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Abstract

This thesis deals with deformation of spectral curves of constant mean
curvature tori in S3. At first the key points of the theory of surfaces of
constant mean curvature are brought together. The connection between
conformal maps into different space forms an the sinh-Gordon equation is
established. Then the periodic solutions of the sinh-Gordon equation are
analyzed and the notion of a spectral curve is explained. After that a par-
ticular deformation preserving certain parameters of the spectral curve is
described. This deformation produce a one-parameter family of spectral
curves of tori in S3 from a given spectral curve of a torus in S3. It will be
shown where this deformation can branch from spectral genus 0 to a higher
genus in particular to genus 2. The spectral curves at this branch points are
computed explicitly. A special class of homogeneous tori is defined and it
will be shown that if a spectral curve of some the tori in this class is taken as
the start point of the deformation the mean curvature is going to infinity dur-
ing the deformation. The exact conditions for this behavior are established
and it will also be proved that this conditions are in fact not only neces-
sary but also sufficient. This result will give a deformation path of spectral
curves from a homogeneous torus in S3 through some tori of spectral genus
2 in S3 to a torus in R3.
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CHAPTER 1

Introduction

The surfaces with constant mean curvature have been of big interest to
mathematicians since the middle of the nineteenth century. In the eighties
of the twentieth century this topic regained new interest with the discov-
ery of the first immersed but not embedded tori in R3 by Wente [11]. The
theory was developed further by Hitchin [5], by Pinkall and Sterling [7]
and by Bobenko [1, 2, 3]. In particular the latter worked out the relation
between constant mean curvature tori in different space forms, periodic so-
lutions of the sinh-Gordon equation and hyperelliptic Riemann surfaces.
These surfaces are called spectral curves. A deformation on spectral curves
of constant mean curvature tori in S3 was introduced by Kilian and Schmidt
[6]. The underlying idea to this deformation was established by Grinevich
and Schmidt [4]. This deformation generates for a given spectral curve of a
constant mean curvature torus a one-parameter family of spectral curves of
constant mean curvature tori. The closing conditions are fulfilled by all the
members of this family. Certain spectral curves in such families may have
double points and at these curves it is possible to branch the deformation
to a higher spectral genus. The study of endpoints of such deformations
reveal some interesting behavior. In particular some deformation of spec-
tral curves of constant mean curvature tori in S3 end in spectral curves of
constant mean curvature tori in R3. This gives an explicit example of how
some CMC tori in R3 can be seen as limits of CMC tori in S3. This is also
true in general, see Umehara and Yamada [10].

The main part of this thesis is divided into three chapters. In the chap-
ter 2 we recall some key points of the theory of constant mean curvature
surfaces. We look at conformal immersions into the euclidean space and
into the three sphere and show the definition of extended frames. We point
out the relation between constant mean curvature surfaces and solutions of
the sinh-Gordon equation and at the end of the chapter we also recall the
formulas which construct an immersion from an extend frame.

The chapter 3 will deal with periodic solutions of the sinh-Gordon equa-
tion. We will investigate the monodromy of such solutions and explain the
notion of a spectral curve. Here we will obtain the important conditions
that have to be fulfilled in order for a hyperelliptic Riemann surface to be
a spectral curve of a constant mean curvature torus in either S3 or R3. We
also show an efficient way to encode the spectral data in few real values.

The chapter 4 is the main chapter of the thesis. Here we will introduce
the already mentioned deformation on the spectral curves of constant mean
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F 1-1. Deformation path starting from a homogeneous
torus in S3 and ending in a Wente torus in R3 with some
typical tori on the path.

curvature tori and analyze the behaviour of this deformation. We will show
at which point it is possible for the deformation to branch from spectral
genus g = 0 to g = 2 and we will compute the spectral data of these branch
points. In the second part of this chapter we will focus our interest on a spe-
cial class of spectral curves and prove some properties of the deformation
on these curves. The last part of this chapter will deal with the problem of
finding the necessary and sufficient conditions on the spectral curves of the
mentioned special class so that during the deformation the mean curvature
reaches infinity at the end of the deformation. We will see that the spectral
curve at the end of such deformation is actually a spectral curve of a CMC
torus in R3. A numeric computation will also show that one of those tori is
the already mentioned Wente torus. This means that we will show a defor-
mation path from a homogeneous CMC torus in S3 to a Wente torus in R3.
In the course of this presentation we will show some images of CMC tori.
All those images were created witch Nick Schmitt’s CMClab [8] based on
numerical spectral data obtained by computing the deformation.
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CHAPTER 2

Conformal immersions, sinh-Gordon equation, and
Sym-Bobenko formulas

In the following we will gather some useful standard facts about con-
formal immersions into the three dimensional space forms S3 and R3. In
particular we will look at an equation for the mean curvature of these im-
mersions. Then we will define an extended frame and illustrate its relation
to the sinh-Gordon equation. At the end of the chapter we will also recall
the Sym-Bobenko formulas which construct an immersion from a given ex-
tended frame. The exposition follows the one made in [9].

2.1. Conformal immersions into S3 and R3

We will look at the matrix Lie group SU2. The Lie algebra su2 of this
group is equipped with a commutator [·, ·]. Let α, β ∈ Ω(TR2, su2) be
smooth 1-forms on R2 � TR2 with values in su2. We define now a su2-
valued 2-form

[α ∧ β](X,Y) = [α(X), β(Y)] − [α(Y), β(X)] (2.1)

for X,Y ∈ TR2. Let Lg : h 7→ gh be the left multiplication in SU2. By left
translation we obtain an isomorphism of the tangential bundle
T SU2 � SU2 ×su2. We also have a Maurer-Cartan form

θ : T SU2 → su2, vg 7→ (dLg−1)gvg

which satisfies the Maurer-Cartan equation

2dθ + [θ ∧ θ] = 0. (2.2)

For a map F : R2 → SU2, the pullback α = F∗θ satisfies (2.2) as well. The
converse is also true, every solution α ∈ Ω1(R2, su2) of (2.2) integrates to a
smooth map F : R2 → SU2 with α = F∗θ.

We now complexify the tangent bundle TR2 and decompose
(TR2)C = T ′R2 ⊕ T ′′R2 into (1, 0) and (0, 1) tangent spaces and write
d = ∂ + ∂̄. We also decompose

Ω1(R2, sl2(C)) = Ω′(R2, sl2(C)) ⊕Ω′′(R2, sl2(C))

using su2
C = sl2(C). We split ω ∈ Ω1(R2, sl2(C)) accordingly into the

(1, 0) part ω′ and the (0, 1) part ω′′ writing ω = ω′ +ω′′. Finally, we set the
∗-operator on Ω1(R2, sl2(C)) to ∗ω = −iω′ + iω′′.
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For further computations we fix the following basis of sl2(C):

ε− =

(
0 0
−1 0

)
, ε+ =

(
0 1
0 0

)
, ε =

(
−i 0
0 i

)
. (2.3)

Moreover let 〈·, ·〉 be the billinear extension of the Ad-invariant inner prod-
uct on su2 to su2

C = sl2(C), such that 〈ε, ε〉 = 1. For X,Y ∈ su2 we further
have

〈X,Y〉 = −
1
2

tr XY, ‖X‖ =
√

det X, X × Y =
1
2

[X,Y]. (2.4)

So following relations arise
〈ε−, ε−〉 = 〈ε−, ε〉 = 0, ε∗− = ε+,

[ε, ε−] = 2iε−, [ε+, ε] = 2iε+, [ε−, ε+] = iε.
(2.5)

2.1.1. Euclidean three space. Now we shall prove a formula for the
mean curvature of a conformal immersion into R3.

L 2.1. The mean curvature H of a conformal immersion
f : R2 → su2 is given by 2d ∗ d f = H[d f ∧ d f ].

P. Let U ⊂ R2 be an open simply connected set with a coordinate
z : U → C. Write d f ′ = fzdz and d f ′′ = fz̄dz̄. The conformality of the
map f is equivalent to 〈 fz, fz〉 = 〈 fz̄, fz̄〉 = 0 and the existence of a function
v ∈ C∞(U,R+), such that 〈 fz, fz̄〉 = 1

2v
2. Let N : U → S2 be the Gauss

map and F : U → SU2 a frame such that N = FεF−1, fz = vFε−F−1 and
fz̄ = vFε+F−1. The mean curvature is H = 2v−2 〈 fzz̄,N〉 and the Hopf differ-
ential Qdz2 is given by Q = 〈 fzz,N〉. We compute [d f ∧ d f ] = 2iv2Ndz ∧ z̄.
Another computation shows

F−1dF =
1
2v

(
− (v2Hdz + 2Q̄dz̄)iε− + (2Qdz + v2Hdz̄)iε+

−(vzdz − vz̄dz̄)iε
)
.

Now we can compute d ∗ d f = iv2HNdz ∧ dz̄ and by combining this with
the result for [d f ∧ d f ] we have proved the claim. �

2.1.2. The three sphere. There exists of course also a similar equation
for the mean curvature of a conformal immersion into S3 which we will
prove in the following.

L 2.2. Let f : R2 → S3 be a conformal immersion and ω = f −1d f
then the mean curvature H is given by 2d ∗ ω = H[ω ∧ ω].

P. Let U ⊂ R
2 be an open simply connected set with a coor-

dinate z : U → C. As in the case of euclidean three space we write
d f ′ = fzdz and d f ′′ = fz̄dz̄. The conformality of the map f is equiva-
lent to 〈 fz, fz〉 = 〈 fz̄, fz̄〉 = 0 and the existence of a function v ∈ C∞(U,R+),
such that 〈 fz, fz̄〉 = 1

2v
2. The left invariance gives us 〈ω′, ω′〉 = 〈d f ′, d f ′〉 so

the conformality becomes 〈ω′, ω′〉 = 0.
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Let be F,G : U → SU2 two smooth maps which transform the ba-
sis {Id, ε−, ε+, ε} to a frame { f , fz, fz̄,N}. In this case we have f = FG−1,
d f = vF(ε−dz + ε+dz̄)G−1 and N = FεG−1. Setting α = F−1dF and β = G−1dG

we obtain

α =

(
−

1
2
v(H + i)dz − v−1Q̄dz̄

)
iε− +

(
v−1Qdz +

1
2
v(H − i)dz̄

)
iε+

−

(
1
2
v−1vzdz −

1
2
v−1vz̄dz̄

)
iε

and

β =

(
−

1
2
v(H − i)dz − v−1Q̄dz̄

)
iε− +

(
v−1Qdz +

1
2
v(H + i)dz̄

)
iε+

−

(
1
2
v−1vzdz −

1
2
v−1vz̄dz̄

)
iε

We can now compute

ω = f −1d f = (FG−1)−1d(FG−1) = GF−1d(FG−1)

= GF−1dFG−1 + GF−1FdG−1 = G(F−1dF + dG−1G)G−1

= G(F−1dF + G−1dGG−1G)G−1 = G(α − β)G−1.

Using ω = G(α − β)G−1 together with the former computations we obtain

d ∗ ω = iv2HGεG−1dz ∧ dz̄. (2.6)

On the other hand a computation also reveals

[ω ∧ ω] = 2iv2GεG−1dz ∧ dz̄ (2.7)

So by combining (2.6) and (2.7) we have proved the claim. �

2.1.3. Extended frames. In the following we will introduce the con-
cept of an extended frame and explain its significance for conformal immer-
sions.

L 2.3. Let f : R2 → SU2 be a conformal immersion with non-zero
mean curvature H , 0 then there exist a S1-family of conformal immersions.

P. Let ω = f −1d f . Let the mean curvature of f be H. We have seen
that then both equations

2d ∗ ω = H[ω ∧ ω], 2dω + [ω ∧ ω] = 0 (2.8)

are fulfilled. Combining these equations we obtain dω + H−1d ∗ ω = 0 and
after splitting up

(1 − iH−1)dω′ + (1 + iH−1)dω′′ = 0. (2.9)

From (2.8) we obtain 2dω′′ = −2dω′ − [ω ∧ ω] and 2dω′ = −2dω′′ −
[ω ∧ ω]. Inserting these into (2.9) gives us 4dω′ = −(1 − iH)[ω ∧ ω] and
4dω′′ = −(1 + iH)[ω ∧ ω]. Then we see that

αλ =
1
2

(1 − λ−1)(1 + iH)ω′ +
1
2

(1 − λ)(1 − iH)ω′′
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satisfies 2dαλ + [αλ ∧ αλ] = 0 for all λ ∈ C×. So there exists a solution
Fλ : R2 × S1 → su2 for dFλ = Fλαλ with the initial condition Fλ(0) = 1.
This solution is called an extended frame.

Let now λ0, λ1 ∈ S
1, λ0 , λ1. We claim that f̂ : R2 × S1 → SU2,

f̂ = Fλ1 F−1
λ0

is a conformal immersion with a constant mean curvature

Ĥ = i
λ0 + λ1

λ0 − λ1
.

Let ω̂ = f̂ −1d f̂ = Fλ0(αλ1 − αλ0)F
−1
λ0

. It follows then

ω̂ =
1
2

Fλ0

(
(λ−1

0 − λ
−1
1 )(1 + iH)ω′ + (λ0 − λ1)(1 − iH)ω′′

)
F−1
λ0
.

The left invariance leads to 〈ω′, ω′〉 = 〈d f ′, d f ′〉 and so we obtain
〈ω̂′, ω̂′〉 = 0. This confirms that f̂ is a conformal map since f was assumed
to be conformal.

We now compute

d ∗ ω̂ =
i
4

(λ1λ
−1
0 − λ0λ

−1
1 )(1 + H2)Fλ0[ω

′ ∧ ω′′]F−1
λ0

and

[ω̂ ∧ ω̂] =
1
2

(1 − λ1λ
−1
0 )(1 − λ0λ

−1
1 )(1 + H2)Fλ0[ω

′ ∧ ω′′]F−1
λ0
.

Both equations together show that Ĥ = iλ0+λ1
λ0−λ1

is the curvature of f̂ . �

2.2. The sinh-Gordon equation

This section will illustrate the relation between conformal immersions
with constant mean curvature and solutions of the sinh-Gordon equation.

P 2.4. Let u : R2 → R be a smooth function. Let

αλ =
1
2

(
uzdz − uz̄dz̄ iλ−1eudz + ie−udz̄

ie−udz + iλeudz̄ −uzdz + uz̄dz̄

)
.

Then the equation 2dαλ+[αλ∧αλ] holds exactly if u solves the sinh-Gordon-
equation

uzz̄ +
1
2

sinh(2u) = 0.

P. We decompose αλ = α′λdz + α′′λ dz̄ into the corresponding (1, 0)
and (0, 1) parts. Then we compute

∂̄α′λ =
1
2

(
uzz̄ iλ−1uz̄eu

−iuz̄e−udz −uzz̄

)
, ∂α′′λ =

1
2

(
−uzz̄ −iuze−u

iλuzeudz uzz̄

)
and

[α′λ, α
′′
λ ] =

1
4

(
−e2u + e−2u 2iλ−1uz̄eu + iuze−u

−2iλuzeu − 2iuz̄e−u e2u − e−2u

)
.

The equation 2dαλ + [αλ ∧ αλ] is equivalent to ∂̄α′λ − ∂α
′′
λ = [α′λ, α

′′
λ ]. The

last equation holds if and only if u solves the sinh-Gordon equation. �
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2.3. The Sym-Bobenko formulas

In the following we will explain the Sym-Bobenko formulas which al-
low us to compute an conformal immersion from a given extended frame
into different space forms.

P 2.5. Let M be a simply connected Riemann surface and Fλ

an extended frame.
(i) For every λ0, λ1 ∈ S

1, λ0 , λ1 the map fλ : M → S3 defined by

fλ = Fλ0 F−1
λ1

is a conformal immersion M → S3 with constant mean curvature
H = i(λ0 + λ1)/(λ0 − λ1).

(ii) Let H ∈ R∗. For every λ, ∈ S1 the map fλ : M → R
3 defined by

fλ = −2iλH−1(∂λFλ)F−1
λ −

1
H

FλεF−1
λ

is a conformal immersion M → R
2 with constant mean curva-

ture H

P. We already have proved the case of the three sphere in sec-
tion 2.1.3. We will now proceed with the case of euclidean space. Let
Fλ : R2 × S1 → su2 be an extenden frame. And let αλ = F−1

λ dFλ. We can
then decompose αλ in the following way

αλ = (α′1 + λα′′1 )ε− + (λ−1α′2 + α′′2 )ε+ + (α′3 + α′′3 )ε, (2.10)

with α′j and α′′j independent of λ. Since αλ ∈ su2 for λ ∈ S we also obtain
ᾱ1
′′ = α′2, ᾱ1

′ = α′′2 and ᾱ3
′ = α′′3 . We can now decouple the integrability

2dαλ = [αλ ∧ αλ] into the ε−, ε+ and ε components

λdα′′1 + 2iλα′3 ∧ α
′′
1 = 2iα′1 ∧ α

′′
3 − dα′1, (2.11a)

λ1dα′2 + 2iλ−1α′2 ∧ α
′′
3 = 2iα′3 ∧ α

′′
2 − dα′′2 , (2.11b)

dα′3 + iα′1 ∧ α
′′
2 = iα′2 ∧ α

′′
1 − dα′′3 . (2.11c)

The left sides of the equations (2.11a) and (2.11b) depend on λ, the right
sides do not so both sides of these equations have to be identically zero.
Using this relations we compute

d fλ = 2iH−1Fλ(−α′1e− + α′′2 ε+)F−1
λ . (2.12)

We can see now
〈
d f ′λ, d f ′λ

〉
= 0 by using (2.5) so the conformality is clear.

On the other hand we use (2.12) to obtain

d ∗ d fλ = −4iH−1α′′2 ∧ α
′
1FλεF−1

λ

and
[d fλ ∧ d fλ] = −8iH−2α′′2 ∧ α

′
1FλεF−1

λ .

These two equations together with lemma 2.1 prove the claim. �
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CHAPTER 3

Spectral curves of constant mean curvature tori

In the last chapter we have seen the connection between conformal im-
mersions of constant mean curvature surfaces and solutions of the sinh-
Gordon equation. In this thesis we are interested in immersions of tori into
S3 so we are looking for periodic solutions of the sinh-Gordon equation.
More precisely in order to obtain an immersion of a torus f : R2/Γ → S3

we need a doubly periodic solution of the sinh-Gordon equation. In this
chapter we will analyze periodic solutions. We will introduce the notion of
monodromy and construct a hyperelliptic Riemann surface from a solution
of the sinh-Gordon equation. This surface is the so called spectral curve.
We will also see that a given spectral curve define a solution of the sinh-
Gordon equation in turn. Then we will show the closing conditions needed
to obtain a double periodic solution from a periodic one. The results of this
section are mainly due to Bobenko [2], see also [1, 3].

The second part of the chapter will deal with the question how to encode
the spectral curve with additional functions needed to obtain a solution of
the sinh-Gordon equation to a set of complex numbers. We will call this set
the spectral data. This representation of the spectral curve will allow us to
define a deformation on the spectral curve and represent this deformation
by a system of ordinary differential equations later. This representation is
taken from [6].

3.1. The spectral curve

We have seen that for an open subset U ⊂ C and a function u : U → R

the sinh-Gordon equation

uzz̄ +
1
2

sinh(2u) = 0

is the integrability condition of dF = Fα with

α =
1
2

(
uzdz − uz̄dz̄ iλ−1eudz + ie−udz̄

ie−udz + iλeudz̄ −uzdz + uz̄dz̄

)
.

If U is simply connected and u solves the sinh-Gordon equation there exists
a unique solution F to dF = Fα with the initial condition F(z0) = 1 for
some fixed z0 ∈ C.

F : U ×C∗ → SU2

(z, λ)→ F(z, λ)
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F is holomorphic in λ. Assume u is a periodic solution of the sinh-Gordon
equation. So there exists a p ∈ C such that

u(z + p) = u(z) for all z ∈ C.

Then we also have

α(z + p) = α(z) for all z ∈ C.

It follows
F(z + p) = F(z0 + p)F(z) for all z ∈ C.

D 3.1. Let M(p, λ) = F(z0 + p, λ). The map

M : U ×C∗ → SU2

is called the monodromy of F.

The monodromy is a holomorphic map in λ. It turns out that even
though the monodromy depends on the choice of the base point z0 the con-
jugacy class of it and hence eigenvalues do not. Let ∆(λ) = tr(M(λ)), then
the eigenvalues µ of M are solutions of det(µ1−M(λ)) = µ2−∆(λ)µ+1 = 0.
Let us define now the spectral curve Y

Y = {(µ, λ) ∈ C∗ ×C∗ : µ2 − ∆(λ)µ + 1 = 0}. (3.1)

Now we will diagonalise M(λ). We can regard M(λ) as a matrix
( a b

c d
)

and
we obtain

det(µ1 − M(λ)) = det(µ1 −
( a b

c d
)
) = µ2 − (a + d)µ + (ad − bc) = 0.

We will look for V = (v1, v2)t and W = (w1, w2) such that(
a b
c d

)
V = µV and W

(
a b
c d

)
= µW.

A computation shows that V = (b, µ−a)t and V = (µ−d, c)t are solutions for
V and W = (c, µ−a) and W = (m−d, b) are the solutions for W respectively.
We set

P =
V ·W
W · V

=
1

2µ − a − d

(
µ − d b

c µ − a

)
.

The last term is independent of the choice for V and W. We also see that
P2 = P and P

( a b
c d

)
= µP =

( a b
c d

)
P. So P is a projector.

Since M(λ) is holomorphic in λ the functions a, b, c and d are holomor-
phic in λ ∈ C∗ as well. We also have µ2 − ∆(λ)µ + 1 = 0, by differentiation
we obtain

(2µ − ∆(λ))dµ − ∆′(λ)µdλ = 0
We assume that the spectral curve does not have any singularities. So there
are no points (µ, λ) such that (2µ−∆(λ)) = 0 and ∆′(λ)µ = 0 simultaneously.
This gives

dλ
2µ − ∆(λ)

=
dµ

∆′(λ)
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and Pdλ is a holomorphic one-form on Y . It turns out that Y is a double
cover over λ ∈ C∗ with branch points at ∆(λ)2 = 4. So Y is a hyperellip-
tic Riemann surface genus g. It can then be represented by the equation
ν2 = a(λ), where a is polynomial and the branch points correspond to the
roots of a. We denote the branch points

α0 = 0, α1, . . . , α2g+1, α2g+2 = ∞

and obtain
ν2 = λ(λ − α1) · · · (λ − α2g+1).

There are several important involutions on Y . First of all there is the hy-
perelliptic involution σ. Besides that there are two more anti-holomorphic
involutions η and ρ. These involutions are described by

σ : (µ, λ)→ (µ−1, λ), (3.2a)

η : (µ, λ)→ (µ̄, λ̄−1), (3.2b)

ρ : (µ, λ)→ (µ̄−1, λ̄−1). (3.2c)

We see that ρ = η ◦ σ and we also can show that η does not have any fixed
points.

We already introduced the map W : Y → C
2. We normalise this map

so that W1 = 1 and thus W = (1, w) then w is a meromorphic function on
Y . The poles of W and the poles of w are the same. They are described by
{(µ, λ) : W1 = 0}. These poles define a divisor D. There is a connection
between the spectral curve Y with a divisor D and solutions of the sinh-
Gordon equation.

P 3.2. Let Y be a hyperelliptic Riemann surface so that
λ : Y → CP

1 with branch points y+ over λ = 0 and y− over λ = ∞.
Furthermore let Y possess besides the hyperelliptic involution σ an anti-
holomorphic involution η without fixed points such that η∗λ̄ = λ−1. Let D
be a divisor of degree g+ 1 and η(D)−D = ( f ) and fη∗ f = −1. Then there
exists a real solution of the sinh-Gordon equation for this data.

P. In the following we will give a sketch of the proof of this propo-
sition. Over every point (µ, λ) ∈ Y lies W(µ, λ) in the eigenspace of M(λ)
with the eigenvalue µ. This eigenbundle is a holomorphic line bundle on Y
or the compactification of Y with the additional points y+ over λ = 0 and
y− over λ = ∞ respectively. The map (w1, w2) → w1 is a linear map which
induces a global section of the dual of the eigenbundle. The divisor D gives
the zeros of this global section.

Let define the map Ψ : C × Y → C
2 by

Ψ(z, µ(λ)) = W(µ, λ)F(z, λ)

with the normalized function W(µ, λ) = (1, w(µ, λ)). The map Ψ is the so
called Baker-Akhiezer function. Let T = 1

√
2

( 1 1
−1 1

)
. One can show then that

Ψ has the following properties.
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(i) The function Ψ is meromorphic on Y \ {y+, y−} and has its only
poles at D.

(ii) Let k =
√
λ be a local parameter at λ = 0 then the function

Ψ

(
1
k 0
0 1

)
T−1 exp

(
i

4k

(
z̄ 0
0 −z̄

))
is holomorphic in a neighbourhood of y+ and takes the value (1, 1)
at y+.

(iii) Let k =
√
λ be a local parameter at λ = ∞ then the function

Ψ

(
1 0
0 k

)
T−1 exp

(
ik
4

(
z 0
0 −z

))
is holomorphic in a neighborhood of y− and takes the value (1,−1)
at y−.

We obtain for every z and the Mittag-Leffler distribution i
4k z at λ = 0 and

ik
4 z at λ = ∞ an element of H1(Y,O) and by exp : z → Lz a 2-dimensional
subgroup of H1(Y,O∗).

The mentioned properties ensure that Ψ1 is a holomorphic section of
OD⊗Lz with the values 1, 1 at λ = 0 and λ = ∞. and that Ψ2 is a holomorphic
section of OD ⊗ Lz with the values 1,−1 at λ = 0 and λ = ∞. So these
properties determine Ψ uniquely if every holomorphic section OD ⊗ Lz is
sufficiently described by its values at y+ and y−. This is equivalent to

H0(Y,OD−y+−y− ⊗ Lz) = 0

The Baker-Akhiezer function leads to complex solutions of the sinh-Gordon
equation. In order to obtain real solutions of the sinh-Gordon equation the
monodromy has to obey the following(

0 −1
1 0

)
M̄

(
1
λ̄

) (
0 1
−1 0

)
= M(λ).

In this case the spectral curve is invariant under the involution
η : (µ, λ) → (µ̄, λ̄−1). The branch points of this spectral curve have to
be invariant as a subset of CP1 under the involution λ→ 1

λ̄
. We have then

W̄
(
µ̄,

1
λ̄

) (
0 1
−1 0

)
M (λ) = W̄

(
µ̄,

1
λ̄

) (
0 1
−1 0

) (
0 −1
1 0

)
M̄

(
1
λ̄

) (
0 1
−1 0

)
= W̄

(
µ̄,

1
λ̄

) (
0 1
−1 0

)
µ̄.

And it follows

W̄
(
µ̄,

1
λ̄

) (
0 1
−1 0

)
= f W (µ, λ)

or equivalently

η ∗ W̄
(

0 1
−1 0

)
= f W.
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The poles of η∗W̄ are given by η(D). One can also see that fη∗ f̄ = −1 and
thus that η has no fixed points. We also have η(D) − D = ( f ).

We use now the following lemma.

L 3.3. Let Y be a hyperelliptic Riemann surface with λ : Y → CP
1

of degree 2. Let Y have an anti-holomorphic involution η with η∗(λ̄) = λ−1.
The points y+ and y− over λ = 0 and λ = ∞ shall be branch points and η
has no fixed points. Let D be a divisor of degree deg(D) ≤ g − 1 such that
D − η(D) = ( f ) and fη∗ f = −1. Then it follows that H0(Y,OD) = 0.

The line bundle Lz fulfills η∗L̄z = Lz for every z ∈ C since the transition
functions are invariant under η. OD−y+−y− ⊗ Lz is a line bundle for a divisor
D′ of degree g − 1. And we also have η(D′) − D′ = ( f ) with fη∗ f = −1. So
if the divisor D obeys the conditions deg(D) = g + 1 and η(D) − D = ( f )
with fη∗ f = −1 we can use the lemma to see H0(Y,OD−y+−y− ⊗ Lz) = 0 for
all z ∈ C. So the Baker-Akhiezer function is uniquely defined for all z ∈ C
for such divisors. �

Proposition 3.2 establishes a connection between spectral curves and
periodic solutions of the sinh-Gordon equation. We are interested in spec-
tral curves of tori so we are looking for doubly periodic solutions of sinh-
Gordon equation. The spectral curves of doubly periodic solutions fulfill
additional closing conditions.

P 3.4. Let Fλ be an extended frame. The formulas in proposi-
tion 2.5 define doubly periodic solutions of the sinh-Gordon equation only
if the following holds. Let µi(λ), i = 1, 2 be eigenvalues of the monodromies
corresponding to the two periods.

(i) In case of fλ : M → S3 there are two distinct λ0, λ1 ∈ S
1 such that

µi(λ0) = µi(λ1) = ±1.
(ii) In case of fλ : M → R

3 there exist λ0 ∈ S
1 such that µi(λ0) = ±1

and ∂λ0µi(λ0) = 0.

The restrictions in this proposition can be regarded as additional con-
ditions to the conditions set up in the proposition 3.2, so that the resulting
solutions of the sinh-Gordon equation become doubly periodic.

3.2. Representation of the spectral data

First of all we will reformulate the definition and properties of a spectral
curve of a torus from the last section.

P 3.5. Let Y be a hyperelliptic Riemann surface κ : Y → CP
1

with branch points over κ = i(y+) and κ = −i(y−). Then Y must obey the
following conditions to be a spectral curve of an immersed torus in S3.

(i) Besides the hyperelliptic involution σ Y possesses two more anti-
holomorphic involutions η and ρ = η ◦ σ = σ ◦ η. η has no fixed
points and it interchanges y+ and y−, η(y+) = y−.
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(ii) There are two non vanishing holomorphic functions µ1, µ2 on
Y \ {y+, y−} which fulfill the following conditions

σ∗µi = µ−1
i , η

∗µ̄i = µi, ρ
∗µ̄i = µ−1

i .

(iii) The 1-forms d ln µi are meromorphic differentials of the second
kind with double poles on y±. The principal parts at y+ respec-
tively y− of these differentials are linearly independent.

(iv) There are four fixed points y1, y2 = σ(y1), y3, y4 = σ(y3) of ρ, so
that µ1 and µ2 attain the value 1 or −1 there.

We choose the parameter κ : Y → CP
1 so that y± correspond to κ = i

and κ = −i respectively. We also choose κ so that it fulfills

σ∗κ = κ, η∗κ̄ = κ, ρ∗κ̄ = κ.

We describe the spectral curve which is a hyperelliptic surface by the equa-
tion

ν2 = (κ2 + 1)a(κ).

Here a(κ) is a polynomial defined by

a(κ) =

g∏
i=1

(κ − αi)(κ − ᾱi)

with pairwise different branch points α1, . . . , αg ∈ {κ ∈ C : ={κ} > 0}.
Therefore we have η∗ā = a and ρ∗ā = a. We also have for κ with ={κ} = 0
that a(κ) > 0 and the following transformations hold

η∗ν̄ = −ν, ρ∗ν̄ = ν, ρ∗ν = −ν.

One can see that a is a real polynomial with deg(a) = 2g and a leading
coefficient a2g = 1.

We now define two functions b1, b2 by

bi(κ) =
1
πi
ν(κ2 + 1)∂κ ln µi. (3.3)

We see that bi are polynomial in κ of degree g + 1 and satisfy

η∗b̄i = −bi, ordκ=i,−i bi = g/2

So the differentials d ln µi can be written as

d ln µi = πi
bi(κ)

ν(κ2 + 1)
dκ.

with polynomials bi of degree deg(bi) = g + 1. We also see that all of the
coefficients of bi are real.

There is still a freedom in the choice of the parameter κ so we pick
κ0, κ1 ∈ R, κ0 , κ1 and take the unique parameter κ such that y1 and
y2 = σ(y2) correspond to the two points over κ = κ0 and y3 and y4 = σ(y3)
to the two points over κ = κ1 respectively.

Summarizing these observations we can say
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P 3.6. The spectral curve of a torus in S3 is sufficiently de-
scribed by the choice of the parameter κ, the coefficients of the polynomial
a(κ) and the two polynomials bi(κ), and by the two points k0 and k1.

In the next chapter we will mainly use the parameter κ as it suits most
of the further computations. But there is also a parameter λ on the spectral
curve Y which is used in many works we reference. In some situations
this parameter will seem to be more natural than κ, therefore we will also
introduce it. The parameter λ is chosen so that the points y± correspond to
the values 0 and∞. The parameter λ transforms under the anti-holomorphic
involution η as η∗λ̄ = λ−1, and attains λ = 1 at κ = 0. So in all it obeys the
following transformation rules

σ∗λ = λ, η∗λ̄ = λ−1, ρ∗λ̄ = λ−1.

The points λ0 and λ1 are those that correspond to κ0 and κ1. One can then
obtain the following relations between the both parameters

λ =
i − κ
i + κ

and κ = i
1 − λ
1 + λ

.

We see that the points on the real line in κ correspond to the unit circle in λ.
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CHAPTER 4

Deformation of constant mean curvature tori

In the last chapter we explained how a spectral curve of constant mean
curvature torus in S3 can be sufficiently described by a set of coefficients
of certain polynomials and two more complex numbers. In this chapter we
will introduce a deformation on this spectral data which will give us one-
parameter family of spectral curves for every given spectral curve. This
deformation can be represented by a system of ordinary differential equa-
tions. The deformation can branch at certain spectral curves to families of
spectral curves with a higher spectral genus. In particular we will be inter-
ested in spectral curves of genus g = 0 and their branch points to g = 2. In
order to find those we will analyze tori with spectral curves of genus g = 0
and compute their spectral data. Some of these spectral curves have double
points. These are exactly those curves where the deformation can branch to
higher genus. We will describe an algorithm how to find such curves in a
family of genus g = 0 spectral curves. We will look at the spectral curves
of tori with a rectangular conformal class in particular and compute these
spectral curves with double points explicitly. Then we will show how to
obtain the initial conditions for the deformation of tori with spectral genus
g = 2 from those curves. After that we will explicitly show the deformation
ODE for this class of spectral curves and investigate some properties of this
ODE. In the end of the chapter we will use these properties to formulate
and prove the conditions which have to be fulfilled so that during the defor-
mation the mean curvature goes to infinity. We see then that an endpoint of
such a family of spectral curves from tori in S3 obtained by the deformation
ODE is a spectral curve of a torus in R3.

4.1. Deformation of spectral curves

We will now establish the period preserving deformation of the spectral
curve introduced first by Kilian and Schmidt [6]. This deformation is de-
fined by a system of ordinary differential equations on the spectral data we
introduced in the previous chapter.

Let us look closely at the differentials d ln µi. We have seen that we can
write d ln µi = πiν−1(κ2 + 1)−1bi(κ)dκ. We observe first that∮

d ln µi ∈ 2πiZ
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for all the cycles in H1(Y,Z). So these path integrals can not continuously
depend on the deformation parameter t. The µi are locally algebraic func-
tions of the parameter κ and continuously differentiable with respect to t, so
∂t ln µi are global meromorphic functions on Y with only possible poles at
the branch points of Y .

We can now make the following ansatz

∂t ln µi = πi
ci(κ)
ν
. (4.1)

Here the ci are polynomial in κ of the degree deg(ci) = g + 1 with real
coefficients.

We define the differential ω as

ω = (∂t ln µ1)d ln µ2 − (∂t ln µ2)d ln µ1. (4.2)

This is a meromorphic 1-form on Y with poles at most of order three at κ = i
and κ = −i and roots at κ = κ0 and κ = κ1. We further see that

σ∗ω = ω, η∗ω̄ = ω, ρ∗ω̄ = ω.

So we can conclude that ω as defined in (4.2) has to obey the following
relation

ω ∼
(κ − κ0)(κ − κ1)

(κ2 + 1)2 dκ. (4.3)

Now we can absorb the factor of proportionality by a reparametrization of
the deformation parameter t and we obtain

(∂t ln µ1)d ln µ2 − (∂t ln µ2)d ln µ1 =
(κ − κ0)(κ − κ1)

(κ2 + 1)2 dκ,

or with our ansatz

− π2 c1(κ)b2(κ) − c2(κ)b1(κ)
ν2(κ2 + 1)2 =

(κ − κ0)(κ − κ1)
(κ2 + 1)2 . (4.4)

We also need to ensure the integrability ∂2
tk ln µi = ∂2

kt ln µi of the deforma-
tion ODE. So a second equation arises

∂

∂t
πi

bi(κ)
ν(κ2 + 1)

=
∂

∂κ
πi

ci(κ)
ν
. (4.5)

Now we use the defining equation ν2 = (κ2 + 1)a(κ) and denote the differ-
entiation of a with respect to κ by a′ and the differentiation with respect to t
by ȧ. Of course the same notation is used also for bi and ci. As all polyno-
mials and also the parameter κ0, κ1 and λ0, λ1 respectively depend on t we
usually omit this in the notation. But we still show the dependence on κ and
λ respectively to avoid confusion as we some times switch between these
parameters. After an algebraic manipulation of (4.4) and (4.5) we obtain

2ḃi(κ)a(κ) − bi(κ)ȧ(κ) = − 2κa(κ)ci(κ)

+ (κ2 + 1)(2a(κ)c′i(κ) − ci(κ)a′(κ),
(4.6a)

c1(κ)b2(κ) − c2(κ)b1(κ) = −
1
π2 (κ − κ0)(κ − κ1)a(κ). (4.6b)
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P 4.1. Let Y be a spectral curve with genus g of a CMC torus
in S3. If the differentials d ln µi for i = 1, 2 do not have any common roots
the deformation described above is well defined and Y is contained in an
open family of spectral curves of CMC tori in S3 with genus g.

P. If the differentials do not have any common roots, b1 and b2 also
do not have common roots. In this case the equation (4.6b) evaluated at
these 2g + 2 roots uniquely determine c1 and c2. So there are functions
γi, j(t) for all coefficients of ci so that

ci(κ, t) =

g+1∑
j=0

γi, j(t)κ j.

Now we look at the roots of α j of a. At these roots (4.6a) reads as

bi(α j, t)ȧ(α j, t) = (α2
j + 1)ci(α j, t)a′(α j, t). (4.7)

On the other hand at these roots (4.6b) turns to

c1(α j, t)b2(α j, t) = c2(α j, t)b1(α j, t). (4.8)

The polynomials b1 and b2 have no common roots, so one of the ratios
ci(α j, t)/bi(α j, t) has to be well defined. This in turn ensures that one of the
differential equations (4.7) is also well defined and thus uniquely determines
ȧ. But then (4.6a) also uniquely determine ḃ1 and ḃ2. So we have seen that
given the initial data a, b1, b2, κ0, κ1 the deformation equations uniquely
determine ȧ, ḃ1, ḃ2, c1, c2. �

Now we need to determine κ̇i(t) so that the closing conditions are pre-
served during the deformation. More precisely we need

∂t(ln µi(κ j(t), t)) |κ j= (∂t ln µi + k̇ j∂κ ln µi) |κ j= 0,

and by (3.3) and (4.1) we obtain

κ̇ j = −
∂t ln µi

∂κ ln µi

∣∣∣∣
κ=κ j

= −(κ2
j + 1)

ci(κ j)
bi(κ j)

.

We have seen that as long as d ln µ1 and d ln µ2 have no common roots, at
least one of the ratios ci(κ)/bi(κ) exists and then the other has also to exist
and both must coincide by (4.6b). We see that in the open family of spectral
curves discussed in the previous proposition it is possible to let κ j change
in such a way that also the closing conditions are preserved in the whole
family.

4.2. Constant mean curvature tori with spectral genus g = 0

The deformation we described before has some bifurcation points. If
the one-parameter family of spectral curves reaches a spectral curve which
has double points it is possible to branch the deformation to a higher spec-
tral genus by opening one ore more double points. This is possible if we
treat a spectral curve with double points as a limit curve of a family of spec-
tral curves in which one or more pairs of branch points fall together. In
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F 4-1. Homogeneous torus in S3, normal view and a
cross section

particular we are interested in the case where we start with a spectral curve
of genus g = 0 and open two double points, branching to a spectral genus
g = 2. In the following we will describe how to compute all the needed
data for the spectral curve of genus g = 0 with a pair of double points. At
the end of the section we will see how the actual branching is performed
and we obtain the spectral data which we can use as initial condition for
deformation of spectral curves of genus g = 2 later.

4.2.1. Spectral data of flat tori. We start the computation of the spec-
tral data by showing some general facts about tori with spectral genus g = 0.

P 4.2. For every surface f : R2 → S3 with constant mean
curvature H and spectral genus g = 0 there exists a t0 ∈ Rwith H = cot(2t0)
and λ0 = eit0 such that

f = Fλ−1
0

F−1
λ0

with Fλ(z) = exp
(

i
2

(
0 zλ−1 + z̄

z + z̄λ 0

))
. (4.9)

P. Let us recall that every constant mean curvature surface could
be described as f = Fλ1 F−1

λ0
and Fλ was a solution of dFλ = Fλαλ. Let us

also recall from 2.2 that αλ has the following form

αλ =
1
2

(
uzdz − uz̄dz̄ iλ−1eudz + ie−udz̄

ieudz + iλe−udz̄ −uzdz + uz̄dz̄

)
. (4.10)

In case of a flat surface we have u ≡ 0 and solving dFλ = Fλαλ with such
an αλ we obtain an Fλ such as in (4.9). So there exist λ0, λ1 ∈ S

1 and a
frame in the given form such that f = Fλ1 F−1

λ0
. The parameter λ0 and λ1

are determined only up to a rotation and it is possible to find a rotation such
that λ0 = λ−1

1 hold. �

R. The freedom in rotating the λ-plane which we use to obtain
λ0 = λ−1

1 can be used to ensure that λ0 lies in the upper half of the λ-plane
or ={λ0} ≥ 0.

Let us now suppose that f defined as in (4.9) is an immersion of a torus
into S3. This means that it factors through a lattice ω1Z ⊕ ω2Z and certain
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conditions are ensured on the eigenvalues of the monodromy with respect
to ω1 and ω2. Precisely the following conditions must hold

µ(ω j, λ0) = µ(ω j, λ1) ∈ {−1, 1}.

This is equivalent to the following. There exist integers K1,K2, L1, L2 ∈ Z

such that K1 ≡ L1, K2 ≡ L2 mod 2 and

ln µ(ω j, λ0) = πiK j, ln µ(ω j, λ1) = πiL j. (4.11)

The integers K1,K2, L1, L2 are the wrapping numbers, they encode how
many times Fλ0 and Fλ1 return to their initial value 1 as they traverse a
period in z.

We have seen that the choice of the wrapping numbers together with a
mean curvature uniquely determine a flat torus in S3 up to an isometry.

Now we will establish formulas for the eigenvalues and periods of Fλ(z).
The eigenvalues of Fλ(z) compute to

µ(z, λ) = exp(±
i
2

√
(zλ−1 + z̄)(z + z̄λ))

or

ln µ(z, λ) = ±
i
2

(zλ−
1
2 + z̄λ

1
2 ). (4.12)

Now we take a look at the periods. We have Fλ(0) = 1 as the initial con-
dition and we know that Fλ(ω j) = ±1, so we are looking for z such that
Fλ(z) = ±1. This is the case if and only if ln µ(z, λ) ∈ πiZ, or equivalently

zλ−
1
2 + z̄λ

1
2 ∈ 2πiZ

We now combine (4.11) and (4.12) and see that these are equivalent to the
periods satisfying

ω j = 2π
K jλ

− 1
2

0 − L jλ
− 1

2
1

λ−1
0 − λ

−1
1

. (4.13)

We have seen in section 3.2 that the spectral curve is sufficiently de-
scribed by the polynomials a and b and the parameters κ0, κ1. We are inter-
ested in the spectral data of a spectral genus g = 0 torus, so a is a constant
polynomial a ≡ 1. In the following we will compute the polynomials b1(κ)
and b2(κ) for given spectral parameters κ0 and κ1.

We recall that for the case of genus g = 0 we have an explicit formula
for the immersion given in the proposition 4.2. With the help of this propo-
sition we have also established a formula (4.12) for the eigenvalues of the
function Fz. This formula is given with respect to the parameter λ but we
are interested in a formula with respect to parameter κ as this will be more
convenient later. Rewriting the formula we obtain

ln µ(z, κ) =
i
2

z
√ i − κ

i + κ

−1

+ z̄

√
i − κ
i + κ

 . (4.14)
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We have seen that we also have explicit formulas for the periods for given
winding numbers

ωi = 2π
Kiλ

− 1
2

0 − Liλ
− 1

2
1

λ−1
0 − λ

−1
1

. (4.15)

Now we will obtain the polynomials bi. As bi(κ) are defined by the equation

bi(κ) =
1
πi
ν(κ2 + 1)∂κ ln µi,

we just use (4.14) and (4.15) to evaluate this formula. This formula also
contains the expression ν. We remember that using the parameter κ we have
ν2 = (κ2 + 1)a(κ). Here ν2 = κ2 + 1, so ν =

√
(κ2 + 1). Our preliminary

result for bi will be

bi(κ) =
1
πi

(κ2 + 1)3/2∂κ ln µ(ωi, κ). (4.16)

Let us look at ln µi(ω j, κ) more closely. We have

ln µ(ωi, κ) =
i
2

ωi

√ i − κ
i + κ

−1

+ ω̄i

√
i − κ
i + κ


= πi

K jλ
− 1

2
0 − L jλ

− 1
2

1

λ−1
0 − λ

−1
1

√ i − κ
i + κ

−1

+
K jλ

− 1
2

0 − L jλ
− 1

2
1

λ−1
0 − λ

−1
1

√
i − κ
i + κ


since Ki and Li are both integers. As λ0 and λ1 lie on the unit circle further
algebraic transformation lead to

ln µ(ωi,κ) =

π
(
Li
√
λ1 (i(λ0 + 1)κ − (λ0 − 1)) + Ki

√
λ0 (−i(λ1 + 1)κ + (λ1 − 1))

)
(λ0 − λ1)

√
κ2 + 1

.

Now we use the relation λ0 = λ−1
1 we have established earlier to obtain

ln µ(ωi, κ) =
π
√
λ0 (Li ((λ0 + 1)κ + i(λ0 − 1)) − Ki ((λ0 + 1)κ − i(λ0 − 1)))

(λ2
0 − 1)

√
κ2 + 1

.

After computing the derivative ∂κ ln µ(ωi, κ) we use (4.16) to obtain

bi(κ) = −
(Ki + Li)

√
λ0

λ0 + 1
κ +

i(Ki − Li)
√
λ0

λ0 − 1
. (4.17)
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We have |λ0| = 1 and λ0 = i−κ0
i+κ0

which as we have seen ensures κ0 ∈ R. We
obtain

√
λ0

λ0 + 1
=

1
2

√
κ2

0 + 1,

i
√
λ0

λ0 − 1
=

1
2κ0

√
κ2

0 + 1.

So (4.17) becomes

bi(κ) = −

(Ki + Li

2

√
κ2

0 + 1
)
κ +

Ki − Li

2κ0

√
κ2

0 + 1. (4.18)

Let us summarize the last calculations in a proposition.

P 4.3. The spectral data (a, b1, b2) of a flat torus with given
winding numbers Ki, Li and the spectral parameter k0 and k1 = −k0 is

a(κ) = 1, bi(κ) = −

(Ki + Li

2

√
κ2

0 + 1
)
κ +

Ki − Li

2κ0

√
κ2

0 + 1.

In the further treatment we will concentrate on tori with a rectangular
conformal class. We assume that one period of such a torus is real and the
other is purely imaginary. This assumption will impose certain conditions
on the winding numbers. To see these conditions we make the following
observations. We use the formula (4.15) for the periods but rewrite it for
the parameter κ, we have

ωi =
πi

2κ0

(
κ2

0 + 1
) Ki

√ i − κ0

i + κ0

−1

− Li

√ i + κ0

i − κ0

−1 .
Now we use fact that κ0 is real and obtain

ωi =
π

2κ0

√
κ2

0 + 1((Ki + Li)κ0 + i(Ki − Li)).

As π
2κ0

√
κ2

0 + 1 is real as long κ0 is real, we see that ωi is real whenever
Ki = Li and purely imaginary whenever Ki = −Li. So we can assume
K1 = L1 and K2 = −L2. We will use this assumption in all further computa-
tions.

D 4.4. From here on we look at homogeneous tori with one real
and one purely imaginary period. These tori are described by the winding
numbers K1 = L1 and K2 = −L2.
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If we use these relations for the data in proposition (4.3) we see

b1(κ) = −

(K1 + L1

2

√
κ2

0 + 1
)
κ +

K1 − L1

2κ0

√
κ2

0 + 1

= −

(
K1

√
κ2

0 + 1
)
κ,

(4.19a)

b2(κ) = −

(
−

K2 + L2

2

√
κ2

0 + 1
)
κ +

K2 − L2

2κ0

√
κ2

0 + 1

=
K2

κ0

√
κ2

0 + 1.
(4.19b)

So we have proved the following proposition.

P 4.5. If one period of an flat torus is real and the other purely
imaginary it is possible to write the polynomials bi(κ) so that b1(κ) is an odd
polynomial and b2(κ) is an even polynomial. Both have real coefficients.
The spectral data (a, b1, b2,κ0) of such torus is given by

a(κ) = 1, b1(κ) = −

(
K1

√
κ2

0 + 1
)
κ,

b2(κ) =
K2

κ0

√
κ2

0 + 1.

R. So we can write b1(κ) = f1κ and b2(κ) = f2 with real num-
bers f1 and f2. Obviously the spectral data of such a torus is sufficiently
determined by the real triple ( f1, f2,κ0).

4.2.2. Algorithm for finding double points on a spectral curve of a
flat torus. In the following we will describe the algorithm for finding a
spectral curve from a torus of a genus g = 0 with double points on it. This
algorithm is presented in [6].

We will work with the parameter λ in the following. The double points
of the spectral curve are those λd for which there exist two additional inte-
gers M j ∈ Z such that we have

ln µ(ω j, λd) = πiM j (4.20)

for the both periods. We want to prove an important observation concerning
double points first.

P 4.6. The possible double points on the spectral curve of a
flat torus in S3 have to lie on the unit circle S1 in the λ-plane.

P. Let λd ∈ C
× be a double point on the spectral curve of a flat

torus in S3. Then there exist two integers M j ∈ Z such that condition (4.20)
holds for both periods ω j. By (4.12) this reads

ω1λ
− 1

2
d + ω̄1λ

1
2
d = 2πiM1,

ω2λ
− 1

2
d + ω̄2λ

1
2
d = 2πiM2
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or

ω1 + ω̄1λd = 2πiM1λ
1
2
d ,

ω2 + ω̄2λd = 2πiM2λ
1
2
d .

Now we combine both equations by eliminating λd and we obtain

λ
1
2
d =

ω1ω̄2 − ω2ω̄1

2π(ω̄2M1 − ω̄1M2)
.

On the other hand, we can eliminate λ0
d and obtain

λ
1
2
d =

2π(ω2M1 − ω1M2)
ω̄1ω2 − ω̄2ω1

.

Both solutions together lead to
√
λd = 1/

√
λd and so |

√
λd| = 1 or equiva-

lently λd ∈ S
1. �

Now it is possibly to write down an algorithm for finding double points.
This algorithm will allow us to compute the value of the parameter λ0 and
therefore for λ1 = λ−1

0 and the value of the double point λd for the given
winding numbers.

We have seen that the defining equations for a double point are given by
(4.20) for two integers M j ∈ Z. We also have established formulas for the
eigenvalues and the periods of a flat torus, namely (4.12) and (4.13). Using
the equation for eigenvalues to rewrite the equation (4.20) we obtain

i
2

(ω jλ
− 1

2
d + ω̄ jλ

1
2
d ) = πiM j.

Now we insert the formula (4.13) for the periods and obtain after some
algebraic simplifications the following equations

K jλ
1
2
0 (λd − λ1) + L jλ

1
2
1 (λ0 − λd) + M jλ

1
2
d (λ1 − λ0) = 0.

Substituting x =
√
λ1/λ0 and y =

√
λd/λ0 these equations read as

K j(x2 − y2) + L j(xy2 − x) + M j(y − x2y) = 0. (4.21)

We observe first that if (x, y) is a solution of (4.21) there exist another solu-
tion (x−1, y−1) as well. Now we set

a = K2L1 − K1L2, b = K2M1 − K1M2, c = L2M1 − L1M2,

p =
a2 − b2 − c2

bc
, q =

a2 − b2 + c2

ac
.

and
x2 + px + 1 = 0, y2 + qy + 1 = 0. (4.22)

A computation shows that the solutions x1,2 and y1,2 of (4.22) correspond to
solutions of (4.21) in a way that (x1, y2) and (x2, y1) solve (4.21).

P 4.7. It is possible to assume κ0 > 0.
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P. As we have seen it is possible to assume that λ0 = λ−1
1 and thus

x =

√
1/λ2

0. So λ0 = ±x−1. With the two solutions x1,2 there are actually
four possible values but only two of them lie in the upper half of the λ-
plane and thus lead to really different spectral curves as the other two can
be derived from the first by a rotation. λ0 in the upper half of the λ-plane is
equivalent to κ0 > 0 after the transformation to the parameter κ. �

In the following we transform the solutions λ0, λ1, λd to κ0, κ1, κd.

P 4.8. Let κd be a double point of on a spectral curve of a
torus with winding numbers K1 = L1 and K2 = −L2. If κd , 0 then −κd is
also a double point on this spectral curve.

P. When the winding numbers obey K1 = L1 and K2 = −L2 the
period ω1 is real and ω2 is purely imaginary. If κd is a double point so there
are numbers M1 and M2 so that

ln µ(ω j, κd) = πiM j.

On the other hand since κd is real we have

ln µ(ω j, κd) =
i
2

ω j

√
i + κd

i − κd
+ ω̄ j

√
i − κd

i + κd

 .
and a computation reveals

ln µ(ω1,−κd) = πiM1,

ln µ(ω2,−κd) = −πiM2.

So −κd is also a double point. �

4.2.3. Branching from spectral genus g = 0 to g = 2. In the previous
sections we have seen how one can obtain spectral data of a torus from spec-
tral genus g = 0 with prescribed winding numbers and spectral parameter
κ0. We also have seen how to find the spectral curves which have two dou-
ble points κd and −κd. Now we will use this data to branch the deformation
to a family of spectral genus g = 2 curves.

We start with the polynomial a(κ). In the case of spectral genus g = 0
the polynomial a(κ) is a constant polynomial. For g = 2 the polynomial
a(κ) must have double zeros at the double points. As it still has to have a
leading coefficient 1 we obtain

a(κ) = (κ − κd)2(κ + κd)2 = κ4 + (−2κ2
d)κ2 + κ4

d. (4.23)

In order for d ln µi to have the right roots and poles the polynomials bi(κ)
need to have roots at the double points. Let b̃i denote the bi from the case
g = 0 we have computed earlier. We obtain

bi(κ) = b̃i(κ)(κ2 − κ2
d) (4.24)
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as the new bi. Using proposition 4.5 we obtain

b1(κ) = −

(
K1

√
κ2

0 + 1
)

(κ2 − κ2
d)κ,

b2(κ) =

(
K2

κ0

√
κ2

0 + 1
)

(κ2 − κ2
d).

(4.25)

One important observation for this data is that a is an even polynomial, b1

is an odd polynomial and b2 is again an even polynomial. This observa-
tion will be very helpful in the further treatment. We can summarize the
symmetries of this spectral curve as follows.

P 4.9. The spectral data of a flat torus at a branch point from
genus g = 0 to g = 2 has the following properties.

(i) a(κ) = κ4 + a2κ
2 + a0 with a0, a2 ∈ R.

(ii) b1(κ) = f1(κ2 − β1)κ with f1, β1 ∈ R.
(iii) b2(κ) = f2(κ2 − β2) with f2, β2 ∈ R.
(iv) κ0 = −κ1.

Besides the branch points at i and −i there are four other roots of a(κ)
α1, α2, α3 and α4 which also fulfill the relation α1 = −α3 in addition to the
relations α1 = ᾱ2 and α3 = ᾱ4 which are always fulfilled as we have seen
in section 3.2. We also see that b1 has roots at 0,

√
β1 and −

√
β1 and b2 has

roots at
√
β1 and −

√
β1 respectively.

Now we use (4.23) and (4.25) to write down the coefficients of a, b1 and
b2 and we obtain the following proposition.

P 4.10. The spectral data of a flat torus at a branch point
from genus g = 0 to g = 2 is

a0 = κ4
d, a2 = −2κ2

d,

β1 = κ2
d, f1 = −

(
K1

√
κ2

0 + 1
)
,

β2 = κ2
d, f2 =

(
K2
κ0

√
κ2

0 + 1
)
.

4.3. Deformation of spectral curves from tori of rectangular type

In this section we will compute the deformation ODE explicitly for the
tori of rectangular type. Then we will investigate the properties of this ODE
in particular we are interested in possible endpoints of the deformation and
monotony of it. We will see that certain symmetries which were present in
the initial conditions will be preserved during the deformation. In the next
section we will also see that these symmetries will occur in the endpoints
of the deformation path we are interested in. This will retroactively give the
reason why it was possible to look only on a very restricted class of spectral
curves while searching a path to a spectral curve in R3. The last part of
this section we deal with the problem that the initial condition presented in
the last section constitute a singularity for the deformation ODE. We will
compute the derivatives of the functions in the ODE at this point and show
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that there is only one direction in which the deformation can take place so
that the family of spectral curves we obtain in this way will be a family of
spectral curves of tori in S3.

4.3.1. The deformation ODE for tori of rectangular type. We have
seen in the previous section that the spectral curve of a rectangular torus has
several additional symmetries right at the branch point compared to sym-
metries already present in the general case. These symmetries are summa-
rized in proposition 4.9. We will now show that we can solve the equation
defining the deformation preserving these symmetries. Thus we are coming
to the conclusion that the deformation defined in the section 4.1 preserves
these symmetries in the following way. If such symmetry occurs in one
curve of the family given by the deformation it has also to occur in all other
curves of the family.

Let us gather the important information first. We have seen in proposi-
tion 4.9 that the spectral curve at the initial point is defined by

a(κ) = κ4 + a2κ
2 + a0,

b1(κ) = f1(κ2 − β1)κ,

b2(κ) = f2(κ2 − β2),

(4.26)

and the parameter κ0, κ1 = −κ0 whereas a0, a2, β1, f1, β2, f2, κ0 ∈ R. On
the other hand we have defined in section 4.1 a deformation ODE which
essentially break down to two equations

2ḃi(κ)a(κ) − bi(κ)ȧ(κ) = − 2κa(κ)ci(κ)

+ (κ2 + 1)(2a(κ)c′i(κ) − ci(κ)a′(κ),
(4.27a)

c1(κ)b2(κ) − c2(κ)b1(κ) = −
1
π2 (κ − κ0)(κ − κ1)a(κ). (4.27b)

These equations are accompanied by a third one for κ j,

κ̇ j = −(κ2
j + 1)

ci(κ j)
bi(κ j)

. (4.28)

Let us now rewrite the equation (4.27b) by using κ0 = −κ1 and we obtain

c1(κ)b2(κ) − c2(κ)b1(κ) = −
1
π2 (κ2 − κ2

0)a(κ). (4.29)

When applying the initial conditions (4.26) to (4.29) we see that we have
only even powers of κ at the right side. In order to solve this equation c1 has
to be an odd function as b1 is assumed to be odd and c2 has to be an even
function as b2 is assumed to be even. It is possible to write down c1 and c2

as solutions of this equation as long as b1 and b2 do not have common roots.
This condition is equivalent to β1 , β2 and β2 , 0. Let us now assume that
we can write ci as

c1(κ) = γ1,2κ
2 + γ1,0,

c2(κ) = γ2,3κ
3 + γ2,1κ.

(4.30)
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A computation shows that under the restrictions mentioned above γi, j turn
out to be

γ1,2 =
−β2

1β2 + β1β2κ
2
0 − a2β1β2 + a2β2κ

2
0 − a0β2 + a0κ

2
0

π2 f2β2(β1 − β2)
,

γ1,0 =
−a0κ

2
0

π2β2 f2
,

γ2,3 =
1
π2 f1

,

γ2,1 =
−β1β

2
2 + β2

2κ
2
0 − a2β

2
2 + a2β2κ

2
0 − a0β2 + a0κ

2
0

π2 f1β2(β1 − β2)
.

Now we use this result to compute the actual deformation ODE,

κ̇0 = −
(a0 + (a2 + β1)β2)κ0(κ2

0 + 1)
π2(β1 − β2)β2 f1 f2

,

ȧ0 =
2a0(2a0(β2 − κ

2
0) + 2β2(κ2

0 − β1) + a2(β2(β1 − κ
2
0 − 1) + κ2

0))
π2(β1 − β2)β2 f1 f2

,

ȧ2 =
2((a2 − 1)a2β2(β1 − κ

2
0) + a0(β2(a2 − 2β1 + 2κ2

0 − 2) − (a2 − 2)κ2
0))

π2(β1 − β2)β2 f1 f2
,

β̇1 =

(
a2 − β

2
1

)
β2(β1 − κ

2
0) + a0(β2(β1 + κ2

0 + 2) − 2(β1 + 1)κ2
0)

π2(β1 − β2)β2 f1 f2
,

ḟ1 =
(a2 + β1)β2(β1 − κ

2
0) + a0(β2 − κ

2
0)

π2(β1 − β2)β2 f2
,

β̇2 =
(−2β1(β2 + 1) + (a2 + 1)κ2

0 + β2(−a2 + 2κ2
0 + 1))β2

2 + a0(β2 − κ
2
0)

π2(β1 − β2)β2 f1 f2
,

ḟ2 =
2a0(β2 − κ

2
0) + β2(β1(a2 + 2β2 + 1) + β2(a2 − 2κ2

0 − 1) − 2a2κ
2
0)

π2(β1 − β2)β2 f1
.

(4.31)

We have obtained the equation for κ̇0 by rewriting (4.28) and using the so-
lutions for c2.

4.3.2. Properties of the deformation ODE. In this section we will
look more closely at the deformation ODE (4.31) from the previous section
and investigate which symmetries are preserved by it.

We first observe that if κ0, a0, a2 β1, f1, β2, f2 are real numbers so are
κ̇0, ȧ0, ȧ2, β̇1, ḟ1, β̇2, ḟ2. This shows that κ0, a0, a2 β1, f1, β2, f2 stay real
throughout the deformation if they are real initially.
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P 4.11. If it is possible to write the spectral data of a torus in
the form

a(κ) = κ4 + a2κ
2 + a0,

b1(κ) = f1(κ2 − β1)κ,

b2(κ) = f2(κ2 − β2),

plus the parameter κ0 whereas a0, a2, β1, f1, β2, f2, κ0 ∈ R, then this special
form will be preserved throughout the whole deformation.

P. By being able to solve (4.27) and for a, b1 and b2 of the form as
defined in the proposition and being able to write down an explicit ODE on
the coefficients we have actually proved that a, b1 and b2 keep their special
form throughout the whole deformation. �

We see that the deformation is described by a system of ordinary differ-
ential equations with real coefficients. We start the deformation with some
known initial conditions and the derivatives are continuous functions of the
coefficients so it is clear that this system has a solution for every t in some
interval I. Now let I be the maximal interval for which the solution to the
ODE exists. This interval either extends to infinity or is bounded by some
tmax < ∞. If it is bounded the only reason for this can be that some deriva-
tive in the equation (4.31) has a pole at tmax. By inspecting the denominators
of the terms on the right side of the deformation ODE we see that a pole is
possible if one of the following is true.

β1 − β2 = 0, β2 = 0, f1 = 0, f2 = 0.

Assuming that during the deformation and also at a possible endpoint tmax

fi never vanishes we see that the following is true.

P 4.12. The maximal interval where a solution of the defor-
mation ODE is defined either extends to infinity or ends at tmax and then
either β1(tmax) − β2(tmax) = 0 or β2(tmax) = 0 must hold.

As neither β1(t) − β2(t) = 0 or β2(t) = 0 can be true for t < tmax, we also
have the following.

C 4.13. During the deformation either β1−β2 > 0 or β1−β2 < 0
is preserved. The same is also true for β2 > 0 or β2 < 0.

Now we have to show that the assumption that fi never vanishes is in-
deed correct.

P 4.14. During the deformation and also at a possible end-
point fi , 0 is preserved.

P. On a spectral curve of a torus the differentials d ln µi are not
identically zero. So there exist cycles in H1(Y,Z) such that

∮
d ln µi , 0.

As the values of
∮

d ln µi are preserved during the deformation fi cannot
become zero during the deformation and at a possible endpoint. �
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P 4.15. The functions f1, f2 impose only a reparametrization
of the time axis for the functions κ0, a0, a2 β1, β2 compared to the case where
f1 and f2 assumed to be constant, as long as f1 and f2 do not change their
sign.

P. The functions f1 and f2 are only factors in all terms of the defor-
mation ODE. More precisely the terms defining κ̇0, ȧ0, ȧ2, β̇1, β̇2 contain f1

and f2 only as the factor 1/( f1 f2). Thus as long as f1 and f2 do not change
their sign their actual value only define a reparametrization of the time axis
for the functions κ0, a0, a2 β1, β2. �

C 4.16. Changing f1 to − f1 at the initial conditions corre-
sponds to the change from t to −t, so it reverses the direction of the de-
formation. The same applies to the change from f2 to − f2.

Since we will be interested in the endpoints of the deformation later on
this observation tells us that the exact values of f1 and f2 do not change the
other values at the endpoint of the deformation.

P 4.17. The values ln µ1(∞) and ln µ2(0) remain constant dur-
ing the deformation.

P. The derivatives of ∂t ln µi are defined as

∂t ln µi = πi
ci(κ)
ν

= πi
ci(κ)√

(κ2 + 1)(κ4 + a2κ2 + a0)
.

We have seen in (4.30) that c2(0) = 0 so ∂t ln µ2(0) = 0. On the other hand
we also have seen that deg(c1(κ)) = 2 and so we have

lim
κ→±∞

∂t ln µ1 = lim
κ→±∞

πi
c1(κ)√

(κ2 + 1)(κ4 + a2κ2 + a0)
= 0.

�

4.3.3. Solving the problem with singular initial conditions. In sec-
tion 4.2.3 we have computed the spectral data of a homogeneous torus right
at the branch point from spectral genus g = 0 to g = 2. We have seen that
this spectral data depends on the parameter κ0, the position of one double
point κd and the two winding numbers K1 = L1 and K2 = −L2. From this
we obtained

a0 = κ4
d, a2 = −2κ2

d,

β1 = κ2
d, f1 = −

(
K1

√
κ2

0 + 1
)
,

β2 = κ2
d, f2 =

(
K2

κ0

√
κ2

0 + 1
)
.

(4.32)

We see that β1 = β2. So the initial condition is a singularity of the deforma-
tion ODE, the derivatives are not defined here. We will nevertheless see that
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it is possible to find a solution for the deformation equation at this point by
the means of power series. We will now compute the first derivatives of the
spectral data for the initial conditions. In order to compute the derivatives
we use the ansatz

κ0(t) = κ0(0) + κ̇0(0)t,
a0(t) = a0(0) + ȧ0(0)t, a2(t) = a2(0) + ȧ2(0)t,

β1(t) = β1(0) + β̇1(0)t, f1(t) = f1(0) + ḟ1(0)t,

β2(t) = β2(0) + β̇2(0)t, f2(t) = f2(0) + ḟ2(0)t.

Now we insert these functions in the deformation ODE and solve the re-
sulting equation for t = 0. We obtain the derivatives of the spectral data
depending on the data of the initial homogeneous torus. This also proves
the existence of a solution to the ODE which has the initial data as its value
at t = 0. The resulting system of equations has two solutions. The first is

κ̇0(0) = δ1
2κ0(0) ,

ȧ0(0) = δ2, ȧ2(0) = − δ2
κ2

d
,

β̇1(0) = δ2
2κ2

d
, ḟ1(0) = δ3,

β̇2(0) = δ2
2κ2

d
, ḟ2(0) = δ4,

δ1, δ2, δ3, δ4 ∈ R.

(4.33)

We can dismiss this first solution as it obeys β̇1(0) = β̇2(0) and
2ȧ0(0) = −κ2

dȧ2(0) = a2(0)ȧ2(0). This has the consequence that 4a0 = a2
2

will be preserved, so (4.33) does not open the double points on the spectral
curve. So let us look at the second solution

κ̇0(0) =
3(κ0(0)3+κ0(0))
π2 f1(0) f2(0) ,

ȧ0(0) = −
4κ2

d(κ4
d+κ0(0)2)

π2 f1(0) f2(0) , ȧ2(0) =
4(5κ4

d−4(κ0(0)2−1)κ2
d−3κ0(0)2)

π2 f1(0) f2(0) ,

β̇1(0) =
2(κ4

d−2(κ0(0)2+2)κ2
d+3κ0(0)2)

π2 f1(0) f2(0) , ḟ1(0) =
3κ0(0)2−4κ2

d
π2 f2(0) ,

β̇2(0) =
2(3κ4

d−2(2κ0(0)2+1)κ2
d+κ0(0)2)

π2 f1(0) f2(0) , ḟ2(0) =
−8κ2

d+8κ0(0)2+1
π2 f1(0) .

(4.34)

This solution obviously does not obey the relations we mentioned during the
discussion of the first solution, so we will investigate this solution further.

Now we will see that given the values κd for the double point there
is only one direction for t in which the deformation can take place. The
deformation in the other direction will lead to spectral curves with branch
points on the real line in the κ-plane or on the unit circle in the λ-plane and
thus these spectral curves will not be spectral curves of tori in S3 as they do
not meet the reality conditions, see [2].

As we have seen in the corollary 4.16 we can change the direction of
the deformation by changing the sign of f1 or f2 respectively at the initial
conditions.

D 4.18. In the following let us assume that f1(0) < 0 and
f2(0) > 0.
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If the assumption does not hold we have seen that we can just change
the signs accordingly.

The branch points of the spectral curve must be either off the real line
in the κ-plane or there can be two pairs of branch points on the real line as
in the case of the homogeneous torus. The branch points are at the roots of
a(κ) = κ4 + a2κ

2 + a0. So there are two cases allowed
(i) 4a0 > a2

2: four distinct branch points off the real line,
(ii) 4a0 = a2

2 and a2 < 0: two pairs of branch points on the real line.
As we see in (4.32) 4a0 = a2

2 and a2 < 0 hold on the initial conditions so
only the deformation direction is allowed which will preserve 4a0 ≥ a2

2. We
apply

4a0 ≥ a2
2 ⇒ 4ȧ0 ≥ 2a2ȧ2

to the derivatives we have obtained in (4.34). So

4ȧ0(0) = −
16κ2

d

(
κ4

d + κ0(0)2
)

π2 f1(0) f2(0)
,

2a2(0)ȧ2(0) = −
16κ2

d

(
5κ4

d − 4
(
κ0(0)2 − 1

)
κ2

d − 3κ0(0)2
)

π2 f1(0) f2(0)
.

Our assumption f1 f2 < 0 gives then that 4ȧ0 ≥ 2a2ȧ2 is fulfilled when

κ2
d(κ4

d + κ0(0)2) ≥ κ2
d(5κ4

d − 4
(
κ0(0)2 − 1

)
κ2

d − 3κ0(0)2).

There are three solutions to this equation

κd = 0, κd = ±i, κ2
d ≤ κ0(0)2.

The first two solutions can be ruled out since κd ∈ R and in the special class
of tori we investigate κd , 0 is assumed. The last solution κ2

d ≤ κ0(0)2 is
the one we are interested in. We see that if κ2

d < κ0(0)2 holds t has to be
increasing in order for the reality condition to be preserved. If κ2

d > κ0(0)2

holds t has to be decreasing. Thus we have proved the following.

P 4.19. Given the spectral data as in (4.32) the reality con-
ditions are preserved by the deformation only in one direction of the defor-
mation.

In the following we will only analyze the case κ0(0) > κd > 0. We have
already seen that the cases with κ0(0) < 0 can be reduced to the cases with
κ0(0) > 0. We recall how we introduced the κ parameter in the section 3.2.
We demanded that κ attains κ = 0 at λ = 1. Now it is possible to change this
definition so that κ = 0 is attained at λ = −1. The resulting transformation
rule is

κ = i
1 + λ

1 − λ
Compared to the previous definition of κ the transition to this parameter
corresponds to the change κ → −1/κ. With this transformation we can make
sure that κ0(0) > κd. The formula for H has to be changed accordingly of
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course. It will follow that κ0 → 0 correspond to H → −∞ now. So we see
that we can deduce the behaviour in all other cases from the behaviour in
the case κ0(0) > κd > 0.

P 4.20. It is possible to assume κ0(0) > κd > 0. All other
cases can be reduced to this case.

4.4. Endpoints of the deformation

In the last sections we computed the initial spectral data for homoge-
neous tori of rectangular type, we established the explicit form of the de-
formation ODE and gathered some properties of it. In this section we will
use these properties to investigate the possible endpoints of the deformation
studied in the sections before. We are especially interested in the case that
the mean curvature goes to infinity during the deformation. In the first part
of this section we will develop a necessary condition on the initial data in
order for this to happen. The second part of this section will investigate the
deformation paths the deformation take if this necessary condition is held.
We will show that the only possible endpoints of such paths are those where
the mean curvature is infinity. We will exclude all other possibilities. This
will show that the necessary condition found in the first part of this section
is in fact a sufficient condition for the mean curvature to go to infinity. We
will see that the spectral curve at the end of such deformation is a spectral
curve of a torus in R3. So in this section we will achieve the main goal of
the thesis by showing a class of tori in S3 which deform to tori in R3.

We first look at the differentials d ln µi. We recall that these are obtained
by

∂κ ln µi = πi
bi(κ)

(κ2 + 1)
√

(κ2 + 1)a(κ)
.

So in our case we have

∂κ ln µ1 = πi
f1(κ2 − β1)κ

(κ2 + 1)
√

(κ2 + 1)(κ4 + a2κ2 + a0)
, (4.36a)

∂κ ln µ2 = πi
f2(κ2 − β2)

(κ2 + 1)
√

(κ2 + 1)(κ4 + a2κ2 + a0)
. (4.36b)

We have already seen that 4a0 ≥ a2
2 is preserved during the deformation so

the following holds

a(κ) ≥ 0 ∀κ ∈ R.

This leads to
√

(κ2 + 1)a(κ) ∈ R. We even have

(κ2 + 1)
√

(κ2 + 1)a(κ) > 0 for all κ ∈ R.
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Therefore we obtain
f1(κ2 − β1)κ

(κ2 + 1)
√

(κ2 + 1)(κ4 + a2κ2 + a0)
∈ R ∀κ ∈ R,

f2(κ2 − β2)

(κ2 + 1)
√

(κ2 + 1)(κ4 + a2κ2 + a0)
∈ R ∀κ ∈ R,

since fi and βi are real as well. This gives us on the other hand
1
πi

ln µ1,
1
πi

ln µ2 ∈ R ∀κ ∈ R.

and we have proved the following proposition.

P 4.21. The map Ψ restricted to κ ∈ R and defined by

Ψ : κ 7→ (
1
πi

ln µ1,
1
πi

ln µ2)

is a map Ψ : R→ R
2.

As every condition in the previous argument is preserved by deforma-
tion the proposition also holds at every point of the deformation.

P 4.22. The value (πi)−1 ln µ2(∞) is either monotonously de-
creasing or monotonously increasing throughout the whole deformation.

P. We have seen that c2(κ) = γ2,3κ
3 + γ2,1κ with γ2,3 = (π2 f1)−1 so

we obtain

lim
κ→±∞

∂t(πi)−1 ln µ2 = lim
κ→±∞

c2(κ)√
(κ2 + 1)(κ4 + a2κ2 + a0)

=
1
π2 f1

, 0.

In proposition 4.14 we have seen that f1 , 0 during the deformation, so
it cannot change its sign as well. Therefore (πi)−1 ln µ2(∞) is either strictly
monotonic decreasing or monotonic increasing throughout the whole defor-
mation. �

C 4.23. During the deformation of spectral curves every curve
can occur only once.

P. The value of Ψ(∞) changes strictly monotonic and thus is differ-
ent for every t. Different values of Ψ(∞) in a family of spectral curves can
only result form different spectral curves. �

Let us now analyze this map Ψ. We first start with this map in case of
spectral genus g = 0 before the branching to g = 2. In this case we actually
have

∂κ ln µ̃1 = πi
f1κ

(κ2 + 1)
√

(κ2 + 1)
, (4.37a)

∂κ ln µ̃2 = πi
f2

(κ2 + 1)
√

(κ2 + 1)
. (4.37b)
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(a) (b)

F 4-2. Imaginary parts of ln µi of the homogeneous
torus. The plot (a) shows the imaginary parts of ln µi on
the spectral curve of genus g = 0. The plot (b) shows the
imaginary parts of ln µi on the spectral curve of genus g = 2
right after opening the double points.

When we set ln µ̃1(∞) = 0 and ln µ̃2(0) = 0 we can easily compute
1
πi

ln µ̃1 = −
f1√

(κ2 + 1)
, (4.38a)

1
πi

ln µ̃2 =
f2κ√

(κ2 + 1)
. (4.38b)

One can show that these functions produce the right values for ln µi(κ0) and
ln µi(κd) if the values fi are obtained by the formulas from the section 4.2.1.
So in the case g = 0 we have

Ψ0(κ) = (−
f1√

(κ2 + 1)
,

f2κ√
(κ2 + 1)

).

The components of Ψ0 obey to the following equation

(
1
f1

)2(−
f1√

(κ2 + 1)
)2 + (

1
f2

)2(
f2κ√

(κ2 + 1)
)2 =

1
κ2 + 1

+
κ2

κ2 + 1
= 1.

We can see that the graph of Ψ0 is the one half of an ellipse with its center
at 0 and the axes f1 and f2. If we let κ go twice from −∞ to ∞, the sec-
ond time using the function Ψ0(κ) = ( f1(

√
(κ2 + 1))−1, − f2κ(

√
(κ2 + 1))−1),

we actually obtain a full ellipse. The second half of the ellipse corre-
sponds to the Ψ0 after the sheet interchange σ which causes σ∗κ = κ and
σ∗ ln µi = − ln µi. The figure 4-2a shows such a graph.

L 4.24. The ellipse in previous graph together with the value κ0

and κd completely determine the spectral data of a spectral genus g = 0
torus.

P. In section 4.2.1 we have seen that we can determine the spectral
data by the triple ( f1, f2,κ0) and the values f1 and f2 are determined by the
sizes of the axes of the ellipse. �
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Now let us investigate what happens when we branch to g = 2. At
the starting point we have the spectral data as shown in (4.32), so equation
(4.36) becomes

∂κ ln µ1 = πi
f1(κ2 − κ2

d)κ

(κ2 + 1)
√

(κ2 + 1)(κ − κd)2(κ + κd)2

= πi
f1κ

(κ2 + 1)
√

(κ2 + 1)

κ2 − κ2
d

|κ2 − κ2
d|
,

(4.39a)

∂κ ln µ2 = πi
f2(κ2 − κ2

d)

(κ2 + 1)
√

(κ2 + 1)(κ − κd)2(κ + κd)2

= πi
f2

(κ2 + 1)
√

(κ2 + 1)

κ2 − κ2
d

|κ2 − κ2
d|
.

(4.39b)

We see that the only difference between (4.37) and (4.39) is the additional
factor (κ2 − κ2

d) |κ2 − κ2
d|
−1. This factor obviously has the following behavior

on the real line
κ2 − κ2

d

|κ2 − κ2
d|

=

{
1 κ2 > κ2

d
−1 κ2 < κ2

d
(4.40)

We use this behavior together with (4.38) which we have computed for
(4.37) to compute the ln µi for real κ. As in case of g = 0 we still want
ln µ1(∞) = 0 and ln µ2(0) = 0. We obtain then

ln µ1(κ) =

{
ln µ̃1(κ) κ2 ≥ κ2

d
− ln µ̃1(κ) + 2 ln µ̃2(|κd|) κ2 < κ2

d
(4.41a)

ln µ2(κ) =


ln µ̃2(κ) − 2 ln µ̃2(|κd|) κ2 > κ2

d, κ > 0
− ln µ̃2(κ) κ2 ≤ κ2

d
ln µ̃2(κ) − 2 ln µ̃2(−|κd|) κ2 > κ2

d, κ < 0
(4.41b)

Here we extended the map to the points κ = κd and κ = −κd continuously.
Using this functions we can draw a graph as in figure 4-2b.

Now we will analyze the branching procedure. We look at the following
four points closely.

P1 = Ψ0(κd), P2 = Ψ0(−κd), P3 = σ(P1), P4 = σ(P2).

We have

P1 = (P′1, P
′′
1 ) = ((πi)−1 ln µ̃1(κd), (πi)−1 ln µ̃2(κd)). (4.42)

A computation shows then that

P1 = (P′1, P
′′
1 ), P2 = (P′1,−P′′1 ),

P3 = (−P′1,−P′′1 ), P4 = (−P′1, P
′′
1 ). (4.43)

These four points are the vertexes of a rectangle. The branching procedure
interchanges P1 with P2 and P3 with P4. The relations in stated in (4.43)
are preserved by this procedure. After this procedure the points are still
vertexes of the same rectangle. Now we can see what happens with the arcs
of the ellipse from Ψ0 joining these points. The arc between P1 with P2 is
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F 4-3. Imaginary parts of ln µi of the homogeneous
torus before and after the branching.

reflected in the center of the segment form P1 to P2. Same happens to the
arc between P3 and P4. The arc between P1 and P4 and the arc between
P2 and P3 are translated according to translation of endpoints (P1,P4) to
(P2,P3) and vice versa. The figure 4-3 shows the image of Ψ0 (the ellipse)
and of Ψ after the branching and also the rectangle defined by P1, P2, P3

and P4.
Besides the points Pi on the graph of Ψ and Ψ0 there is one more dis-

tinguished point P0 = Ψ0(κ0) and after the branching the point P = Ψ(κ0).
Given the points P1, P2, P3 and P4 there is a one parameter family of el-
lipses joining all these points. If we also take into account that the point P0

which is not equal to one of the former points also lies on the ellipse this
ellipse is completely determined and thus using the lemma 4.24 also the
spectral data of the spectral genus g = 0 torus. After the branching the five
points P, P1, P2, P3 and P4 do not completely determine the spectral data.
The ambiguity is that P can lie on the arc between P1 and P2 or on the arc
between P2 and P3. So there are exactly two different spectral genus g = 0
curves which lead to the same data for P, P1, P2, P3 and P4. Now we can
show the following

P 4.25. There cannot be more than two different genus g = 0
spectral curves in a family of spectral curves from spectral genus g = 2 tori
of rectangular type. If there are two such curves one of these genus g = 0
spectral curves completely determines the other.

P. The value of P1 was defined in (4.42) by the value of the func-
tions ln µi at the double point. This double point of the spectral curve is
opened to two branch points of the spectral curve. The values of ln µi at the
branch points of the spectral curve remain constant during the deformation.
So P1 now defined by the values of ln µi at a branch point of the spectral
curve remains constant. The point P also remains constant during the de-
formation as the deformation was constructed so that the values of ln µi at
κ0 remain constant. If a family of genus g = 2 spectral curves also contains
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one genus g = 0 spectral curve which lead to points P, P1, P2, P3 and P4 ev-
ery other genus g = 0 spectral curve which may be contained in this family
will produce the same P, P1, P2, P3 and P4. The argument in the previous
paragraph showed that for given P, P1, P2, P3 and P4 there can be only two
different genus g = 0 spectral curves which lead to this points. �

We now will turn to our main task, to develop criteria for the initial
conditions which ensure that during the deformation the mean curvature
increases to infinity H → ∞. The graph we introduced earlier will now be
very helpful in developing this criteria. We remember first that

H =
1
2

(1 − κ2
0)/κ0

so H → ∞ is equivalent to κ0 → 0 and H → −∞ to κ0 → ∞. The defor-
mation is constructed in such a way that ∂t ln µ2(κ0) = 0. We also have seen
that ∂t ln µ2(0) = 0 during the deformation (proposition 4.17). Obviously it
is necessary that ln µ2(κ0) = ln µ2(0) holds at the initial conditions so that
κ0 → 0 is possible and all coefficients of the spectral data remain finite. This
is of course equivalent to

∫ κ0

0
d ln µ2 = 0. Thus we have found and proved

the necessary condition for H → ∞.

P 4.26. The deformation of the spectral curves from tori of
rectangular type can only end in a spectral curve of a torus with H = ∞ if
the initial conditions of the deformation are such that the following holds.∫ κ0

0
d ln µ2 = 0.

We have seen that we can compute ln µ2 at the initial conditions using
the equations (4.39b), (4.40) and (4.37b). With our assumption κ0 > κd we
then obtain∫ κ0

0
d ln µ2 =

∫ κd

0
d ln µ2 +

∫ κ0

κd

d ln µ2

=
f2κ√

(κ2 + 1)

∣∣∣∣
κ=0
−

f2κ√
(κ2 + 1)

∣∣∣∣
κ=κd
−

f2κ√
(κ2 + 1)

∣∣∣∣
κ=κd

+
f2κ√

(κ2 + 1)

∣∣∣∣
κ=κ0

= −2
f2κd√

(κ2
d + 1)

+
f2κ0√

(κ2
0 + 1)

= 0

So the condition in proposition 4.26 break down to κ0 and κd solving the
equation

− 2
κd√

(κ2
d + 1)

+
κ0√

(κ2
0 + 1)

= 0

There are two solutions for this equation

κ0 =
2κd√

1 − 3κ2
d

κ0 = −
2κd√

1 − 3κ2
d

.
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(a) (b)

F 4-4. Imaginary parts of ln µi during the deforma-
tion of the spectral curve. The (a) shows the imaginary parts
of ln µi on the spectral curve right after opening the double
points. The (b) shows the imaginary parts of ln µi on the
spectral curve at the end of the deformation when the spec-
tral curve of a torus in R3 is reached.

We have shown that it is possible to assume κ0 > 0, so only the first solution
is of interest for us.

C 4.27. The necessary condition for κ → 0 is equivalent to

κ0 =
2κd√

1 − 3κ2
d

being fulfilled at the initial conditions.

R. The parameter κ0 needs to be real, so κ2
d < 1/3 has to hold. The

value of the denominator is bounded when this inequality holds. Namely√
1 − 3κ2

d ≤ 1. So the condition of the corollary also imply κ0 ≥ κd. Thus
given such initial conditions the mean curvature will be decreasing at the
start of the deformation.

Figure 4-4 shows the graphs of Ψ for one such deformation. The spec-
tral data of the initial homogeneous torus was obtained by the algorithm
from section 4.2.2. We started with the parameters K1 = 1, K2 = 2 and
M1 = 3, M2 = 1 and obtained κ0 =

√
5/3 and κd = 5/27. The rest of

the spectral data was obtained by the formulas in section 4.2.3. The graph
at the end of the deformation was obtained by numerical integration of the
deformation ODE.

P 4.28. If the initial spectral data for the deformation fulfill∫ κ0

0
d ln µ2 = 0

then the inequality

κ0 ≥
√
β2
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is fulfilled as well and both conditions stay fulfilled throughout the defor-
mation. If the deformation ODE ends with β2 = 0 then κ0 = 0 must hold at
this endpoint as well.

P. We have seen that ∂t ln µ2(κ0) = 0 and ∂t ln µ2(0) = 0 so the
condition

∫ κ0

0
d ln µ2 = 0 stays fulfilled during the deformation. On the

other hand

∂κ ln µ2 = πi
f2(κ2 − β2)

(κ2 + 1)
√

(κ2 + 1)(κ4 + a2κ2 + a0)
.

As we have seen the denominator stays positive for all real κ and ±
√
β2

are obviously the only roots of the numerator. So the mean value theorem
shows us that the condition

∫ κ0

0
d ln µ2 = 0 implies the condition κ0 ≥

√
β2.

In case β2 = 0 the derivative ∂κ ln µ2 has only a double root at κ = 0 and is
either positive or negative depending on f2 for all other κ. So

∫ κ0

0
d ln µ2 = 0

can only be fulfilled with κ0 = 0. This means
∫ κ0

0
d ln µ2 = 0 and β2 = 0

imply κ0 = 0. �

We have seen in the proposition 4.25 that in a family of genus g = 2
spectral curves, that we are looking at, no more than two different spec-
tral curves of genus g = 0 with double points can occur. Now we will
show that in the family of spectral curves which hold the condition from
proposition 4.26 only one spectral curves of genus g = 0 with double
points can occur. We have seen that these genus g = 0 curves are de-
fined by the points P and P1 to P4. The two different curves arise as
there are two different possibilities for the arc on which P can lie. Either
it is the arc between P1 and P2 or the arc between P2 and P3. We have
P = (P′, P′′) = ((πi)−1 ln µ1(κ0), (πi)−1 ln µ2(κ0)). The condition from propo-
sition 4.26 leads to P′′ = 0. This means that in case that P lies on the arc
between P1 and P2 also P0 = (P′0, 0). This can only be fulfilled when κ0 = 0
and then κ0 <

√
β2. This obviously contradicts to the previous proposition.

As a spectral curve can occur only once during the deformation and the
spectral curve at the start of the deformation is already a spectral curve of
genus g = 0 with double points it has to be the only such curve in the family
holding the condition from proposition 4.26.

P 4.29. In the family of spectral curves which hold the con-
dition from proposition 4.26 only one spectral curve of genus g = 0 with
double points can occur. This is the spectral curve at start of the deforma-
tion.

We have proved so far that
∫ κ0

0
d ln µ2 = 0 has to hold at the start and

during the deformation in order for k0 to be able to go to 0. We will now
look at the possible endpoints of a family of spectral curves which hold∫ κ0

0
d ln µ2 = 0. In the last section in the proposition 4.12 we have seen that

there are three possibilities how the deformation can end. It can extend to
infinity or it can end with tmax such that β1−β2 = 0 or β2 = 0 at tmax. The next
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computations will show that β1−β2 = 0 is not possible when
∫ κ0

0
d ln µ2 = 0

holds at the starting point.
For further treatment we will look at a slightly different variant of the

map Ψ we investigate earlier. We extend the domain of this map from κ ∈ R
to all κ ∈ C in such a way that we obtain a map Ψ̃ : Y 7→ R

2. We redefine
Ψ̃ to

Ψ̃ = (<{ln µ1},<{ln µ2}). (4.44)

In the following we will prove some properties of this map.

L 4.30. The map Ψ̃ is a well defined map Ψ̃ : Y 7→ R
2. This map

is an immersion if

=

{
d ln µ1

d ln µ2

}
, 0

P. The involution representing the sheet interchange is subject to
σ∗κ = κ and σ∗µi = µ−1

i so σ∗ ln µi(κ) = − ln µi(κ).
Now we compute the derivative of Ψ̃ and obtain

dΨ̃ =

(
<{∂ ln µ1} <{∂ ln µ2}

−={∂ ln µ1} −={∂ ln µ2}

)
So Ψ̃ is an immersion only if

<{∂ ln µ1}={∂ ln µ2} +<{∂ ln µ2}={∂ ln µ1} = 0.

This is equivalent to

=

{
d ln µ1

d ln µ2

}
, 0.

�

Let us now look at d ln µ1/d ln µ2. In case both differentials have a non
zero common root we have β1 = β2. Then we can use this to obtain

d ln µ1

d ln µ2
=

f1(κ2 − β)κ
f2(κ2 − β)

=
f1

f2
κ.

We see that in this case d ln µ1/d ln µ2 ∈ R exactly for κ ∈ R. Using the
previous lemma we see that the κ ∈ R are exactly the points where Ψ̃ is not
an immersion.

P 4.31. In case that β1 = β2 the map Ψ̃ : Y → R
2 is a double

cover of CP1 with the only branch points at κ = ±i.

P. In this argument we will use the parameter λ. We look at ln µi at
the points λ = 0. Both maps have a pole at this point. We recall that there
exists a local coordinate function z such that z = 0 correspond to λ = 0 and
so that

ln µ1 = m−1z−1 + m0 + zh(z),

ln µ2 = m̃−1τz−1 + m̃0 + zh̃(z)
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for |λ| ≤ 1 with τ < R and holomorphic functions h and h̃. We see therefore
that for |λ| ≤ 1 the map Ψ̃ is a continuous map to CP1. The points with
|λ| ≤ 1 constitute a manifold with boundary, call it Y ′. The collar of this
manifold is diffeomorphic to S1 × [0, 1). We identify the S1 × (0, 1) part
of this collar with a punctured disk in polar coordinates which is also dif-
feomorphic to S1 × (0, 1). The map Ψ̃ is as the real part of a holomorphic
map harmonic on this punctured disc and can be extended to the center
o. We identified the boundary of Y ′ with a point. Thus we obtain a map
Y ′ → CP

1.
We have seen that d ln µ1/d ln µ2 ∼ κ for |λ| = 1. This means that this

quotient takes every value in R. If we take into account that over every
point λ with |λ| = 1 there are two points in Y , the quotient d ln µ1/d ln µ2

takes every value in R two times. This shows that the tangent space at the
point o is isomorphic to the whole R2 and the map Ψ̃ is also an immersion
at this point.

Now let us get back to the disc which we identifyed with the collar
described in the previous paragraph. The lemma 4.30 showed us that Ψ̃ is
an immersion on the punctured disc. The previous argument shows us the
Ψ̃ is also an immersion at the center o of the disc. Thus we see that the
map Y ′ → CP

1 is everywhere an immersion. It is open and closed map
into CP1 and therefore has to be surjective. We also see that this map is a
covering map. The preimage of λ = 0 consists of one point so we have an
homeomorphism of degree 1. This shows that Y ′ is homeomorphic to CP1

after the identification of |λ| = 1 to one point. The same argument is also
valid for {y ∈ Y : |λ(y)| ≥ 1)} = Y ′′. Thus we see that the whole Y has
genus g = 0. As Y is always a double cover of CP1 and we have shown
that it has genus g = 0 it can only have branch points over λ = 0 and λ = ∞

this corresponds to κ = ±i and thus proves the claim. �

P 4.32. Let us assume the deformation hits a point where
β1 = β2 = κ2

d is fulfilled for a κd > 0. Then the spectral data (a, b1, b2, κ0) at
this point is of the form

a(κ) = κ4 − (2κ2
d)κ2 + κ4

d,

b1(κ) = f1(κ2 − κ2
d)κ,

b2(κ) = f2(κ2 − κ2
d).

P. As β1 = β2 = β we use proposition 4.31 to see that the spectral
curve which is represented by the hyperelliptic curve Y has only branch
points at κ = ±i. This curve is defined by the equation ν2 = (κ2 + 1)a(κ)
with a polynomial a(κ) = κ4 + a2κ

2 + a0. In order for Y to have only branch
points at κ = ±i the roots of a have to be of the form α1 = α2 and α3 = α4.
Therefore the relation 4a0 = a2

2 has to be fulfilled. The differentials d ln µi

are not allowed to have poles outside the branch points of Y so they do
not have other poles besides those at κ = ±i. This leads to the relation
a0 = 1/4a2

2 = β2
1 = β2

2. This spectral data corresponds to a flat torus with
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double points. We have seen that such tori can only have double points on
the real axis in κ, this means a2 < 0. On the other hand our deformation
allowed only β2 ≥ 0. By setting β2 = κ2

d and thus β1 = κ2
d and a0 = −2κ2

d,
a0 = κ4

d we obtain the claim. �

P 4.33. In a family of genus g = 2 spectral curves from tori of
rectangular type which fulfill

∫ κ0

0
d ln µ2 = 0 a spectral curve with β1 = β2

never occurs.

P. We have now proved that if β1 = β2 occurs the spectral data at
this point corresponds to spectral data of a flat torus with double points.
On the other hand the proposition 4.29 showed that in a family holding the
condition from proposition 4.26 the only such curve is the one at the start
of the deformation. So the case β1 = β2 cannot occur in the endpoint. �

Collecting the previous observations we have the following situation.
The solution of the deformation ODE can either extend to infinity or end
with β1 = β2 or β2 = 0. We have shown that given the initial condition∫ κ0

0
d ln µ2 = 0 the endpoint β1 = β2 is not possible and we also have shown

that in this case the endpoint β2 = 0 implies κ0 and thus H = ∞. So it
remains to analyze what happens if the solution of the deformation ODE
extends to infinity. To this end we return to the map Ψ from the beginning
of the section. We want to look at the region enclosed by the arcs connecting
Ψ(κ) and σ ∗ Ψ(κ). We denote by γ the path which defines the boundary of
this area. We can divide γ in four pieces and thus compute the whole path
piecewise. Lets call this pieces γi, i = 1, .., 4. We define γ1 : [κ0,∞]→ R

2,
γ1(κ) = Ψ(κ). We also denote by γ1 = (γ′1, γ1“) the both components of
γ1. We use the relations lnµ1(−κ) = lnµ1(κ), lnµ2(−κ) = −lnµ1(κ) and the
sheet interchange σ which has the effect σ ∗ κ = κ, σ ∗ ln µ1 = − ln µ1 and
σ∗ ln µ2 = − ln µ2 to compute the remaining three pieces of γ. We can write
then

γ1 = (γ′1, γ
′′
1 ), γ2 = (γ′1,−γ

′′
1 ), γ3 = (−γ′1,−γ

′′
1 ), γ4 = (−γ′1, γ

′′
1 ).
(4.45)

The endpoints of γ1 and γ4 corresponding to κ → ∞ coincide. The same is
true for γ2 and γ3. The next proposition shows that also the endpoints of γ1

and γ2 and the endpoints of γ3 and γ4 corresponding to κ = κ0 also coincide.
This means that γ is a closed path.

L 4.34. If the initial spectral data fulfill
∫ κ0

0
d ln µ2 = 0 the path γ

is closed for every t and encloses a simply connected region in R2.

P. If
∫ κ0

0
d ln µ2 = 0 is fulfilled we have seen that Ψ(−κ0) = Ψ(κ0) so

γ is closed at the start of the deformation. The deformation is constructed
so that ∂tΨ(κ0) = 0 and ∂tΨ(−κ0) = 0 hold. This ensures that γ stays closed
during the deformation.

Now we have to show that γ does not have any self intersections since
then the area it encloses has to be simply connected. This is true for the
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initial spectral curve of a homogeneous torus as one can see from the con-
struction of this curve. We need to show that this also stays so during the
deformation. We remember first that the zeros of both ∂k ln µi are inside
the interval (−κ0, κ0). This means that on γ1 both components γ′1 and γ′′1
are monotonic and so are the components of γ2, γ3 and γ4. This proves
that no γi cannot have any self intersections. One endpoint of γ1 is equal
to ((πi)−1 ln µ1(0), 0) and the other is equal to (0, limκ→∞(πi)−1 ln µ1(κ)) and
thus γ1 stays completely in the first quadrant. By (4.45) we see that every
γi stays in a different quadrant and we follow that the whole γ has no self
intersections and thus the region it encloses must be simply connected. �

We know now that γ encloses some region of finite area A. In the fol-
lowing we will compute the variation ∂tA of this area. Let γ̇1 be the variation
of γ1. The variation ∂tA1 of the area which is passed by γ1 can be computed
then by

∂tA1 =

∫ ∞

κ0

γ̇(κ)⊥ · ∂κγ(κ)dκ =

∫ ∞

κ0

(−γ̇′′(κ), γ̇′(κ)) · (∂κγ′(κ), ∂κγ′′(κ)dκ

=

∫ ∞

κ0

1
πi
∂t ln µ1

1
πi
∂κ ln µ2 −

1
πi
∂t ln µ2

1
πi
∂κ ln µ1dκ

= −
1
π2

∫ ∞

κ0

ω = −
1
π2

∫ ∞

κ0

κ2 − κ2
0

(κ2 + 1)2 dκ

The last integral can be easily computed to

∂tA1 = −
1
π2

∫ ∞

κ0

κ2 − κ2
0

(κ2 + 1)2 dκ = −
1

4π2

(
(κ2

0 − 1)(2 arctan(κ0) − π) + 2κ0

)
As we constructed γ from four pieces we see that ∂tA = 4∂tA1. This means
that ∂tA is a function of κ0 defined by

∂tA(κ0) = −
1
π2

(
(κ2

0 − 1)(2 arctan(κ0) − π) + 2κ0

)
We also see that ∂tA(0) = −π−1 and ∂tA(∞) = 0. In between ∂tA(κ0) is
strictly monotonic increasing. This computation allows us now to analyze
what behaviour κ0 can have if the solution of the deformation ODE extends
to infinity. We start with a finite area A and a finite κ0. During the deforma-
tion the area A cannot become negative on the other hand

|

∫ ∞

o
∂tA| < ∞ (4.46)

is only possible if κ0 → ∞ as t → ∞. This behavior has some consequences.
In order to see them we use another path γ̃. We define this path by

γ̃ : [−κ0, κ0]→ R
2, γ̃(κ) = Ψ(κ).

The same argument as in lemma 4.34 shows that also γ̃ is closed. At the
start of the deformation this path has also no self intersections and thus
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encloses a simply connected area. If we assume that this stays so during the
deformation we can compute the variation of the area this path encloses in
the same way we did for γ. We obtain then

∂tÃ(κ0) =
1
π2

∫ κ0

−κ0

ω =
1
π2

∫ κ0

−κ0

κ2 − κ2
0

(κ2 + 1)2 dκ

= − arctan (κ0) κ2
0 − κ0 + arctan (κ0)

We have ∂tÃ(0) = 0 and from that point on ∂tÃ is strictly monotonic de-
creasing and approach −∞ as κ0 → ∞. As the area Ã was also finite the
following has to hold if the solution of the deformation ODE extends to
infinity

|

∫ ∞

o
∂tÃ| < ∞.

This is only possible if κ0 → 0 as t → ∞ contradicting that we have found
earlier that κ0 → ∞ as t → ∞ for (4.46) to be fulfilled.

So we have shown that under the assumption that γ̃ has no self intersec-
tions the assumption that the solution of the deformation ODE extends to
infinity leads to a contradiction. Without assuming that γ̃ has no self inter-
sections we still have shown that κ0 → ∞ as t → ∞ and so H → −∞. With
the mentioned assumption we have therefore the following.

P 4.35. The solution of the deformation ODE with initial
spectral data fulfilling

∫ κ0

0
d ln µ2 = 0 can only be defined on a bounded

interval. So there exists a value tmax beyond which the solution cannot be
extended.

The last proposition shows that the solution of the deformation ODE
cannot extend to infinity. The proposition 4.33 shows that at the endpoint
of the deformation β1 = β2 cannot be fulfilled. So by proposition 4.12
there exists a value tmax beyond which the solution cannot be extended and
β2(tmax) = 0 holds. By proposition 4.28 we also have κ0(tmax) = 0 and
therefore H(tmax) = ∞. We summarize this main result of this thesis in the
following theorem

T 4.36. The deformation of the spectral curve of rectangular
torus will always end in a spectral curve of a torus with H = ∞ if the initial
conditions of the deformation are such that the following holds.∫ κ0

0
d ln µ2 = 0.

The value tmax such that the spectral data (a(tmax), b1(tmax), b2tmax), κ0(tmax))
belongs to a spectral curve of a torus with H = ∞ will be finite.

Let us now recall the closing conditions presented in proposition 3.4. In
case of S3 there has to exist two distinct λ0, λ1 ∈ S

1 such that

µi(λ0) = µi(λ1) = ±1.
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F 4-5. Deformation path starting from a homogeneous
torus in S3 and ending in a Wente torus in R3 with some
typical tori on the path. All images are cross sections. See
also Figure 1-1 for normal view.

Let the initial spectral data be such that this condition is met. In case of R3

there has to exist λ0 ∈ S
1 such that

µi(λ0) = ±1 and ∂λ0µi(λ0) = 0.

The deformation is constructed so that the values ln µi(λ0) remain con-
stant. This ensures that µi(λ0) = ±1 is fulfilled also in the endpoint of the
deformation. On the other hand µi(λ0) = µi(λ1) is preserved during the de-
formation and at the end λ0 and λ1 come together to λ0 = λ1 = 1. This
in turn ensures that ∂λ0µi(λ0) = 0 is fulfilled at the end of the deformation.
We can also see this by another observation. ∂λ0µi(λ0) = 0 is equivalent to
∂κ0 ln µi(κ0) = 0. We have then for κ0 = 0 that ∂κ0 ln µ1(κ0) = 0 since b1(κ)
is an odd polynomial and ∂κ0 ln µ2(κ0) = 0 since β2 = 0 at the end of the
deformation and thus also b2(κ) has a zero at 0. Se we have seen that the
spectral curve at the end of the deformation is in fact a spectral curve from
a torus in R3. The following last proposition states this finding which was
the main goal of this thesis.

P 4.37. The spectral curve at the end of the deformation which
starts with initial spectral data holding the condition in proposition 4.36 is
a spectral curve of a torus in R3.

Figure 4-5 and figure 1-1 from the introduction show a deformation
from a homogeneous torus S3 to one in R3. The spectral data of the initial
homogeneous torus was obtained by the algorithm from section 4.2.2. We
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started with the parameters K1 = 1, K2 = 2 and M1 = 3, M2 = 1 and
obtained κ0 =

√
5/3 and κd = 5/27. The rest of the spectral data was

obtained by the formulas in section 4.2.3. So the initial spectral data was as
follows. 

a
b1

b2

κ0

 =


κ4 − 10κ2

27 + 25
729(

κ2 + 5
27

)
κ

κ2 + 5
27√

5
3

 .
Numerical computation shows then that the deformation ends at the value
tmax = 5.70048 with the following spectral data

a
b1

b2

κ0

 =


κ4 + 1.04303κ2 + 0.324438(

κ2 − 0.442003
)
κ

κ2

0

 .
The spectral curve at the end of the deformation has its branch points at

λ = 0.141272 − 0.101785i, λ = 4.65969 + 3.35724i,
λ = 0.141272 + 0.101785i, λ = 4.65969 − 3.35724i.

This spectral data corresponds to the spectral data of the famous Wente
torus.
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CHAPTER 5

Conclusion and Outlook

In this thesis we have shown a deformation path which starts at the
spectral data of a homogeneous torus in S3 and ends in spectral data of a
torus in R3. We proved for a specific family of homogeneous tori that this
deformation path indeed ends in spectral data from a torus in R3. This
deformation path gives an explicit example for how a torus in R3 can be a
limit of a family of tori in S3.

There are still many open questions in this area. Numerical experiments
during the development of the thesis suggested a relation between the data
of the initial homogeneous torus such as the winding numbers and the data
for the double points to open and the geometrical properties of the torus
at the end of the deformation such as the number of lobes. Further the
thesis showed only for a very limited family of initial conditions whether
the deformation of them end in spectral data of a torus inR3 or not. It would
be interesting to prove a similar statement for more general spectral data.
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