi, Ni) bounds Γ and ki = 1. Since
Γ is convex, there exists a geodesic 2-sphere S1 ⊃ γi−1 which also bounds Γ.
S0 and S1 are perpendicular and separate S3 into four disjoint, congruent
domains. It is not difficult to see that the interiors of each of the four images
of MΓ reflected at vi lie in different domains and that f∗(Bε(0, 0)) meets
S0∪S1 in great circular arcs. It follows that S0 has precisely two pre-images
in ∂Bε(0, 0) and the lemma is proved.

We have seen that reflection across the boundary arcs of MΓ produces a
complete, non-singular submanifold in S3, that will be denoted by MΓ. Thus
we obtain the following result.

Lemma 3.20. Let GΓ denote the subgroup of O(4) generated by the reflec-
tions {rγk

}k=1,...,n corresponding to the boundary arcs γ1, . . . , γn. Then

MΓ =
⋃

g∈GΓ

g[MΓ],
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and in particular MΓ is compact if and only if GΓ is finite.

Proof. For the first part, observe that one has a smooth action

GΓ × S3 → S3,

where all elements rγi ∈ GΓ are isometries and thus

MΓ = GΓ ·MΓ =
⋃

g∈GΓ

g[MΓ].

For the second part of the claim we note that MΓ is compact as an image
of a compact set D under the continuous mapping f . Since every g ∈ GΓ is
an isometry it is continuous and thus g[MΓ] is compact for every g ∈ GΓ.

Let GΓ be finite, then
MΓ =

⋃

g∈GΓ

g[MΓ]

is compact as union of finitely many compact sets.

On the other hand let MΓ be compact and set

HΓ = {g ∈ GΓ | g[MΓ] =MΓ}.

Since HΓ leaves MΓ invariant it is a subgroup of the group of symmetries
of Γ and thus HΓ is finite. Each coset of HΓ in GΓ corresponds to a distinct
image of MΓ under GΓ. These distinct images may intersect but do not
coincide. Since MΓ is compact we can calculate the volume of MΓ in the
following way

vol(MΓ) = vol(
⋃

g∈GΓ/HΓ

g[MΓ]) =
ord(GΓ)
ord(HΓ)

· vol(MΓ).

From this equation we can deduce the finiteness of GΓ.

Summing up the preceding results we have the following.

Theorem 3.21 (Lawson). To each proper convex polygon Γ in S3 having
vertex angles of the type π

k+1 , where k is a positive integer which depends
on the vertex, and satisfying conditions (A), (B) and (C) there exists a
complete, non-singular minimal submanifold MΓ ⊂ S3 with Γ ⊂ MΓ. The
surface MΓ is compact if and only if the group GΓ generated by reflections
across the geodesic sub-arcs of Γ is finite. If Γ further satisfies condition
(D), then the fundamental regionMΓ, which has boundary Γ and generates
MΓ under GΓ, has no self-intersections.
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3.3 The surfaces Σg

We now want to construct a family of surfaces proposed by Lawson, namely
Σg and realize them as a 2-sheeted cover of CP1. Before we can do this we
shall recall some facts about hyperelliptic Riemann surfaces.

Definition 3.22. Let M be a compact Riemann surface of genus g ≥ 1.
A point p ∈ M is called Weierstrass point, if for a basis ω1, . . . , ωg of
Ω(M) and a coordinate neighborhood (U, z) of p (with ωk = fkdz on U),
the Wronskian determinant

Wz(ω1, . . . , ωg) := W (f1, . . . , fg) := det




f1 f2 · · · fg

f ′1 f ′2 · · · f ′g
...

...
...

f
(g−1)
1 f

(g−1)
2 · · · f

(g−1)
g




has a zero at p. The order of this zero is called the weight of the Weierstrass
point.

Definition 3.23. A compact Riemann surface of genus g ≥ 1 that admits
a 2-sheeted covering of the Riemann sphere f : M → CP1 is called hyper-
elliptic.

Remark 3.24.

1. f is non-constant with 2 poles and each ramification point has branch
number 1. Moreover we have the relation

]{branchpoints} = 2g + 2

where g shall denote the genus of M .

2. Every surface of genus g ≤ 2 is hyperelliptic.

Theorem 3.25 (Farkas, Kra). Let M be a hyperelliptic surface of genus
g ≥ 2 and f : M → CP1 the corresponding covering of CP1. Then the
branch points of f are precisely the Weierstrass points of M and f is unique
up to Möbiustransformations.
The hyperelliptic surfaces of genus g ≥ 2 are the only ones with precisely
2g + 2 Weierstrass points.

Proof. See [9, III.7.3].

Definition 3.26. Let M be a Riemann surface. By Aut(M) we denote
the group of conformal automorphisms of M . Let H ⊂ Aut(M) be a finite
subgroup. For p ∈M set

Hp := {h ∈ H | h(p) = p}
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Thus we may consider the natural projection

π : M →M/H

and the Riemann-Hurwitz Theorem allows us to compute the genus of M/H
in terms of the genus of M and the branch points of π (the fixed points of
elements of H). We now have the following result.

Proposition 3.27 (Farkas, Kra). Let M be a compact Riemann surface
of genus g. Then M is hyperelliptic if and only if there exists a conformal
involution J ∈ Aut(M) (with J2 = 1) on M that fixes 2g + 2 points.

Proof. See [9, III.7.9].

Some immediate consequences of this result will be stated in the following
remark.

Remark 3.28.

1. The projection π : M → M/〈J〉 is a 2-sheeted covering such that
M/〈J〉 has genus 0, thus M has a meromorphic function of degree 2.

2. If g ≥ 2, then the fixed points of the hyperelliptic involution are the
Weierstrass points.

3. If g ≥ 2, then J is the unique involution with 2g + 2 fixed points.

4. The hyperelliptic involution J on a (hyperelliptic) surface M of genus
g ≥ 2 is in the center of Aut(M).

We now state some other useful results for calculating elements of Aut(M).

Proposition 3.29. Let M be a hyperelliptic Riemann surface of genus g ≥
2. Let T ∈ Aut(M) with T /∈ 〈J〉, where J is the hyperelliptic involution.
Then T has at most four fixed points.

Proof. See [9, III.7.11].

Corollary 3.30. If T fixes a Weierstrass point, then T has at most 2 other
fixed points.

Proposition 3.31 (Farkas, Kra). Let M be a compact Riemann surface of
genus g. If 1 6= T ∈ Aut(M), then T has at most 2g + 2 fixed points.

Proof. See [9, V.1.1].

Proposition 3.32. Let g ≥ 2 and let W (M) be the set of Weierstrass points
of M . Then for T ∈ Aut(M) we have

T (W (M)) = W (M).
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Corollary 3.33. There is a group homomorphism

λ : Aut(M)→ Perm(W (M)),

where Perm(W (M)) denotes the permutation group of the Weierstrass
points on M . Furthermore, λ is injective unless M is hyperelliptic, in which
case Ker(λ) = 〈J〉.
The following proposition will help us to obtain the anti-holomorphic invo-
lutions of the hyperelliptic curve Σg.

Proposition 3.34. Let M be a hyperelliptic Riemann surface of genus
g ≥ 2 and let T be an anti-conformal involution on M . Then T induces
an anti-holomorphic involution on CP1 that leaves the fixed point set of T
invariant.

Proof. Let f : M → CP1 be a function with two poles on M . For T as
above, T ◦J ◦T−1 is a conformal involution with at least 2g+2 fixed points.
Thus one obtains

T ◦ J ◦ T−1 = J

and one gets an anti-conformal and hence anti-holomorphic involution A on
CP1 with f ◦ T = A ◦ f . If now p is a fixed point of T , then

f(p) = f(T (p)) = A(f(p)),

and f(p) is a fixed point of A.

Via the identification

S3 = {(z, w) ∈ C× C | |z|2 + |w|2 = 1}

one may consider a set of coordinates (X1, X2, X3) as a coordinate system
for S3 obtained by stereographic projection from the point (z, w) = (0,−1).
The resulting coordinates (X1, X2, X3) have the form

(X1, X2, X3) =
(

x1

1 + x3
,

x2

1 + x3
,

x4

1 + x3

)

where (x1, x2, x3, x4) ∈ S3\{(0, 0,−1, 0)}.

In the construction procedure one has to choose 2 “sorts” of points acting
as vertices of the geodesic polygon Γ. Lawson restricts to two distinguished
great circles C1 = X3-axis and C2 := {(X1, X2, 0) | X2

1 + X2
2 = 1}. The

condition for C2 reads

x2
1

(1 + x3)2
+

x2
2

(1 + x3)2
= 1⇔ x2

1 + x2
2 = (1 + x3)2,
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and thus setting x3 = 0 one obtains

C2 ∼ {(z, 0) ∈ C2 | |z| = |x1 + ix2| = x2
1 + x2

2 = 1}.

A similar consideration yields

C1 ∼ {(0, w) ∈ C2 | |w| = 1}.

In order to construct surfaces Σg of genus g we have to proceed in the
following manner:

• Pick P1, P2 ∈ C1 and Q1, Q2 ∈ C2 such that d(P1, P2) = arccos〈P1, P2〉 =
π
2 and d(Q1, Q2) = π

g+1 .
We choose P1 = (0, 0, 1, 0), P2 = (0, 0, 0, 1), Q1 = (1, 0, 0, 0), Q2 =
(1
2 , 1

2

√
3, 0, 0).

• Define Γg to be the polygon P1Q1P2Q2.

X3

X2

X1

P1

P2

Q1
Q2

Figure 3.1: The polygon Γg.

Before being able to proceed one has to make sure that conditions (A) to
(D) for Γg are satisfied.

Proposition 3.35. The polygon Γg is proper, convex and satisfies the con-
ditions (A) to (D).
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Proof. From the above construction one immediately obtains that Γg is
proper and convex (see above figure 3.1). The construction also implies
that Γg lies in an open hemisphere of S3 and thus condition (A) is fulfilled.
The picture also indicates the correctness of condition (C).

It remains to verify conditions (B) and (D):
For condition (B) we have to find for each p ∈ C(Γg)o a geodesic 2-sphere Sp

with p ∈ Sp and Sp /∈ SΓg , i.e. Sp ∩ Γg has at most 3 components. For this
purpose one simply considers the family of great spheres passing through
C1, i.e. the family of planes passing through the X3-axis in figure 3.1. For
these spheres the number of components of Sp ∩ Γg is at most 2.
Condition (D) is gained by first rotating Γg in a way so that the X3-axis
becomes the center line of symmetry with (see figure 3.2)

Q1, Q2 ∈ {(X1, X2, X3) | X3 = 0}

and
P1, P2 ∈ {(0, X2, X3) | X2

2 + X2
3 = 1, X3 > 0}.

Let π : R3 → R2 denote the orthogonal projection onto the (X1, X2)-plane.
Then π|C(Γg)o is a map with the properties necessary for condition (D).

X2

X1

X3

Figure 3.2: Rotated Γg.
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Lemma 3.36. For the polygon Γ2 the group of symmetries GΓ2 induced
by reflection across the boundary has the group structure of D6 (i.e. the
dihedral group of order 12).

Proof. The proof splits up into the following parts:

• Find the geodesic arcs γij running from Pi to Qj with i, j ∈ {1, 2}.
• Write down the reflections across those arcs as mappings

rγij : S3 → S3.

• Identify the group structure.

First we observe that γij is a geodesic in S3 if and only if γ̈ij is normal to
S3. This means that γ̈ij and γij should be proportional as vectors in R4.
Great circles

γ(t) = a cos(αt) + b sin(αt),

where a, b ∈ R4, |a| = |b| = 1 and a ⊥ b clearly have this property. Further-
more, since γ(0) = a ∈ S3 and γ̇(0) = αb ∈ TaS

3, we see that we have a
geodesic for each initial value problem.

From this one immediately obtains the geodesics

γ11(t) = (sin(t), 0, cos(t), 0),

γ12(t) = (
1
2

sin(t),
1
2

√
3 sin(t), cos(t), 0),

γ21(t) = (sin(t), 0, 0, cos(t)),

γ22(t) = (
1
2

sin(t),
1
2

√
3 sin(t), 0, cos(t)).

γ11 and γ21 are geodesics with x2 = x4 = 0 and x2 = x3 = 0 respectively.
Thus we obtain

rγ11(x1, x2, x3, x4) = (x1,−x2, x3,−x4),
rγ21(x1, x2, x3, x4) = (x1,−x2,−x3, x4).

The reflections across γ12 and γ22 are obtained via conjugation by a certain
rotation φ (see remark 3.2):

rγ12 = φ−1 ◦ rγ11 ◦ φ

=




1
2 −1

2

√
3 0 0

1
2

√
3 1

2 0 0
0 0 1 0
0 0 0 1







1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1







1
2

1
2

√
3 0 0

−1
2

√
3 1

2 0 0
0 0 1 0
0 0 0 1




=




−1
2

1
2

√
3 0 0

1
2

√
3 1

2 0 0
0 0 1 0
0 0 0 −1
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and thus one gets (with a similar calculation for rγ22)

rγ12(x1, x2, x3, x4) = (−1
2
x1 +

1
2

√
3x2,

1
2

√
3x1 +

1
2
x2, x3,−x4),

rγ22(x1, x2, x3, x4) = (−1
2
x1 +

1
2

√
3x2,

1
2

√
3x1 +

1
2
x2,−x3, x4).

Recall that a group G is said to decompose as a semi-direct product of
subgroups G1 and G2 (written G = G1 oG2), if

1. The subgroup G1 is normal;

2. G1G2 = G;

3. G1 ∩G2 = {e}.
In this case there is an isomorphism

G1 oG2 → G, (g1, g2) 7→ g1g2,

where the direct product of G1 and G2 is equipped with the group operation

(g1, g2) ◦ (h1, h2) = (h−1
2 g1h2h1, g2h2).

First we observe that

(
A
−1

)
:= rγ11 ◦ rγ22 =




−1
2

1
2

√
3 0 0

−1
2

√
3 −1

2 0 0
0 0 −1 0
0 0 0 −1


 ,

where for brevity we set A :=
( −1

2
1
2

√
3

−1
2

√
3 −1

2

)
and 1 :=

(
1 0
0 1

)
. Obviously

we have A3 = 1 and thus we obtain

G1 := 〈
(

A
−1

)
〉 =

{(
A
−1

)
,

(
A2

1

)
,

(
1
−1

)
,

(
A
1

)
,

(
A2

−1
)

,

(
1
1

)}

' Z3 × Z2 ' Z6.

We have to check that G1 is a normal subgroup of GΓ2 and therefore

rγijG1r
−1
γij
⊂ G1 ∀i, j ∈ {1, 2}.

This follows immediately from (the only interesting parts are the entries
encoded in A and A2; all the rγij are involutions)

(
1 0
0 −1

)
A

(
1 0
0 −1

)
=

( −1
2 −1

2

√
3

1
2

√
3 −1

2

)
= A2,

( −1
2

1
2

√
3

1
2

√
3 1

2

)
A

( −1
2

1
2

√
3

1
2

√
3 1

2

)
=

( −1
2 −1

2

√
3

1
2

√
3 −1

2

)
= A2.
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Setting
G2 := 〈rγ21〉 ' Z2

one obtains

rγ11 =
(
1
−1

)
◦ rγ21

rγ12 =
(

A2

−1
)
◦ rγ21

rγ22 =
(

A2

1

)
◦ rγ21

and thus one gets all generators of GΓ2 . From G1 ∩G2 = {e} follows

GΓ2 = G1 oG2 ' D6,

where D6 denotes the dihedral group of order 12.

We now will restrict to the g = 2 case with the following distinguished points

P1 = (0, 0, 1, 0), P3 = (0, 0,−1, 0),
P2 = (0, 0, 0, 1), P4 = (0, 0, 0,−1),
Q1 = (1, 0, 0, 0), Q4 = (−1, 0, 0, 0),

Q2 = (
1
2
,
1
2

√
3, 0, 0), Q5 = (−1

2
,−1

2

√
3, 0, 0),

Q3 = (−1
2
,
1
2

√
3, 0, 0), Q6 = (

1
2
,−1

2

√
3, 0, 0).

The points Pi and Qj are chosen equally spaced and for Cij denoting the
great circle containing Pi and Qj one may consider the 1-skeleton of the
geodesic triangulation

Sk2 = C1 ∪ C2 ∪

⋃

i,j

Cij


 .

Proposition 3.37. The group GΓ2 leaves Sk2 invariant.

Proof. Consider the generators of GΓ2 . Since each element is an isometry
and leaves the set of {Pi} and {Qj} invariant, the Cij are left invariant. A
short glance at the generators also reveals the invariance of C1 and C2.

Corollary 3.38. The triangulation of Σ2 consists of 12 faces, 24 edges and
10 vertices and thus Σ2 is of genus g = 2.
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Proof. Consider the action of GΓ2 on the “edges” PiQj and the correspond-
ing faces. We shall abbreviate PiQj by ij and start with the geodesic polygon
given by

P1Q1P2Q2, i.e. (11, 21, 22, 12).

The action of GΓ2 yields

Number Face Number Face
1 (11,21,22,12) 7 (31,21,26,36)
2 (15,25,26,16) 8 (33,23,22,32)
3 (13,23,24,14) 9 (35,25,24,34)
4 (11,41,46,16) 10 (31,41,42,32)
5 (13,43,42,12) 11 (35,45,46,36)
6 (15,45,44,14) 12 (33,43,44,34)

The triangulation via such “geodesic” rectangles consists of 10 vertices (V)
(all the Pi, Qj), 24 edges (E) and 12 faces (F). Summing up one has via the
Gauss-Bonnet-formula

χ(Σ2) = V −E + F = 10− 24 + 12 = 2− 2g,

and thus g = 2.

Conclusion 3.39. The surface Σg is a compact orientable surface of genus
g embedded in S3 with GΓg = D2g+2.

Proof. This is just a generalization of the preceding results: Since GΓg leaves
the corresponding 1-skeleton Skg invariant it is finite and thus Σg compact.
Finally one obtains

GΓg = Z2g+2 o Z2 ' D2g+2

and by a similar counting argument

χ(Σg) = V −E + F = (2g + 2 + 4)− 4(2g + 2) + 2(2g + 2) = 2− 2g.

Thus we get a compact, embedded (hence orientable) surface of genus g.

Since every orientable surface can be considered as a Riemann surface or
complex algebraic curve one therefore gets

Corollary 3.40. For every genus g the surface Σg is hyperelliptic.

Proof. Consider the conformal involution (see notation introduced above)
given by

J :=
(
1
−1

)
.

J fixes the 2g + 2 points Q1, . . . , Q2g+2, since

Qj ∈ C2 ∼ {(z, 0) ∈ C2 | |z| = 1}.
The claim now follows from proposition 3.27.
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Proposition 3.41. The subgroup Zg+1 ⊂ GΓg , generated by
(

A
1

)
, that is

Zg+1 = 〈
(

A
1

)
〉,

fixes the distinguished points {P1, . . . , P4}.
Proof. This follows immediately from Pi ∈ C1 ∼ {(0, w) ∈ C2 | |w| = 1}.
Considering Σg as a Riemann surface it makes sense to investigate the au-
tomorphism group Aut(Σg) in order to get an algebraic equation that rep-
resents that surface, i.e.

w2 = P (z) =
2g+2∏

j=1

(z − ej),

with P being of order 2g +2 and e1, . . . , e2g+2 the images of the Weierstrass
points on Σg. We will call these points Weierstrass points as well.

Now if T ∈ Aut(Σg) is an automorphism, T ◦ J ◦ T−1 has at least 2g + 2
fixed points and therefore

T ◦ J ◦ T−1 = J.

Thus the hyperelliptic involution J commutes with T and therefore any au-
tomorphism projects to a Möbius transformation A of the Riemann sphere
CP1 = Σg/〈J〉. Each Möbius transformation A maps the Weierstrass points
onto themselves and therefore the reduced automorphism group Aut(Σg)/〈J〉,
that is isomorphic to a certain subgroup of Perm(W (Σg)), can be used to
determine the algebraic equation.

The following results are stated for the genus g = 2 case, but can immedi-
ately generalized to arbitrary genus g.

Lemma 3.42. The reduced automorphism group of Aut(Σ2) contains D6,
i.e.

D6 ⊂ Aut(Σ2)/〈J〉.
Proof. We have already examined the isometries resulting from reflections
across the geodesic boundary arcs of P1Q1P2Q2 that map the “fundamental”
polygon P1Q1P2Q2 into isometric copies. Since the isometries I resulting
from a composition of two reflections belong to the group of conformal au-
tomorphisms of Σ2 (as they are orientation-preserving) we will treat those
isometries as holomorphic T ∈ Aut(Σ2). It is clear that other symmetries
of the surface can be found if one considers the symmetries of the polygon
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P1Q1P2Q2. In this case one has 2 symmetries arising from plane-reflections
interchanging Q1 and Q2 or P1 and P2 respectively.

The latter shall be denoted by η : S3 → S3 with

η(x1, x2, x3, x4) = (x1, x2, x4, x3).

In order to get the first reflection σ : S3 → S3 one has to conjugate the
reflection

diag(1,−1, 1, 1),

where diag(a1, . . . , an) denotes a n×n-matrix with entries a1, . . . , an on the
diagonal, with a rotation about π

6 . Summing up one has to calculate
(

1
2

√
3 −1

2
1
2

1
2

√
3

)(
1 0
0 −1

) (
1
2

√
3 1

2

−1
2

1
2

√
3

)
=

(
1
2

1
2

√
3

1
2

√
3 −1

2

)
,

and thus one arrives at

σ(x1, x2, x3, x4) = (
1
2
x1 +

1
2

√
3x2,

1
2

√
3x1 − 1

2
x2, x3, x4).

A composition of σ with rγ12 yields

G1 := rγ12 ◦ σ =




−1
2

1
2

√
3 0 0

1
2

√
3 1

2 0 0
0 0 1 0
0 0 0 −1







1
2

1
2

√
3 0 0

1
2

√
3 −1

2 0 0
0 0 1 0
0 0 0 1




=




1
2 −1

2

√
3 0 0

1
2

√
3 1

2 0 0
0 0 1 0
0 0 0 −1


 ,

with B =
(

1
2 −1

2

√
3

1
2

√
3 1

2

)
being of order 6, i.e. B6 = 1. From the above

considerations we know that Q1, . . . , Q6 are the Weierstrass points and it is
clear that G1 acts like a rotation around 2π

6 on Qj . Since rγ21 fixes {Q1, Q4}
and we also have

Q2
rγ21−−→ Q6, Q3

rγ21−−→ Q5,

we may set G2 := rγ21 ◦ η. In a similar way one can now check that

(〈G1〉o 〈G2〉) /〈J〉 = D6.

Remark 3.43. Note that for G1 one has det(G1) = −1 and therefore G1 /∈
SO(4). This will be crucial when determining the Hopf differential Q of Σg.
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Conclusion 3.44. Switching over to arbitrary g one sees that the reduced
automorphism group of Aut(Σg) contains D2g+2, i.e.

D2g+2 ⊂ Aut(Σg)/〈J〉.

Lemma 3.45. The group of Möbius transformations splits up into 2 classes,
namely those elements with 1 respectively 2 fixed points.

Proof. Let f ∈ Möb be an arbitrary Möbius transformation, i.e.

f(z) =
az + b

cz + d

We solve the fixed point equation f(γ) = γ. For c 6= 0, we obtain two roots:

γ1,2 =
(a− d)±

√
(a− d)2 + 4bc

2c
=

(a− d)±
√

(a + d)2 − 4(ad− bc)
2c

.

When c = 0, one of the fixed points is at infinity; the other one is given by

γ = − b

a− d
.

The transformation will be a simple transformation composed of transla-
tions, rotations, and dilations:

z 7→ αz + β.

If c = 0 and a = d, then “both” fixed points are at infinity (we have one fixed
point), and the Möbius transformation corresponds to a pure translation:

z 7→ z + β.

Theorem 3.46. For genus g = 2 the Lawson surface Σ2 is of the form

w2 = z6 − 1.

Proof. With Q1 = e1, . . . , Q6 = e6 as Weierstrass points we see that we have
an action

D6 ×W (Σ2)→W (Σ2).

W (Σ2) is the disjoint union of the orbits under Z6 ⊂ D6. For each g ∈
Z6 let W (Σ2)g denote the set of elements in W (Σ2) that are fixed by g.
Burnside’s lemma asserts the following formula for the number of orbits,
denoted |W (Σ2)/Z6|:

|W (Σ2)/Z6| = 1
|Z6|

∑

g∈Z6

|W (Σ2)g| = 1
6
|W (Σ2)id| = 1

6
· 6 = 1.
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Thus the 6 Weierstrass points lie on one orbit under a cyclic group action
with generator T . Since T maps the set of Weierstrass points onto itself, the
order of T is the length of a cycle of S6, i.e. 6 and one gets T (x) = e

2πi
6 x.

The resulting algebraic equation has the form

w2 = z6 − a,

with a ∈ C∗. Let ξ ∈ C solve the equation z6 = a, i.e. ξ6 = a. Via the
transformation

w̃ =
1
ξ3

w, z̃ =
1
ξ
z

one obtains

w̃2 =
1
ξ6

w2 =
1
a
w2 =

1
a
(z6 − a) = (

1
ξ
z)6 − 1 = z̃6 − 1

and we have a biholomorphic equivalence between those surfaces.

Conclusion 3.47. The Lawson surface Σg is of the form

w2 = z2g+2 − 1.

Corollary 3.48. The automorphism group Aut(Σ2) is of order 24 and the
reduced automorphism group, i.e. Aut(Σ2)/〈J〉 with J being the hyperel-
liptic involution, is D6.

Proof. Every element T ∈ Aut(Σ2)/〈J〉 corresponds to an σ ∈ Perm(W (Σ2))
that is realized via a Möbius transformation A ∈ Möb. By the 3-point-
formula we know that every Möbius transformation that fixes more than 2
(Weierstrass) points must be the identity.

Thus we have to distinguish 3 cases:

1. One Weierstrass point is fixed by A:
Since A must leave W (Σ2) invariant it must leave the circle |z| = 1
invariant. If one considers the generators of A ∈ Möb one sees that this
condition is fulfilled by the rotations and inversions. But the group
generated by those 2 elements clearly fixes 2 or 0 Weierstrass points
and thus this case can’t be realized via a Möbius transformation.

2. No Weierstrass point is fixed by A:
Following the above argument we see that this can be realized by the
5 rotations around 2πk

6 (k = 1, . . . , 5) and the 3 inversions resulting
from conjugating f : z 7→ 1

z with rotations around π
6 , 3π

6 and 5π
6 . This

amounts to 8 possible transformations for Σ2.
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3. Two Weierstrass points are fixed by A:
We start with the inversion f : z 7→ 1

z and rotate around kπ
3

(k = 1, . . . , 3) and obtain 3 automorphisms that fix 2 Weierstrass
points.

These 11 Möbius transformations together with the identity map have the
group structure of D6 (since this is one way to define the group D6; it can be
regarded as the rotational and reflection symmetries of a regualar hexagon),
so that there are no other holomorphic automorphisms. Summing up we see
that

ϕ : Aut(Σ2)→ D6 ⊂ Perm(W (Σ2))

is a surjective group homomorphism and thus (kerϕ = 〈J〉)
Aut(Σ2)/〈J〉 ' D6.

Now Lagrange’s theorem yields (since ord(Aut(Σ2)/〈J〉) = ord(D6) = 12)

ord(Aut(Σ2)) = ord(〈J〉) · ord(Aut(Σ2)/〈J〉) = 2 · 12 = 24.

Corollary 3.49. The surface Σ2 is uniquely determined by w2 = z6 − 1.

Conclusion 3.50. The surface Σg is uniquely determined by w2 = z2g+2−1.

Remark 3.51.

1. The holomorphic automorphisms that represent Z6 ⊂ D6 ' Aut(Σ2)/〈J〉
are (z, w) 7→ (ξz, w) with ξ a 6-th root of unity, ξ6 = 1.

2. Comparing the fixed point sets, one observes the same behaviour as
in the constructed model of Lawson.

Let Aut−(Σ2/〈J〉) denote the anti-holomorphic, i.e. the anticonformal, in-
volutions on Σ2/〈J〉.
Proposition 3.52. The antiholomorphic involutions of Σ2/〈J〉 are

Aut−(Σ2/〈J〉) = {A−1 ◦ ρ ◦A | A ∈ Aut(Σ2/〈J〉)},
with ρ : CP1 → CP1, ρ(z) = z̄.

Proof. First we make the following observation: For a anti-conformal invo-
lution R ∈ Aut−(Σ2), one has

f ◦R = A−1 ◦ ρ ◦A ◦ f,

i.e. R projects to anti-holomorphic involution on CP1. Since every anti-
holomorphic involution of CP1 is conjugated to ρ(z) = z̄ and ρ is an involu-
tion of Σ2:

P (ρ(z)) = z̄6 − 1 = (z6 − 1) = w2 = w̄2,

with (z, w) 7→ (z̄, w̄) the corresponding mapping, the proposition follows.
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Chapter 4

A triangulation for Σg

We are now focusing on quadratic differentials and consider the Hopf differ-
ential Qdz2 of Σg. It will turn out that the Qdz2 can be used to obtain a
natural triangulation of Σg.
We mainly follow the terminology introduced by Strebel in [33].

4.1 Quadratic differentials on Σg

Definition 4.1. Let M be a Riemann surface with a given conformal struc-
ture {(Uν , φν)}. A holomorphic quadratic differential ϕ on M is a set of
holomorphic function elements ϕν in the local parameters zν = φν(P ) for
which the transformation law

ϕν(zν)dz2
ν = ϕµ(zµ)dz2

µ with dzµ =
dzµ

dzν
dzν ,

holds whenever zµ and zν are local parameters that correspond to the same
point P of M .

If we keep a certain parameter fixed, we will call it z instead of zν and write
ω = ϕ(z)dz2 instead of ϕν(zν)dz2

ν .

Since the value of a quadratic differential ω at a point P ∈ M depends
on the local parameter near P , it only makes sense to consider the zeros and
poles of ω as distinguished points.

Definition 4.2. The critical points of a quadratic differential ω are its
zeros and poles. Poles of order one and the zeros are called finite critical
points. All other points of M are called regular points of ω. A holomorphic
point is either a regular point or a zero.

We want to determine the Hopf differential Q(z)dz2 of the surface f : Σg →
S3. This differential must be compatible with the coordinate changes in-
duced by the SO(4)-automorphisms of Σg as the following lemma shows.

55
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Lemma 4.3. Coordinate changes induced by an O(4)-automorphism A of
a surface f : M → f(M) ⊂ S3 leave the Hopf differential Q(z)dz2 invariant
if and only if A ∈ SO(4).

Proof. First we recall that the normalized {f, fx, fy, N} form an orthonor-
mal basis for the tangent space TpM with N = f × fx × fy. We know
that

fzz = 〈fzz, f〉 f

2e2u
+ 〈fzz, fz̄〉 fz

2e2u
+ 〈fzz, fz〉 fz̄

2e2u
+ 〈fzz, N〉N

with complex coordinates z and z̄. The cross product is defined via

1
2e2u
〈w, f × fz × fz̄〉 =

1
2e2u

det(f, fz, fz̄, w) ∀w ∈ TpM

Since fzz can be expressed in terms of f, fz, fz̄ and N we have the following
equation

Q = 〈fzz, N〉 =
1

2e2u
〈fzz, f × fz × fz̄〉

=
1

4e4u
〈〈fzz, f〉f + 〈fzz, fz̄〉fz + 〈fzz, fz〉fz̄ + 〈fzz, N〉N, f × fz × fz̄〉

=
1

4e4u
det(f, fz, fz̄, 〈fzz, f〉f + 〈fzz, fz̄〉fz + 〈fzz, fz〉fz̄ + 〈fzz, N〉N)

=
1

4e4u
det




〈f, f〉 〈f, fz〉 〈f, fz̄〉 〈f, fzz〉
〈fz, f〉 〈fz, fz〉 〈fz, fz̄〉 〈fz, fzz〉
〈fz̄, f〉 〈fz̄, fz〉 〈fz̄, fz̄〉 〈fz̄, fzz〉
〈fzz, f〉 〈fzz, fz〉 〈fzz, fz̄〉 〈fzz, fzz〉


 .

For an automorphism A ∈ O(4) one has 〈Av, Aw〉 = 〈v, w〉 and therefore
the quantities

〈fzz, f〉, 〈fzz, fz̄〉, 〈fzz, fz〉, 〈fzz, N〉
are left invariant for f̃(z, z̄) := Af(z, z̄). The transformed Hopf differential
Q̃ then obeys

Q̃ = 〈(Af)zz, Ñ〉 = 〈Afzz, Ñ〉 = det(Af,Afz, Afz̄, Afzz)
= det(A) · det(f, fz, fz̄, fzz)
= Q ⇐⇒ A ∈ SO(4).
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Now we determine a basis for the quadratic differentials on Σg, and then
check which can be considered as suitable candidate. The following lemmas
and observations are taken from [9, III.5.2] and [9, III.7.5].

Lemma 4.4. Let M be a compact Riemann surface of genus g ≥ 2. The
dimension of the space of holomorphic 2-differentials on M is

dimH2(M) = 3g − 3.

Lemma 4.5. The g differentials

zjdz

w
, j = 0, . . . , g − 1

form a basis for the abelian differentials of the first kind on a hyperelliptic
Riemann surface of the form w2 = P (z).

Lemma 4.6. On a hyperelliptic surface of genus g ≥ 2 the products of
the holomorphic abelian differentials (taken 2 at a time) form a (2g − 1)-
dimensional subspace of the (3g − 3)-dimensional space of all holomorphic
quadratic differentials. The basis of H2(M) then consists of

zjdz2

w2
, j = 0, . . . , 2g − 2

and for g > 2 one has to add to the above list the (3g−3)−(2g−1) = (g−2)
differentials

zjdz2

w
, j = 0, . . . , g − 3.

Theorem 4.7. The Hopf differential of the surface Σg is of the form

Q = a
zg−1dz2

w2

and the zeros are precisely the points lying over zero and infinity, i.e.

{zeros of Q} = z−1(∞) ∪ z−1(0).

Moreover for each zero F one has ord(F ) = g − 1.

Proof. We have already seen that Q must be invariant under coordinate
changes induced by an SO(4)-isometry. In our case we have to check whether
one of the candidates transforms correctly under

θg : z 7→ exp
(

2πi

g + 1

)
z.
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With z̃ = e
2πi
g+1 z one sees immediately that none of the candidates of the form

zjdz2

w , j = 0, . . . , g−3, is left invariant under this change of coordinates (since
j ≤ g − 3 !). If one considers an element of the basis of the form

zkdz2

w2
, k = 0, . . . , 2g − 2,

one obtains

Q(z̃)dz̃2 = Q(z)dz2 ⇐⇒ zke
2πki
g+1

(
dz̃

dz

)2 dz2

w2
= zk dz2

w2

⇐⇒ zke
2πki
g+1 e

4πi
g+1

dz2

w2
= zk dz2

w2

⇐⇒ e
2π(k+2)i

g+1 = 1
⇐⇒ k = g − 1.

Without loss of generality we have the following divisor for z

(z) =
F3F4

F1F2
,

where {F1, F2} and {F3, F4} are the points lying over infinity and zero re-
spectively, i.e. z−1(∞) = {F1, F2} and z−1(0) = {F3, F4}. Since

(dz) =
E1 · · ·E2g+2

F 2
1 F 2

2

and
(w) =

E1 · · ·E2g+2

F g+1
1 F g+1

2

we see that
(

zjdz2

w2

)
=

F j
3 F j

4

F j
1 F j

2

· E
2
1 · · ·E2

2g+2

F 4
1 F 4

2

· F
2g+2
1 F 2g+2

2

E2
1 · · ·E2

2g+2

= F j
3 F j

4 F 2g+2−j−4
1 F 2g+2−j−4

2

= F j
3 F j

4 F 2g−2−j
1 F 2g−2−j

2

and therefore with j = g − 1 one obtains 4 zeros F1, . . . , F4 for Q with
ord(Fi) = g − 1 for all i.

Corollary 4.8. The Hopf differential of the surface Σ2 is of the form

Q = a
zdz2

w2
.

with a total number of 4 zeros lying over zero and infinity each of order 1.
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4.2 The local parameter w = Φ(z)

For a differential an important quantity is its integral as a function on the
underlying surface M . In order to get an invariant integral in the case of
a quadratic differential ϕ, one has to pass to a linear differential, by taking
the square root, then integrate:

w = Φ(z) =
∫ √

ϕ(z)dz.

The above statement is made more precise in the following theorem.

Theorem 4.9 (Strebel). In a neighborhood of every regular point P of ϕ
we can introduce a local parameter w, in terms of which the representation
of ϕ is identically equal to one. The parameter is given by the integral

w = Φ(z) =
∫ √

ϕ(z)dz.

It is uniquely determined up to a transformation w 7→ ±w + const and is
called the distinguished or natural parameter near P .

Proof. Let w = Φ(z) be the function defined above. Every regular point P
of ϕ has a neighborhood in which a single valued branch of this function can
be chosen (by integrating one of the two single valued branches of

√
ϕ(z)).

For any two determinations Φ1(z) and Φ2(z) near the same regular point we
obviously have

Φ2(z) = ±Φ1(z) + const.

Choose a small neighborhood U of P , such that U is mapped homeomor-
phically by a branch of Φ onto an open set V in the w-plane. Let w now be
the conformal parameter in U , the differential dw then becomes

dw = Φ′(z)dz =
√

ϕ(z)dz,

and therefore squaring gives

dw2 = ϕ(z)dz2.

In terms of this parameter the quadratic differential has the representation
≡ 1. If w̃ is another parameter near P with this property, we have (since
dw2 = dw̃2)

w̃ = ±w + const.

In the next paragraph we will be dealing with so-called trajectories of a
quadratic differential. In order to have another representation for these tra-
jectories we already introduce some terminology related to the distinguished
parameter w = Φ(z).
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Definition 4.10. Let ϕ be a meromorphic quadratic differential on an ar-
bitrary Riemann surface M . A ϕ-disk is a region which is mapped homeo-
morphically onto a disk in the complex plane by a branch of Φ.

If γ is a rectifiable curve in a disk U0 around a regular point P0, one can
calculate the length of γ by means of the differential dw =

√
ϕ(z)dz in terms

of local parameter z on M .

Definition 4.11. The differential |dw| = |ϕ(z)| 12 |dz| is called the length
element of the ϕ-metric, the metric associated to the quadratic differential
ϕ. The length of a curve γ in this metric is denoted by |γ|ϕ and is defined
as

|γ|ϕ =
∫

γ′
|dw| =

∫

γ
|ϕ(z)| 12 |dz|,

where γ′ = Φ[γ]. |γ|ϕ is called the ϕ-length of γ.

4.3 Trajectory structure of the Hopf differential

The local theory of trajectories makes use of special parameters in terms of
which the differential has a simple representation.

Definition 4.12. Let M be a Riemann surface and ω = ϕ(z)dz2 a holo-
morphic quadratic differential on M . A curve

γ : (a, b) 3 t 7→ γ(t) = z ∈M,

parameterized on an open interval (a, b) of a real axis is called horizontal
trajectory of ω if

ϕ(γ(t))
(

dγ(t)
dt

)2

> 0 for every t ∈ (a, b)

and one speaks of a vertical trajectory if

ϕ(γ(t))
(

dγ(t)
dt

)2

< 0 for every t ∈ (a, b).

We now have the following theorem.

Theorem 4.13 (Strebel). Let ω be a holomorphic quadratic differential on
an arbitrary Riemann surface M . Then through every regular point of ω
there exists a uniquely determined trajectory.
In particular, two trajectories never have a common point, unless they co-
incide.
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Remark 4.14. Since the vertical trajectories of ω are the horizontal trajec-
tories of −ω it is sufficient to consider the horizontal trajectories of quadratic
differentials. However, in general the geodesics are composed of straight arcs
of different inclinations, with vertices being zeros or first-order poles, as we
shall see later.

Before computing the trajectories for Qdz2 we introduce the notion of a
trajectory ray.

Definition 4.15. Let γ : [u1, u2]→M ,

u 7→ γ(u) = P, −∞ ≤ u1 < u < u2 ≤ +∞

be a non closed trajectory in its natural parametrization. Then, for u0 ∈
(u1, u2), the restriction of γ to one of the subintervals (u1, u0], [u0, u2) is
called a trajectory ray with initial point γ(u0) = P0.
Rays will usually be denoted by the symbols γ− and γ+ respectively.

Proposition 4.16. The horizontal and vertical leaves of a quadratic differ-
ential of the form ω = zmdz2 near a zero of order m are

αk : (0,∞) 3 t 7→ t · exp
(

2πik

m + 2

)
∈ C, k = 0, . . . ,m + 1,

respectively,

βk : (0,∞) 3 t 7→ t · exp
(

πi + 2πik

m + 2

)
∈ C, k = 0, . . . , m + 1.

Proof. By making the ansatz γ′ = γ, one obtains

(γ(t))m(γ′(t))2 = (γ′(t))m+2 = ±1

and therefore
γ′(t) = m+2

√±1.

Integration then yields the result.

Straightforward calculations carried out in [33, pp. 27-29] yield the following
theorems due to Strebel.

Theorem 4.17 (Strebel). In the neighborhood of any finite critical point P
of order m we can introduce a local parameter ξ with P ↔ ξ = 0, in terms
of which the quadratic differential has the representation

ϕ(ξ)dξ2 =
(

m + 2
2

)2

ξmdξ2.
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Corollary 4.18. The horizontal, respectively vertical, trajectories near the
zeros of the Hopf differential Qdξ2 of Σg in terms of the local parameter ξ
are of the form

αk : (0,∞) 3 t 7→ t · exp
(

2πik

g + 1

)
∈ C, k = 0, . . . , g,

βk : (0,∞) 3 t 7→ t · exp
(

πi + 2πik

g + 1

)
∈ C, k = 0, . . . , g.

Theorem 4.19 (Strebel). Let P be a finite critical point of order m and the
above ξ chosen as local parameter. Subdivide the disk determined by |ξ| < ρ
for some suitable ρ > 0 by the radii

arg ξ =
2πk

m + 2
, k = 0, . . . ,m + 1

into m + 2 sectors. Map each of the sectors onto a half circle in the upper
or lower half plane by means of the function w = ξ

m+2
2 . The trajectory

arcs are the lines which are mapped into the horizontals. In particular, the
distinguished radii are the critical trajectory arcs ending at (or emerging
from) P .

4.4 The limit set of a trajectory ray

In the following we will represent trajectories by Φ−1 and therefore state the
following lemma.

Lemma 4.20. Let ϕ be a meromorphic quadratic differential on an arbi-
trary Riemann surface M . The trajectory α of ϕ through a regular point
P0 can be represented by a branch of the analytic mapping Φ−1.

Remark 4.21. Since Φ−1 is defined in a neighborhood of α, it also describes
the relation between α and the neighboring trajectories.

Proof. Consider a regular point P0 of ϕ and let U0 be the maximal ϕ-disk
with center P0. We fix a branch Φ0 of Φ in U0 with Φ0(P0) = 0. Pick a
point u1 ∈ V0 = Φ(U0) on the real axis. The point P1 = Φ−1

0 (u1) is a regular
point of ϕ. Let U1 be the maximal ϕ-disk around P1. We choose the branch
Φ1 of Φ in U1 such that

Φ1|U0∩U1 = Φ0|U0∩U1 .

Then Φ−1
1 is the analytic continuation of Φ−1

0 . Picking a point u2 on the
real axis in the disk V1 = Φ1(U1) one continues as above and therefore gets
a finite chain

C = V0 ∪ V1 ∪ . . . ∪ Vk
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of disks in the w-plane with centers on the real axis and a mapping of C
into the surface M , which is locally one-to-one and conformal. Let D be the
union of all these chains. If w ∈ D, we have w ∈ C for some chain C. We
define Φ−1(w) as the value at w of the analytic continuation of Φ−1

0 along
C. As the intersection of two chains is connected and contains v0, Φ−1 is
uniquely defined in D. Now let

∆ = D ∩ R.

For u ∈ ∆, Φ−1(u) defines the trajectory α through P0 in the natural
parametrization. This is a consequence of the following consideration:

If u ∈ ∆ one has u ∈ V for some disk V = Φ(U), i.e. V is the image
by a branch of

∫ √
ϕ(z)dz of a ϕ-disk. Therefore

0 < du2 = ϕ(z(u))dz2.

Let I be a closed subinterval of α which contains P0. Then it can be covered
by finitely many ϕ-disks with centers on I with U0 being among them.
Choosing the proper branch Φ0 in U0 one sees that I corresponds to a
subinterval of ∆. Thus α is maximal.

Let ϕ be a holomorphic quadratic differential on a Riemann surface M and
let Φ−1(∆) = α be the trajectory through the point P0, Φ−1(0) = P0,
∆ = (u−∞, u∞). The length a = |α| of α in the ϕ-metric is

a =
∫

α
|ϕ(z)| 12 |dz| =

∫

∆
|du| = u∞ − u−∞.

With this parametrization by u we get two half open subintervals corre-
sponding to the 2 trajectory rays that are emerging from P0, i.e.

α+ = Φ−1([0, u∞)) and α− = Φ−1([0, u−∞))

and the orientation is supposed to be chosen in a way such that P0 is the
initial point of either of them.
For two arbitrarily chosen values u1 < u2 on ∆ there exists a number b > 0
such that Φ−1 is a homeomorphism of the rectangle

u1 ≤ u ≤ u2, 0 ≤ v ≤ b (respectively− b ≤ v ≤ 0)

into the surface M . The image S is called a horizontal rectangle.

Definition 4.22. Let M be a Riemann surface and Φ−1([0, u∞)) be a tra-
jectory ray. Then

A+ = lim
u→u∞

Φ−1([u, u∞))

is the limit set of the trajectory ray. It is the set of all points P ∈ M , for
which there exists a sequence of numbers (un)n∈N with limn un = u∞ such
that limn Pn = limn Φ−1(un) = P .
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A trajectory α has two limit sets A+ and A−, according to its two rays
α+ and α−. The next lemma investigates the limit set of a trajectory ray
given that A+ contains a regular or critical point of the quadratic differential
ϕ(z)dz2.

Lemma 4.23. Let ϕ(z)dz2 be a holomorphic quadratic differential. Then
for the trajectory ray α+ one has:

(a) Let P ∈ A+ be a regular point. Then u∞ =∞ and for the trajectory
γ through P one has γ ⊂ A+.

(b) Let P ∈ A+ be a finite critical point (i.e. a zero, since ϕ(z)dz2 is
holomorphic). Then u∞ < ∞ if α+ tends to P (i.e. is a critical ray)
with A+ = {P}. Otherwise u∞ = ∞ and A+ contains at least two
neighboring rays ending at P .

Proof.

(a) Let P ∈ A+ be a regular point. On the trajectory γ through P we
choose an arbitrary point Q. Now consider the closed subinterval I of
γ with endpoints P and Q of ϕ-length a, i.e.

I = [P,Q], |I| = a.

Then there exists an open horizontal rectangle S which contains I on
its middle line. Let (un)n∈N be a sequence with

lim
n

un = u∞, lim
n

Pn = lim
n

Φ−1(un) = P.

For Pn ∈ S, the trajectory α can be continued through S. Therefore
u∞ =∞ since α contains infinitely many disjoint subintervals of length
a. Moreover

lim
n

(un + a) = lim
n

un =∞ and lim
n

Qn := lim
n

Φ−1(un + a) = Q.

Thus Q ∈ A+ and as Q ∈ γ was arbitrary, γ ⊂ A+.

(b) Let now P ∈ A+ be a finite critical point, i.e. a zero of order m, with

lim
n

un = u∞, lim
n

Pn = lim
n

Φ−1(un) = P.

From theorem 4.19 we know that there are finitely many trajectory
rays ending at P that subdivide the neighborhood of P into (m + 2)
sectors with equal angles at P . For each sector consider the upper
part of the horizontal rectangle given by a subinterval I with ϕ-length
|I| = 2a and P as midpoint (see figure 4.1).
The interior of the union of these rectangles forms a neighborhood U
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a−a

P

0

Figure 4.1: Horizontal rectangle.

of P . If α+ is one of the trajectory rays ending at P one has u∞ <∞
and A+ = {P}.
In the other case there are infinitely many points Pn in at least one of
the sectors S of U and the horizontal (!) intervals through these points
extend through S. Since these intervals correspond to subintervals of
α+ we get u∞ =∞ and with

lim
n

(un ± a) =∞ and P ′
n = Φ−1(un + a), P ′′

n = Φ−1(un − a)

one gets two points P ′, P ′′ on ∂S as accumulation points of (P ′
n)n∈N

and (P ′′
n )n∈N respectively. Thus A+ contains at least two neighboring

rays ending at P .

Remark 4.24. If the initial point P0 of α+ is contained in A+, then α ⊂ A+.
Therefore the closure α ⊂ A+, as A+ is closed. On the other hand one
obviously has A+ ⊂ α and thus

α = A+ = A.

A trajectory ray α+ with P0 ∈ A+ is called recurrent.

4.5 A canonical triangulation for Σg

The goal of this section is to construct a canonical triangulation for the sur-
faces Σg that is induced by the trajectory structure of the Hopf differential.
We will see that the critical rays will play an important role, since they con-
nect the zeros lying over 0 and∞. First we will have to introduce the notion
of a maximal rectangle, but first define a triangulation for a submanifold.

Definition 4.25. Let N be a smooth n-manifold and suppose M ⊂ N
is a compact, oriented, embedded m-dimensional submanifold. A smooth
triangulation of M is a smooth m-cycle c =

∑
i σi in N with the following

properties:
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• Each σi : ∆p →M is a smooth orientation-preserving embedding.

• If i 6= j, then σi(Int∆p) ∩ σj(Int∆p) = ∅.
• M =

⋃
i σi(∆p).

Definition 4.26. Let α+ be a trajectory ray of finite ϕ-length |α+| = a
with α+ = Φ−1([0, a]). For every u ∈ [0, a] there is a maximal half-open
interval [0, v(u)) on which Φ−1 is defined and one-to-one. Let

v = min
0≤u≤a

v(u).

The image of the rectangle 0 ≤ u ≤ a, 0 ≤ v < v under the mapping Φ−1,
i.e.

R := Φ−1([0, a]× [0, v)),

is called the maximal rectangle R associated to the critical trajectory ray
α+.

We now have the following important theorem due to Strebel.

Theorem 4.27. Two maximal rectangles are either disjoint or else identi-
cal.

Proof. Let R1 and R2 be two maximal rectangles. There is a one-to-one
conformal mapping Φ−1

1 of some S1 : 0 ≤ v < v1 onto R1 and a Φ−1
2 of a

domain S2 : 0 ≤ v < v2 onto R2. Let P0 ∈ R1 ∩ R2 and denote by pi ∈ Si

the points with Φ−1
1 (p1) = P0 = Φ−1

2 (p2). In a neighborhood U of P0 the
two function elements wi = Φi(P ) satisfy

Φ2(P ) = ±Φ1(P ) + const

and by translation we can achieve that

Φ1(P0) = Φ2(P0) = 0 and w = Φ2(P ) = Φ1(P ) ∀P ∈ U.

But then
Φ−1

1 (w) = Φ−1
2 (w) ∀w ∈ U1 = Φ1(U).

Because of the maximality of S1 and S2 the two domains of definition of the
mappings Φ−1

1 and Φ−1
2 must be the same and hence R1 = R2.

Before describing the triangulation for Σg we give a short list of the possible
trajectories on a compact Riemann surface (see also [17],[18]):

1. Closed trajectories.

2. Non-closed trajectories:
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(a) Critical trajectories: at least one ray, say γ+, of γ tends to a
finite critical point. The other ray either tends to another finite
critical point (possibly the same), to an infinite critical point or
else it is recurrent. The length |γ|ϕ <∞ if and only if γ+ and γ−

tend to finite critical points. There are only finitely many critical
trajectories.

(b) Trajectories both rays of which tend to infinite critical points.

(c) Spirals, i.e. trajectories both rays of which are recurrent.

Since these are the only possibilities and we know that the maximal rectan-
gles are either disjoint or they coincide we have

Theorem 4.28. The Riemann surface Σg minus the critical points and
the critical (horizontal and vertical) trajectories of Q(z)dz2 = a zg−1

w2 dz2 is
subdivided into maximal rectangles and one obtains a canonical triangulation
for Σg with 4 vertices (V), 4g + 4 edges (E) and 2g + 2 faces (F).

Proof. As a hyperelliptic Riemann surface is specified by its branch points
and combinatorial data that describes which sheets are joined by which
branch points and branch cuts, we shall describe this situation for Σg first.
The combinatorial data is called the gluing rules.

Take two copies of the Riemann sphere CP1 and label them sheet I and
sheet II. On each sheet for each k = 1, . . . , g + 1 we draw a “cut” joining
the branch points e2k−1 to e2k. Each “cut” is considered to have two banks;
an N -bank and an S-bank. A concrete model for Σg is then obtained by
joining every S-bank on sheet I to an N -bank of the corresponding “cut”
on sheet II, and then joining the corresponding S-bank on sheet II to the
N -bank of the corresponding “cut” on sheet I.

The Hopf differential of Σg is of the form

Q(z)dz2 = a
zg−1dz2

w2
.

The horizontal and vertical trajectories in terms of a local parameter ξ
around a zero of Q are of the form

αk : (0,∞) 3 t 7→ t · exp
(

2πik

g + 1

)
∈ C, k = 0, . . . , g,

βk : (0,∞) 3 t 7→ t · exp
(

πi + 2πik

g + 1

)
∈ C, k = 0, . . . , g.

Without loss of generality and due to symmetry reasons we can assume that
the horizontal trajectories pass through the cuts and thus change the sheet
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e1

e2e3

e4

e5 e6

Figure 4.2: Horizontal trajectories passing through cuts for g = 2.

on their way to infinity whereas the vertical trajectories stay on the same
sheet (see the simplified figure 4.2). In order not to get confused we will
call the zeros of Q lying over zero 0+ and 0−, and those lying over infinity
∞+,∞−.

Now consider a horizontal critical trajectory ray α+ joining 0+ and ∞−.
It is of finite Q-length and therefore one may consider the maximal rectan-
gle R associated to it. For w = Φ(ξ) one gets

w =
∫

ξ
g−1
2 dξ = cξ

g+1
2

and therefore
Φ−1(w) = ξ = c′w

2
g+1 .

We are interested in the maximal rectangle adjacent to the left of α+. From
the above considerations we see that the vertical border line of the maximal
rectangle R corresponds to the vertical trajectory ray β+ emanating from 0+

(see figure 4.3). Since this (critical) ray hits the zero at infinity ∞+ we get
v < ∞ and therefore a maximal rectangle of finite area. Now consider the
two corresponding distinguished rays ending at ∞+ and ∞−. In the case of
the horizontal critical ray the left-adjacent maximal rectangle is bounded by
a horizontal critical ray. This ray passes through a cut defined by the gluing
rules on its way to the zeros 0+, 0− and therefore hits 0−. Again one gets a
finite-area rectangle. The left-adjacent maximal rectangle of this horizontal
ray is in turn bounded by a vertical critical ray, and as it is critical one
arrives at ∞− since the sheet stays the same.
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0+

∞− ∞−

∞−

∞+

∞+
∞+

0− 0−

0−

0−0−

0−

Figure 4.3: Triangulation for g = 2.

All the constructed maximal rectangles have borders in common and there-
fore coincide. Repeating the above procedure for the 2g + 2 horizontal and
critical trajectories one obtains a triangulation for Σg with 4 distinguished
vertices (V) 0+, 0−,∞+,∞−, 2g+2 faces (F) R1, . . . , R2g+2 and 4g+4 edges
(E) such that the Gauss-Bonnet formula

V + F −E = 4 + (2g + 2)− (4g + 4) = 2− 2g

holds. This concludes the proof.
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Chapter 5

The moduli problem for the
genus g ≥ 2 case

In this chapter we consider how the Lax pairs and methods from integrable
systems theory can be used to study surfaces in S3 and investigate the nature
of spectral curves corresponding to the higher genus surfaces with g ≥ 2 and
non-constant Hopf differential.

5.1 The Lax pair for CMC surfaces in S3

It will be convenient to introduce a spectral parameter λ in order to obtain
a whole family of CMC surfaces.

Lemma 5.1. Introducing a spectral parameter λ ∈ S1 = {z ∈ C | |z| = 1}
and setting Qλ = λQ leaves the Gauss-Codazzi equations invariant and thus
one obtains a family of CMC surfaces with H ≡ const and conformal factor
u.

Proof. This follows directly if one considers the Gauss-Codazzi equations,
i.e.

2uzz̄ + 2e2u(1 + H2)− 1
2
QλQλe−2u = 2uzz̄ + 2e2u(1 + H2)− 1

2
λλ̄QQe−2u

= 2uzz̄ + 2e2u(1 + H2)− 1
2
QQe−2u

= 0.

The claim now follows from the fundamental theorem of surface theory.

We now want to rework the 4×4 Lax pair into a 2×2 Lax pair and therefore
state the following

Lemma 5.2. The double cover of SO(4) is SU(2)× SU(2) via the action

X 7→ FXG−1

71
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and the Lax pair U ,V is transformed to

U =
1
2

( −uz e−uQ
−2(H − i)eu uz

)
, V =

1
2

(
uz̄ 2(H + i)eu

−e−uQ −uz̄

)
,

Ũ =
1
2

( −uz e−uQ
−2(H + i)eu uz

)
, Ṽ =

1
2

(
uz̄ 2(H − i)eu

−e−uQ −uz̄

)
.

Proof. Consider the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

With the 2× 2 identity matrix 1 the Pauli matrices can be used to form a
basis {1, iσ1, iσ2, iσ3} for the ring of quaternions, since we have the quater-
nionic relations

(iσ1)(iσ2) = (iσ3) = −(iσ2)(iσ1),
(iσ2)(iσ3) = (iσ1) = −(iσ3)(iσ2),
(iσ2)(iσ1) = (iσ2) = −(iσ1)(iσ3)

and (iσj)2 = −1 for j = 1, 2, 3.

With the Pauli matrices σ1, σ2, σ3 we first note that for any 2× 2-matrix X
one has

X = σ2Xσ2 =⇒ X =
(

a b
−b̄ ā

)
.

Such a matrix X represents a point in R4 via X ↔ (a1, b2, b1, a2) ∈ R4,
where a = a1 + ia2, b = b1 + ib2. So we may consider R4 to be the set of
matrices X satisfying the above equation. The 3-sphere S3 is then the set
of those X in R4 such that |a|2 + |b|2 = 1, i.e. S3 is identified with SU(2).
For such an X ∈ R4 we see that

X 7→ F ·X ·G−1

represents a general rotation of S3, where

F =
(

c d
−d̄ c̄

)
, G−1 =

(
e f
−f̄ ē

)
∈ SU(2).

To see this, writing the point X = (a1, b2, b1, a2) ∈ R4 in vector form, this
map X 7→ F ·X ·G−1 translates into X 7→ R ·X in the vector formulation
for R4, where

R =




Re(ce− d̄f) −Im(de + c̄f) −Re(de + c̄f) Im(d̄f − ce)
Im(cf − d̄e) Re(c̄e + df) −Im(c̄e + df) Re(cf − d̄e)
Re(d̄e + cf) Im(c̄e− df) Re(c̄e− df) −Im(d̄e + cf)
Im(ce + d̄f Re(de− c̄f) Im(c̄f − de) Re(ce + d̄f)


 .
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A short check now yields that R ∈ SO(4).

Let F1 = F1(z, z̄, λ), F2 = F2(z, z̄, λ) ∈ SU(2) be the matrices that rotate
iσ1, iσ2 and iσ3 to the 2× 2-matrix forms of e1, e2 and N respectively, i.e.

e1 = F1 (iσ1) F−1
2 , e2 = F1 (iσ2) F−1

2 N = F1 (iσ3) F−1
2 .

We now define

U =
(

U11 U12

U21 U22

)
:= F−1

1 (F1)z, V =
(

V11 V12

V21 V22

)
:= F−1

1 (F1)z̄

Ũ =

(
Ũ11 Ũ12

Ũ21 Ũ22

)
:= F−1

2 (F2)z, Ṽ =

(
Ṽ11 Ṽ12

Ṽ21 Ṽ22

)
:= F−1

2 (F2)z̄

and can then compute U and V in terms of the conformal factor u, the mean
curvature H and the Hopf differential Q. Making use of

e1 =
fx

|fx| =
fx

2eu
= F1

(
0 i
i 0

)
F−1

2 , e2 =
fy

|fy| =
fy

2eu
= F1

(
0 1
−1 0

)
F−1

2

we get

fz = 2ieuF1

(
0 0
1 0

)
F−1

2 , fz̄ = 2ieuF1

(
0 1
0 0

)
F−1

2 .

The entries of the matrices U and V are now obtained in the following way:

Differentiating fz̄ with respect to z leads to

fz̄z = uzfz̄ + 2ieu

(
(F1)z

(
0 1
0 0

)
F−1

2 + F1

(
0 1
0 0

)
(F2)−1

z

)

= uzfz̄ + 2ieu

(
F1U

(
0 1
0 0

)
F−1

2 + F1

(
0 1
0 0

)
Ũ−1F−1

2

)

= uzfz̄ + 2ieu

(
F1

(−Ũ21 U11 + Ũ11

0 U21

)
F−1

2

)
.

We now differentiate fz with respect to z̄:

fzz̄ = uz̄fz + 2ieu

(
(F1)z̄

(
0 0
1 0

)
F−1

2 + F1

(
0 0
1 0

)
(F2)−1

z̄

)

= uz̄fz + 2ieu

(
F1V

(
0 0
1 0

)
F−1

2 + F1

(
0 0
1 0

)
Ṽ −1F−1

2

)

= uz̄fz + 2ieu

(
F1

(
V12 0

V22 + Ṽ22 −Ṽ12

)
F−1

2

)
.

Since fzz̄ = fz̄z we therefore obtain

uz̄fz+2ieu

(
F1

(
V12 0

V22 + Ṽ22 −Ṽ12

)
F−1

2

)
= uzfz̄+2ieu

(
F1

(−Ũ21 U11 + Ũ11

0 U21

)
F−1

2

)
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and thus

uz̄fz−uzfz̄ = 2ieu

(
F1

(−Ũ21 U11 + Ũ11

0 U21

)
F−1

2 − F1

(
V12 0

V22 + Ṽ22 −Ṽ12

)
F−1

2

)
,

implying

uz̄fz − uzfz̄ = 2ieu

(
F1

(
−Ũ21 − V12 U11 + Ũ11

−V22 − Ṽ22 U21 + Ṽ12

)
F−1

2

)
.

Writing out the left part of the above equation yields

uz̄fz − uzfz̄ = 2ieu

(
F1

(
0 −uz

uz̄ 0

)
F−1

2

)

= 2ieu

(
F1

(
−Ũ21 − V12 U11 + Ũ11

−V22 − Ṽ22 U21 + Ṽ12

)
F−1

2

)
.

Hence we get

U11 + Ũ11 + uz = 0, V22 + Ṽ22 + uz̄ = 0, U21 = −Ṽ12, Ũ21 = −V12.

Computing fzz yields

fzz = uzfz + 2ieu

(
(F1)z

(
0 0
1 0

)
F−1

2 + F1

(
0 0
1 0

)
(F2)−1

z

)

= uzfz + 2ieu

(
F1U

(
0 0
1 0

)
F−1

2 + F1

(
0 0
1 0

)
Ũ−1F−1

2

)

= uzfz + 2ieu

(
F1

(
U12 0

U22 + Ũ22 −Ũ12

)
F−1

2

)
.

We know that fzz = 2uzfz + QN and with N = F1 (iσ3) F−1
2 therefore

obtain

2uzfz + QN = uzfz + 2ieu

(
F1

(
U12 0

U22 + Ũ22 −Ũ12

)
F−1

2

)
,

thus

2ieu

(
F1

(
U12 0

U22 + Ũ22 −Ũ12

)
F−1

2

)
= uzfz + QN

= 2ieuF1

(
1
2e−uQ 0

uz −1
2e−uQ

)
F−1

2 .

This gives

U12 = Ũ12 =
1
2
e−uQ, U22 + Ũ22 − uz = 0.
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Differentiating fz̄ with respect to z̄ shows V11 + Ṽ11 − uz̄ = 0. We now look
at

fz̄z = uzfz̄ + 2ieu

(
F1

(−Ũ21 U11 + Ũ11
0 U21

)
F−1

2

)

= 2ieu

(
F1

(−Ũ21 0
0 U21

)
F−1

2

)
.

With N = F1 (iσ3) F−1
2 and fz̄z = −2e2uf + 2He2uN we get

fz̄z = −2e2uf + 2He2uN

= 2ieuF1

(
ieu 0
0 ieu

)
F−1

2 + 2ieuF1

(
Heu 0

0 −Heu

)
F−1

2

and thus U21 = −(H−i)eu, Ũ21 = −(H +i)eu. Considering fz̄z̄ one obtains
V21 = Ṽ21 = −e−uQ and summing up the Lax pairs in terms of 2×2-matrices
are of the form

U =
1
2

( −uz e−uQ
−2(H − i)eu uz

)
, V =

1
2

(
uz̄ 2(H + i)eu

−e−uQ −uz̄

)
,

Ũ =
1
2

( −uz e−uQ
−2(H + i)eu uz

)
, Ṽ =

1
2

(
uz̄ 2(H − i)eu

−e−uQ −uz̄

)
.

Now we can give a formula for CMC surfaces in S3 described by 2 solutions
of the above Lax pair. For technical reasons the following considerations will
be mostly stated in the language of su(2)-valued 1-forms αλ = Uλdz +Vλdz̄.

For ω ∈ Ω1(R2, sl(2,C)) we perform a splitting into the (1, 0)-part ω′ and
the (0, 1)-part ω′′, i.e.

ω = ω′ + ω′′,

according to the decomposition of the complexified tangent bundle TC '
TR2 with d = ∂ + ∂̄. Setting the ∗-operator on Ω1(R2, sl(2,C)) to

∗ω = −iω′ + iω′′

one may prove the following lemma.

Lemma 5.3. Let f : R2 → S3 be a conformal immersion and ω = f−1df .
The mean curvature H is given by

2d ∗ ω = H[ω ∧ ω].
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Proof. Let U ⊂ R2 be open and simply connected with coordinate z : U → C
and set df ′ = fzdz, df ′′ = fz̄dz̄. Since f is conformal one has

〈fz, fz〉 = 〈fz̄, fz̄〉 = 0, 〈fz, fz̄〉 = 2v2

with a function v ∈ C∞(U,R\{0}). From the left invariance we obtain

〈ω′, ω′〉 = 〈df ′, df ′〉 = 0,

i.e. conformality is equivalent to 〈ω′, ω′〉 = 0. For two smooth maps F, G :
U → SU(2) that transform the basis {1, ε−, ε+, ε} into a frame {f, fz, fz̄, N},
where

ε− =
(

0 0
1 0

)
, ε+ =

(
0 1
0 0

)
, ε =

(
i 0
0 −i

)
,

the previous lemma implies

f = FG−1, df = 2ivF (ε−dz + ε+dz̄)G−1, N = FεG−1.

Thus α := Udz + V dz̄ = F−1dF and β := Ũdz + Ṽ dz̄ = G−1dG are of the
form

α =
(
−v(H − i)dz − 1

2
v−1Qdz̄

)
ε− +

(
1
2
v−1Qdz + v(H + i)dz̄

)
ε+

+
(

1
2
vzdz − 1

2
vz̄dz̄

)
iε

and

β =
(
−v(H + i)dz − 1

2
v−1Qdz̄

)
ε− +

(
1
2
v−1Qdz + v(H − i)dz̄

)
ε+

+
(

1
2
vzdz − 1

2
vz̄dz̄

)
iε.

With 0 = d(GG−1) = (dG)G−1 + G(dG−1) one calculates

ω = f−1df = (FG−1)−1d(FG−1) = GF−1d(FG−1)
= GF−1(dF )G−1 + GF−1F (dG−1) = GF−1(dF )G−1 + G(dG−1)
= GF−1(dF )G−1 − (dG)G−1 = G(F−1dF −G−1dG)G−1

= G(α− β)G−1.

A computation now yields

d ∗ ω = 4iv2HGεG−1dz ∧ dz̄.

Furthermore we have

[ω ∧ ω] = 8iv2GεG−1dz ∧ dz̄

and thus
2d ∗ ω = H[ω ∧ ω].
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Introducing a spectral parameter λ we make α λ-dependent and are in the
position to express the mean curvature of the immersed surface in terms of
λ.

Theorem 5.4. Let u : R2 → R be a smooth function and define

αλ =
1
2

(
uzdz − uz̄dz̄ iλ−1eudz + iQe−udz̄

iQe−udz + iλeudz̄ −uzdz + uz̄dz̄

)
.

Then 2dαλ+[αλ∧αλ] = 0 if and only if Q is holomorphic and u is a solution
of the reduced Gauss equation

2uzz̄ +
1
2
(e2u −QQe−2u) = 0, Qz̄ = 0.

For any solution u of the above equation and corresponding extended frame
Fλ, and λ0, λ1 ∈ S1, λ0 6= λ1, i.e. λk = eitk the map defined by the Sym-
Bobenko-formula

f = Fλ1F
−1
λ0

is a conformal immersion with constant mean curvature

H = i
λ0 + λ1

λ0 − λ1
= cot(t0 − t1),

conformal factor v = eu/
√

H2 + 1, and Hopf differential Q̃dz2 with Q̃ =
i
4(λ−1

1 − λ−1
0 )Q.

Proof. We decompose αλ into the (1, 0)- and (0, 1)-parts αλ = α′λdz + α′′λdz̄
and get

∂̄α′λ =
1
2

(
uzz̄ iλ−1uz̄e

u

−iuz̄e
−uQ + ie−uQz̄ −uzz̄

)
,

∂α′′λ =
1
2

( −uzz̄ −iuze
−uQ + ie−uQz

iλuze
u uzz̄

)
,

[
α′λ, α′′λ

]
=

1
4

( −e2u + QQe−2u 2iuz̄λ
−1eu + 2iuze

−uQ

−2iλuze
u − 2iuz̄Qe−u e2u −QQe−2u

)
.

Since 2dαλ +[αλ∧αλ] = 0 is equivalent to ∂̄α′λ−∂α′′λ = [α′λ, α′′λ] we see that
u must fulfill the reduced Gauss equation and Qz̄ = 0.

Now let u be a solution of the above equation and consider for λ0, λ1 ∈
S1, λ0 6= λ1 the map f = Fλ1F

−1
λ0

defined by the Sym-Bobenko-formula.
Setting ω = f−1df = Fλ0(αλ1 − αλ0)F

−1
λ0

one has

f−1∂f = Fλ0F
−1
λ1

(
(∂Fλ1)F

−1
λ0

+ Fλ1(∂F−1
λ0

)
)

= Fλ0F
−1
λ1

(
Fλ1α

′
λ1

F−1
λ0
− Fλ1F

−1
λ0

(∂Fλ0)F
−1
λ0

)

= Fλ0

(
α′λ1
− α′λ0

)
F−1

λ0
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and therefore
f−1∂f =

1
2
ieu(λ−1

1 − λ−1
0 )Fλ0ε+F−1

λ0
.

A similar calculation reveals f−1∂̄f = −1
2 ieu(λ1 − λ0)Fλ0ε−F−1

λ0
and it is

clear that 〈f−1∂f, f−1∂f〉 = 〈f−1∂̄f, f−1∂̄f〉 = 0. For the conformal factor
one has to calculate

v2 = 2〈f−1∂f, f−1∂̄f〉 =
1
4
e2u(λ−1

1 − λ−1
0 )(λ1 − λ0).

For ω̃ = f−1df = Fλ0(αλ1 − αλ0)F
−1
λ0

one has the splitting

ω̃ =
1
2
iFλ0

(
(λ−1

1 − λ−1
0 )ω′ + (λ1 − λ0)ω′′

)
F−1

λ0
,

where ω = ω′ + ω′′ belongs to α (without the added spectral parameter λ).
Another calculation shows

d ∗ ω̃ =
1
4
i(λ1λ

−1
0 − λ0λ

−1
1 )Fλ0 [ω

′ ∧ ω′′]F−1
λ0

and
[ω̃, ω̃] =

1
2
(1− λ1λ

−1
0 )(1− λ0λ

−1
1 )Fλ0 [ω

′ ∧ ω′′]F−1
λ0

,

and thus H = iλ0+λ1
λ0−λ1

is the mean curvature for f . From this formula we
obtain

(H2 + 1)(λ−1
1 − λ−1

0 )(λ1 − λ0) = 4

and thus v2 = e2u/(H2 + 1). Finally we want to find the Hopf differential
and consider the normal N = Fλ1εF

−1
λ0

. Similar to the above calculations
one obtains ∂N = Fλ1(α

′
λ1

ε− εα′λ0
)F−1

λ0
with

α′λ1
ε− εα′λ0

=
(

0 1
2eu(λ−1

1 + λ−1
0 )

−Qe−u 0

)
.

Thus one has

Q̃ = −〈∂∂f,N〉 = 〈∂f, ∂N〉 = 〈F−1
λ1

∂fFλ0 , F
−1
λ1

∂NFλ0〉 =
i

4
(λ−1

1 − λ−1
0 )Q,

and the claim is proved.

5.2 Covering spaces for Σg and transformations of
the frame Fλ

We can draw the following conclusions from the Gauss and Codazzi equa-
tions: Away from umbilic points one can choose local coordinates w for Σg

so that the Hopf differential Q is identically 1, Q ≡ 1. Such coordinates
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correspond to w = Φ(ξ) away from the zeros of the Hopf differential as we
have already seen. In our case we have

w = Φ(ξ) =
∫

ξ
g−1
2 dξ =

2
g + 1

ξ
g+1
2 .

Now one can find covering spaces that correspond to the above coordinate
transformation for Σg as we shall see below. In the more general setting you
have to deal with a generalization of manifolds, the so-called orbifolds (see
[2]) which are introduced later.

Definition 5.5. Let f : M → N be a non-constant holomorphic mapping
of degree n (i.e. f−1(Q) has cardinality n for all almost all Q ∈ N) between
the compact Riemann surfaces M, N of genus g and γ, respectively. Define
the total branching number B of f by

B =
∑

P∈M

bf (P ),

where bf (P ) is the branch number of f at P .

Theorem 5.6 (Riemann-Hurwitz Relation). With the above notation we
have

2g − 2 = 2n(γ − 1) + B.

Proof. See [9, I.2.7].

Lemma 5.7. The hyperelliptic Riemann surface Y of genus g′ = 2g + 1
given by

Y : w̃2 = y4g+4 − 1

is a 2-fold cover of Σg : w2 = z2g+2 − 1 with branch points precisely at the
zeros of the Hopf Differential Q.

Proof. Let z and y be local coordinates on Σg and Y respectively. The map

f : Y → Σg

y 7→ f(y) = y2 = z

is of degree 2 and induces a meromorphic function w̃ on Y via

w̃(y) = w(f(y)) =
√

y4g+4 − 1.

Since we have 4g + 4 branch points for Y the genus is g′ = 2g + 1 and thus
the Riemann-Hurwitz relation yields

B = 2g′ − 2− 2n(g − 1) = 2(2g + 1)− 2− 4(g − 1) = 4.
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Lifting the Hopf differential Q(z)dz2 of Σg to Y yields

Q̃(y)dy2

w2
=

Q(f(y))(f ′(y))2dy2

w2
=

4y2gdy2

w2

by the transformation rule for quadratic differentials. If for a P ∈ Y , y
vanishes at P , then z vanishes at f(P ), i.e.

z = y2.

This observation together with the transformation rule gives

ordP Q̃ = (bf (P ) + 1)ordf(P )Q + 2bf (P ).

The four zeros of Q lying over zero and infinity F1, . . . , F4 are of order (g−1)
and therefore one has ord eFi

Q̃ = 2g for the corresponding zeros of Q̃, i.e.

2g = ord eFi
Q̃ = (bf (F̃i) + 1)ord

f( eFi)
Q + 2bf (F̃i)

= (bf (F̃i) + 1)(g − 1) + 2bf (F̃i)

⇔ bf (F̃i) = 1 ∀i.

Since B = 4 we see that these four zeros are the branching points of
f : Y → Σg.

Lemma 5.8. The immersion f : Σg → S3 can be lifted to an almost con-
formal immersion f̃ : Y → S3.

Proof. Away from the branch points of the covering f̃ is a smooth immersion
since it is a composition of smooth immersions. This only fails at the four
branch points - a finite set of points. Hence the claim follows.

The coordinate w = Φ(ξ) = 2
g+1ξ

g+1
2 now indicates that one might regard Y

as a (g + 1)-fold cover of some other Riemann surface. On this surface the
corresponding Hopf differential Q̂ is identically 1, Q̂ ≡ 1. We now first want
to investigate the possibilities of “going down” from one surface to another.
It turns out that this can usually be achieved if one has a finite group acting
smoothly and effectively.

Definition 5.9. An n-dimensional smooth orbifold O is a paracompact
Hausdorff topological space together with a collection {(Ûi, Gi, fi, Ui)} where

(i) {Ui} is an open cover of O;

(ii) Ûi is a smooth connected n-manifold;

(iii) Gi is a finite group acting on Ûi smoothly and effectively;
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(iv) fi : Ûi → Ui is a continuous map which induces a homeomorphism
from Ûi/Gi to Ui;

(v) (Compatibility condition) If y ∈ Ûi and y′ ∈ Ûj satisfy fi(y) = fj(y′),
then there is a diffeomorphism f of a neighborhood Vy of y to a neigh-
borhood of y′ with f(y) = y′ such that fj ◦ f = fi.

Definition 5.10. For any point x ∈ O, orbifold chart (Ûi, Gi, fi, Ui) and
y ∈ f−1(x), the stabilizer or isotropy group Γx of x is

Γx = {g ∈ Gi | g(y) = y}.

A point with non-trivial stabilizer is called a singular point. A singu-
lar point x ∈ O whose stabilizer Γx consists only of orientation-preserving
conformal diffeomorphisms is called a cone point.

The following lemma due to [2] can be applied in a more general setting and
is interesting in its own right, since it allows the “smoothing” of an orbifold.

Lemma 5.11. Let O be a two-dimensional conformal orbifold such that
all its singular points are cone points. Then O can be given the (unique)
structure of a smooth conformal surface Os such that the identity map
O → Os is smooth and conformal on O\{cone points}.
Proof. Γx is cyclic. Suppose it has order p. By the Riemann mapping
theorem we have a uniformizing map, i.e. a conformal diffeomorphism
f : (Û , 0) → (D, 0) to the open unit disk D. Since a conformal diffeo-
morphism of D which preserves the origin must be a rotation, it follows
that f is equivariant with respect to the action of Γx on Û and the action
of Zp on D generated by rotation through 2π/p. The map f factors to a
homeomorphism from U = Û/Γx to the “cone” D/Zp, which is smooth and
conformal away from x.
Now given such a cone point x this homeomorphism can be composed with
the homeomorphism given by

D/Zp → D, y 7→ yp

and thus defines a conformal structure on U . It is clear that this endows
O with a well-defined smooth conformal structure which agrees with the
conformal structure on O\{cone points}.
Remark 5.12. If Os is endowed with the above conformal structure, each
orbifold chart f : Ûi → Ui ⊂ Os is smooth and conformal with a branch
point of order p at each point in the inverse image of a cone point of cone
angle 2π

p .

In the present situation we have again a covering with 4 distinguished points:
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Lemma 5.13. The hyperelliptic Riemann surface Y of genus g′ = 2g + 1
given by

Y : w̃2 = y4g+4 − 1

is a (g + 1)-fold cover of the surface X : w2 = x4 − 1 of genus γ = 1 with
branch points precisely at the distinguished points that correspond to the
zeros of the Hopf Differential Q of Σg.

Proof. The proof of lemma 5.7 carries over to this situation. It is clear that
the genus of X is 1.

S3

Y

X

f

2x (g + 1)x

Σg

Figure 5.1: Covering spaces induced by Σg.

Lemma 5.14. The conformal factor ũ of the surface Y fulfills

ũ(θg(y), θg(y)) = ũ(y, y).

Proof. Let y be a conformal coordinate around a zero of Q. Since the map
θg : y 7→ exp

(
2πi

2g+2

)
· y leaves the metric on Y invariant, we have for ξg =

exp
(

2πi
2g+2

)

e2eu(θg(y),θg(y))ξg ξ̄gdydȳ = e2eu(θg(y),θg(y))dydȳ = e2eu(y,y)dydȳ

and therefore the result follows.

Lemma 5.15. The constant quadratic differential (the Hopf differential) Q̂
of X can be lifted to the Hopf differential Q̃ of Y .
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Proof. This follows immediately from the definition of a lift of a quadratic
differential to the covering surface Y , since setting 2

g+1yg+1 = x yields

Q̂dx2

w2
=

1dx2

w2
=

4y2gdy2

w2
=

Q̃dy2

w2
.

Lemma 5.16. Coordinate changes of the form z 7→ w = w(z) leave the
Gauss and Codazzi equations invariant away from the zeros of w(z).

Proof. The Gauss and Codazzi equations for S3 are given by

2uzz̄ + 2e2u(1 + H2)− 1
2
QQe−2u = 0, Qz̄ = 2Hze

2u.

Since H ≡ const we only need to consider the first equation and investigate
the transformation of the corresponding terms resulting from the coordinate
change. First we observe that from the equation

e2eu(w,w̄)dwdw̄ = e2u(z,z̄)dzdz̄

we get

e2u(z,z̄) = e2eu(w,w̄)

(
dw

dz

) (
dw

dz

)

and therefore

u(z, z̄) = ũ(w, w̄) + ln
(∣∣∣∣

dw

dz

∣∣∣∣
)

.

Differentiation yields

2u(z, z̄)zz̄ =
∣∣∣∣
dw

dz

∣∣∣∣
2

2ũ(w, w̄)ww̄ + ln
(

dw

dz

)

zz̄

+ ln
(

dw̄

dz̄

)

zz̄

=
∣∣∣∣
dw

dz

∣∣∣∣
2

2ũ(w, w̄)ww̄ +

(
1(
dw
dz

) · d
2w

dz2

)

z̄

+

(
1(
dw̄
dz̄

) · d2w̄

dz̄dz

)

z̄

=
∣∣∣∣
dw

dz

∣∣∣∣
2

2ũ(w, w̄)ww̄ +

(
− 1(

dw
dz

)2 ·
d2w

dzdz̄
· d2w

dzdz
+

1(
dw
dz

) · d3w

dz2dz̄

)
+ 0

=
∣∣∣∣
dw

dz

∣∣∣∣
2

2ũ(w, w̄)ww̄,

since w is holomorphic and w̄ anti-holomorphic, respectively. Now consider
the quadratic Hopf differential and its transformation rule for coordinate
changes, namely

Qdz2 = Q̃dw2 ⇐⇒ Q = Q̃

(
dw

dz

)2

.
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Under a coordinate change of the above form the Gauss and Codazzi equa-
tions are transformed into
∣∣∣∣
dw

dz

∣∣∣∣
2

2ũww̄ +
∣∣∣∣
dw

dz

∣∣∣∣
2

2e2eu(1 + H2)− 1
2

(
dw

dz

)2 (
dw

dz

)2

Q̃Q̃
1

(
dw
dz

) (
dw
dz

)e−2eu

and therefore one obtains
∣∣∣∣
dw

dz

∣∣∣∣
2 (

2ũww̄ + 2e2eu(1 + H2)− 1
2
Q̃Q̃e−2eu

)
= 0.

From the above considerations we see that the Gauss and Codazzi equations
are left invariant away from the zeros of w(z) and behave singular at these
points.

Remark 5.17. Since

u(z, z̄) = ũ(w, w̄) + ln
(∣∣∣∣

dw

dz

∣∣∣∣
)

.

we see that the conformal factor u has a singularity at the zeros of w(z).

It is possible to define the quantities û, Q̂ and H on the surface X and one
obtains the following

Theorem 5.18. Via the (g +1)-fold cover p2 : Y → X with y 7→ yg+1 =: x,
the quantities û, Q̂ and H on the surface X : w2 = x4 − 1 are well-defined.
Furthermore û solves the sinh-Gordon equation

2ûxx̄ + sinh(2û) = 0.

Proof. Considering the above construction one sees that it is possible to
define global coordinates via dx̂ = dx

w so that the Hopf differential Q̂ in
these coordinates is identically 1, i.e. Q̂ ≡ 1.
Moreover lemma 5.14 ensures that the conformal factor û is well-defined
on X as well, since it is compatible with the group action induced by the
conformal diffeomorphism θg : y 7→ exp

(
2πi

2g+2

)
· y. Since Q̂ ≡ 1 the Gauss

equation may be reduced to

2ûxx̄ +
1
2

(
e2bu + e−2bu

)
= 2ûxx̄ + sinh(2û) = 0

and we obtain a doubly periodic solution to the sinh-Gordon equation with
singularities appearing precisely at the distinguished points corresponding
to the zeros of Qdz2.

We will see that a frame Fλ on Σg corresponds to a frame F̂λ on X with
a special behavior around the 4 distinguished points corresponding to the
zeros of Q on Σg.
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Theorem 5.19. A coordinate transform of the above form leaves the frame
Fλ respectively the su(2)-valued 1-form αλ invariant.

Proof. Considering

αλ =
1
2

(
uzdz − uz̄dz̄ iλ−1eudz + iQe−udz̄

iQe−udz + iλeudz̄ −uzdz + uz̄dz̄

)

one has to investigate the transformations of the quantities appearing in this
matrix. According to the splitting αλ = α′λ + α′′λ this leads to

(eu)′ = (eeu)′
(

dw

dz

)

and therefore applying ln and differentiation yields

uz =
(

dw

dz

)
ũw

as well as

uz̄ =
(

dw̄

dz̄

)
ũw̄.

With the transformation rule for quadratic differentials in mind we see that
αλ = Uλdz + Vλdz̄ becomes

α̂λ = Ûλdw + V̂λdw̄,

where

Uλ =
(

dw

dz

)
Ûλ, Vλ =

(
dw̄

dz̄

)
V̂λ.

Considering

Fλ = (Fλ)zU
−1
λ = (F̂λ)w

(
dw

dz

)
U−1

λ = (F̂λ)w

(
dw

dz

)
1(
dw
dz

) Û−1
λ

= F̂λ,

and the analogue for V yields the invariance of the frame Fλ and concludes
the proof.

5.3 Closing conditions and monodromy of the mov-
ing frame

When one starts with a CMC H conformal immersion f into S3 defined
on a simply-connected domain D, and then extends f to a conformal CMC
immersion f̂ on a larger non-simply-connected domain D̂, the extension f̂
will be unique. However, it is not necessarily true that f̂ is well-defined on
D̂. The extended immersion f̂ being well-defined on D̂ is equivalent to f̂
being well-defined on every closed loop δ in D̂, i.e. δ : [0, 1] → D̂ and τ is
the Deck transformation associated to δ on the universal cover D̃ of D̂.
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Definition 5.20. A Deck transformation of a cover p : C → X is a
homeomorphism f : C → C such that p ◦ f = p. The set of all Deck
transformations of p forms a group under composition, the Deck trans-
formation group Deck(C/X). Every Deck transformation permutes the
elements of each fiber and defines a group action of the Deck transformation
group on each fiber.

Definition 5.21. Let δ be a closed loop and τ the associated Deck trans-
formation on the universal cover. We call Mδ for which F (τ(z), τ(z), λ) =
Mτ · F (z, z̄, λ) the monodromy of F .

Remark 5.22. The monodromy C∗ → SL(2,C), λ 7→Mλ is a holomorphic
map with essential singularities at λ = 0 and λ = ∞ and by construction
takes values in SU(2) for |λ| = 1.

We want to derive some properties of the monodromy and start with the
so-called “closing conditions”. These are necessary and sufficient conditions
for f to be well-defined on the loop δ, i.e.

f(τ(z), τ(z)) = f(z, z̄).

Theorem 5.23. Let F be an unitary frame with mondoromy Mτ (λ). Let
f(z, z̄) = Fλ1F

−1
λ0

. Then the closing condition is Mτ (λ0) = Mτ (λ1) = ±1.

Proof. The claim follows directly from the Sym-Bobenko formula:

f(τ(z), τ(z)) = F (τ(z), τ(z), λ1)F−1(τ(z), τ(z), λ0)
= Mτ (λ1)F (z, z̄, λ1) (Mτ (λ0)F (z, z̄, λ0))

−1

= Mτ (λ1)F (z, z̄, λ1)F−1(z, z̄, λ0)M−1
τ (λ0)

= Mτ (λ1)f(z, z̄)M−1
τ (λ0) = f(z, z̄)

⇔ Mτ (λ0) = Mτ (λ1) = ±1.

Proposition 5.24. The monodromy satisfies

M(λ̄−1) = (M t(λ))−1.

Proof. We have to show that αλ̄−1 = (αλ
t)−1 holds. Inserting λ̄−1 into αλ

one gets

αλ̄−1 =
1
2

(
uzdz − uz̄dz̄ iλ̄eudz + iQe−udz̄

iQe−udz + iλ̄−1eudz̄ −uzdz + uz̄dz̄

)
.
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On the other hand one has

αλ =
1
2

(
uz̄dz̄ − uzdz −iλ̄−1eudz̄ − iQe−udz

−iQe−udz̄ − iλ̄eudz −uz̄dz̄ + uzdz

)
,

αt
λ =

1
2

(
uz̄dz̄ − uzdz −iQe−udz̄ − iλ̄eudz

−iλ̄−1eudz̄ − iQe−udz −uz̄dz̄ + uzdz

)
,

(αt
λ)−1 =

1
2

(
uzdz − uz̄dz̄ iλ̄eudz + iQe−udz̄

iQe−udz + iλ̄−1eudz̄ −uzdz + uz̄dz̄

)
.

Since dFλ = Fλαλ we have

Fλ̄−1 = (Fλ
t)−1

and hence the result follows from the definition of the monodromy.

Proposition 5.25. For the Pauli matrix σ2 one has

(i) σ2M(λ)σ2 = (M(λ)t)−1,

(ii) σ2M(λ̄−1)σ2 = M(λ).

Proof.

(i) Again we are considering αλ and note that from the previous propo-
sition we can deduce

(αt
λ)−1 =

1
2

(
uz̄dz̄ − uzdz −iλeudz̄ − iQe−udz

−iQe−udz̄ − iλ−1eudz −uz̄dz̄ + uzdz

)
.

Computing σ2M(λ)σ2 yields

σ2M(λ)σ2 = σ2
1
2

(−λ−1eudz −Qe−udz̄ −iuzdz + iuz̄dz̄
−iuzdz + iuz̄dz̄ Qe−udz + λeudz̄

)

=
1
2

(
uz̄dz̄ − uzdz −iλeudz̄ − iQe−udz

−iQe−udz̄ − iλ−1eudz −uz̄dz̄ + uzdz

)

and the first claim is proved.

(ii) Note that (ii) is equivalent to M(λ̄−1) = σ2M(λ)σ2 and that one has

(αλ̄−1) =
1
2

(
uz̄dz̄ − uzdz −iλeudz̄ − iQe−udz

−iQe−udz̄ − iλ−1eudz −uz̄dz̄ + uzdz

)
.

Hence the result follows.
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We now return to the rotations in S3 via the double cover

X 7→ FXG−1 ←→ X 7→ RX

and consider the special case of F = G, that is

R =




1 0 0 0
0 c2

1 − c2
2 − d2

1 + d2
2 2(c1c2 + d1d2) −2c1d1 + 2c2d2

0 −2c1c2 + 2d1d2 c2
1 − c2

2 + d2
1 − d2

2 2(c2d1 + c1d2)
0 2(c1d1 + c2d2) 2c2d1 − 2c1d2 c2

1 + c2
2 − d2

1 − d2
2


 .

The construction procedure of the Lawson surface Σg yields a reflection θg

that acts like a rotation around 2π
g+1 . For g = 2 the corresponding mapping

is

θ2 =
(

A
1

)
:=




−1
2

1
2

√
3 0 0

−1
2

√
3 −1

2 0 0
0 0 1 0
0 0 0 1


 .

Going through the construction procedure of Σg one sees immediately that
interchanging the roles of the Pi’s and Qj ’s one obtains the same surface,
since one just assigns another north pole in S3. Applying this consideration
to the present case one gets

θ2 =




1 0 0 0
0 1 0 0
0 0 −1

2
1
2

√
3

0 0 −1
2

√
3 −1

2


 ,

and we may solve the above equations to obtain a A ∈ SU(2) such that

AfA−1 ←→ R · f = θ2 · f.

Thus we get the following equations

(I) c1
1 − c2

2 − d2
1 + d2

2 = 1,

(II) c2
1 − c2

2 + d2
1 − d2

2 = −1
2
,

(III) c2
1 + c2

2 − d2
1 − d2

2 = −1
2
,

as well as

(IV) c1c2 = −d1d2, c1c2 = d1d2,

(V) c1d1 = −c2d2, c1d1 = c2d2.

Equation (II) and (III) give c2
2 = d2

1 and inserting that into equation (I) one
gets c2

1 − 2c2
2 + d2

2 = 1. Moreover equation (IV) yields 2d1d2 = 0 ⇔ d1 =
0 ∨ d2 = 0. Setting

c1 := −1
2
, c2 = d1 := 0, d2 := −

√
3

2
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one may check that equations (I)-(V) are fulfilled. Furthermore one has

2(c1d1 + c1d2) =
1
2

√
3

2c2d1 − 2c1d2 = −1
2

√
3

and thus A is of the form

A =

(
−1

2 −i
√

3
2

−i
√

3
2 −1

2

)
.

Summing up and considering the general genus g case one has the following

Theorem 5.26. The immersion f : Σg → S3 is equivariant with respect to
the diffeomorphism θg, i.e.

f(θg(z), θg(z)) = Af(z, z̄)A−1, Ag+1 = 1.

Proof. The group generated by (A,A) under the adjoint group action (F,G) :
X 7→ FXG−1 in SU(2) is cyclic and of order (g + 1), since Ag+1 = 1. Thus

G2 = 〈(A, A)〉 ' Zg+1.

For G1 = 〈θg〉 ' Zg+1 one therefore has

f(g(z), g(z)) = Agf(z, z̄)A−1
g ∀g ∈ Zg+1

and the theorem is proved.

Corollary 5.27. The almost conformal immersion g = f ◦ p1 : Y → S3 is
equivariant with respect to the lifted diffeomorphism θ̃g,

g(θ̃g(y), θ̃g(y)) = Ag(y, ȳ)A−1, Ag+1 = 1.

Proof. Since p1 : Y → Σg has branch points at the zeros of Q(z)dz2 on Σg,
the symmetry induced by θg can be lifted to Y .

Theorem 5.28. For the diffeomorphism θg the extended frame Fλ obeys the
following transformation rules

Fλ0 ◦ θg = AFλ0A
−1, Fλ1 ◦ θg = AFλ1A

−1, λ0, λ1 ∈ S1.

Proof. We have already seen that we can find λ0, λ1 ∈ S1 such that f can
be written as

f = Fλ1F
−1
λ0

,

and therefore we get (since f(θg(z), θg(z)) = Af(z, z̄)A−1)

Fλ0 ◦ θg = AFλ0B
−1, Fλ1 ◦ θg = AFλ1B

−1.
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Note that the point P̃1 = (1, 0, 0, 0) corresponds to 1 ∈ SU(2) and therefore
the point z0 on Σg can be chosen such that z0 := 0 corresponds to P̃1 in a
neighborhood of z0. Since z0 is a zero of the Hopf differential it is a fixed
point of the diffeomorphism θg. In the above construction we have precisely
made use of that fact. The frames for f are obtained by integrating the
equation

dFλ = Fλαλ

with initial condition Fλ(z0) = 1. Considering the initial condition for
λ = λ0,1 one sees

Fλ(0) = Fλ(θg(0)) = AFλ(0)B−1 = 1
⇔ B = A.

Rotating λ0 and λ1 while keeping the angle between them fixed, one obtains
the same result for the whole family associated to Σg.

Recall that a smooth solution u of the Gauss and Codazzi equations must
also exist at the zeros of the Hopf differential. Applying the transformation
rules for the extended frames and the preceding considerations now yields
the following

Theorem 5.29. Considering the (g +1)-fold cover p2 : Y → X one obtains
a monodromy Mλ around the 4 distinguished points on X with

Mg+1
λ = 1.

Proof. Due to theorem 5.4 we see that for all λ ∈ C∗, u is a solution of the
reduced Gauss equation if and only if the zero-curvature condition for αλ,
that is

2dαλ + [αλ ∧ αλ] = 0,

is fulfilled. But the zero-curvature condition is an integrability condition
and thus we can integrate to obtain a corresponding extended frame Fλ.
We know that such a smooth solution must also exist at the zeros of the
Hopf differential. Therefore there is no monodromy on Σg.

Now consider a loop δ̂ on X. Transforming the frame on Σg to a frame
F̂λ on X we have already seen that the zero-curvature condition is no longer
valid at the distinguished points corresponding to the zeros of the Hopf
differential on Σg. Thus one obtains a monodromy

Mλ(τ) = τ∗(F̂λ)F̂−1
λ

for the corresponding Deck transformation τ . From the theory of covering
spaces we know that going around the loop δ̂ for (g +1) times results in one
loop δ̃ on the covering surface Y and this in turn corresponds to a 2-fold
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loop δ on the surface Σg. Combining this consideration with the invariance
of the frame F̂λ under coordinate changes induced by the covering spaces
one obtains a monodromy on X with

Mg+1
λ = 1 ∀ λ ∈ C∗.

5.4 The spectral curve for Σg

We have already introduced the notion of monodromy and will now con-
struct a hyperelliptic Riemann surface from a solution û of the sinh-Gordon
equation. This surface is the so-called spectral curve.

Although the monodromy depends on the choice of the base point z0 the
conjugacy classes and hence the eigenvalues do not. Given a conformal
immersion of a torus, i.e. f : R2/Γ→ SU(2), with lattice

Γ = ω1Z⊕ ω2Z,

and corresponding extended frame Fλ one can consider the monodromies
M1(λ), M2(λ) of Fλ with respect to ω1 and ω2. Denoting the corresponding
eigenvalues with µ1, µ2 one can make the following definition.

Definition 5.30. The spectral curve of a conformally immersed torus in
S3 is the hyperelliptic curve given by

Σf = {(λ, µ1, µ2) | det(µ11−M1(λ)) = det(µ21−M2(λ)) = 0}.
The following theorem yields a description of CMC tori in terms of spectral
curves.

Theorem 5.31. Let Y be a hyperelliptic Riemann surface with branch points
over λ = 0 (y+) and λ = ∞ (y−). Then Y is the spectral curve of an
immersed CMC torus in S3 if and only if the following four conditions hold:

(i) Besides the hyperelliptic involution σ, the surface Y has two further
anti-holomorphic involutions η and ρ = η ◦ σ = σ ◦ η, such that η has
no fixed points and η(y+) = y−.

(ii) There exist two non-zero holomorphic functions µ1, µ2 on Y \{y+, y−}
such that for i = 1, 2

σ∗µi = µ−1
i , η∗µ̄i = µi, ρ∗µ̄i = µ−1

i .

(iii) The forms d ln µi are meromorphic differentials of the second kind with
double poles at y±. The singular parts at y+ respectively y− of these
two differentials are linearly independent.
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(iv) There are four fixed points y1, y2 = σ(y1), y3, y4 = σ(y3) of ρ, such
that the functions µ1 and µ2 are either 1 or −1 there.

Proof. We only give a short sketch of the proof and consider the ”only if”-
part. Thus we have to verify the four conditions stated above (for details
see [29]).

(i) From proposition 5.24 and 5.25 one obtains the existence of the three
involutions. Obviously ρ = η ◦ σ = σ ◦ η holds as well as η(y+) = y−.
To complete the proof we have to check that η has no fixed points: If
ν is an eigenvector of Mλ then ν̄ is an eigenvector of M λ̄−1 since

det(µ1−Mλ) = det(µ1− σ2M λ̄−1σ2)
= det(σ2(µ1−M λ̄−1)σ2)
= det(µ1−M λ̄−1) = 0.

We further have

M λ̄−1 ν̄ = Mλ̄−1ν = µ̄ν = µν̄.

With M λ̄−1 = σ2Mλσ2 we get

M λ̄−1 ν̄ = µν̄

⇔ σ2Mλσ2ν̄ = µν̄

⇔ Mλσ2ν̄ = µσ2ν̄

and therefore σ2ν̄ is an eigenvector of Mλ. If η would have fixed
points, the eigenvectors of Mλ would linearly depend on each other,
i.e. σ2ν̄ = γν. But this would imply

−ν̄ = σ2σ2ν̄ = γσ2ν = γ(σ2ν̄) = γγ̄ν̄

and therefore γγ̄ = −1, which is a contradiction. Hence the eigenvec-
tors are linearly independent and η has no fixed points.

(ii) With the help of proposition 5.24 and 5.25 we compute

P (λ̄−1, µ̄) = det(µ̄1−M(λ̄−1)) = det(µ1−M(λ̄−1))
= det(µ1− σ2M(λ)σ2) = P (µ, λ),

P (λ, µ−1) = det(µ−11−M(λ)) = det(µ−11− σ2(M t(λ))−1σ2)
= det(µ−11− (M t(λ))−1) = det(µ1−M t(λ))
= P (λ, µ),

P (λ̄−1, µ̄−1) = det(µ̄−11−M(λ̄−1)) = det(µ−11−M(λ̄−1))
= det(µ−11− (M t(λ))−1) = P (λ, µ).
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(iii) To prove the claim one has to introduce the Baker-Akhiezer function
and this is done in [3]. Following the arguments explained in [29] yields
the claim.

(iv) This follows directly from the closing conditions, since ρ∗λ̄ = λ−1 = λ̄
if and only if |λ| = 1. Moreover σ∗λ = λ and with Mλ0 = Mλ1 = ±1
the result follows.

Considering the Riemann surface X one obtains the following

Conclusion 5.32. The monodromy Mλ on X has eigenvalues that are (g +
1)-roots of unity. Hence the associated spectral curve is trivial.
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Chapter 6

Conclusions and outlook

In this chapter we summarize the results of this work, especially those which
are new. We also give some remarks on other interesting questions that are
beyond the scope of this thesis.

First we introduced the construction procedure for the surfaces Σg according
to [24] and [25] that strongly relies on the reflection principle, i.e. reflection
across a geodesic γ in S3. The surfaces themselves are patched together by
isometric copies of the same “initial surface”MΓg which is a solution to the
famous Plateau Problem. In the present case the boundary is a geodesic
polygon Γg, i.e. a polygon in S3 that is composed of geodesic arcs γi. In
the following we gave an outline of the techniques applied by Lawson (like
the conditions posed upon the geodesic polygon Γg) to ensure that reflection
across these boundary arcs produces a complete, non-singular submanifold
in S3. Moreover we proved that the subgroup of O(4) generated by the
reflections across the boundary arcs (denoted by GΓg) is D2g+2, i.e.

GΓg = Z2g+2 o Z2 ' D2g+2,

where Dn denotes the dihedral group of order 2n. It was also shown that
for each g the surface Σg is a hyperelliptic Riemann surface with reduced
automorphism group D2g+2 and therefore

Σg : w2 = z2g+2 − 1

describes Σg as an algebraic curve.

In the following we were dealing with the Hopf differential Qdz2 of Σg and
proved that up to phase-scaling one has

Qdz2 = a
zg−1dz2

w2
,

where we have made use of the fact that Qdz2 stays invariant under certain
coordinate changes induced by GΓg . We also determined the zeros of Q

95
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and discovered their significance for the following part. Introducing a local
parameter w = Φ(z) and the techniques necessary in order to deal with
trajectories of quadratic differentials (see [33]), we could prove a canonical
triangulation for Σg with a certain form of trajectory rays as edges and the
zeros of Qdz2 as vertices.

Finally we focused on the moduli problem for the genus g ≥ 2 case and
therefore investigated the nature of the object associated to Σg. We showed
that the surface Σg is equivariant with respect to a subgroup of diffeomor-
phisms induced by the reflection across the boundary arcs. Considering the
monodromy for an extended moving frame Fλ on a torus, one can introduce
the notion of the spectral curve. We proved that starting with the surface
Σg one has to consider doubly periodic solutions û to the sinh-Gordon equa-
tion with singularities at distinguished points on a torus X, namely the
points corresponding to the zeros of the Hopf differential Q of Σg. This was
achieved by introducing coverings p : Y → X that induce coordinate trans-
formations of the form z 7→ w = w(z). The extended frame Fλ is invariant
under these coordinate transformations and Σg is covered by a hyperellip-
tic Riemann surface Y that in turn covers the torus X. Considering the
extended frame F̂λ on X we proved that one obtains a monodromy around
the distinguished points that satisfies

Mg+1
λ = 1,

i.e. the corresponding spectral curve is trivial. Thus it might be possible to
merge the knowledge gained from the study of spectral curves and the fact
that Mg+1

λ = 1 at the distinguished points in order to get a description for
CMC-surfaces of higher genus g.

Many open questions are related to the above results. For example one
could investigate how the triangulation transforms if one passes to the torus
X. Knowing the symmetry group, one may pose symmetry-conditions that
must be fulfilled by solutions û of the sinh-Gordon equation. On a torus
the two periods induced by the lattice Γ = ω1Z⊕ ω2Z commute, but in the
present situation this is not the case. Therefore one has to investigate the
behaviour of periods that result from a loop around a distinguished point.

For future research it also might be of interest to consider the asymptotic
analysis of the monodromy, that is the behavior of Mλ around λ = 0 and
λ =∞, where Mλ has essential singularities.
For this purpose one has to express the monodromy in terms of polar co-
ordinates. Then traversing a loop is equivalent to adding a period p. This
periodicity corresponds to a real translation and therefore one may solve

dFλ = Fλαλ, Fλ(0) = 1,
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along the real axis. Considering a trivial solution of the Maurer-Cartan
equation (the zero-curvature equation) related to αλ it is possible to obtain
the monodromy M0(λ) corresponding to the “vacuum”-solution F0(x, y, λ).
The goal would be to find a bound for the monodromy M(λ) in terms of
M0(λ) as one approaches the critical points λ = 0,∞.

It will also be convenient to reformulate the stated results in the language
elucidated in [6] and [10], that is in the language of quaternionic holomorphic
geometry. Considering a quaternionic line bundle V with complex structure
S, it is natural to investigate the connection ∇ and to introduce a S1-family
of flat quaternionic connections

∇λ = ∇+ (λ− 1)A

with λ = eθS . One also obtains a smooth map

f : M → S3 ⊂ H

satisfying
f−1df = (λ− 1)A.

It would be interesting to reflect the results in this more general setting.
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