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Abstract

The goal of this Master’s thesis is to discuss the one-dimensional mani-
folds T−1(τa) and characterize their boundary points. We will see that
they have two types of boundary points: Those where a ∈ M2

2 ∪M3
2

holds and those where coefficients are unbounded. In the first case
it becomes clear that these are true boundary points through which
we can flow smoothly. In the second case it is shown that we can
extend continuously to the limit and established a biholomorphic re-
lationship between elliptic curves. In the second part of the thesis we
proved that one can solve the Whitham equations inductively for all
the coefficients. We also established properties of V (q1, q2).
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1 INTRODUCTION

1 Introduction
In differential geometry the construction of tori with constant mean curvature
is a topic of research. The solutions of the elliptic sinh-Gordon equation

∆u+ 2 sinh(2u) = 0

for twice differentiable functions u : R2 → R describe such tori. Here we can
distinguish between finite type solutions and infinite type solutions. In this
thesis we only consider the class of finite type solutions whose spectral genus
g = 2. These solutions can be described through the space of polynomials
which is a space of complex polynomials with matrix valued coefficients. This
space gives rise to a certain family of polynomials of degree four. The goal of
this work is to establish certain properties of this space and a mapping that
leaves the conformal class of these polynomials constant.
In chapter two we will introduce several concepts that will be used in this
thesis such as the classification of one-manifolds or the homology on Riemann
surfaces.
In chapter three we will introduce the most important concepts of the theory
of CMC tori that will be used later in the thesis.
In chapter four we will introduce the most important aspects of CMC tori
and the solutions of the sinh-Gordon equation.
In chapter four we will examine the boundary points of T−1(τa) and consider
two distinct cases: the case a ∈M2

2 ∪M3
2 and the case where coefficients go

to infinity. In the first case we will prove that the boundary points are true
boundary points by examining a certain condition. In the second case we
will use the blow-up technique to prove that each connected component is
biholomorphic to the elliptic curve defined by the limits of our polynomials.
Further we use the Whitham equation to try to prove that this blow-up is
also a one-dimensional manifold.
In chapter five we will construct a specific curve in the plane R2 V (q1, q2)
defined by the imaginary parts of q1 and q2 restricted to S1. We will prove
properties of this curve. Then we will prove that we can solve the Whitham
equations for the linear and constant coefficients of the Taylor series expan-
sions of our polynomials. We try to use this to prove that the sequence of
curves has a cusp when intersecting S2.
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2 Preliminaries

2.1 The classification of 1-manifolds
The following proof is from Milnors Topology from the Differentiable View-
point (1965).

Classification of 1-manifolds 2.1. Any smooth, connected one dimen-
sional manifold is diffeomorphic either to S1 or some interval in R.

We will prove this using the concept of parametrization by arc length, which
we will first define.

Definition 2.2. A map f : I → M where I is an interval and M is a
manifold, is called parametrization by arc length if f maps I diffeomorphically
onto an open subset of M and if dfs(1) ∈ Tf(s)M has unit length for each
s ∈ I.

We note that any given local parametrization, a change of variables can be
used to transform our parametrization into a parametrization by arc length.

Definition 2.3. Let X be a topological space and A ⊂ X a subset of X. We
say that a set UA is relatively open in A if there exists an open set U ⊂ X
such that UA = U ∩ A.

In the following we will consider M to be a connected 1-manifold.

Lemma 2.4. Let f : I → M , g : J → M be two parametrizations by arc
length. Then f [I] ∩ g[J ] has at most two connected components. If it has
only one connected component, then f can be extended to a parametrization
by arc length on the union f [I] ∪ g[J ]. If it has two connected components,
it must be diffeomorphic to S1.

Proof: g−1 ◦ f maps a relatively open subset of I to a relatively open subset
of J . By construction, the derivative of g−1◦f has to have the absolute value
1, so it has to be equal to ±1 everywhere. Now let Γ ⊂ I × J be the graph
of all (s, t) ∈ I × J where f(s) = g(t). So by definition, Γ is a closed subset
of I × J which is made up of line segments that have a slope of ±1 because
we are considering the one dimensional case. Since g−1 ◦ f is diffeomorphic
as the composition of diffeomorphic maps and since we can consider Γ as the
graph of g−1 ◦ f we can extend it to the boundary of I × J . Yet because our
map is bijective and single-valued it can only take at most one value on each
line of ∂(I × J). So that makes at most 4 boundary values. These have to
be connected by line segments, and since the map is again single valued and
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2 PRELIMINARIES

bijective, no boundary point can be reached by more than one line. That
makes at most two connected components, which proves the first part of our
claim.
Now let Γ have only one connected component. Therefore, Γ consists of
exactly one line segment that goes through the whole of I × J . It follows
that g−1 ◦ f can be extended to a translation of a linear map L : R→ R. We
will now use L to extend f to a larger map in the following way

F : I ∪ L−1[J ]→ f [I] ∪ g[J ]

x 7→

f, x ∈ I
g ◦ L, x ∈ L−1[J ].

We can easily see that both maps agree on any overlap of I and L−1[J ] since
g ◦ L

∣∣∣
I∩J

= g ◦ g−1 ◦ f = f . So this is again diffeomorphic as a composition
of diffeomorphic maps and also since L needs to have a slope of ±1, F is a
parametrization by arc length.
To finish the proof, we now consider the case where our map has two con-
nected components. We will only consider the case where the derivative of
both f and g is 1 since all other cases can be done in a similar way, because
if the slopes have different sign we can just multiply them with (−1) in order
to get to the case where they are parallel. First, we will name the 4 boundary
values that Γ assumes on I × J . Let a < b ≤ c < d ∈ I, γ < δ ≤ α < β ∈ J
and consider the boundary points (a, α), (b, β), (c, γ) and (d, δ). Then both
of the connected components connect two of these points. Without loss of
generality we assume that the first line connects (a, α) with (b, β) and the
second one connects (c, γ) with (d, δ). Since both components have the same
slope, they are parallel. Now we can translate one of our intervals to get that
γ = c and δ = d. From that follows that

a < b ≤ c < d ≤ α < β.

Further we set θ = 2π
α−a and use polar coordinates to define a diffeomorphism

h : S1 →M

by setting

h(cos(θ), sin(θ)) =

f(t), a < t < d

g(t), c < t < β

where f and g agree on (c, d) by the construction of Γ. So h is a diffeomorh-
pism from S1 to f [I]∪ g[J ]. By definition, S1 is compact and open and since
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2.2 Homology on compact Riemann surfaces

h is a diffeomorphism, h[S1] ⊂ M is compact and open as well. So, because
M as a manifold is a topological Hausdorff space, any compact set in M is
also closed. Therefore, h[S1] is both closed and open in M , meaning it is the
whole M because M is connected. q.e.d.

Now we will use this to prove the classification theorem.
Proof: First we see that as mentioned before we know the existence of a
parametrization by arc length because we can transform any local parametriza-
tion into one. We only need to consider the case whereM is not diffeomorphic
to S1 because that case was already considered in the lemma before. Using
the aforementioned emma, we see that every parametrization by arc length
can be extended to a maximal parametrization by arc length

f : I →M

which can’t be extended over any larger interval than I. We can do this by
finding other parametrizations by arc length where the intersection of the
images only has one connected component and extend the parametrization
over the overlap on each side of the interval until we can not go further. So
now we consider a maximal parametrization by arc length and we want to
show that f [I] = M . Assume that this does not hold. Then, because f [I] is
open inM , we get thatM \f [I] has to contain a limit point x. So then there
needs to exist a neighborhood U 3 x with U ⊂ M \ f [I]. So then we can
find a local parametrization for x and transform it into a parametrization
by arc length. Now if M is not diffeomorphic to S1 then there can’t be
two parametrizations by arc length where the intersection of they images
has two connected components. So the intersection has only one connected
components and therefore, we can extend f to a larger parametrization by
arc length. That is a contradiction to f being maximal so therefore, it follows
that f [I] = M . Yet by definition, f is a diffeomorphism, so we get I ∼= M .

q.e.d.

2.2 Homology on compact Riemann surfaces
The following introduction into homology theory on compact Riemann sur-
faces is based on the book Computational Approach to Riemann Surfaces by
Bobenko (2013).

Definition 2.5. Let X be a Riemann surface with a triangulation T . We
define formal sums of points P = ∑

i niPi as 0-chains, formal sums of ori-
ented edges γi as γ = ∑

niγi 1-chains and formal sums of oriented triangles
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2 PRELIMINARIES

Di as D = ∑
niDi 2-chains. We denote these sets with C0, C1, C2 which are

all abelian groups with respect to the addition.

Definition 2.6. We define (P1, P2) as the oriented edge from P1 to P2 and
D0 = (P1, P2, P3) as the oriented triangle bounded by the oriented edges
(P1, P2), (P1, P3) and (P2, P3). Now on these edges and triangles we define
the boundary operator δ as

δ(P1, P2) = P2 − P1 δD0 = (P1, P2) + (P1, P3) + (P2, P3).

We extend the boundary operator to C1 and C2 by linearity δD = ∑
kiδDi,

δγ = ∑
niδγi and define the group homomorphisms δ : C2 → 1, δ : C1 → C0.

Definition 2.7. A γ ∈ C1 is called a cycle if δγ = 0 and a γ ∈ C1 is called
a boundary if there exists a D ∈ C2 such that γ = δD. We denote these sets
by

Z = ker{δ : C1 → C0}, B = δC2.

Since by definition δ ◦ δ = 0, every boundary is a cycle which means Z ⊂
B ⊂ C1. We define two 1-chains to be homologous if their difference is a
boundary.

Definition 2.8. The factor group

H1(X,Z) = Z/B

is called the first homology group of X.

This is also an abelian group which is described by the following equivalence
classes

[γ] = {1-cycles}
{1-dimensional boundaries} .

Any closed oriented continuous curve γ̃ can be deformed homotopically into
a 1-cycle in the triangulation T . Homotopical simplicial 1-cycles are homol-
ogous to each other so we can now define the homology group as a homology
group of cycles composed of arbitrary closed curves. The definition of ho-
mologous continuous cycles is independent of T .
One can represent elements of the first homology group by smooth cycles.
Moreover, given two elements of H1(X,Z) we can represent them by smooth
cycles intersecting in finitely many points.
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2.2 Homology on compact Riemann surfaces

Definition 2.9. Let γ1, γ2 be two curves intersecting transversally at the
point P . Then we associate to this point the intersection number (γ1 ◦γ2)P =
±1 where the sign is determined by the orientation of the basis γ′1(P ), γ′2(P )
as shown below where γ′i is the curve with the inverse orientation.

Figure 2.1: Intersection number at a point

γ1

γ2

P

(a) (γ1 ◦ γ2)P = 1

γ2

γ1

P

(b) (γ1 ◦ γ2)P = −1

Definition 2.10. Let γ1, γ2 be two smooth cycles intersecting transversally
at the finite set of their intersection points. The intersection number of γ1
and γ2 is defined as

γ1 ◦ γ2 =
∑

P∈γ1 ∩ γ2

(γ1 ◦ γ2)P .

Definition 2.11. A set of cycles A1, B1, . . . , Ag, Bg such that every cycle on
the Riemann surface X of genus g is homologous to a sum of these cycles
is called a homology basis. A homology basis A1, B1, . . . , Ag, Bg with the
intersection numbers

Ai ◦Bj = δij, Ai ◦ Aj = Bi ◦Bj = 0

is called canonical homology basis.

Figure 2.2: Homology basis of a hyperelliptic surface of genus g from Bobenko
(2013)
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2 PRELIMINARIES

Now we will define certain types of differentials on Riemann surfaces

Definition 2.12. A differential ω on a Riemann surface X is called an
Abelian differential of the first kind if in any local chart it is represented as

ω = h(z)dz

where h(z) is a holomorphic map.

Definition 2.13. A meromorphic differential with singularities is called an
Abelian differential of the second kind if the residues are equal to zero at all
singular points. A meromorphic differential with non-zero residues is called
an Abelian differential of the third kind.

Definition 2.14. Let (γi)i∈I be a homology basis of the Riemann surface X
and ω a closed differential. Then the integrals

Λi =
∫
γi

ω

are called periods.
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3 Spectral curves of CMC tori
The following section is based on the paper Solutions of the Sinh-Gordon
Equation of Spectral Genus Two and constrained Willmore Tori I by Knopf,
Peña Hoepner and M.U. Schmidt as well as the Master Thesis Solutions of
the Sinh-Gordon Equation of Spectral Genus Two by Peña Hoepner. We
will establish important definitions and theorems which will be used later in
this thesis. We will describe the relation between the sinh-Gordon eqation
and the Tori of constant mean curvature which we will call CMC tori in the
following.

Definition 3.1. The equation

∆u+ 2 sinh(2u) = 0

is called the elliptic sinh-Gordon equation. Here, u : R2 → R is a real-valued
twice partial differentiable function.

Another important space is the space of potentials, which we now define as
well.

Definition 3.2. The set of potentials is a set of cubic polynomials with ma-
trix valued coefficients which we define as follows

P2 =
{
ζλ =

(
αλ− αλ2 −γ−1 + βλ− γλ2

γλ− βλ2 + γ−1λ3 −αλ+ αλ2

) ∣∣∣∣ α, β ∈ C, γ ∈ R+

}

Definition 3.3. Polynomial Killing fields are maps ζλ : R2 → P2, (x, y) 7→
ζλ(x, y) which solve the Lax equations

∂ζλ
∂x

= [ζλ, U(ζλ],
∂ζλ
∂y

= [ζλ, V (ζλ]

with ζλ(0) = ζ0
λ ∈ P2 and

U(ζλ) =
(

α−α
2 −γ−1λ−1 − γ

γ + γ−1λ α−α
2

)
, V (ζλ) = i

(
α+α

2 −γ−1λ−1 + γ
γ − γ−1λ −α+α

2

)
.

The corresponding function u(x, y) := ln γ(x, y) solves the sinh-Gordon equa-
tion.

Definition 3.4. The space of potentials defines the following set

M2 = {a ∈ C4[λ] | λa(λ) = det(ζλ) for a ζλ ∈ P2}

8



3 SPECTRAL CURVES OF CMC TORI

which we will in turn divide into the following sets

M1
2 = {a ∈M2 | a has four pairwise distinct roots absent S1},

M2
2 = {a ∈M2 | a has one double root on S1 and two simple roots absent S1},

M3
2 = {a ∈M2 | a has two distinct double roots on S1},

M4
2 = {a ∈M2 | a has a fourth order root on S1},

M5
2 = {a ∈M2 | a has two distinct double roots absent S1}.

One can easily see thatM2 is the disjoint union of these five sets.

In Peña Hoepner (2015) Theorem 4.3 states the following result aboutM2

Theorem 3.5. The following holds true forM2

M2 = {a(λ) ∈ C4[λ] | a(0) = 1, λ4a(λ−1) = a(λ), λ−2a(λ) ≥ 0 for λ ∈ S1}.

Definition 3.6. The condition p(λ) = p(λ−1) is called the reality condition.
We will denote the space of all polynomials of degree d to satisfy the reality
condition with P d

R.

Definition 3.7. For a ∈M2 we define the level set

I(a) = {ζλ ∈ P2 | det(ζλ) = λa(λ)}

to be the isospectral set of a(λ).

Definition 3.8. The polynomial Killing fields induce an action

φ : (x, y) 7→ φ(x, y), φ(x, y) : P2 → P2, ζλ 7→ φ(x, y)ζλ.

The isospectral sets are invariant with respect to this action and decompose
in either one or two orbits.

Definition 3.9. We define

F = {τ ∈ C | =(τ) > 0, |<(τ)| ≤ 1/2, ||τ || ≥ 1}/ ∼ .

Here the equivalence relation ∼ identifies the points τ of the boundary of
the region above with −τ̄ . Note that this is the fundamental domain for the
action of the modular group on the upper half-plane.

9



Definition 3.10. For a ∈M2 \M5
2 we define

Γa = {x+ iy ∈ C | ∀ζλ ∈ I(a) : φ(x, y)(ζλ) = ζλ}

which is an abelian and normal subgroup of C with the quotient group C/Γa.
For a ∈ M1

2 it is proven in Knopf et al. (2018) that for a ∈ M1
2, Γa is

a discrete subgroup with a compact quotient. That means, that there exist
R-linearly independent ω1, ω2 ∈ C such that

Γa = ω1Z⊕ ω2Z,

so Γa is a lattice. Now this is isomorphic up to a rotation-dilation to Γτ
where τ ∈ F holds.

Corollary 3.11. There exists a unique map

T :M1
2 → F , a 7→ τa

such that Γa is isomorphic to Γτa.

Definition 3.12. Let ζλ : R2 → P2 be a polynomial Killing field with initial
potential ζ0 ∈ P2. We define the fundamental solution of the system of ODEs

∂F

∂x
= FU(ζλ),

∂F

∂y
= FV (ζλ), F (0, 0) = 1

which we will call frame in the following. Now identify (x, y) ∈ R2 with
z = x + iy ∈ C and consider F to be a function on C. For ω ∈ Γa we
detone Mω = F (ω) as a monodromy. Mω commutes with ζ0 and maps the
eigenspaces of ζ0 onto themselves.

Definition 3.13. For every polynomial a ∈ M1
2 we define the Riemann

surface

Σ∗ = {(λ, ν) ∈ C× × C | det(ν1− ζ0) = ν2 + λa(λ) = 0}.

Let Σ̄ be the two-sheeted covering of CP1 branched at the four roots of a(λ),
α1, . . . , α4 as well as λ = 0 and λ =∞.

Definition 3.14. On the Riemann surface Σ∗ we now define two involutions

σ : (λ, ν)→ (λ,−ν), ρ : (λ, ν)→ (λ−1
,−λ−3

ν)

where ρ is an involution because a(λ) satisfies the reality condition.

10



3 SPECTRAL CURVES OF CMC TORI

Definition 3.15. The monodromiesMω act on the one-dimensional eigenspaces
of ζ0 as the multiplication with a function µω : Σ∗ → C× which satisfies

σ∗µω = µ−1
ω , ρ∗µω = µ−1

ω .

In the paper by Knopf et al. (2018) they then have proven the following
properties of such µω.

Lemma 3.16. For all a ∈M1
2 the elements of Γa are characterized as those

ω ∈ C such that the function exp(ωλ−1ν) on Σ∗ factorizes into the product of
a holomorphic function µω obeying the equations above with a holomorphic
function on Σ∗ that holomorphically extends to λ = 0 and takes the value 1
there.

Definition 3.17. The logarithmic derivative of µω is a meromorphic function
of the second kind with second order poles at λ = 0 and λ =∞. It takes the
form

d lnµω = bω(λ)
2ν d lnλ

where bω(λ) ∈ P3
R.

Definition 3.18. For any b ∈ P3
R we define the meromorphic differential

Θb = b(λ)
ν

d lnλ.

For any a ∈ M2 we define Ba to be space of all b ∈ P3
R such that Θb has

purely imaginary periods. This vector space has real dimension two.

Now we want to establish a connection between τa and the space Ba. Theorem
3.5 by Knopf et al. (2018) states that for all a ∈M1

2 ∪M2
2 ∪M3

2 the values
bω(0) fulfilling the equality in Definition 3.17 build a lattice Γ̃a ⊂ C if they
define d lnµω of a function µω on Σ∗ that satisfies the equalities in Defintion
3.15 as well as

µω = fω + gων, fω, gω ∈ O(C×)

(see proof of Lemma 4.1).

Definition 3.19. Let (b1, b2) be a base of Ba. Then, (b1(0), b2(0)) are R-
linearly independent and therefore, build a lattice. In the Master thesis A
New Parametrization of the Solutions of the sinh-Gordon Equation of Spectral

11



Genus Two by B. Schmidt (2020) the following extension of the map T is
defined: Let T̂ be the map

T̂ :M1
2 × Ba × Ba → F

(a, b1, b2) 7→ b1(0)
b2(0) = τa

We will use this extension in our further examinations of the level sets
T−1(τa). In the later parts of this thesis the concept of the Willmore en-
ergy will be important so we define it here.

Definition 3.20. Let Σ be a Riemann surface and H the mean curvature of
Σ. Then we define the Willmore energy to be

W (Σ) =
∫

Σ
H2 dA

From Knopf et al. (2018) we also see the following remark.

Remark 3.21. If we take p = (λ, ν) ∈ Σ∗ then every ζ0 ∈ I(a) has a
non-trivial eigenspace at λ with eigenvalue ν. Away from the roots of a(λ)
the eigenspace is one-dimensional. At simple roots of a(λ) ν vanishes, ζ0 is
nilpotent and the eigenspace is one-dimensional as well.

Definition 3.22. We define the eigenfunction ψ of ζ for p = (λ, ν) ∈ Σ∗ in
terms of the fundamental solution F in the following way

ψ(z) = F |−1
λ (z)χ, z ∈ C, χ ∈ C2 \ {(0, 0)}, s.t. ζ0|λχ = νχ.

Definition 3.23. Let j =
(

0 1
1 0

)
be the matrix representation of the quater-

nion j ∈ H. Then we can define the space of quaternions to be

H =
{
A ∈ C2×2

∣∣∣∣ jA = Aj
}

=
{

(χ,−jχ)
∣∣∣∣ χ ∈ C2

}
.

Lemma 3.24. The involution η = σ ◦ ρ acts on ζ0 and F as

η∗ζ0 = −jζ0j, η∗F (z) = −jF (z)j.

That means that −jχ is the eigenvector of ζ0|η(λ) with eigenvalue η(ν) if χ
is the eigenvector of ζ0|λ with eigenvalues ν and F |−1

η(λ)(z)(−jχ) = −jψ(z).
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3 SPECTRAL CURVES OF CMC TORI

Definition 3.25. For two points p1, p2 ∈ Σ∗ and non-trivial eigenvectors
χ1, χ2 ∈ C2 \ {(0, 0)} of ζ0 at the two points before the vectors

χ3 = −jχ1, χ4 = −jχ4

are eigenvectors of ζ0 at the new points p3 = η(p1), p4 = η(p2). Now we
consider the corresponding functions ψ1, . . . , ψ4 defined as in Definition 3.22
and define the following maps s1, s2, fa : C→ H to be

s1 = (ψ1, ψ3), s2 = (ψ2, ψ4), fa = s−1
1 s2.

In the paper by Knopf et al. (2018) the following theorem is proven
Theorem 3.26. For all a ∈ M2

1 ∪M2
2 ∪M3

2 the Willmore energy of fa is
equal to

W (a) =
∫
C/Γ̂a

4γ2 dx ∧ dy =
∫
C/Γ̃a

8γ2 dx ∧ dy = 4iResλ=0 log(µ2)d log(µ1).

Now from B. Schmidt (2020) Chapter 6 we get the following result

Ẇ (a) = 4iResλ=0t
dλ
λ
.

Definition 3.27. We define H2 = {a ∈ P 4
R | a describes the spectral curve

of a CMC torus of finite type}. These polynomials can be described by the
following four conditions (see The prevalence of tori amongst constant mean
curvature planes in R3 by Carberry and M. U. Schmidt (2016))
(i) a(λ) satisfies the reality condition

(ii) a(λ)
λ2 > 0 for all λ ∈ S1.

(iii) the highest coefficient of a(λ) has absolute value 1

(iv) a(λ) has pairwise distinct roots.
a(λ) therefore defines a smooth Riemann surface Xa defined by pairs (λ, ν) ∈
C× × C fulfilling

ν2 = λa(λ) = λ
2∏
j=1

ηj
|ηj|

(λ− ηj)(λ− ηj−1).

Definition 3.28. For λ0 ∈ S1 we define

S2
λ0 = {a ∈ H2 | b(λ0) = 0 for all b ∈ Ba}.

Further we define

S2 =
⋃

λ0∈S1

S2
λ0 .
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Our next goal is to define the concept of the winding number which is defined
in the paper by Carberry and Schmidt (2016). In order to do so we will first
define

Definition 3.29. Let b1, b2 ∈ Ba be linearly independent. Then we define

f = b1

b2
: CP1 → CP1

which is defined by a(λ) up to a Möbius transformation. Therefore, we can
define deg(f) independently from our choice of b1, b2.

Definition 3.30. Let b1, b2 ∈ Ba be the unique pair s.t. b1(0) = 1 and
b2(0) = i. Then we define the map

f̃ : S1 → S1

where

f̃ = b1 + ib2

b1 − ib2
= f + i

f − i

holds. We will then define the winding number to be n(f̃) = deg(f̃).

In the paper from Carberry and Schmidt (2016), Lemma 3.1 states

Lemma 3.31. The degree deg(f) and the winding number n(f̃) of f satisfy

n(f̃) ≡ deg(f) mod 2 and − deg(f) < n(f̃) ≤ deg(f).

14



4 THE BOUNDARY OF T−1(τa)

4 The boundary of T−1(τa)
In the Master’s thesis by B. Schmidt (2020), Corollary 4.3 states that the
level sets T−1(τa) are submanifolds of dimension one for any a ∈ M1

2. By
our Classification of 1-manifolds we see that each connected component of
these submanifolds is either diffeomorphic to S1 or an interval in R. In this
section we discuss the case of those components diffeomorphic to an interval
and we will examine the boundary points of these components. We can
identify each a ∈ M1

2 with its two roots α1, α2 ∈ B(0, 1) ⊂ CP1. Therefore,
every sequence (an)n∈N in such a component has a convergent subsequence
in the sense that the roots converge in the projective space. If we consider
a sequence that converges to a boundary point of one of these intervals we
can assign the limit to a spectral curve we will examine. There, we only
need to consider two cases: either the limit spectral curve is now an element
a ∈ ⋃5

i=2Mi
2 or the spectral curve has roots of higher order at λ = 0 and

λ =∞. The Theorem 3.5 of the paper by Knopf et al. (2018) states that in
the case of a ∈ M4

2 ∪M5
2 T takes the value ∞ on these sets, meaning that

the corresponding lattice goes to infinity. Since that is not the case here, we
only need to consider a ∈M2

2 ∪ M3
2.

4.1 The case a ∈M2
2 ∪ M3

2

In this case every spectral curve a(λ) we consider all have in common that
they have a double root λ0 ∈ S1. We will use the fifth chapter of B. Schmidt
(2020) to examine the condition a(λ)

λ2 ≥ 0 at the double root λ0 because at
every other value of λ ∈ S1 beside a potential second double root it needs to
hold that the expression is greater than zero because otherwise a(λ) would
have to vanish at that value which is a contradiction to λ0 being the double
root (and λ1 being the second one for which the proof would go similarly).
To examine the condition we will derive it by t

d
dt
a(λ0)
(λ0)2 = ȧ(λ0)

(λ0)2 .

Our goal is to prove that this expression doesn’t vanish so that we know that
the expression a(λ)

λ2 is not staying at 0 so we know that we can flow through
the boundary point smoothly. Therefore, the value we need to look at is
ȧ(λ0). In section 5.2 of B.Schmidt (2020) it is shown that this expression is
given by

ȧ(λ0) = λ0a
′′(λ0)ck(λ0)i
b′k(λ0)
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4.1 The case a ∈M2
2 ∪ M3

2

for k = 1, 2 such that b′k(λ0) 6= 0. Since a(λ) only has a root of order two, we
know that a′′(λ0) can’t vanish. So we need to look at the values ck(λ0) for
both k = 1, 2. Here, we also get that the value of c2(λ0) can be expressed as
follows

c2(λ0) = 2λ2
0Q1a

′′(λ0)b′2(λ0)
b′2(λ0)b′′1(λ0)− b′1(λ0)b′′2(λ0) + 2λ0b′1(λ0)b′′2(λ0)− 2λ0b′2(λ0)b′′1(λ0)

Again we see that a′′(λ0) doesn’t vanish and we can assume that b′2(λ0) also
is not zero if c2 is used in the equation for ȧ above which holds for both c1(λ)
and c2(λ). So the only value that could vanish is Q1. If we look at the other
case, b′1(λ0) 6= 0 we get

c1(λ0) = c2(λ0)b′1(λ0)
b′2(λ0)

so we see that in the case of b′1(λ0) being finite we have the same value for
ȧ(λ0) as for c2(λ0) with the only difference being b′1(λ0) in the fraction instead
of b′2(λ0). Therefore, it remains to examine first the case that both b′k(λ0)
vanish and second the value Q1. To examine the former we first establish a
fact concerning the roots of the polynomials b(λ) ∈ Ba.

Lemma 4.1. If λ0 ∈ C is a root of a ∈ M2 of even order 2k, k = 1, 2 then
every b ∈ Ba has a root of order k at λ0.

Proof: We know from the paper from Knopf et al. (2018) that µω satisfies
the condition

µω = fω + gων with fω, gω ∈ O(C×)

Therefore, we can use this representation to compare with Θbω since

d lnµω = Θbω = bω(λ)
2ν d lnλ

Now we use our representation formula to differentiate the left hand side of

16



4 THE BOUNDARY OF T−1(τa)

the formula above

d lnµω = d ln(fω + gων)

= d ln(fω(λ) + gω(λ)
√
λa(λ))

=
f ′ω(λ) + g′ω(λ)

√
λa(λ)) + gω(λ)(λa′(λ)+a(λ)

2
√
λa(λ)

fω + gων
dλ

=
λgω(λ)a′(λ) + 2

√
λa(λ)f ′ω(λ) + 2λa(λ)g′ω(λ) + a(λ)gω(λ)

2
√
λa(λ)

(√
λa(λ)gω(λ) + fω(λ)

) dλ

= bω(λ)
2
√
λa(λ)λ

dλ.

Now comparing coefficients and rationalizing results in the following equation
we obtain

bω(λ)(fω(λ) + gω(λ)ν) = λ2gω(λ)a′(λ) + 2λνf ′ω(λ) + 2λ2a(λ)g′ω(λ) + λa(λ)gω(λ).

Next, if we examine both sides at a root of order 2k λ0 of a(λ) we see that ν
has a root of order k there and a′ has a root of order k−1. Since every term on
the right side includes at least one of a, ν or a′ we see that the right side has
a root of order k at every root of order 2k of a(λ). Then, if we evaluate the
left hand side of the equation above we see that at such a root the expression
takes the form bω(λ0)fω(λ0). Now since fω(λ) is holomorphic on C× we see
that bω(λ0) needs to have a root of order k at λ0, thus completing the proof.

q.e.d.

Considering that we are in the case that a(λ) has at least one double root
we see that b1 and b2 already share one root and therefore, deg(f) ≤ 2. Now
if it were to be true that both b′1(λ0) and b′2(λ0) vanish, λ0 would be a root
of order 2 for both bk meaning that deg(f) ≤ 1. Although Theorem 3.2 from
the paper by Carberry and M.U. Schmidt (2016) states that the condition
deg(f) = 1 is equivalent to g(Xa) = 0. Since that is not true for the surfaces
we consider, we know that this case won’t occur. Therefore, we only need
to look at Q1 now. Now in B. Schmidt (2020) section 5.2 we see that for
a ∈ M2

2 ∪ M3
2 the values for ȧ, ḃ1, ḃ2, c1, c2 all depend on Q1 ∈ R in the

way that if Q1 = 0 all other values vanish as well, so we get the trivial zero
solution. So what we know is first that a(λ)

λ2 = 0 for any double root λ ∈ S1

as well as a(λ)
λ2 > 0 for all other values λ ∈ S1. So since we have proven that

ȧ(λ0)
(λ0)2 6= 0 for any double root λ0 ∈ S1
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4.2 The case of unbounded coefficients

holds we see that the sign of this condition needs to change if we go through
this boundary point a ∈ M2

2 ∪M3
2 so then it holds that a(λ)

λ2 < 0 for some
λ ∈ S1. However we know from Theorem 3.5 that the condition a(λ)

λ2 > 0 for
all λ ∈ S1 needs to hold for a ∈M2. So we see that this boundary point is a
true boundary point of our set because any further value is not an element
ofM2.

4.2 The case of unbounded coefficients
4.2.1 Blowing up M2

1

Now we will consider the second boundary case of the components of T−1(τa)
which is that at least one of the coefficients of a(λ) goes to infinity which
because of the reality condition implies that another coefficient goes to zero.
The same things then happens to at least one pair of roots α, α−1 of a(λ).
In this case the limits are not part inM2 or any other set that can a priori
be considered a manifold because some of the coefficients form singularities.
This means that we can’t use the implicit function theorem to prove that
these limits of T−1(τa) form a one-dimensional manifold as well. So in this
case we will construct a blow up in which the coefficients of the limit should
still be finite. In order to do so, we first need to consider a new parametriza-
tion for a(λ) ∈ M2. Therefore, let a+ and a− be the polynomials of degree
two where a+ has the roots of a(λ) that lie in B(0, 1) ∪ S1 and a− has the
roots of a(λ) in C \ B(0, 1) ∪ S1 with the new coefficients λ+

t = t
λ
, λ−t = λt

where λ ∈ C, t ∈ R+. The new parametrization will have the following form

a(λ) = (λ+
t )−2 · a+(λ+

t ) · a−(λ−t ). (1)

To include the case where a(λ) has roots on S1 we establish the following
fact

Proposition 4.2. Any polynomial a ∈ M2 has only roots of even order on
S1.

Proof: Any a ∈M2 has to satisfy the condition

a(λ)
λ2 ≥ 0, for λ ∈ S1.

Therefore, we also know that λ 7→ a(λ)
λ2 is a map into the real line if we

restrict λ to the unit sphere. However we can also then replace the complex
λ with real polar coordinates and therefore, we can express our fraction as a
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4 THE BOUNDARY OF T−1(τa)

polynomial in the real numbers

φ : R→ R,

ϕ 7→ a(λ(ϕ))
λ(ϕ)2 .

Now if φ(ϕ) were to have a root of uneven order that would mean that it
would change the sign at some point of the real numbers. This, however is
a contradicition to the condition we stated in the beginning. Although if
a(λ)
λ2 does not have a root of uneven order then the same has to hold for a(λ)
which completes the proof. q.e.d.

In our construction we will need an extra condition on M2 for our decom-
position to work. Therefore, we define the following equivalence relation

Definition 4.3. We identify those a ∈ M2 to be equivalent where the roots
of a1, a2 ∈M2 can be transformed from one to the other by the multiplication
with i. In the following we consider those representatives ofM2/ ∼ that have
the property for those two roots α1, α2 ∈ B(0, 1) that the product α1α2 > 0
holds.

Remark 4.4. Note that because of a(0) = 1 it holds that α1α2 = α1α2 which
in turn means that the product is real. Then, since roots at zero do not
occur in P d

R the product is either greater than zero or smaller. Multiplying
all roots with i turns every a(λ) where the product is smaller than zero into
a polynomial where it is greater than zero.

Lemma 4.5. Any polynomial a ∈ M2 has a unique decomposition of type
(1) where a+ is the polynomial of degree two with all of the roots inside B(0, 1)
and half of each root on S1 (of even order, as seen in the previous proof) and
a− is the polynomial of degree two with all of the roots outside of B(0, 1) and
half of each root on S1. The new polynomials satisfy the following conditions

(i) a+
k = a−k for all k = 0, 1, 2

(ii) (λ+
t )−2a+(λ+

t ) = λ2t−2 + aλt−1 + 1

where a ∈ C and t ∈ R are the two parameters describing a(λ) following the
new parametrization.

Proof: The first observation we make is that by Proposition 3.2 and the
fact that roots of a(λ) are invariant under λ→ λ

−1 the polynomials a+ and
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4.2 The case of unbounded coefficients

a− have the same degree deg(a+) = deg(a−) = 2. Now we also know that
a(0) = 1 holds and that the polynomials a± have the following form

a±(λ±t ) = a±2

2∏
k=1

(λ±t − %±t,k)

where we denote the roots of a± by %±. Since λ+
t and λt− can be transformed

into each other by the mapping λ→ λ−1 and the roots of a+ and a− can be
mapped to each other by λ → λ

−1 because of the reality condition we can
number the roots of a± in a way that %+

t,k = %−t,k and therefore, the claim for
the coefficients holds as well.
Now we consider the second condition and calculate the left hand side of (1)
which yields

(λ+
t )−2a+(λ+

t )a−(λ−t ) = λ2

t2

( t2
λ2 + a

t

λ
+ 1

)(
λ2t2 + aλt+ 1

)
=
(
λ2t−2 + aλt−1 + 1

)(
λ2t2 + aλt+ 1

)
= t2t−2(λ− α1)(λ− α2)(λ− α1

−1)(λ− α2
−1)

= t−2(λ− α1)(λ− α2)t2(λ− α1
−1)(λ− α2

−1).

We use the first part of both sides to calculate conditions on t and a(λ).
That yields (

λ2t−2 + aλt−1 + 1
)

= t−2(λ− α1)(λ− α2)

which is equivalent to

t−2(λ2 + atλ+ t2) = t−2(λ2 + (α1 + α2)λ+ α1α2).

By comparing coefficients we get two equations to solve

t2 = α1α2

at = α1 + α2

which results in the unique solution

t = √α1α2

a = α1 + α2√
α1α2

because we forced α1α2 > 0. Since we know that every a ∈ M2/ ∼ is
uniquely defined by the two roots α1, α2 ∈ B(0, 1) s.t. α1α2 > 0 holds, the
two equations we were able to solve uniquely define us a decomposition for
each a ∈M2. q.e.d.
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4 THE BOUNDARY OF T−1(τa)

Remark 4.6. The composition described in Equation one can now be cal-
culated a bit further. We get

a(λ) = λ2

t2
·
( t2
λ2 + a

t

λ
+ 1

)
·
(
t2λ2 + atλ+ 1

)
=
(
t−2λ2 + at−1λ+ 1

)
·
(
t2λ2 + atλ+ 1

)
Definition 4.7. We will denote the space of pairs (t, a) ∈ R+ × C that
correspond to an a ∈M2 with A.

Now in the next step we also want to decompose the elements of Ba in
a similar way. Here we will use the t that is uniquely defined for every
a ∈M2/ ∼ in our new decomposition. We will start with a decomposition of
the real 4-dimensional space P 3

R. To do so, we show that such a decomposition
works for all t ∈ R and for arbitrary p(λ) ∈ P d

R. For that, again we decompose
p into three factors, p+, p− and p0 where p+ contains all roots in B(0, 1), p0

contains all the roots on S1, and p− contains all the roots on C \ B(0, 1).
Then we consider for t ∈ R× the following decomposition

p(λ) = (λ+
t )−deg(p+) · p+(λ+

t ) · p0(λ) · p−(λ−t ). (2)

The following lemma and proof are from the unpublished paper The bound-
ary of the space of spectral curves of constant mean curvature tori with
spectral genus two by Carberry, Kilian, Klein and M.U. Schmidt (2020)

Lemma 4.8. Let ϕ ∈ R. Then each p ∈ P d
R has a unique decomposition as

in (2) with the following conditions

(i) |p0(0)| = 1 and p0 ∈ P d0
R where d0 is the number of roots of p on S1.

(ii) The coefficients p±k of p±(λ±t ) = ∑d′

k=0 p
±
k (λ±t )k obey p−k = p+

k where d′
is the degree of p+ and p−

(iii) p−d′ ∈ eiϕ · R+

Proof: For given t ∈ R we can easily construct polynomials p±, p0 that sat-
isfy the condition on the roots. In a similar way as in Lemma 3.5 we consider
the map λ→ λ

−1 which assigns each root inside B(0, 1) exactly one root on
C \ B(0, 1) which in turn means that deg(p+) = deg(p−). Since each root
on S1 is of the form eiϕ the mapping assigns such a root itself. Therefore, it
preserves the roots of p0 which we then can choose to be in P d0

R . Since every
polynomial is uniquely determined by its roots and the leading coefficient,
the condition |p0(0)| = 1 determines p0 uniquely up to sign, since the lead-
ing coefficient and lowest coefficient are complex conjugates for polynomials
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4.2 The case of unbounded coefficients

satisfying the reality condition. So now the first part is proven. Now we take
a look at

p±(λ±t ) = p±d′ ·
d′∏
k=1

(λ±t − %±t,k),

where %±t,k, k = 1, . . . , d′ are the roots of p±.
We already established that λ → 1/λ maps the roots of p+ to the roots of
p−. Since λ+

t can be transformed into λ−t by the mapping λ → 1/λ we see
that the roots %±t,k can be numbered such that the corresponding pairs satisfy
%+
t,k = %−t,k for all k = 1, . . . , d′. That in turn yields the same relation for the

coefficients of p± if p+
d′ = p−d′ . The highest and lowest coefficients of the right

hand side of equation (2) are

p+
d′ · p−d′ · p0

d0 ·
d′∏
k=1

(−%+
t,k) and p+

d′ · p−d′ · p0
0 ·

d′∏
k=1

(−%−t,k).

Now if we impose the condition on the highest coefficients discussed before as
well as our knowledge of the roots, which yields the following for the highest
and lowest coefficient

p−d′ · p−d′ · p0
d0

d′∏
k=1

(−%−t,k) and p−d′ · p−d′ · p0
0 ·

d′∏
k=1

(−%−t,k).

Because of the first condition of the Lemma, p0
d0 = p0

0 holds. Then the highest
coefficient is the complex conjugate of the lowest for any choice of p−d′ ∈ C×.
By construction, both sides of (2) have the same roots and we know that the
left hand side is a polynomial in P d

R. Therefore, the right hand side is also a
polynomial satisfying the reality condition. Now the right hand side equals
the left hand side if the leading coefficient of sides is equal. Since we chose p0

uniquely up to sign and the roots of p± are also already determined the now
determining factor is |p−d′|. Therefore, we can choose a unique representative
of the form p−d′ ∈ eiϕ · R+. q.e.d.

Now let b(λ) ∈ P 3
R. Then we consider the same decomposition as before

b(λ) = (λ+
t )− deg(b+) · b+(λ+

t ) · b0(λ) · b−(λ−t ). (3)

Since we now know how to decompose the space P 3
R we want to have a look

at Ba as well. In order to do so we need to discuss the homology basis
and how to change it, such that some of the cycles are still defined in the
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4 THE BOUNDARY OF T−1(τa)

blow up. First, we consider the canonical homology basis of our Riemann
surface Σ∗ = {(λ, ν) ∈ (C× × C) | det(ν1 − ξ0) = ν2 + λa(λ)} as described
in the paper by Knopf et al. (2018). Those are the cycles A1, A2, B1, B2
described in the first 3 pictures. We added the orientation and intersection
points to make the chosen basis unique. That is because our surface Σ∗ is
a hyperelliptic surface of genus two and therefore, a two-sheeted covering of
CP1 and therefore, if we look at the cycles only in the C-plane we need to
make clear in which sheet the cycles are at all times and we do so by fixing
the intersection points. However in our blow-up, some of our cycles, namely
those surrounding more than one root won’t be well defined in our blow-up,
so we need to consider a new basis. On the other hand we also know that in
the limit we will discuss a Riemann surface of lower genus, namely g = 1 so
it suffices to have two cycles that will remain well-defined in the limit. The
first cycle is already a part of our canonical basis, namely B1. Then we want
to exchange the cycle A2 with a cycle surrounding the root of a(λ) inside
B(0, 1) not surrounded by B1 and zero which we will call Ã. We then can
use our canonical homological basis to express Ã with the old homological
basis. To do so, we need to fix a orientation for that cycle and see in which
sheet the cycle is at each point. Then we can fix an intersection point with
the cycle B1. The next figures will make clear how Ã is defined.

Figure 4.1: Homology basis of Σ̄

Rez

Imz

S1

A2

A1

(a) A cycles

Rez

Imz

S1
B1

B2

(b) B cycles
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4.2 The case of unbounded coefficients

Figure 4.2: Homology basis of Σ with intersection points
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Imz

S1
B1

B2

A2

A1

(a) Homology basis with intersection points

Rez

Imz

S1
B1

B2

Ã A2

(b) Ã and intersections with other cycles

We see that the new defined cycle has the following intersection numbers with
the canonical basis: (Ã◦A2)P1 = −1, (Ã◦B1)P2 = 1. Since for our canonical
basis it holds that (Ai ◦Bj) = δij we know that our cycle Ã is homological to
B2+A1 since they have the same intersection numbers with every cycle of our
base. So we can now consider our new homological basis (A1, Ã, B1, B2). We
now want to show that the periods of Θb uniquely determine the underlying
b defining the differential.

Lemma 4.9. For every a ∈ M1
2 ∪ M2

2 ∪ M3
2 for every pair of numbers

(µ1, µ2) ∈ R there exists a unique b ∈ Ba satisfying the following conditions

(i)
∫
Ai

Θb vanishes for both i = 1, 2

(ii)
∫
Bi

Θb = µii for both i = 1, 2

Proof: At first we prove that the polynomials satisfying the reality condition
need to vanish along the A-cycles. In order to do so, we look at how the
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4 THE BOUNDARY OF T−1(τa)

involutions σ, ρ act on our differential.

σ(b(λ)) = b(λ), σ(ν) = −ν
ρ(b(λ)) = b(λ−1) = λ

−3
b(λ), ρ(ν) = λ

−3
ν

σ∗
b(λ)
ν

d lnλ = −b(λ)
ν

d lnλ

ρ∗
b(λ)
ν

d lnλ = −λ
−3
b(λ)

λ
−3
ν

d lnλ = −b(λ)
ν

d lnλ

Now since we also know that σ∗A = −A, ρ∗A = −A, the following calculation
for the periods of Θb holds true∫

Ai

Θb =
∫
ρ∗Ai

ρ∗Θ =
∫
−Ai

−Θ = −
∫
Ai

−Θ =
∫
Ai

Θ, i = 1, 2

which in turn means that the A-periods are real. However since b ∈ Ba only
has purely imaginary periods by definition, the periods need to vanish.
Now we assume that there exist two different polynomial b, b̃ such that∫
Bi

Θb =
∫
Bi

Θb̃. Then the difference of these two differentials is a differ-
ential form whose periods all vanish. That means that our Differential form
is exact and we can integrate it, because the integral only depends on the
endpoints of each path γ and not on the path itself. So then it should exist
a meromorphic function with simple poles at λ = 0,∞ defining the differen-
tial. That function then is a function of degree two. Now since our surface
is hyperelliptic we know that there exists up to Möbius transformations only
one such meromorphic function of degree 2, namely the function λ. However
the poles of λ do not match those of this meromorphic function even with
Möbius transformation. So there can’t exist such a meromorphic function
meaning there can’t be two polynomials in Ba with the same periods. There-
fore, we have now proven the uniqueness of such a polynomial but it remains
to be shown that such polynomials exist. Now we can consider the identity
(ii) from above as a linear mapping ϕ : Ba → R2 that identifies each poly-
nomial a ∈ Ba with its B-periods. Now we know that Ba has real dimension
two and the arguments before show that kerϕ = {0} so the mapping is an
isomorphism which completes the proof. q.e.d.

Remark 4.10. Note that the period for Ã only vanishes if the periods for
B2 vanishes as well since Ã is homologous to B2 + A1.

Definition 4.11. For a fixed t ∈ R+ we define the spectral curve Σt =
{(λ, νt) ∈ C2 | ν2

t = λ · at(λ)} where at is a polynomial a ∈M2 whose image
in A is (t, a) with an arbitrary a ∈ C.
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4.2 The case of unbounded coefficients

The following ideas are transferred from the unpublished paper by Carberry
et al. (2020) for our case. For a rigorous proof of the original thoughts see the
seminar thesis Spektralgeschlecht der sinh-Gordon Gleichung: Der Rand von
S2

1 unter Blow-Up by Hasse (2020). Here we want to consider the limit case
t→ 0 for which we need to define a singular curve that arises as the limit of
Σt. We will call the limit curve Σ0 whose normalization has three connected
components, namely Σ+,Σ0,Σ− who are all hyperelliptic. Therefore, we can
consider Σ0 to be a two-sheeted covering over three copies of the projective
space CP1 which we will call CP1

λ+ ,CP1
λ and CP1

λ− . Here each subscript
denotes the parameter used in the copy. We consider the following equations

λ · λ+
t = t and λ−t · λ−1 = t

of the parameters. In the limit t→ 0 we use these equations to describe the
double point (λ, λ+) = (0, 0) at which CP1

λ+ and CP1
λ are joined and the

second double point (λ, λ−) = (∞, 0) which joins CP1
λ and CP1

λ. Now the
equations to do so are

λ · λ+ = 0 and λ− · λ−1 = 0.

We will use a figure to illustrate the procedure we just described.

Figure 4.3: Model for our construction from Carberry et al. (2020)

λ+ =∞ λ+ = 0 λ = 0 λ =∞ λ− = 0 λ− =∞

P1
λ+ P1

λ P1
λ−

(a) Three copies of CP1 joint by double points as described above

We now examine the connected components of Σ0. We define them to be the
hyperelliptic curves that are the one point compactifications of

{(λ+, ν+) ∈ C2 | (ν+)2 = λ+((λ+)2 + aλ+ + 1)} at λ+ =∞
{(λ, ν0) ∈ C2 | (ν0)2 = λ3} at λ =∞
{(λ−, ν−) ∈ C2 | (ν−)2 = λ−((λ−)2 + aλ− + 1)} at λ− =∞.
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4 THE BOUNDARY OF T−1(τa)

These definitions will be motivated by Lemma 4.15 where we show that they
match with certain limits of at(λ) for t→ 0.

Definition 4.12. The curve Σ0 is defined by identifying (λ+, ν+) = (0, 0) ∈
Σ+

0 with (λ, ν0) = (0, 0) ∈ Σ0
0, forming an ordinary double point and also

identifying (λ, ν0) = (∞,∞) ∈ Σ0
0 with (λ−, ν−) = (0, 0) ∈ Σ−0 which again

forms an ordinary double point.

To describe the limit process of Σt we will define some subsets of Σt,Σ0

Definition 4.13. Let K ⊂ C× be a compact set. Then we define

Σ+
t,K = {(λ, ν) ∈ Σt | λ+

t = t/λ ∈ K} Σ+
0,K = {(λ+, ν+) ∈ Σ+

0 | λ+ ∈ K}
Σ0
t,K = {(λ, ν) ∈ Σt | λ ∈ K} Σ0

0,K = {(λ, ν0) ∈ Σ0
0 | λ ∈ K}

Σ−t,K = {(λ, ν) ∈ Σt | λ−t = tλ ∈ K} Σ−0,K = {(λ−, ν−) ∈ Σ−0 | λ− ∈ K}

Definition 4.14. For any compact set K there then exists some ε > 0 such
that for all t ∈ (−ε, ε)\{0} the hyperelliptic Riemann surfaces Σ+

t,K ,Σ0
t,K ,Σ−t,K

have the same branch points as the connected components of the limit Σ+
0,K ,Σ0

0,K
and Σ−0,K. By mapping the branch points to each other we construct biholo-
morphic maps

Φ+
t : Σ+

0,K → Σ+
t,K , Φ0

t : Σ0
0,K → Σ0

t,K , Φ−t : Σ−0,K → Σ−t,K

such that

(Φ+
t )∗(λ+

t ) = λ+, (Φ0
t )∗(λ0

t ) = λ0, (Φ−t )∗(λ−t ) = λ−.

We will now prove our version of Lemma 2.9 from Carberry et al. (2020) (or
alternatively Lemma 30 of Hasse (2020)).

Lemma 4.15. Let K ⊂ C× ⊂ CP1 be compact. Then the following limits
for t→ 0 are uniform:

a(t/λ+)→ (λ+)−2 · a+(λ+) for λ+ ∈ K
t2 · a(λ)→ λ2 for λ ∈ K

t4 · a(λ−/t)→ (λ−)2 · a−(λ−) for λ− ∈ K.

Proof: We fix λ, λ± ∈ K and because of compactness every limit is then
uniform. Now we will use Remark 4.6 to describe the limits. It follows then
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4.2 The case of unbounded coefficients

that

a(t/λ+) =
(
t−2t2(λ+)−2 + at−1t(λ+)−1 + 1

)
·
(
t4(λ+)−2 + at2(λ+)−1 + 1

)
=
(
(λ+)−2 + a(λ+)−1 + 1

)
·
(
t4(λ+)−2 + at2(λ+)−1 + 1

)
→
(
(λ+)−2 + a(λ+)−1 + 1

)
· 1

= (λ+)−2a+(λ+).
t2 · a(λ) =

(
t2t−2λ2 + at2t−1λ+ t2

)
·
(
t2λ2 + atλ+ 1

)
=
(
λ2 + atλ+ t2

)
·
(
t2λ2 + atλ+ 1

)
→ λ2 · 1 = λ2.

t4 · a(λ−/t) = t4 ·
(
t−4(λ−)2 + at−2λ− + 1

)
·
(
t2t−2(λ−)2 + att−1λ− + 1

)
=
(
(λ−)2 + at2λ− + t4

)
·
(
(λ−)2 + aλ− + 1

)
→ (λ−)2 · a−(λ−).

q.e.d.

We want to establish a similar result for the polynomials bt.

Lemma 4.16. Let K ⊂ C× ⊂ CP1 be compact. Then the following limits
for t→ 0 are uniform

bt(t/λ+)→ (λ+)−1b+(λ+), for λ+ ∈ K
t · bt(λ)→ λ · b0(λ) for λ ∈ K

t3 · bt(λ−/t)→ (λ−)2 · b−(λ−), for λ− ∈ K.

Proof: As in the Lemma before, we fix λ, λ± ∈ K and since K is compact
the limits are uniform. Using our new parameters and Equation (3) we get

b(t/λ+) = (λ+)−1 · b+
t (λ+) · b0

t (t/λ+) · b−t (t/(λ+)2)
→ (λ+)−1 · b+(λ+) · b+(0) · b−(0).

t · bt(λ) = λ · b+
t (t/λ) · b0

t (λ) · b−t (tλ)
→ λ · b+(0) · b0(λ) · b−(0).

The same procedure yields the result for the last equation as well. q.e.d.

We have described how the limit curve arises. Now we want to define an
analogon of Ba on Σ+

0 for a+. The connected component Σ+
0 has genus g = 1

and therefore, any homology basis on this surface consists of two cycles. In
our discussion before we already defined two cycles of our homology basis in
a way that they are well defined in the limit on Σ+

0 as well.
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4 THE BOUNDARY OF T−1(τa)

Definition 4.17. For any basis (b±1 , b±2 ) of our two-dimensional vector spaces
Ba± we define the rational functions

f±(λ±) = b±1 (λ±)
b±2 (λ±) .

Each function is unique up to Möbius transformations.

Definition 4.18. For any polynomial b± ∈ C1[λ±] or b0(λ) ∈ C1[λ] we define
the meromorphic differentials

Θ±b± = b±(λ±)
ν±

dλ± and Θ0
b0 = b0(λ)

ν0
dλ
λ

on Σ±0 and Σ0
0 respectively.

Proposition 4.19. The above defined differential Θ+
b+ is a holomorphic dif-

ferential at any value not λ =∞ and has a second order pole at λ =∞

Proof: Since λ+ · a+(λ+) is zero for λ+ = 0, so λ+ is no local chart in
any neighbourhood of zero. We can evaluate our differential in the chart
z2 = λ+. The identity dλ+ = 2zdz holds then. Now we will look at Θ+ in
the z-coordinates.

b(λ+)√
λ+ · a+(λ+)

dλ+ = b+(z2)√
z2a+(z2)

2zdz

= b+(z2)√
a+(z2)

dz

b+(λ+) is a polynomial of degree one so b+(z2) is a polynomial in z of degree
two. a+(λ+) is a polynomial of degree two so

√
a+(z2) is a polynomial of

degree two as well. Therefore, we see that Θ+ is the quotient of two polyno-
mials of degree two in any neighbourhood of λ+ = 0. So that means that it
takes value in C× at λ+ = 0 by the rule of L’Hospital which in turn means
that Θ+

b+ is holomorphic at λ+ = 0. Now we will look at λ+ =∞. In this case
we will use the chart λ+ = z−2 which yields the formula dλ+ = −2z−3dz.
Plugging that into Θ+

b+ then gives us

b+(λ+)√
λ+ · a+(λ+)

dλ+ = b+(z−2)√
z−2 · a+(z−2)

(−2z−3)dz

= −2z−2b+(z−2)√
a+(z−2)

dz
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4.2 The case of unbounded coefficients

Now we again see that b+ is a polynomial of degree one and b+(z−2) has
therefore, degree −2. Evaluating

√
a+(z−2) gets us a polynomial of degree

−2 as well so these two cancel out and the remaining term is z−2. So λ+ =∞
is the same as z = 0 so we see that Θ+

b+ has a second order pole at λ+ =∞.
Since the original Θ+

b+
t
is holomorphic everywhere except at λ+

t = 0,∞ we see
that Θ+

b+ is holomorphic everywhere else too. So then the claim holds and
our proof is finished. q.e.d.

Definition 4.20. Consider a+ as the limit of a(λ) ∈ M2/ ∼ as in Lemma
4.15 and Σ+

0 as defined before. Then Ba+ ⊂ C1[λ+] denotes the two dimen-
sional vector space of polynomials b+(λ+) such that Θb+ has purely imaginary
periods. We consider the cycles Ã, B1 defined in Figure 4.1 as the homology
basis of Σ+

0 .

Now we want to prove an analogon of Lemma 4.9 in the limit case.

Lemma 4.21. Let a+(λ+) be the limit of a polynomial a ∈M1
2 ∪M2

2 ∪M3
2

as in Lemma 3.14. Then every pair of numbers (µ1, µ2) ∈ R2 determines a
unique element b+(λ+) ∈ Ba+ such that

(i)
∫
Ã

Θb+ = µ1i

(ii)
∫
B1

Θb+ = µ2i

Proof: Again we will at first consider uniqueness and then see from the
dimension theorem that the existence of such a polynomial follows. Consider
two polynomials b and b̃ ∈ Ba+ such that they have the same periods. Then,
Θ̂ = Θb − Θb̃ has vanishing periods, which means that every closed integral
vanishes. Therefore, Θ̂ is an exact differential form and we can integrate
it. That means there needs to exist a meromorphic function f on Σ+

0 with
exactly one first order pole at λ = 0. Therefore, deg(f) = 1. However since
any function of degree one takes every value exactly once and is therefore,
a bijective map from Σ+

0 → CP1. We also know that f is holomorphic
everywhere except at λ = ∞. Now by mapping λ = ∞ to ∞ ∈ CP1 we get
that f : Σ+

0 → CP1 is a biholomorphic map. However since g(Σ+
0 ) = 1 and

g(CP1) = 0 such a map can’t exist which yields a contradiction.
Now again we know uniqueness holds and need to prove existence of such
polynomials. Consider the linear mapping ϕ : Ba+ → R2 that identifies each
polynomial b ∈ Ba+ with its periods along the cycles Ã and B1. By the
previous considerations, kerϕ = {0} holds, and because dim(Ba+) = 2, ϕ
becomes an isomorphism which means there it should exist one polynomial
b for each pair of periods in iR× iR. q.e.d.
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4 THE BOUNDARY OF T−1(τa)

Definition 4.22. Now we define the basis of the real two-dimensional vector
space Ba+ as the unique polynomials b+

1 , b
+
2 ∈ Ba+ such that∫

Ã
Θb+

1
= 2πi,

∫
B1

Θb+
1

= 0,∫
Ã

Θb+
2

= 0,
∫
B1

Θb+
2

= 2πi

hold.

Now we know that the periods of the Θb determine the unique elements of
our spaces Ba and Ba± . The next claim that we want to show is that the
periods determine the limits as well as that it is possible extend our lattice
in this limit continuously. In order to do so we will prove the following two
lemmata where the first one is just our analogon of Lemma 2.8 from Carberry
et al. (2020) or alternatively Lemma 12 from Hasse (2020)

Lemma 4.23. Let Θbt = bt(λ)
νt

dλ
λ

be a meromorphic differential defined on Σt

with βt = bt(0). For fixed t the limits for λ→∞

Θbt =
(
βtλ

−1/2 +O(λ−3/2)
)

dλ =
(
t−1/2βt(λ−t )−1/2 +O((λ−t )−3/2)

)
dλ−t

and λ→ 0

Θbt =
(
βtλ

−1/2 +O(λ1/2)
)

dλ = −
(
t1/2βt(λ+

t )−1/2 +O((λ+
t )−3/2

)
dλ+

t

hold.

Proof: Considering the case λ → ∞ any polynomial is dominated by the
highest coefficients which means that our polynomials at and bt become

bt(λ) = βtλ
3 +O(λ2), at(λ) = λ4 +O(λ3).

Now we need to see how νt acts in the limit. In order to do so, we first
exclude the highest power of λ and put it outside of the brackets and then
examine the Laurent series of

√
1 + λ−1 in the limit λ→∞

√
1 + λ−1 = 1 + 1

2λ
−1 − 1

8λ
−2 + 1

16λ
−3 +O(λ−4).

This series is converging for all |λ| > 1. We use this to calculate

νt(λ) =
√
λ · at(λ) =

√
λ5 +O(λ4)

=
√
λ5(1 +O(λ−1))

= λ5/2(1 +O(λ−1) = λ5/2 +O(λ3/2).
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4.2 The case of unbounded coefficients

Using this we get the result

Θbt =
(
βtλ

3 +O(λ2)
λ5/2 +O(λ3/2)

)
dλ

=
(

βtλ
3

λ5/2 +O(λ3/2) + O(λ2)
λ5/2 +O(λ3/2)

)
dλ

=
(
βtλ

−1/2 +O(λ−3/2)
)

dλ.

Now for the second equality in this limit we calculate dλ−t = tdλ and there-
fore, dλ = t−1dλ−t . Plugging this into our former result we see that

λ−1/2dλ = λ−1/2t−1dλ−t = t−1/2(λ−t )−1/2dλ−t
as well as λ−3/2dλ = t1/2(tλ)−3/2dλ−t = O((λ−t )−3/2)dλ−t .

This proves the first limit case. Considering the second case λ→ 0 the lowest
coefficients are now the ones that dominate the polynomials. Therefore,

bt(λ) = βt +O(λ), at(λ) = 1 +O(λ)
hold. Again we now need to calculate νt in the limit. Now we will exclude
the lowest power of λ and calculate the Taylor series of

√
1 + λ. Then it

holds that
√

1 + λ = 1 + 1
2λ−

1
8λ

2 + 1
16λ

3 +O(λ4).

Then νt becomes

νt(λ) =
√
λ(1 +O(λ) =

√
λ ·
√

1 +O(λ)
= λ1/2 · (1 +O(λ)) = λ1/2 +O(λ3/2).

Calculating the limit of Θbt then gets us

Θbt =
(
bt
νt

)dλ
λ

=
(

βt +O(λ)
λ1/2 +O(λ3/2)

)dλ
λ

=
(

βt
λ3/2 +O(λ5/2) + O(λ)

λ3/2 +O(λ5/2)

)
dλ

=
(
βtλ

−3/2 +O(λ−1/2)
)

dλ.

Now we consider the second equation. We calculate the change of coordinates
and see that dλ+

t = dt/λ = −t/λ2dλ. Plugging that in our result yields the
final equality.
λ−3/2dλ = λ−3/2 · (−λ2/t)dλ+

t = −t−1/2(λ+
t )−1/2dλ+

t

λ−1/2dλ = λ−1/2 · (−λ2/t)dλ+
t = −t1/2(λ+

t )−3/2dλ+
t = −O((λ+

t )−3/2)dλ+
t

q.e.d.
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Lemma 4.24. Suppose that f−(λ− = 0) ∈ C \R holds. Let K ⊂ C× ⊂ CP1

be compact. Then for sufficiently small t, the polynomials b±t , b0
t have degree

1 and as t → 0 they converge uniformly to polynomials b±, b0 such that the
parts of Θbt converge to differentials with the same periods.
Proof: Lemma 3.4 of the paper by Knopf et al. (2018) proves that the
coefficients of bt depend continuously on t ∈ (0, ε). Therefore, the same holds
true for the polynomials b±t (λ±t ) and b0

t (λ) if the degree of these polynomials
doesn’t change. It is clear by Lemma 4.8 that there are only two possible
cases: either all three polynomials have degree one or b0 has degree three and
the other two polynomials are of degree zero. First, we will prove continuity of
b−t at t = 0. The claim follows then for b+

t as well since the coefficients are just
the complex conjugates. Now consider a convergent sequence (tn, αn)n∈N ⊂
R>0 × C such that limn→∞ tn = 0 holds. Then we define an = a(tn,αn) and
b±n = b±(tn,αn), b

0
n = b0

(tn,αn) as well as Θ−n = Θ−(tn,αn). By Lemma 4.8 (i)
b0
n(0) ∈ S1 holds for all n ∈ N. So we can rename (tn)n∈N to a subsequence
such that b0

n(0) converges to a δ ∈ S1.
Since for n→∞ λ+

tn = t2n/λ
−
tn and λ−1 = tn/λ

−
tn hold and the first converges

uniformly to zero on K we use Lemma 4.15 to calculate the following limit

lim
n→∞

t5/2n · (Φ−t )∗νtn = lim
n→∞

t5/2n · (Φ−t )∗
√
λ · at(λ)

= lim
n→∞

(Φ−t )∗
√
t4n · λ−tn · atn(λ−tn/tn)

= lim
n→∞

√
λ− · t4n · atn(λ−/t) =

√
λ− · (λ−)2 · a−(λ−)

= λ− · ν−

(4)

which holds on Σtn,K and is uniform there.
Now we want to prove that deg(b−n ) = 1 by contradiction. So we assume
that deg(b−n ) = 0 holds. Then it follows that b±n are constant polynomials so
|b±n | ∈ R holds. Equation (3) then becomes

bn(λ) = b+
n b

0
n(λ)b−n = |b−n |2b0

n(λ) = |b−n |2b0(λ−/tn).

The reality condition forces that the highest coefficient of b0 converges to δ.
Now by construction we know that the highest coefficient as well as all the
roots of b0

n are unimodular and therefore, all coefficients of the polynomial
of degree three b0

n are bounded. So then by the equation above the sequence
(tn/λ−)3 ·b0

n(λ−tn) converges uniformly on K to δ. Comparing the asymptotics
for λ→∞ in Lemma 4.21 and for λ− →∞ from above (equation (4)) we
get(
β

1√
λ−

+O((λ−)−3/2)
)

dλ = lim
n→∞

(tn)1/2(Φ−tn)∗Θbtn
= lim

n→∞

|b−n |2 · δ · (λ−)3

λ− · ν−
dλ−
λ−

.
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Now the proof of Lemma 4.21 and the fact that a− has degree two show that
for λ→∞ we obtain that ν− = (λ−)3/2 + O((λ−)1/2) the right hand side of
the above equation becomes

lim
n→∞

|b−n |2 · δ · (λ−)3

(λ−)5/2 +O((λ−)3/2)
dλ−
λ−

= lim
n→∞

(
|b−n |2 · δ ·

1√
λ−

)
dλ−.

Then it follows by comparing asymptotics that limn→∞ |b−n |2 6= 0. Also be-
cause δ ∈ S1 we see that δ = β/|β| needs to hold. Again in all these equations
we denote by β = bt(0). Then it follows that limn→∞ |b−n |2 = |β| holds true
as well. Now if we look at Lemma 4.8 and our choice of ϕ = 0 it follows
that b−n > 0 holds which implies that

lim
n→∞

b−n =
√
|β|.

Now the limit of t1/2n (Φ−tn)∗Θbtn
as seen above is uniform on Σ−0,K and defines a

meromorphic differential of the second kind of Σ−. Now by our considerations
of |b−n |2 as well as δ we see that the limit is of the form

lim
n→∞

(Φ−tn)∗Θbtn
= β · λ

−

ν−
dλ−.

Now in the same way as in the proof of Proposition 4.18 we use at λ− = 0
the chart λ− = z2 and get that the differential in our limit has the form

β · z2

z2 +O(z3) · 2zdz = βzdz

which directly implies that our differential has a zero at λ− = 0. Now we
choose K in a way that all cycles of Σ−tn,K lie in Σ−tn for sufficiently large n and
therefore, all periods of the differential are purely imaginary. Then the limit
of our polynomial b−n needs to vanish at λ− = 0 so it has no constant term.
That means b−(λ− = 0) = 0 which automatically implies f−(λ− = 0) ∈ R
because it vanishes or is ∞ for every second polynomial b−2 as well. So we
reach a contradiction and have proven deg(b±n ) = deg(b0

n) = 1 for sufficiently
large n.
It remains to show that the polynomials b±n and b0

n converge to polynomials
b± and b0 defining Θb± and Θb0 that have the same periods as the differentials
defined by b±t and b0

t .
At first we prove that every sequence (tn, αn)n∈N has a subsequence (tnk

, αnk
)k∈N

such that (bnk
)k∈N converges to a polynomial in P 3

R as well. In order to do
so, we prove that all the coefficients of bn are bounded for all n ∈ N. We

34
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prove this by contradiction, so assume at least one sequence of coefficients
converges to ∞. Let (βn)n∈N be the sequence of coefficients of bn that con-
verges the fastest to ∞. So now we define (b̃n)n∈N as 1

|βn|bn(λ) for all n ∈ N.
By definition, at least one of the coefficients converges to a number unequal
to zero, namely one of modulus one. So now (b̃n)n∈N is a sequence of poly-
nomials of degree three where every coefficient is bounded. The differentials
Θb̃n

are also renormed. Because all the coefficients of b̃n are bounded, we
can look at a convergent subsequence (b̃nk

)k∈N. Now we need to consider the
renormed differentials Θb̃nk

that converge as well as the polynomials b̃nk
to a

differential Θb̃. Therefore, the periods converge to renormed periods that are
renormed by 1

|β| and therefore, converge to zero since they were finite before.
Now we know that the differential we consider is one that has vanishing peri-
ods everywhere. We will now calculate it’s order at λ+ = 0. Now because we
already have proven that deg(b±,0n ) = 1 we know that this holds true in the
limit as well. Because in the limit the root that was at infinity is now finite,
every root that was finite now goes to zero. That means that b has a second
order root at λ+ = 0 because only one root remains non-zero. We can now
use the same calculations for ν. Because deg(a+) = deg(a−) = 2 we see that
ν =

√
λ · a(λ) has a root of order 3/2 there. If we again as in Proposition

4.18 consider the local chart z2 = λ we see that b has now a root of order 4
and ν one of order 3 at z = 0.From dλ

λ
we get a root of order 2 in the de-

nominator. Now if we calculate dλ = dz2 = 2zdz we see that we get another
root of order one at z = 0. So now we see that in the z-coordinate we have a
root of order five both in the nominator and the denominator. So therefore,
the differential Θb̃ is finite and holomorphic at zero. The same calculations
yield that it has a pole of order one at λ = ∞. Considering this we have
a holomorphic differential whose periods all vanish. That means that the
differential Θb̃ vanishes as well, but that is a contradiction with the way we
defined our sequence because at least one of the coefficients converges to a
complex number with modulus one. So we know that the sequences of coeffi-
cients are all bounded and therefore, we can go to a subsequence (tnk

, αnk
)k∈N

such that bnk
converges to a polynomial in P 3

R. The last claim that remains
to be shown is that every subsequence of (tn, αn)n∈N converges to the same
polynomial b ∈ P 3

R. There we use the same discussion as before. Now we
again have a convergent subsequence Θbnk

that converges to a differential Θb

that is holomorphic at zero. Then it follows that the limit is unique. So then
we have proven the last part of the claim. q.e.d.
Now we know that we can extend bt continuously to t = 0. Therefore, we now
that we can extend the vector space Bat continuously to t = 0 and therefore,
τat can be extended continuously to t = 0 as well. Now since Θb is as seen
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before holomorphic at λ+ = 0 we will use instead the values at λ+ = ∞
because Θb still has a simple pole there. So we define the following.

Definition 4.25. For t = 0 we consider the polynomial a+ as the limit of at
and in the same way b+ as the limit of bt. Then we define

τa+ = lim
λ+→∞

b+
1 (λ+)
b+

2 (λ+)

where (b+
1 , b

+
2 ) is the basis of Ba+.

It is easy to see that this is just the quotient of the highest coefficient of the
two polynomials, which because of the lemma before depend continuously
on t and α. We will now consider the differentials Θb+

1
, Θb+

2
defined by our

unique limit polynomials b+
1 , b

+
2 ∈ Ba+ . These differentials have simple poles

at λ+ = ∞ and we will denote by α, β ∈ C their share in this pole in the
following way: Since both have simple poles there exist complex numbers
α, β ∈ C such that

Θ̂ = α ·Θb+
1
− β ·Θb+

2

is holomorphic at λ+ = ∞. However at any other value λ+ this is the
difference of two holomorphic differentials. Therefore, Θ̂ is a holomorphic
differential on the elliptic curve Σ+

0 . So since every elliptic curve has genus
g = 1 we know that the space of holomorphic one forms is one dimensional.
So we know that Θ̂ is an element of this one dimensional family and we know
that for the representantive Θ of this family the following relation holds

Θ̂ = λΘ, λ ∈ R.

Then we can calculate the periods of Θ̂ because we know those of Θb+
1
,Θb+

2
.

We see that ∫
Ã

Θ̂ = α · 2πi− β · 0 = 2παi∫
B1

Θ̂ = α · 0− β · 2πi = −2πβi

hold so now we know the periods of Θ̂. They span the lattice Γ = 2παiZ−
2πβiZ = 2παiZ + 2πβZ. We also know that our differential is holomorphic
and we define the map ϕ : Σ→ Γ as follows: We choose a base point x ∈ Σ
and assign to every point y ∈ Σ the value of the curve integral from x to y
of the differential Θ. In this way we get a map from our elliptic curve into
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4 THE BOUNDARY OF T−1(τa)

the periods of Σ. We see that ϕ is an immersion because Θ is a holomorphic
differential without roots. So we can construct a map Φ: Σ → C/Γ that is
an immersion. Now we want to prove that such a map is injective. So now
we consider x, x′ ∈ Σ such that

Φ(x) ≡ Φ(x′) mod Γ

holds. We know that Θ is a holomorphic differential and therefore, closed.
So it is exact on C. So we know that Φ(x)−Φ(x′) is the integral from x to x′
concerning Θ. That is equivalent to Φ(x)−Φ(x′) ∈ Γ and therefore, our map
is injective. In this way we can define the elliptic curve Σ = C/(2παiZ +
2πβiZ). We know that this elliptic curve is biholomorphic to an elliptic curve
C/(Z+ τZ) where τ ∈ F holds. In order to transform Γ into Γ̃ = Z+ τZ we
need to divide the lattice by 2παi. Then we get that

τ = −2πβi
2παi = −β

α

holds. Now we turn our calculations to τa+ defined in Definition 4.24. As
we know that our polynomials are of degree one and therefore, we see by the
rule of L’Hospital that it is the quotient of the two leading coefficients which
depend continuously on t and α as seen in Lemma 4.23. Then if we consider
our polynomials to be b+

1 (λ+) = b1,1λ
+ + b1,2, b

+
2 (λ+) = b2,1λ

+ + b2,2 we see
that τa+ has the value b1,1

b2,1
. On the other hand we now want to calculate the

explicit value of τ . In order to do so, we will need to calculate the residue of
Θb+

1
,Θb+

2
at λ+ =∞. Now we know that a+(λ+) = (λ+)2 + aλ+ + 1. So now

we can calculate

Θb+
1,2

=
b+

1,2(λ+)√
λ+ · ((λ+)2 + aλ+ + 1)

dλ+

From the proof of Proposition 4.18 we see that in the local chart λ+ = z−2

our differentials take the value

−2z−2b+
1,2(z−2)√

a+(z−2)
dz = −2b(1,2),1z

−4 − 2b(1,2),2z
−2

√
z−4 + az−2 + 1

dz

= −2 b(1,2),1z
−4

√
z−4 + az−2 + 1

− 2 b(1,2),2z
−2

√
z−4 + az−2 + 1

Now if we look at the asymptotics of both summands for z → 0 we get that
the first one has a pole of second order and the second one is finite. So we
only need to consider the first one. For z → 0 we exclude the lowest power
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4.2 The case of unbounded coefficients

of z in ν+ in terms of z and then use the power series expansion of
√

1 + x2

at zero

−2 b(1,2),1z
−4√

z−4(1 + az2)
dz = −2 b(1,2),1z

−4

z−2(1 +O(z2))dz

= −2b(1,2),1z
−4

z−2 + C
dz

= −2b(1,2),1z
−2dz

which means that we get for α and β that α = −2b1,1 and β = −2b2,1 which
in turn means that

τ = −β
α

= −−2b2,1

−2b1,1
= −b2,1

b1,1
.

Comparing τ and τ+ we see that they can be transformed into each other
with the mapping τ 7→ −τ−1. Since we consider lattices, the sign makes no
difference and it remains to consider τ 7→ τ−1. Now we consider the lattices
Γ = Z+τZ and Γ̃ = Z+τ−1Z. We can transform Γ̃ into Γ using multiplication
with τ and an interchange of the arguments which can be achieved with a ro-
tation of the lattice. Therefore, the lattices are biholomorphic thus inducing
a biholomorphism between the elliptic curves C/(Z+ τZ) and C/(Z+ τ−1Z).

4.2.2 Level sets in the blow-up

The next thing we need to prove is that in the same way as in section 4.1
the one-dimensional manifold T−1(τa) can be expanded to a manifold with
boundary where our a(λ) with unbounded coefficients can be made to the
boundary point. In order to do so we will need a similar approach as in
chapter 4.2 of B.Schmidt (2020). But in this chapter we will make the mistake
of first taking the limits t → 0 of the polynomials defined before and then
taking the s-derivatives which means that we will not be able to interpret
these results. In the end of this chapter the right derivatives are taken. It
remains to examine them to see if the correct result can be established. Still,
the following calculations and considerations are still included as a guideline
for solving the right equations. First of all, we will need to consider the
mapping T̂ : M1

2 × Ba × Ba from Definition 3.19 and translate it into our
blow-up case. In order to do so we need to calculate the limit of the map T̂
for t → 0. In order to do so we consider the definition of the map which is
T̂ (a, b1, b2) = b1(0)

b2(0) . So then we get that

lim
t→0

b1,t(0)
bt,2(0) = b+

1 (0) · b0
1(0) · b−1 (0)

b+
2 (0) · b0

2(0) · b−2 (0)

38



4 THE BOUNDARY OF T−1(τa)

holds. Our goal is to use the implicit function theorem on (T+)−1(τa+) in
our scenario. We want to define conditions on our space to make it a three
dimensional space. We can see that if we just consider dim(M1

2×P 3
R×P 3

R) =
3+4+4 = 11. Then posing the condition that the periods of all polynomials
b ∈ Ba need to be purely imaginary reduces the dimension of these spaces to
2. Using now Lemma 4.9 we see that by choosing our periods to be fixed
there exist unique representatives reducing the dimension to 3. Then if we
force the equation τa = b1(0)

b2(0) to hold we again reduce the dimension by 2
and get that the space T−1(τa) with fixed periods for Ba is a one-dimensional
set. Now the goal is to do the same calculations with our blown-up space.
It is easy to see that even with our new parametrization of A we get that
dim(A) = 3. Now we consider P 3

R and the parametrization from Lemma 4.8
for b ∈ P 3

R. Condition one forces b0(λ) to have the form eiψλ + e−iψ where
ψ ∈ [0, 2π) as well as that b+(λ+

t ) = b2λ
+
t + b1 with b2 ∈ R, b1 ∈ C. So

we see that b0 is one-dimensional and (b+, b−) is three-dimensional. Now if
we impose the same conditions on bt ∈ P 3

R as in Lemma 4.20 we get four
conditions on the polynomials bt by splitting the real and imaginary parts of
the periods. Now forcing the equation from Definition 4.24 to hold we get
another two conditions and all together we have ten conditions to reduce a
11-dimensional space to a one-dimensional space again.
Our goal now is to examine the differential of the map T̂ at the level sets
T−1(τa) in the limit for t → 0. In order to do so we will consider the limits
of our decomposed polynomials in the parameters λ±t as well as λ. We see
that our conditions force the periods of (Θb±,0

1
,Θb±,0

2
) to remain constant on

T−1(τa). On the other hand if we consider dT̂ on these level sets in the
respective limits it holds that the periods of

d
ds

∣∣∣∣∣
s=0

lim
t→0

Θbt,k
k = 1, 2,

in the parameters t(λ+
t )−1, λ or t−1λ−t vanish since they are the derivative of

a constant function. So now we have a differential with vanishing periods,
meaning said differential is exact so there exist meromorphic functions q̇1,2
such that

d
ds

∣∣∣∣∣
s=0

lim
t→0

Θbt,k
= dq̇±,0k , k = 1, 2 (5)

holds. In the next step we need to calculate the poles of the left hand side
to see what kind of functions q̇±,0 consist of. In order to do so, we need to
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4.2 The case of unbounded coefficients

calculate
d
ds

∣∣∣∣∣
s=0

lim
t→0

b

ν

dλ
λ

using the parameters λ+
t , λ

−
t , λ and calculate what order this function has at

λ±, λ = 0. We start with λ+
t and transform λ and λ−t in terms of λ+

t : λ =
t · (λ+

t )−1, λ−t = t2 · (λ+
t )−2. We will now calculate limits of the polynomials

for t→ 0 in the same way as in Lemma 4.15. So we first see

a(t · (λ+
t )−1) = (λ+

t )−2((λ+
t )2 + a(λ+

t ) + 1)(t4(λ+
t )2 + t2a(λ+

t ) + 1)
→ (λ+)−2((λ+)2 + aλ+ + 1) · 1 = (λ+)−2a+(λ+).

Now we will consider the same reasoning for b(λ+
t )

b(t · (λ+
t )−1) = (λ+

t )−1(b+
1 λ

+
t + b+

2 )(tb0
1(λ+

t )−1 + b0
2)(b+

1 t
2(λ+

t )−1 + b+
2 )

→ (λ+)−1b+(λ+)b0(0)b−(0).

We calculate the same way as in Lemma 4.22

d t
λ

= − t

λ2 dλ

dλ = −λ
2

t
dλ+

t = −(t(λ+
t )−1)2

t
dλ+

t = −t(λ+
t )−2dλ+

t .

Now using that as well as the transformation of the differential to calculate
the limit for Θb yields

Θbt = − t

(λ+
t )2

b(λ+
t )

t(λ+
t )−1

√
t(λ+

t )−1a(λ+
t )

d(λ+
t )

= −(λ+
t )−1b+(λ+

t ) · b0(t(λ+
t )−1) · b−(t2(λ+

t )−1)
(λ+

t )
√
t(λ+

t )−1a(λ+
t )

d(λ+
t )

= − b+(λ+
t ) · b0(t(λ+

t )−1) · b−(t2(λ+
t )−1)

(λ+
t )2

√
t(λ+

t )−1 · (λ+
t )−2 · a+(λ+

t ) · a−(t2(λ+
t )−1)

d(λ+
t )

= −t−1/2(λ+
t )−2 b

+(λ+
t ) · b0(t(λ+

t )−1) · b−(t2(λ+
t )−1)√

(λ+
t )−3 · a+(λ+

t ) · a−(t2(λ+
t )−1)

d(λ+
t )

= −t−1/2(λ+
t )−1/2 b

+(λ+
t ) · b0(t(λ+

t )−1) · b−(t2(λ+
t )−1)√

a+(λ+
t ) · a−(t2(λ+

t )−1)
d(λ+

t ).

So we see that the differential admits a factor t−1/2 but we also know that
the cycles defined earlier converge and a(λ) as well as b(λ) converge in a way
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4 THE BOUNDARY OF T−1(τa)

that the differential Θbt converges in the right way if we were to assume that
the limit is finite and non-zero. So therefore, the rest of the differential must
admit a factor

√
t such that the whole limit is well defined. We see that

the coefficients of b+(λ+
t ) are depending on t and from Lemma 4.8 we know

that the coefficients from b+ and b− are complex conjugates so if one of these
admits some kind of power of t the other one does as well which then means,
that the coefficients of b+ and b− both contain 4

√
t so we will extract them

and go over to denote by b̂± the polynomials without 4
√
t. Therefore, we can

calculate

lim
t→0

Θbt = lim
t→0

(
− t−1/2(λ+

t )−1/2 t
1/4b̂+(λ+

t ) · b0(t(λ+
t )−1) · t1/4b̂−(t2(λ+

t )−1)√
a+(λ+

t ) · a−(t2(λ+
t )−1)

d(λ+
t )
)

= lim
t→0

(
− (λ+

t )−1/2 b̂
+(λ+

t ) · b0(t(λ+
t )−1) · b̂−(t2(λ+

t )−1)√
a+(λ+

t ) · a−(t2(λ+
t )−1)

d(λ+
t )
)

= −(λ+)−1/2 b
+(λ+) · b0(0) · b−(0)√

a+(λ+) · a−(0)
dλ+

= −(λ+)−1/2 b
+(λ+) · b0(0) · b−(0)√

a+(λ+)
dλ+.

Now if we evaluate the differential at λ+ = 0 we evaluate it in the chart
z2 = λ+ we see that

−z−1 b
+(z2) · b0(0) · b−(0)√

a+(z2)
dz2 = −z−1 b

+(z2) · b0(0) · b−(0)√
a+(z2)

2zdz

= −(b+
1 z

2 + b+
2 ) · b0(0) · b−(0)√

z4 + az2 + 1
dz

the differential is the quotient of two functions of degree two which means
that it doesn’t have a pole there meaning Θb+ is holomorphic at λ+ = 0. The
only other value in question is λ+ = ∞ which we will now evaluate as well
using now the chart z−2 = λ+

−z b
+(z−2) · b0(0) · b+(0)√

a+(z−2)
dz−2 = −z (b+

1 z
−2 + b+

2 ) · b0(0) · b−(0)√
z−4 + az−2 + 1

·
(
− 2
z3

)
dz

= −2z−2 (b+
1 z
−2 + b+

2 ) · b0(0) · b−(0)√
z−4 + az−2 + 1

dz

we see that our differential has a pole of order two at λ+ =∞. That means
that our differential Θbt converges to the right differential which justifies our
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4.2 The case of unbounded coefficients

reasoning concerning the limit process. Now we go back to arguing about
d
dsΘb+|s=0 which can only have a pole at the values where Θb+ has a pole as
well. So that means that the derivative can only have a pole at λ+ = ∞.
In the following we will denote derivatives d

dsf by a dot ḟ and derivatives
d

dλ+f by f ′. Now from our knowledge of the poles of Θb+
k

we see how q̇k

needs to look like. In order to do so we define ν+ =
√
λ+ · a+(λ+). Recalling

Equation (5) we see that q̇k needs to be of the following form

q̇+
k = ic+

k (λ+)λ+

ν+ , k = 1, 2

where c+
k (λ+) ∈ C1[λ+]. Now calculating Equation (5) we get

∂

∂λ+
ic+(λ+)λ+

ν+ = d
ds
b+
k (λ+) · b0

k(0) · b−k (0)
ν+

∣∣∣∣∣
s=0

, k = 1, 2.

Now we will do the same as in the bachelor The Closure of Spectral Curves
of Constant Mean Curvature Tori of Spectral Genus 2 by B. Schmidt (2017)
by using chain rule to extract the Whitham equations. For simplicity we will
define βk = b0

k(0) · b−k (0). Then we get

i((c+
k )′(λ+)λ+ + c+(λ+))ν+ − ic+

k (λ+)λ+(ν+)′
(ν+)2

=(ḃ+
k (λ+) · βk + b+

k (λ+) · β̇k) · ν+ − b+
k (λ+) · βk · ν̇+

(ν+)2 .

Simplifying each sides yields

i(c+
k )′(λ+)λ+

√
λ+a+(λ+) + c+(λ+)ν+ − ic+

k (λ+)λ+ a+(λ+)+λ+(a+)′(λ+)
2
√
λ+a+(λ+)

λ+a+(λ+)

=i(c
+
k )′(λ+)λ+

ν+ + ic+
k (λ+))
ν+ − ic+

k (λ+)λ+(a+(λ+) + λ+(a+)′(λ+)
2(ν+)3

as well as

ḃ+
k (λ+) · βk

ν+ + b+
k (λ+) · β̇k

ν+ −
b+
k (λ+) · βk · λ

+ȧ+(λ+)
2ν+

(ν+)2

= ḃ
+
k (λ+) · βk

ν+ + b+
k (λ+) · β̇k

ν+ − b+
k (λ+) · βk · λ+ȧ+(λ+)

2(ν+)3 .

Now multiplying both sides of Equation (5) by 2(ν+)3 and dividing by λ+

yields

i(2λ+(c+
k )′a+ + 2c+

k a
+ − c+

k a
+ − λ+ck(a+)′) = 2ḃ+βa+ + 2b+β̇a+ − b+βȧ+.
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Plugging in k = 1 yields

i(2λ+(c+
1 )′a+ + c+

1 a
+ − λ+c+

1 (a+)′)
=2ḃ+

1 β1a
+ + 2b+

1 β̇1a
+ − b+

1 β1ȧ
+ (6)

and plugging in k = 2 yields

i(2λ+(c+
2 )′a+ + c+

2 a
+ − λ+c+

2 (a+)′)
=2ḃ+

2 β2a
+ + 2b+

2 β̇2a
+ − b+

2 β2ȧ
+.

(7)

Now we want to combine these two equations above by calculating (c+
2 )·(6)−

(c+
1 ) · (7) to get

i(2λ+(c+
1 )′a+c+

2 + c+
1 a

+c+
2 − λ+c+

1 (a+)′c+
2

− 2λ+(c+
2 )′a+c+

1 − c+
2 a

+c+
1 + λ+c+

2 (a+)′c+
1 )

=2λ+ḃ+
1 β1a

+c+
2 + 2b+

1 β̇1a
+c+

2 − b+
1 β1ȧ

+c+
2

− 2ḃ+
2 β2a

+c+
1 − 2b+

2 β̇2a
+c+

1 + b+
2 β2ȧ

+c+
1 .

Now simplifying this yields us

2a+((λ+)i((c+
1 )′c+

2 − (c+
2 )′c+

1 )− ḃ+
1 β1c

+
2 − b+

1 β̇1c
+
2

−ḃ+
2 β2c

+
1 + b+

2 β̇2c
+
1 + ḃ+

2 β2c
+
1 + b+

2 β̇2c
+
1 )

=ȧ+(b+
2 β2c

+
1 − b+

1 β1c
+
2 ).

Now we see again as in B. Schmidt (2017) that both sides of this equation
need to vanish at all roots of a+ which means that if ȧ+ doesn’t vanish at
all roots of a+, b+

2 β2c
+
1 − b+

1 β1c
+
2 needs to vanish at the remaining roots of

a+. Further we see that if we consider the equations (6) and (7) we see
that c+

1 and c+
2 need to vanish at all roots that a+ and ȧ+ have in common

since the equations would then reduce to λ+c+
k (a+)′ = 0. So that means that

the expression b+
2 β2c

+
1 − b+

1 β1c
+
2 vanishes at every root of a+ yielding us the

following equation

Q+a+ = b+
2 β2c

+
1 − b+

1 β1c
+
2 (8)

where Q+ ∈ C holds. Now since we are interested in the kernel of dT̂+ we
consider those triples (ȧ+, ˙b+

1 β1,
˙b+

2 β2) that leave τa+ constant. However since
we define τa+ as limt→0

b1,t(0)
b2,t(0) = b+

1 (0)·β1
b+

2 (0)·β2
we see that this yields the following

condition

d
(
b+

1 (0) · β1

b+
2 (0) · β2

)∣∣∣∣∣
s=0

= 0 (9)
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which we calculate to be

ḃ+
1 (0) · β1 · b+

2 (0) · β2 + b+
1 (0) · β̇1 · b+

2 (0) · β2

(b+
2 (0) · β2)2

+ −b
+
1 (0) · β1 · ḃ+

2 (0) · β2 − b+
1 (0) · β1 · b+

2 (0) · β̇2

(b+
2 (0) · β2)2

= 0 .

So then we arrive at the condition

ḃ+
1 (0) · β1 · b+

2 (0) · β2 + b+
1 (0) · β̇1 · b+

2 (0) · β2

−b+
1 (0) · β1 · ḃ+

2 (0) · β2 − b+
1 (0) · β1 · b+

2 (0) · β̇2 = 0.
(10)

Now we consider the polynomials involved in these calculations in order to
solve these equations

a+(λ+) = (λ+)2 + aλ+ + 1
ȧ+(λ+) = ȧλ+,

b+
1 (λ+) = b+

1,1λ
+ + b+

2,1,

ḃ+
1 (λ+) = ḃ+

1,1λ
+ + ḃ+

2,1,

b+
2 (λ+) = b+

1,2λ
+ + b+

2,2,

ḃ+
2 (λ+) = ḃ+

1,2λ
+ + ḃ+

2,2,

c+
1 (λ+) = c+

1,1λ
+ + c+

2,1,

c+
2 (λ+) = c+

1,2λ
+ + c+

2,2.

Using this for equation (10) we get

ḃ+
2,1b

+
2,2β1β2 + b+

2,1b
+
2,2β̇1β2 − b+

2,1ḃ
+
2,2β1β2 − b+

2,1b
+
2,2β1β̇2 = 0. (11)

We now evaluate Equation (8) at λ+ = 0

Q+ = b+
2,2β2c

+
2,1 − b+

2,1β1c
+
2,2. (12)

Now we want to evaluate Equation (6) as well as equation (7) at λ+ = 0
which yields

ic+
2,1 = 2ḃ+

2,1β1 + 2b+
2,1β̇1

and

ic+
2,2 = 2ḃ+

2,2β2 + 2b+
2,2β̇2.
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So if we now use that and plug it into Equation (12) we obtain that

Q+ = −i(2ḃ+
2,1β1 + 2b2,1β̇1)b+

2,2β2 + i(2ḃ+
2,2β2 + 2b2,2β̇2)b+

2,1β1

= −2i(ḃ+
2,1b

+
2,2β1β2 + b+

2,1b
+
2,2β̇1β2 − b+

2,1ḃ
+
2,2β1β2 − b+

2,1b
+
2,2β1β̇2)

= 0.

Since this is just a multiple of Equation (11) we see that Q+ vanishes. We
can further assume gcd(b+

1 , b
+
2 ) = 0 because otherwise b−1 and b−2 would have

a common root as well, which then would mean that deg(b1/b2) ≤ 1 which
can’t hold. We consider λ+

1 to be the root of b+
1 and λ+

2 to be the root of b+
2 .

We now evaluate Equation (8) at λ+
1 and get

0 = b+
2 (λ+

1 )β2c
+
1 (λ+

1 )

and from evaluating it at λ+
2

0 = b+
1 (λ+

2 )β1c
+
2 (λ+

2 ).

So we see from our assumption that c+
1 needs to vanish at λ+

2 and c+
2 vanishes

at λ+
2 . Therefore, we obtain the following conditions

c+
1 (λ+

1 ) = 0
c+

2 (λ+
2 ) = 0.

So that means that our polynomials c+
k are multiples of b+

k which we will
write in the following way

c+
k (λ+) = µk · b+

k (λ+), k = 1, 2

with µk ∈ C×. The next step is to evaluate the equations Equation (6)
as well as Equation (7) at the two roots of a+ which we will denote by
λ+
a,k, k = 1, 2.

−iλ+
a,kµk(a+)′(λ+

a,k)b+
k (λ+

a,k) = −b+
k (λ+

a,k)βkȧ+(λ+
a,k), k = 1, 2.

We divide both sides of the equation b+
k (λ+

a,k) and get

iλ+
a,kµk(a+)′(λ+

a,k) = βkȧ
+(λ+

a,k), k = 1, 2.

If we plug in the definition of ȧ+, we can divide both sides by λ+
a,k, evaluate

at λ+
a,1 and get for ȧ

ȧ = iµk(a+)′(λ+
a,1)β−1

k , k = 1, 2.
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Now since we have determined a+(λ+) fully by its coefficients it follows that
there is an underlying relation between the roots of a+ and its coefficients.
Therefore, we need to express λ+

a,1 by the coefficients of a+. However since we
consider a polynomial of degree two, elementary algebra tells us that these
two invariants of a+ satisfy

λ+
a,1 = −1

2
(
a−
√
a2 − 4

)
.

Using this for our solution we get

ȧ =
iµk(2 · −1

2

(
a−
√
a2 − 4

)
+ a)

βk

= iµk(−a−
√
a2 − 4 + a)

βk

= iµk
√
a2 − 4
βk

, k = 1, 2.

Since we get two results for ȧ we can equal them and try to solve for µ1

iµ1(a+)′(λ+
a,1)β−1

1 = iµ2(a+)′(λ+
a,1)β−1

2 .

Dividing the two sides by i(a+)′(λ+
a,1) and solving for µ1 we obtain

µ1 = β1µ2

β2
.

We now evaluate the equations Equation (6) and Equation (7) at the roots
of b+

k λ+
k and get

2iλ+
k µk(b+

k )′(λ+
k )a+(λ+

k ) = 2ḃ+
k (λ+

k )βka+(λ+
k ), k = 1, 2.

This formula depends on λ+
k which is already determined by the two coef-

ficients b+
k,j, k, j = 1, 2. In order to do so we can write down the following

formula

b+
k (λ+) = b+

1,kλ
+
k + b+

2,k = b+
1,k(λ+ − λ+

k ), k = 1, 2.

So now that means that

b+
2,k = −b+

1,kλ
+
k , k = 1, 2,

holds. We can also use this to eliminate the further use of λ+
k by writing it

as

λ+
k = −

b+
2,k

b+
1,k
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4 THE BOUNDARY OF T−1(τa)

We solve the equations before for ḃ+
k and get

ḃ+
k (λ+

k ) = iλ+
k µk(b+

k )′(λ+
k )

βk

=
iµkλ

+
k b

+
1,k

βk

= −
iµkb

+
2,k

βk
, k = 1, 2.

Next, using our knowledge of c+
k we can newly consider Equation (6) and

Equation (7) at λ+ = 0 to get

iµkb
+
k (0) = 2ḃ+

k (0)βk + 2b+
k (0)β̇k, k = 1, 2.

We solve these two equations for ḃ+
k (0) and get

ḃ+
k (0) = b+

k (0)iµk + 2β̇k
2βk

, k = 1, 2.

So we now fully know the coefficients of ḃ+
k . Finally, we can use our knowledge

in Equation (10) which then results in

b+
1 (0)iµ1 + 2β̇1

2β1
· β1 · b+

2 (0) · β2 + b+
1 (0) · β̇1 · b+

2 (0) · β2

−b+
1 (0) · β1 · b+

2 (0)iµ2 + 2β̇2

2β2
· β2 − b+

1 (0) · β1 · b+
2 (0) · β̇2

=b+
1 (0) · b+

2 (0) · β2 ·
iµ1 + 2β̇1

2 + b+
1 (0) · β̇1 · b+

2 (0) · β2

−b+
1 (0) · b+

2 (0) · β1 ·
iµ2 + 2β̇2

2 − b+
1 (0) · β1 · b+

2 (0) · β̇2

=b+
1 (0) · b+

2 (0) ·
(
β2
iµ1 + 2β̇1

2 + β̇1 · β2 − β1 ·
iµ2 + 2β̇2

2 − β1 · β̇2

)
=0.

We see that it is enough to evaluate the right bracket which gets us

2β̇1β2 + iµ1β2

2 = 2β̇2β1 + iµ2β1

2 .

Solving this for β̇1 leads us to

β̇1 = β̇2
β1

β2
+ i(µ2β1 − µ1β2)

4β2
.
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Now we will calculate the d
ds derivative of Equation (8) at s = 0 to get to

Q̇+a+ +Q+ȧ+ = ḃ+
2 β2c

+
1 + b+

2 β̇2c
+
1 + b+

2 β2ċ
+
1 − ḃ+

1 β1c
+
2 − b+

1 β̇1c
+
2 − b+

1 β1ċ
+
2 .

Next, we will use that Q+ = 0, c+
k = µk · b+

k

Q̇+a+ = µ1b
+
1 (ḃ+

2 β2 + b+
2 β̇2) + b+

2 β2ċ
+
1 − µ2b

+
2 (ḃ+

1 β1 + b+
1 β̇1)− b+

1 β1ċ
+
2 .

We will evaluate this equation now at the roots of b+
k , λ+

k , k = 1, 2

Q̇+a+(λ+
1 ) = b+

2 (λ+
1 )β2ċ

+
1 (λ+

1 )− µ2b
+
2 (λ+

1 )ḃ+
1 (λ+

1 )β1.

We can easily solve this for Q+ to get

Q̇+ = b+
2 (λ+

1 )β2ċ
+
1 (λ+

1 )− µ2b
+
2 (λ+

1 )ḃ+
1 (λ+

1 )β1

a+(λ+
1 ) .

The same procedure for λ+
2 yields

Q̇+a+(λ+
2 ) = µ1b

+
1 (λ+

2 )ḃ+
2 (λ+

2 )− b+
1 (λ+

2 )β1ċ
+
2 (λ+

2 )

as well as

Q̇+ = µ1b
+
1 (λ+

2 )ḃ+
2 (λ+

2 )− b+
1 (λ+

2 )β1ċ
+
2 (λ+

2 )
a+(λ+

2 ) .

Now we equal our two results for Q+ and arrive at

b+
2 (λ+

1 )β2ċ
+
1 (λ+

1 )− µ2b
+
2 (λ+

1 )ḃ+
1 (λ+

1 )β1

a+(λ+
1 ) = µ1b

+
1 (λ+

2 )ḃ+
2 (λ+

2 )− b+
1 (λ+

2 )β1ċ
+
2 (λ+

2 )
a+(λ+

2 ) .

We can solve this for ċ+
1 (λ+

1 ) and get

ċ+
1 (λ+) = µ2b

+
2 (λ+

1 )ḃ+
1 (λ+

1 )β1

b+
2 (λ+

1 )β2
+ a+(λ+

1 )
a+(λ+

2 )
µ1b

+
1 (λ+

2 )ḃ+
2 (λ+

2 )− b+
1 (λ+

2 )β1ċ
+
2 (λ+

2 )
b+

2 (λ+
1 )β2

.

Next, we evaluate the equation at λ+ = 0 to get

Q̇+ = µ1b
+
1 (0)(ḃ+

2 (0)β2 + b+
2 (0)β̇2) + b+

2 (0)β2ċ
+
1 (0)

− µ2b
+
2 (0)(ḃ+

1 (0)β1 + b+
1 (0)β̇1)− b+

1 (0)β1ċ
+
2 (0).

We can solve this for ċ+
1 (0) and arrive at

ċ+
1 (0) = Q̇+ + µ2b

+
2 (0)(ḃ+

1 (0)β1 + b+
1 (0)β̇1) + b+

1 (0)β1ċ
+
2 (0)− µ1b

+
1 (0)(ḃ+

2 (0)β2 + b+
2 (0)β̇2)

b+
2 (0)β2

.
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4 THE BOUNDARY OF T−1(τa)

That fully determines ċ+
1 . However now we only have two more conditions

we could use, namely evaluating the equation at the roots of a+ and that
only suffices to determine ċ+

2 but not β̇2. Therefore, we didn’t gain anything
from this approach.
Now we will turn to the limit of our polynomials in the λ parameter as
opposed to the λ+ parameter we used before. We know from Lemma 4.15
as well as Lemma 4.16 that the limit of Θbt in this particular parameter has
the following form

Θbt = b(λ)
λ ·
√
λ · a(λ)

dλ

= t · b(λ)
λ ·
√
λ · t2 · a(λ)

dλ

→ λ · b0(λ) · b+(0) · b−(0)
λ ·
√
λ · λ2

dλast→ 0.

Using Lemma 4.8 (ii) we also know that b+(0) = b−(0) so we can simplify
our limit to be

lim
t→0

Θbt = b0(λ) · |b+(0)|2
(ν0) dλ

We will now continue with the same procedure as before in the case of λ+

parameters to introduce the limit case of Whitham equations. We consider
the limit functions ν0, b0

1, b
0
2 as well as the periods of our limit of Θbt which we

will call Θb0 to be dependent on s, so we have a family (a0, b0
1, b

0
2)(s) which

defines the level set limt→0 T
−1(τa). So we see that if we derive Θb0 by s,

we will get that they vanish since the periods are constant with respect to
s. That in turn means that Θ̇b0 is again an exact polynomial, and we can
get new Whitham equations. In order to do so we need to calculate the pole
orders of Θb0 at λ = 0 as well as λ = ∞. We start with the first one. Since
λ = 0 is a double point, we will use the chart λ = z2 here. So then we get

Θb0 = b0(λ) · |b+(0)|2
λ3/2 dλ

= b0(z2) · |b+(0)|2
z3 dz2

= b0(z2) · |b+(0)|2
z3 2z · dz.

It is now easy to see that both nominator and denominator are functions of
degree three, which in turn means that this is finite at λ = 0. Calculating
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4.2 The case of unbounded coefficients

the order at λ =∞ we need the map λ = z−2 since this is a double point as
well. Then we get

Θb0 = b0(z−2) · |b+(0)|2
z−3 dz−2

= b0(z−2) · |b+(0)|2
z−3 ·

(
− 2
z3

)
dz

= −2b0(z−2) · |b+(0)|2dz.

That means that Θb0 has a pole of order two at λ = ∞. This is the same
situation as in the λ+ coordinate. So we get similar equations. Using the
ansatz

dq̇0
k = d

ds

∣∣∣∣∣
s=0

Θb0
k
, k = 1, 2.

we get that

q̇0
k = ic0(λ) · λ

(ν0)

has to hold where c0
k ∈ C1[λ]. That means we get to the following equation

∂

∂λ

ic0
k(λ) · λ
ν0 = d

ds
b0
k(λ) · |b+

k (0)|2
ν0

∣∣∣∣∣
s=0

, k = 1, 2.

Evaluating the left side gets us to

i(c0
k(λ) + (c0

k)′(λ) · λ)ν0 − ic0
k(λ) · λ · (ν0)′

(ν0)2

=ic
0
k(λ) + i(c0

k)′(λ) · λ
ν0 − ic0

k(λ) · λ · (λ3/2)′
(ν0)2

=ic
0
k(λ) + i(c0

k)′(λ) · λ
ν0 − ic0

k(λ) · λ · 3/2λ1/2

λ3

=ic
0
k(λ) + i(c0

k)′(λ) · λ
ν0 − ic0

k(λ) · 3/2λ3/2

λ3

=ic
0
k(λ) + i(c0

k)′(λ) · λ
ν0 − 3ic0

k(λ)
2ν0 , k = 1, 2.

50



4 THE BOUNDARY OF T−1(τa)

Now we will evaluate the right side to get to

(ḃ0
k(λ) · |b+

k (0)|2 + b0
k(λ) · ˙|b+

k (0)|2)ν0 − b0
k(λ) · |b+(0)|2ν̇0

(ν0)2

= ḃ
0
k(λ) · |b+

k (0)|2 + b0
k(λ) · ˙|b+

k (0)|2
ν0 − b0

k(λ) · |b+
k (0)|2 · ( ˙λ3/2)
(ν0)2︸ ︷︷ ︸

=0

= ḃ
0
k(λ) · |b+

k (0)|2 + b0
k(λ) · ˙|b+

k (0)|2
ν0 , k = 1, 2.

Now equaling both sides and multiplying with 2ν0 gets us to the equation

i(2c0
k + 2λ(c0

k)′ − 3c0
k) = 2(ḃ0

k(λ) · |b+(0)|2 + b0
k(λ) · ˙|b+

k (0)|2), k = 1, 2.

Simplifying gives rise to the two equations

i(2λ(c0
1)′ − c0

1) = 2(ḃ0
1(λ) · |b+

1 (0)|2 + b0
1(λ) · ˙|b+

1 (0)|2) (13)

and

i(2λ(c0
2)′ − c0

2) = 2(ḃ0
2(λ) · |b+

2 (0)|2 + b0
2(λ) · ˙|b+

2 (0)|2). (14)

Again we need to consider limt→0 τa in our parameter. We get from Lemma
4.16

lim
t→0

b1(0)
b2(0) = lim

t→0

t · b1(0)
t · b2(0)

= b0
1(0) · |b+

1 (0)|2
b0

2(0) · |b+
2 (0)|2 .

So we need to consider the equation

d
ds
b0

1(0) · |b+
1 (0)|2

b0
2(0) · |b+

2 (0)|2

∣∣∣∣∣
s=0

= 0.

By quotient rule we get

ḃ0
1(0) · |b+

1 (0)|2 · b0
2(0) · |b+

2 (0)|2 + b0
1(0) · ˙|b+

1 (0)|2 · b0
2(0) · |b+

2 (0)|2
(b0

2(λ) · |b+
2 (0)|2)2

− b+
1 (0) · |b+

1 (0)|2 · ḃ0
2(0) · |b+

2 (0)|2 + b0
1(0) · |b+

1 (0)|2 · b+
2 (0) · ˙|b+

2 (0)|2
(b0

2(λ) · |b+
2 (0)|2)2

= 0.

51



4.2 The case of unbounded coefficients

That gets us to

ḃ0
1(0) · |b+

1 (0)|2 · b0
2(0) · |b+

2 (0)|2 + b0
1(0) · ˙|b+

1 (0)|2 · b0
2(0) · |b+

2 (0)|2

− b0
1(0) · |b+

1 (0)|2 · ḃ0
2(0) · |b+

2 (0)|2 − b0
1(0) · |b+

1 (0)|2 · b0
2(0) · ˙|b+

2 (0)|2
= 0.

(15)

We will now again consider the polynomials used in these calculations

b0
1(λ) = b0

1,1λ+ b0
1,2

b0
2(λ) = b0

2,1λ+ b0
2,2

ḃ0
1(λ) = ḃ0

1,1λ+ ḃ0
2,1

ḃ0
2(λ) = ḃ0

1,2λ+ ḃ0
2,2

c0
1(λ) = c0

1,1λ+ c0
2,1

c0
2(λ) = c0

1,2λ+ c0
2,2 .

Now our first step will be to calculate (c0
2) · (13) - (c0

1) · (14) to get to

i(2λ((c0
1)′c0

2 − c0
1(c0

2)′)− c0
1c

0
2 + c0

2c
0
1)

=2c0
2(ḃ0

1(λ) · |b+
1 (0)|2 + b0

1(λ) · ˙|b+
1 (0)|2)

−2c0
1(ḃ0

2(λ) · |b+
2 (0)|2 + b0

2(λ) · ˙|b+
2 (0)|2).

Simplifying yields us

iλ((c0
1)′c0

2 − c0
1(c0

2)′)
=c0

2(ḃ0
1(λ) · |b+

1 (0)|2 + b0
1(λ) · ˙|b+

1 (0)|2)
−c0

1(ḃ0
2(λ) · |b+

2 (0)|2 + b0
2(λ) · ˙|b+

2 (0)|2).
(16)

Now evaluating at λ = 0 yields us

c0
2,2(ḃ0

2,1 · |b+
2,1|2 + b0

2,1 · ˙|b+
2,1|2) = c0

2,1(ḃ0
2,2 · |b+

2,2|2 + b0
2,2 · ˙|b+

2,2|2)

From our previous considerations, we know, that |b+
k (0)| = b+

2,kb
+
2,k so the s

derivative is already known because of our considerations of the λ+ parame-
ter. Next we will evaluate Equation (13) and Equation (14) at λ = 0. That
results in

ic0
2,1 = 2(ḃ0

2,1 · |b+
2,1|2 + b0

2,1 · ˙|b+
2,1|2)

as well as

ic0
2,2 = 2(ḃ0

2,2 · |b+
2,2|2 + b0

2,2 · ˙|b+
2,2|2).
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In the next step we will use our knowledge of these polynomials and evaluate
the equations at the roots λk of b0

k to reach

i(2λ1c
0
1,1 − c0

1(λ1)) = 2ḃ0
1(λ1) · |b+

2,1|2

as well as

i(2λ2c
0
1,2 − c0

2(λ1)) = 2ḃ0
2(λ2) · |b+

2,2|2.

Using our result before we get to

i(2λ1c
0
1,1 − c0

1,1λ1) = 2ḃ0
1(λ1) · |b+

2,1|2 − 2i(ḃ0
2,1 · |b+

2,1|2 + b0
2,1 · ˙|b+

2,1|2)

as well as

i(2λ2c
0
2,1 − c0

2,1λ2) = 2ḃ0
2(λ2) · |b+

2,2|2 − 2i(ḃ0
2,2 · |b+

2,2|2 + b0
2,2 · ˙|b+

2,2|2).

We can finally solve these equations and arrive at

c0
1,1 = 2

λ1
(iḃ0

1(λ1) · |b+
2,1|2 + (ḃ0

2,1 · |b+
2,1|2 + b0

2,1 · ˙|b+
2,1|2))

and

c0
1,2 = 2

λ2
(iḃ0

2(λ2) · |b+
2,2|2 + (ḃ0

2,2 · |b+
2,2|2 + b0

2,2 · ˙|b+
2,2|2)).

Now we will just as in the λ+ limit express λk in terms of the coefficients of
b0
k. It is easy to see that again

λ+
k = −

b0
2,k

b0
1,k
, k = 1, 2,

will hold. Using this we can now simplify our solution to be

c0
1,k = −

2b0
1,k

b0
2,k

(
i((ḃ0

1,k

(
−

b0
2,k

b0
1,k

)
+ ḃ0

2,k)|b+
2,k|2 + (ḃ0

2,2 · |b+
2,2|2 + b0

2,2 · ˙|b+
2,2|2)

)
, k = 1, 2.

We will later return to this rather large looking expression in order to simplify
it. That means we have completely determined c0

1 as well as c0
2 but we also

all the information we can get from Equation (13) and Equation (14).
That means we need to turn to the other equations for further information.
Therefore, we will plug our knowledge into Equation 16 which gets us

− 2i(ḃ0
2,1 · |b+

2,1|2 + b0
2,1 · ˙|b+

2,1|2)(ḃ0
2,1 · |b+

2,1|2 + b0
2,1 · ˙|b+

2,1|2)
=− 2i(ḃ0

2,2 · |b+
2,2|2 + b0

2,2 · ˙|b+
2,2|2)(ḃ0

2,2 · |b+
2,2|2 + b0

2,2 · ˙|b+
2,2|2).
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We simplify this and get

ḃ0
2,1 · |b+

2,1|2 + b0
2,1 · ˙|b+

2,1|2 = ḃ0
2,2 · |b+

2,2|2 + b0
2,2 · ˙|b+

2,2|2

which we can solve for ḃ0
2,1 and arrive at

ḃ0
2,1 =

ḃ0
2,2 · |b+

2,2|2 + b0
2,2 · ˙|b+

2,2|2 − b0
2,1 · ˙|b+

2,1|2

|b+
2,1|2

.

We will plug this equation into Equation (15) and get

ḃ0
2,2 · |b+

2,2|2 + b0
2,2 · ˙|b+

2,2|2 − b0
2,1 · ˙|b+

2,1|2

|b+
2,1|2

· |b+
2,1|2 · b0

2,2 · |b+
2,2|2 + b0

2,1 · ˙|b+
2,1|2 · b0

2,2 · |b+
2,2|2

− b0
2,1 · |b+

2,1|2 · ḃ0
2,2 · |b+

2,2|2 − b0
2,1 · |b+

2,1|2 · b0
2,2 · ˙|b+

2,2|2

= ḃ0
2,2 · |b+

2,2|2 · b0
2,2 · |b+

2,2|2 + b0
2,2 · ˙|b+

2,2|2 · b0
2,2 · |b+

2,2|2

− b0
2,1 · ˙|b+

2,1|2 · b0
2,2 · |b+

2,2|2 + b0
2,1 · ˙|b+

2,1|2 · b0
2,2 · |b+

2,2|2

− b0
2,1 · |b+

2,1|2 · ḃ0
2,2 · |b+

2,2|2 − b0
2,1 · |b+

2,1|2 · b0
2,2 · ˙|b+

2,2|2

= 0.

We will align the equation in the following way

ḃ0
2,2 · |b+

2,2|2 · b0
2,2 · |b+

2,2|2 − b0
2,1 · |b+

2,1|2 · ḃ0
2,2 · |b+

2,2|2

+ b0
2,2 · ˙|b+

2,2|2 · b0
2,2 · |b+

2,2|2 + b0
2,1 · ˙|b+

2,1|2 · b0
2,2 · |b+

2,2|2

− b0
2,1 · ˙|b+

2,1|2 · b0
2,2 · |b+

2,2|2 − b0
2,1 · |b+

2,1|2 · b0
2,2 · ˙|b+

2,2|2

= 0

We see that two of the terms cancel and will solve for ḃ0
2,2 to get to

ḃ0
2,2 · |b+

2,2|2 · (b0
2,2 · |b+

2,2|2 − b0
2,1 · |b+

2,1|2)
= b0

2,1 · |b+
2,1|2 · b0

2,2 · ˙|b+
2,2|2 − b0

2,2 · ˙|b+
2,2|2 · b0

2,2 · |b+
2,2|2

and finally

ḃ0
2,2 =

b0
2,1 · |b+

2,1|2 · b0
2,2 · ˙|b+

2,2|2 − b0
2,2 · ˙|b+

2,2|2 · b0
2,2 · |b+

2,2|2

|b+
2,2|2 · (b0

2,2 · |b+
2,2|2 − b0

2,1 · |b+
2,1|2)

=
b0

2,2 · ˙|b+
2,2|2

|b+
2,2|2

b0
2,1 · |b+

2,1|2 − b0
2,2 · |b+

2,2|
b0

2,2 · |b+
2,2|2 − b0

2,1 · |b+
2,1|2

= −
b0

2,2 · ˙|b+
2,2|2

|b+
2,2|2
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4 THE BOUNDARY OF T−1(τa)

Here we can see that this solution depends linearly on ˙|b+
2,2| of which we

already know from the first limit that they depend linearly on µ1. We see
that this holds true because of the following

˙|b+
2,2|2 = d

ds

(
b+

2,2b
+
2,2

) ∣∣∣∣∣
s=0

= ˙b+
2,2b

+
2,2 + b+

2,2
˙

b+
2,2.

We will use our knowledge of ḃ0
2,2 to fully determine ḃ0

2,1

ḃ0
2,1 =

−b0
2,2·

˙|b+
2,2|

|b+
2,2|2

· |b+
2,2|2 + b0

2,2 · ˙|b+
2,2|2 − b0

2,1 · ˙|b+
2,1|2

|b+
2,1|2

= −
b0

2,1 · ˙|b+
2,1|2

|b+
2,1|2

.

We see that now the only factor on which this term depends is the term |b+
2,1|2.

Just as |b+
2,2|2 before this term is linearly depedent on µ1 so we are able to

conclude the same as before. It remains to solve for the coefficients ḃ0
1,k but

we have no conditions from our equations left. Although Lemma 4.8 (i) says
that b0

1,k = b0
2,k and since both are on S1 that means b0

2,k = (b0
1,k)−1, k = 1, 2.

So then for the derivative we get by chain rule that

d
dsb

0
1,k = d

ds

(
b0

2,k

)−1
= −(b0

2,k)−2 · ḃ0
2,k

=
b0

2,k
˙|b+

2,k|2

(b0
2,k)2|b+

2,k|2
=

˙|b+
2,k|2

b0
2,k|b+

2,k|2
=

b0
1,k

˙|b+
2,k|2

|b+
2,k|2

, k = 1, 2.

Therefore, we see that if ḃ0
2,k depends linearly on µk it then follows that ḃ0

1,k
depends linearly on µ−1

k as well since they only differ by coefficients of b0
k as

well as by sign.
Now we know from Lemma 4.8 (ii) that if we would consider the limit in λ−
coordinates we would get the complex conjugates of the results established
in the λ+ parameter discussion. That also means that we can write

β̇k = d
ds

(
b0
k(0) · b−k (0)

) ∣∣∣∣∣
s=0

= ḃ0
k(0) · b−k (0) + b0

k(0) · ḃ−k (0)

= ḃ0
2,k · b+

2,k + b0
2,k ·

˙
b+

2,k, k = 1, 2.

Now it is easy to see that both factors either depend on µ1 or µ1. In the last
step we will consider the limit of Θbt in the λ−t coordinate. In order to do so,
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4.2 The case of unbounded coefficients

we will first consider the following equations λ = t−1λ−t and λ+
t = t2(λ−t )−1

as well as Lemma 4.15 and Lemma 4.16. That gets us to

Θbt = t · b(t−1λ−t )
t−1λt ·

√
t−1λ−t · a(t−1λ−t )

d(λ−t )

= t−1/2 · bt(t−1λ−t )
λ−t ·

√
λ−t · a(t−1λ−t )

d(λt)

= t−3/2 · t3 · b(t−1λ−t )
λ−t ·

√
λ−t · t4 · a(t−1λ−t )

d(λ−t ).

Now in a similar manner as before in the λ+ limit we can argue that the
coefficients of b+ and b− need to admit a factor t3/4 in order for the differential
to converge. So we can calculate

Θbt = t−3/2 · t3 · b(t−1λ−t )
λ−t ·

√
λ−t · t4 · a(t−1λ−t )

d(λ−t )

= t−3/2 · t
3 · t3/4 · b̂+ · b0 · t3/4 · b̂−

λ−t ·
√
λ−t · t4 · a(t−1λ−t )

d(λ−t )

= t3 · b̂(t−1λ−t )
λ−t ·

√
λ−t · t4 · a(t−1λ−t )

d(λ−t )

→ (λ−)2 · b−(λ−) · b+(0) · b0(0)
λ− ·

√
λ− · (λ−)2 · a−(λ−)

dλ−

= (λ−)1/2 b
−(λ−) · b−(0) · b0(0)√

a−(λ−)
dλ−att→ 0.

It does not surprise that this is the exact analogon to the limit we calculated
in the λ+ coordinate. Therefore, we can formulate the same conditions as be-
fore and get the same equations as before, but instead of a+, b+

1 , b
+
2 , c

+
1 , c

+
2 , Q

+

and their s-derivatives we consider a−, b−1 , b−2 , c−1 , c−2 , Q− and their s deriva-
tives. That in turn means we get the same conditions as before for the λ+

coordinate. Plugging this in gets us especially the four equations
i(2λ+(c−1 )′a− + c−1 a

− − λ−c−1 (a−)′)

=2ḃ−1 β̃1a
− + 2b−1

˙̃β1a
− − b−1 β1ȧ

−
(17)

as well as
i(2λ−(c−2 )′a− + c−2 a

− − λ−c−2 (a−)′)

=2ḃ−2 β̃2a
− + 2b−2

˙̃β2a
− − b−2 β̃2ȧ

−
(18)
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4 THE BOUNDARY OF T−1(τa)

as well as

Q−a− = b−2 β̃2c
−
1 − b−1 β̃1c

−
2 (19)

and finally

ḃ−1 (0) · β̃1 · b−2 (0) · β̃2 + b−1 (0) · ˙̃β1 · b−2 (0) · β̃2

−b−1 (0) · β̃1 · ḃ−2 (0) · β̃2 − b−1 (0) · β̃1 · b−2 (0) · ˙̃β2 = 0.
(20)

where we defined β̃k = b+
k (0) · b0

k(0), k = 1, 2. It is easy to see that these
equations yield the same conditions and solutions as we got in the λ+ pa-
rameter. Therefore, it holds that Q− = 0 as well and we get see that for the
roots λ−k of b−k

c−k (λ−k ) = 0, k = 1, 2

holds true as well. So that in turn gets us to the fact that

c−k (λ−) = µ−k · b−k (λ−), k = 1, 2

with µ−k ∈ C holds here as well. Now we know from Lemma 4.8 (ii) that
b−(λ−) = b+(λ+) holds. If we plug this in our equation we get that

(µ−k )−1 · c−k (λ−) = b+
k (λ+) = (µk)−1 · c+

k (λ+), k = 1, 2.

Now by our assumptions on the polynomials b±k where b+
k = b−k we see that

the equation c+
k = c−k needs to hold as well. We can plug that in the equation

above and reach

(µ−k )−1 · c−k (λ−) = (µk)−1 · c−k (λ−)

which then yields

µ−k = µk.

So now if we can prove that µk = µ−k it automatically follows that µk = µk
holds as well. In order to reach such a result we will need extra conditions
since we used up every equation from all three parameters. One condition
we have not used up so far stems from Lemma 4.8 (i). We know that
b0
k,j ∈ S1, k, j = 1, 2 as well as b0

1,k = b0
2,k, k = 1, 2. That means that

|b0
2,k| = 1 which in turn gives us b0

2,kb
0
2,k = 1 and therefore,

ḃ0
2,kb

0
2,k + b0

2,k
˙

b0
2,k = 0, k = 1, 2.
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4.2 The case of unbounded coefficients

That means that

ḃ0
2,kb

0
2,k = −b0

2,k
˙

b0
2,k, k = 1, 2.

This equation yields the relationship

ḃ0
2,k = iλb0

2,k, λ ∈ R, k = 1, 2.

From our calculations above we know that

ḃ0
2,k = −

b0
2,k · ˙|b+

2,1|2

|b+
2,k|2

, k = 1, 2.

Now we want to use our knowledge to fully determine the values of ḃ+
2,k

because this is the value in turn determining ḃ0
2,k. In order to do so we will

need to calculate β̇k first. We get to

β̇k = ḃ0
2,k · b+

2,k + b0
2,k ·

˙
b+

2,k

= −b0
2,kb

+
2,k

ḃ+
2,kb

+
2,k + b+

2,k
˙

b+
2,k

|b+
2,k|2

+
b0

2,k
˙

b+
2,kb

+
2,k

b+
2,k

= −
b0

2,k

b+
2,k

(
ḃ+
k,2b

+
2,k + b+

2,k
˙

b+
2,k −

˙
b+

2,kb
+
2,k

)

= −
b0

2,k

b+
2,k

ḃ+
2,kb

+
2,k, k = 1, 2.

Now we will plug this into our solution for ḃ+
2,k to get to

ḃ+
2,k = b+

2,k
iµk + 2β̇k
2b0

2,kb
+
2,k

=
b+

2,kiµk

2b0
2,kb

+
2,k
−

2b+
2,k

2b0
2,kb

+
2,k

b0
2,k

b+
2,k

ḃ+
k,2b

+
2,k

=
b+

2,kiµk

2b0
2,kb

+
2,k
−

ḃ+
k,2b

+
2,k

b+
2,k

=
b+

2,kiµk

2b0
2,kb

+
2,k
− ḃ+

2,k, k = 1, 2.

Therefore, we can now add ḃ+
2,k to both sides and by dividing both sides by

two we reach

ḃ+
2,k =

iµkb
+
2,k

4b0
2,kb

+
2,k

= iµk
4b0

2,k

(b+
2,k)2

|b+
2,k|2

, k = 1, 2.
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4 THE BOUNDARY OF T−1(τa)

Now we want to plug our final solution for ḃ+
2,k into the solution for ḃ0

2,k. In
order to do so, let us recap the solution we have calculated so far

ḃ0
2,k = −b0

2,k
ḃ+

2,kb
+
2,k + b+

2,k
˙

b+
2,k

|b+
2,k|2

, k = 1, 2.

We will now use our knowledge of ḃ+
2,k in order to fully determine ḃ0

2,k

ḃ0
2,k = −b0

2,k
ḃ+

2,kb
+
2,k + b+

2,k
˙

b+
2,k

|b+
2,k|2

= −
b0

2,k

|b+
2,k|2

(iµkb+
2,k

4b0
2,k

+
−iµkb+

2,k

4b0
2,k

)

= −ib0
2,k

( µk

4b0
2,kb

+
2,k
− µk

4b0
2,kb

+
2,k

)
, k = 1, 2,

We have now fully calculated most of our solutions and it can be seen that a
lot of them depend on βk or some other combination of b+

2,k as well as b0
2,k. We

want to establish an relation between these values in order to further simplify
our results. Now from the unpublished paper from Carberry et al. (2020),
the proof of Lemma 2.10 establishes the following relationship. Let (tn)n∈N be
a real sequence of numbers s.t. limn→∞ tn = 0. Then for δ = limn→∞ b

0
tn(0)

it holds that

δ = b−(0)
|b−(0)| = b+(0)

|b+(0)| .

Now since this relation was proven for an arbitrary sequence and arbitrary
polynomials b ∈ P 3

R it follows that

b0
k(0) = b0

2,k =
b+

2,k

|b+
2,k|

, k = 1, 2.

This yields a new result for βk, namely

βk = b0
2,kb

+
2,k =

b+
2,kb

+
2,k

|b+
2,k|

= |b+
2,k|, k = 1, 2.

The new results for βk as well as β̇k will now be used to completely determine
all derivatives in the λ+ as well as the λ limit. However we also need to
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4.2 The case of unbounded coefficients

prove that the variable µk on which all solutions depend linearly is a one-
dimensional coordinate. Therefore, we will now try to evaluate the solution
for ḃ+

1,k. By Lemma 4.8 (iii) proves that b+
1,k ∈ R needs to hold since b−1,k ∈ R+

and so b+
1,k = b−1,k = b−1,k ∈ R. Therefore, the same needs to hold true for the

derivative. We know that

ḃ+
k (λ+

k ) = −
iµkb

+
2,k

βk
, k = 1, 2,

holds which we can use to examine said term. In order to so, we will expand
the formula in the following way

ḃ+
1,kλ

+
k + ḃ+

2,k = ḃ+
1,k

(
−

b+
2,k

b+
1,k

)
+ ḃ+

2,k = −
iµkb

+
2,k

b0
2,kb

+
2,k
, k = 1, 2.

We will now use our solution for ḃ+
2,k in order to do further evaluations.

ḃ+
1,k =

iµkb
+
1,k

b0
2,kb

+
2,k

+
b+

1,k

b+
2,k

iµkb
+
2,k

4b0
2,kb

+
2,k

=
5iµkb+

1,k

4b0
2,kb

+
2,k
, k = 1, 2.

Next we will plug again our knowledge of b0
2,k into the equation and reach

ḃ+
1,k =

5iµkb+
1,k

4b+
2,k

|b+
2,k|

b+
2,k

=
5iµkb+

1,k

4|b+
2,k|

, k = 1, 2.

That means
5iµkb+

1,k

4|b+
2,k|

∈ R, k = 1, 2

needs to hold. So now we see that |b+
2,k| ∈ R holds and by assumption as

before b+
1,k ∈ R holds as well. So that means our condition becomes

iµk ∈ R, k = 1, 2.

So therefore, we see that µ1 and µ2 are one-dimensional parameters. Re-
calling the relation between µ1 and µ2 as well as our knowledge of βk gets
us

µ1 = β1µ2

β2
= µ2

|b+
2,1|
|b+

2,2|
.
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4 THE BOUNDARY OF T−1(τa)

We now recall the solutions for all the derivatives we calculated and plug
in the knowledge we have gained on βk. First we consider the solutions we
calculated for the λ+ limit

ȧ+ = iµ1
√
a2 − 4
|b+

2,1|
,

ḃ+
1,k =

5iµkb+
1,k

4|b+
2,k|

, k = 1, 2,

ḃ+
2,k =

iµkb
+
2,k

4|b+
2,k|

, k = 1, 2,

c+
k,1 = µ1b

+
k,1, k = 1, 2,

c+
k,2 = µ1b

+
k,2
|b+

2,2|
|b+

2,1|
, k = 1, 2.

Here it is easy to see that in fact every solution is linearly dependent on µ1
which we have proven to be one-dimensional. Since the solutions for the λ−
are just the complex conjugates of these solutions and µ1 = −µ1 holds as well
these solutions also all depend linearly on µk. Now it remains to consider the
solutions for the λ coordinate. Here we will use everything we know so far
to simplify our results. First we will calculate ˙|b+

2,k|2 since this will simplify
the following calculations a lot. We get

˙|b+
2,k|2 = ḃ+

2,kb
+
2,k + ḃ+

2,kb
+
2,k

=
iµkb

+
2,kb

+
2,k

4|b+
2,k|

+
−iµkb+

2,kb
+
2,k

4|b+
2,k|

= 1
4

(
iµk|b+

2,k|+ iµk|b+
2,k|
)

=
iµk|b+

2,k|
2 , k = 1, 2.

Next we will use our knowledge to furhter determine ḃ0
2,k which gives

ḃ0
2,k = −ib0

2,k

( µk

4b0
2,kb

+
2,k
− µk

4b0
2,kb

+
2,k

)

=
−ib0

2,k(µk + µk)
4|b+

2,k|

=
−iµkb0

2,k

2|b+
2,k|

, k = 1, 2.
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4.2 The case of unbounded coefficients

Now we can plug this into our result for ḃ0
1,k and get to

ḃ0
1,k =

b0
1,k

˙|b+
2,k|2

|b+
2,k|2

=
iµkb

0
1,k

2|b+
2,k|

, k = 1, 2.

Now it remains to completely determine the values of c0
j,k, j, k = 1, 2. We will

do so making use of our knowledge of the other derivatives. First we insert
everything in the solution for c0

2,k to get

c0
2,k = −2i(ḃ0

2,k · |b+
2,k|2 + b0

2,k · ˙|b+
2,k|2)

= −2i
(
−
iµkb

0
2,k

2|b+
2,k|
· |b+

2,k|2 + b0
2,k ·

iµk|b+
2,k|

2

)

= −2i
(
−
iµkb

0
2,k|b+

2,k|
2 +

iµkb
0
2,k|b+

2,k|
2

)
= 0, k = 1, 2.

Now we need to calculate the leading coefficient of c0
k where we can use our

latest result to see that the last term vanishes

c0
1,k = −

2b0
1,k

b0
2,k

(
i((ḃ0

1,k

(
−

b0
2,k

b0
1,k

)
+ ḃ0

2,k)|b+
2,k|2 + (ḃ0

2,2 · |b+
2,2|2 + b0

2,2 · ˙|b+
2,2|2)

)

= −
2b0

1,k

b0
2,k

(
i
(
−

b0
2,k

b0
1,k

iµkb
0
1,k

2|b+
2,k|
−
iµkb

0
2,k

2|b+
2,k|

)
|b+

2,k|2
)

= −
2ib0

1,k

b0
2,k

(
−
iµkb

0
2,k

2|b+
2,k|
−
iµkb

0
2,k

2|b+
2,k|

)
|b+

2,k|2
)

= −
2ib0

1,k

b0
2,k

(
−
iµkb

0
2,k

|b+
2,k|

)
|b+

2,k|2
)

= −2µkb0
1,k|b+

2,k|, k = 1, 2.

So all in all we get here

ḃ0
1,k =

iµkb
0
1,k

2|b+
2,k|

, k = 1, 2,

ḃ0
2,k = −

iµkb
0
2,k

2|b+
2,k|

, k = 1, 2,

c0
1,k = −2µkb0

1,k|b+
2,k|, k = 1, 2,

c0
2,k = 0, k = 1, 2.
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4 THE BOUNDARY OF T−1(τa)

Therefore, we have now also fully proven that every polynomial in the λ
limit is linearly dependent on µ1 as well. We have also established that
(ȧ−, ḃ−1 , ḃ−2 , c−1 , c−2 ) but from our considerations before µ1 ∈ iR holds which
means µk = −µk and therefore, this tuple depends linearly on µk as well.
Therefore, all three tuples depend linearly on µ1 so by the implicit func-
tion theorem (ȧ+, ḃ+

1 , ḃ
+
2 , c

+
1 , c

+
2 , ḃ

0
1, ḃ

0
2, c

0
1, c

0
2, ȧ
−, ḃ−1 , ḃ

−
2 , c

−
1 , c

−
2 ) make up a one-

dimensional manifold just as in the case of bounded coefficients established
in the Master’s thesis by B.Schmidt (2020) one could assume if the blow-up
was chosen correctly. However one can observe that all of the derivatives are
not depending on t. So this poses the problem that the solutions in this point
don’t represent the solutions outside of the point t = 0 so we are not able to
use the implicit function theorem here. A potential solution to this problem
is that we have before first calculated the limits t → 0 and then calculated
the s-derivatives which explains why none of the solutions depend on t and
why ṫ doesn’t occur. In order to do so we will now do the opposite of what
we have been doing before. We start with the λ+ coordinate again becausse
we can use our calculations for the λ−-coordinate as well. We start with a(λ)
and get

lim
t→0

d
ds(λ+)−2a+(λ+)a−(t2/(λ+))

= lim
t→0

(((α̇λ+a−(t2/(λ+)) + a+(λ+)2t(α̇t+ ṫα))

= α̇λ+.

So the derivatives for a(λ) do not change from this procedure. Next we will
do the same calculation for b(λ) in the λ+-coordinate. We get

lim
t→0

d
ds(λ+)−1b+(λ+)b0(t/(λ+))b−(t2/(λ+))

= lim
t→0

(λ+)−1(ḃ+(λ+) · b0(t/λ+)b−(t2/λ+) + b+(λ+)(ṫb0
1λ

+ + ḃ0(t/λ+))b−(t2/λ+))

+ t(b+(λ+)ḃ0(t/λ+)b−(t2/λ+) + b+(λ+)b0(t/λ+)2t(ṫb−(t2/λ+) + ḃ−(t2/(λ+)))
= (λ+)−1(ḃ+(λ+) · β + (ṫb0

1λ
+ + ḃ0(0))(b+(λ+)b−(0))).

Here we see the first change to our previous approach which is that ṫ occurs.
Now we only need to calculate the limit of the s-derivative of b(λ) in the
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4.2 The case of unbounded coefficients

limit t→ 0. We calculate

lim
t→0

d
dst · (t/λ)−1b+(t/λ)b0(λ)b−(tλ)

= lim
t→0

d
ds(tb+

1 + b+
2 λ)b0(λ)b−(tλ)

= lim
t→0

d
ds((ṫb+

1 + tḃ+
1 + ḃ+

2 λ)b0(λ)b−(tλ)

+ λb+(t/λ)ḃ0(λ)b−(tλ) + λb+(t/λ)b0(λ)(ḃ−(tλ) + ṫb−1 λ)
= (ṫb+(0) + ḃ+

2 λ)b0(λ)b−(0) + λ|b+(0)|2ḃ0(λ) + λb+(0)b0(λ)(ḃ−(0) + ṫb−1 λ)

= λ|b+(0)|2ḃ0(λ) + b0(λ)(ṫ(b+
1 + b+

1 λ) + ḃ+
2 λ+ ḃ+

2 ).

Again this changes the previous approach since new derivatives occur in this
calculation, especially ṫ again. Therefore, the next step here is to recalculate
everything using the now, correct approach and solve for the derivatives,
including ṫ. But since this mistake was only discovered in the last weeks of
this thesis, it was not possible to solve the right equations in time. This is a
topic for future research.
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5 Intersections with S2

In this chapter we will use the results of chapter 6 from B.Schmidt (2020) with
the goal of examining the intersections of the one-dimensional manifolds we
considered in Chapter 4 with S2. From Definition 3.28 we see hat if we want
to consider the case of an intersection with S2 that gives us the case that b1
and b2 have a common root, namely on S1 because of the reality condition.
Theorem 3.2 from Carberry and Schmidt (2016) proves that because we
consider the case of genus g = 2 then gcd(b1, b2) ≤ 1 needs to hold so in
this chapter we will consider the case where gcd(b1, b2) = 1 holds. In chapter
three we have defined functions µω : Σ∗ → C× which are defined by the
action of the monodromies Mω = F (ω). We also defined a relation between
our polynomials bk and such function µk as follows The equations

Θbk
= dqk = d log µk, k = 1, 2.

Now we can write this in terms of µk differently where we get

Θk = dµk
µk

, k = 1, 2.

So we know that qk = log µk where we obviously need to consider the complex
logarithm. So then it follows that this is not uniquely defined because we
can only consider this relation on branches of the complex logarithm. That
means in consequence that =(log µk) is only defined up to 2πiZ. Now we will
define the following
Definition 5.1. Let Σ|S1 be the following set

Σ|S1 = {(λ, ν) ∈ S1 × C | (λ, ν) ∈ Σ}

which is the restriction of our Riemann surface to the unit circle. Geomet-
rically it looks like a circle where each value is assumed twice because Σ is a
two-sheeted covering of CP1 it covers S1 as well.
We will now note that Corollary 4.13 from B.Schmidt (2020) specifically
treats the case where the polynomials b1 and b2 have a common root on S1.
Therefore, we can follow that T−1(τa) is still a one-dimensional manifold if
the set intersects S2.
Now we will define an algebraic curve in the following way
Definition 5.2. Let a ∈M1

2 and b1, b2 ∈ Ba uniquely defined as usual. Now
we will restrict ourselves to one branch of the complex logarithm and define

V (q1, q2) = {(=(q1(λ)),=(q2(λ))) ∈ R2 | λ ∈ S1}

which is a curve in the real plane.
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Now from our results in chapter 4 as well the results from B. Schmidt (2020)
we can consider T−1(τa) as a one dimensional manifold (a, b1, b2)(s) where s
is a real parameter and therefore, also consider the set of curves V (q1, q2)(s)
defined by said manifolds. The goal in this section is to show that each set of
curves V (q1, q2)(s) pertaining to a connected component of T−1(τa) intersects
with S2 at most once.

Proposition 5.3. The curve V (q1, q2) ⊂ R2 is a closed curve.

Proof: The Riemann surface Σ is constructed by connecting 0 with ∞ and
connecting the roots αi each with αi−1 as in Figure 2.2 which then gives a
two-sheeted covering of CP1 where we change the sheet three times if pass
these points. That gets us that the preimage of S1 in this manifold is exactly
a manifold that is diffeomorphic to S1 which gets assumed twice because we
consider a two-sheeted covering. Therefore, we change the sheet every time
we pass one of these connected points. That also means that we need to
travel twice in the plane to reach the point we originated from in Σ. Now we
know that the map σ interchanges the sheets of Σ and we also know that it
acts on q as σ∗q = −q and therefore, σ∗Θ = −Θ. Consequently we get that
for every curve that goes around twice in the plane and so especially for Σ|S1

it follows that ∫
Σ|S1

Θ =
∫
γ1

Θ +
∫
σ∗γ1

Θ

=
∫
γ1

Θ +
∫
γ1
σ∗Θ

=
∫
γ1

Θ−
∫
γ1

Θ

= 0

where Σ|S1 = γ1 + σ∗γ1. However since the relation Θ = dq holds it follows
that the integral of the derivative of q - and so especially of the imaginary
part - vanishes making the curve closed. q.e.d.

Proposition 5.4. The winding number n(f̃) corresponding to a triple (a, b1, b2) ∈
T−1(τa) changes when the level set T−1(τa) intersects with S2

Proof: From the paper by Carberry and Schmidt (2016) we know that
n(f̃) = ±1 holds. q.e.d.

Our next goal is to establish a connection between the Willmore functional
defined in Definition 3.20 and V (q1, q2).
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Proposition 5.5. The Willmore functional is proportional to Vol(V (q1, q2)).

Proof: In the paper from Knopf et al. (2018) Theorem 5.7 establishes the
following formula for the Willmore functional

W (a) = 4iResλ=0 log(µ2)d log(µ1).

Since we know that qk = log(µk) so we can write this as

W (a) = 4iResλ=0 q2 dq1.

Now we will try to further calculate the right hand side to get to

4iResλ=0 q2 dq1 = 4i
2πi

∫
S1
q2 dq1

= 2
π

∫
S1
q2 dq1

= 2
π

∫
S1
=(q2) d=(q1)

= 2
π

∫ 2π

0
y(s)d(x(s))

= 2
π

∫ 2π

0
y(s)x′(s)d(x(s)).

Here we have used that the functions are purely imaginary on the unit circle,
the definition of the residuum and have written q1 and q2 as the coordinates
x and y of V (q1, q2). On the other hand since the volume can be determined
as

Vol(V (q1, q2)) = 1
2

∫ 2π

0
y(s)x′(s)d(x(s))

we see that W (a) is proportional to Vol(V (q1, q2)). q.e.d.

Proposition 5.6. Vol(V (q1, q2)) is either monotonously increasing or de-
creasing along each connected component of T−1(τa) not intersecting S2. The
monotonicity only changes at intersections with S2.

Proof: We will now use several calculations concerning Ẇ (a) in order to
prove our claims. They stem from the 6th chapter of B.Schmidt (2020).

Ẇ (a) = 4ic2b1 − c1b2

ν2
dλ
λ

= 4iQ11
dλ
λ
.
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Now looking at the second formula we also recall that in B.Schmidt (2020)
it is proven that Q11 6= 0 holds for all a ∈ M1

2 \ S2. Since dλ
λ

has no roots
on S1 that in turn means that Ẇ (a) 6= 0 holds for all a ∈ M1

2 \ S2. There-
fore, by Proposition 5.4 Vol(V (q1, q2)) is either monotonously decreasing or
increasing. However if a ∈ M1

2 ∩ S2 it follows that Q11 = 0 needs to hold.
Therefore, we get that Ẇ (a) vanishes in these instances. So the sign ofW (a)
changes for a ∈M1

2 ∩S2. By way of Proposition 5.4 we get the same result
for Vol(V (q1, q2)) which completes the proof. q.e.d.

Our new goal will be to continue the calculations done in chapter 6 by
B.Schmidt (2020). We will assume that every polynomial we consider in
the Whitham equations can be written as a formal power series and try to
calculate the coefficients using the results already established in the chapters
4 and 6 from B.Schmidt (2020). So we will use another ansatz where we
calculate the Whitham equations in the Cayley transform, as in chapter 6 of
the Bachelor thesis by B.Schmidt (2017). To recall this we define the Cayley
transform
Definition 5.7. The Cayley transform is the map

κ :

CP1 → CP1

λ 7→ κ(λ) = λ−i
λ+i

We then get that ν2 = (κ2 + 1)a(κ) where a(κ) = κ4 + a1κ
3 + a2κ

2 + a3κ +
a4 with ai ∈ R holds. Further we recall that we are still in the case of
intersecting with S2. Here we can now assume that λ0 ∈ S1 which denotes
the common root of b1 and b2 gets mapped to 0 under the Cayley transform
so b1(0) = 0 = b2(0) now holds. Further the polynomials bk also have real
coefficients. So we can write the polynomials bk in the following form bk(κ) =
b1,kκ

3 + b2,kκ
2 + b3,kκ with bi,k ∈ R for i = 1, 2 and k = 1, 2, 3. Next we take

a look at Θk and see that

Θk = bk(κ)
ν

dκ
κ2 + 1 , k = 1, 2

holds. By Schwarz lemma we get
∂2qk
∂t∂κ

= ∂2qk
∂κ∂t

, k = 1, 2.

Here we consider the same qk we defined in the beginning of this chapter in
the κ-coordinates. However we know that

∂qk
∂t

= ick(κ)
ν

, k = 1, 2
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5 INTERSECTIONS WITH S2

needs to hold as well where ck(κ) ∈ P 3
R. Therefore, we get the following

equation if we plug this in the equation above and cancel the dκ on the left
hand side

∂

∂t

bk(κ)
ν

1
κ2 + 1 = ∂

∂κ

ick(κ)
ν

, k = 1, 2.

In a next step we will calculate both sides. Starting with the left hand side
gets us

∂

∂t

bk(κ)
ν

1
κ2 + 1 = iḃk(κ)ν(κ2 + 1)− ibk(κ)ν̇(κ2 + 1)

ν2(κ2 + 1)2

= iḃ(κ)
ν(κ2 + 1) −

ibk
ȧ(κ)
2ν

ν2

= 2iḃk(κ)a(κ)− ibk(κ)ȧ(κ)
2(κ2 + 1)a(κ)ν , k = 1, 2.

We now further evaluate the right hand side as well to get to

∂

∂κ

ick(κ)
ν

= ic′k(κ)ν − ick(κ)ν ′
ν2

= ic′k(κ)
ν
−
ick(κ)2κa(κ)+(κ2+1)a′(κ)

2ν
ν2

= 2ick(κ)a(κ)(κ2 + 1)− 2ick(κ)a(κ)κ− ick(κ)a′(κ)(κ2 + 1)
2(κ2 + 1)a(κ)ν , k = 1, 2.

Now equaling both sides we see that the denominator cancels as well as i.
So our equations become

2c′1(κ)a(κ)(κ2 + 1)− 2c1(κ)a(κ)κ− c1(κ)a′(κ)(κ2 + 1)
= 2ḃ1(κ)a(κ)− b1(κ)ȧ(κ)

(21)

as well as
2c′2(κ)a(κ)(κ2 + 1)− 2c2(κ)a(κ)κ− c2(κ)a′(κ)(κ2 + 1)

= 2ḃ2(κ)a(κ)− b2(κ)ȧ(κ).
(22)

We note here that the degrees of both sides do not seem to match up because
the left hand side appears to have degree 8 but the right hand side only has
degree 7 at most. But if we calculate the leading coefficient on the left hand
side and use that the highest coefficient of a(κ) is one we get that the leading
coefficient appears to be

6c1,k − 2c1,k − 4c1,k = 0, k = 1, 2,
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so since this vanishes we get that the degree of the left hand side is at most
seven as well and therefore, the sides of the equation match up. Now we will
also evaluate the equation

q̇1dq2 − q̇2dq1 = Q
dκ

κ2 + 1

from chapter 6.1 of the master’s thesis B.Schmidt (2020) in our new κ-
variable. Evaluating this with our knowledge of before we get that this
equation is equivalent to

ic1(κ)
ν

ib2(κ)
ν(κ2 + 1)dκ− ic2(κ)

ν

ib1(κ)
ν(κ2 + 1)dκ = Q(κ)

κ2 + 1dκ.

Canceling the 1-form dκ from both sides then gets us to

c2b1 − c1b2

a(κ)(κ2 + 1) = Q(κ)
κ2 + 1 .

Now multiplying both sides by a(κ) and canceling the κ2 + 1 terms gives us
the third Whitham equation

c2(κ)b1(κ)− c1(κ)b2(κ) = Q(κ)a(κ). (23)

Now we will use these equations in the same way as in B.Schmidt (2020)
chapter 4 in the case that b1 and b2 have a common root. We have already
established that κ = 0 is the new common root of these polynomials. Our
goal will now be to prove an analogon of Corollary 4.11 from B.Schmidt
(2020). First we need to consider τa in our κ-variable. Since we define κ by
the Cayley transformation we will need to define τa in the following way

τa = b1(κ = i)
b2(κ = i) .

However again since we look at T−1(τa) we know that τa = const. and there-
fore, we can calculate

d
dt

∣∣∣∣∣
t=0

b1(κ = i)
b2(κ = i) = 0.

Calculating this gets us to

ḃ1(i)b2(i)− b1(i)ḃ2(i)
b2(i)2 = 0
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5 INTERSECTIONS WITH S2

and then

ḃ1(i)b2(i)− b1(i)ḃ2(i) = 0.

Looking at Equation (23) we see that if we plug in κ = i we get

c2(i)b1(i)− c1(i)b2(i) = Q(i)a(i).

However if we look at Equation (21) as well as Equation (22) at κ = i that
yields

−2c1(i)a(i)i = 2ḃ1(i)a(i)− b1(i)ȧ(i)

and

−2c2(i)a(i)i = 2ḃ2(i)a(i)− b2(i)ȧ(i)

That gets us

c1(i) = i(ḃ1(i)− b1(i) ȧ(i)
2a(i))

and also

c2(i) = i(ḃ2(i)− b2(i) ȧ(i)
2a(i)).

Now inserting this into our equation above yields

Q(i)a(i) = i(ḃ2(i)− b2(i) ȧ(i)
2a(i))b1(i)− i(ḃ1(i)− b1(i) ȧ(i)

2a(i))b2(i)

= i(ḃ2(i)b1(i)− ḃ1(i)b2(i)) + ȧ(i)
2a(i)

(
b1(i)b2(i)− b1(i)b2(i)

)
= iτ̇a + 0
= 0.

Although since a(κ = i) is equal to a(λ = 0) we see that this can’t vanish
and therefore, Q(i) = 0 needs to hold. By the reality condition that all
coefficients of Q need to be real it holds that the complex conjugate of i is a
root as well so Q(−i) needs to vanish as well and therefore, Q(κ) needs to be
proportional to κ2 + 1. Because of the fact that Q is a polynomial of degree
two we then get Q(κ) = µ(κ2 + 1) needs to hold. However if we now recall
equation that gets us

c2(κ)b1(κ)− c1(κ)b2(κ) = a(κ)µ(κ2 + 1).
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Because of our assumptions we see that the left hand side needs to vanish at
κ = 0 but a(λ) doesn’t vanish at κ = 0 because of our assumptions. So that
means that Q needs to vanish at κ = 0. So since Q is a multiple of κ2 + 1
that means that µ = 0 needs to hold. That in turn implies Q = 0. Therefore,
we get that equation (23) can be transformed into

c2(κ)b1(κ)− c1(κ)b2(κ) = 0.

Since gcd(b1, b2) = 1 holds we can now evaluate the equation at the roots of
b1 unequal to zero because we know that b2 doesn’t vanish there. We also
see that since ck fulfilled the reality condition as well in the λ-parameter
before the new coefficients need to be real concerning the κ-parameter as
well. Therefore, we can write ck(κ) = c1,kκ

3 + c2,kκ
2 + c3,kκ + c4,k where

ci,k ∈ R, i = 1, . . . , 4, k = 1, 2. Now we can define bk(κ)
κ

= b̃k(κ). Because of
our previous considerations it needs to hold true that ck(κ) = γk(κ−κ0,k)b̃k(κ)
since we can write b̃k(κ) = b1,k(κ−κ1,k)(κ−κ2,k) where κ1,k and κ2,k are the
roots of bk not zero (in the case of a root of higher order at zero they can
obviously still be equal to zero as well). Now we can write out our polynomial
ck in the following way

ck(κ) = γk(κ− κ0,k)b̃k(κ)
= γk(κ− κ0,k)b1,k(κ− κ1,k)(κ− κ2,k)
= γk(κ− κ0,k)b̃k(κ)
= γkκb̃k(κ)− γkκ0,kb̃k(κ)
= γkbk(κ)− γkκ0,kb̃k(κ), k = 1, 2.

Because of the assumption that all the coefficients of ck and bk are real we
know that γk needs to be real as well since c1,k = γkb1,k. Therefore, we have
two unknowns out of which one is real and one is complex. Therefore, we
have reduced the dimension of ck from four to three. Now if we recall that
the Cayley transform transforms polynomials that fulfill the reality condition
into polynomials whose coefficients are real it holds that ck needs to have real
coefficients as well and therefore, c1,k ∈ R needs to hold. However we have
just calculated that c1,k = γkb1,k holds and b1,k ∈ R holds as seen before.
Then in turn it needs to be true that κ0,k ∈ R holds as well. This reduces
the dimension of our polynomials from three to two. Now we will insert our
solutions into equation (23) to get to

γ2(κ− κ0,2)b̃2(κ)κb̃1(κ)− γ1(κ− κ0,1)b̃1(κ)κb̃2(κ)
= (γ2(κ− κ0,2)− γ1(κ− κ0,1))κb̃1κb̃2(κ)
= 0.
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Since the right factor doesn’t identically vanish we can divide both sides by
κb̃1κb̃2(κ) which leaves us with

γ2(κ− κ0,2)− γ1(κ− κ0,1) = 0.

Comparing coefficients we quickly see that γ1 = γ2 as well as κ0,1 = κ0,2.
In the following we will denote these parameters with γ and κ̂. So now our
solution space appears to be two-dimensional. We can write our polynomials
ck now in the following way

c1(κ) = γ(κ− κ̂)b̃1(κ)
c2(κ) = γ(κ− κ̂)b̃2(κ).

Our goal now is to determine ȧ(κ). In order to do so we will now consider the
four roots of a(λ) which we will denote α1, . . . , α4. Then we get the following
formula for the derivative

ȧ(κ) = −
4∑
i=1

α̇i
a(κ)
κ− αi

.

It is easy to see that if we now plug in a root αi in ȧ(κ) the only term that
doesn’t vanish is the term with κ̇i. Now if we calculate the κ-derivative of
a(λ) as well we see that this has the following form

a′(κ) =
4∑
i=1

a(κ)
κ− αi

.

So that means

ȧ(αi) = −α̇ia′(αi), i = 1, . . . , 4.

Therefore, we can use the four roots of a(λ) to fully determine ȧ. Now if we
recall the equations Equation (21) as well as Equation (22) and insert the
roots αi of a(λ) we get the following equations

ck(αi)a′(αi)(α2
i + 1) = bk(αi)ȧ(αi), k = 1, 2, i = 1, . . . , 4.

Now if we use our solution of ȧ(αi) we get

ck(αi)a′(αi)(α2
i + 1) = −bk(αi)α̇ia′(αi), k = 1, 2, i = 1, . . . , 4.

Now the a′(αi) cancel out and we can now solve for κ̇i

α̇i = −ck(αi)(α
2
i + 1)

bk(αi)
, k = 1, 2, i = 1, . . . , 4.
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Now if we use our results for ck(κ) we see that

ck(αi)
bk(αi)

= γ(αi − κ̂)b̃k(αi)
αib̃k(αi)

= γ(αi − κ̂)
αi

, k = 1, 2, i = 1, . . . , 4.

So that means for our solution that it is independent of k. We get

α̇i = −γ(αi − κ̂)(α2
i + 1)

αi
, i = 1, . . . , 4.

From our previous considerations we see that this fully determines ȧ(κ).
Therefore, we can insert our solutions of α̇i into the formula we have calcu-
lated in order to fully determine ȧ(κ)

ȧ(κ) = −
4∑
i=1

α̇i
a(κ)
κ− αi

=
4∑
i=1

γ(αi − κ̂)(α2
i + 1)

αi

a(κ)
κ− αi

Now it remains to solve Equation (21) and Equation (22) for ḃk. In order to
do so we will add bk(κ)ȧ(κ) on both sides of the respective equations which
gets us

2ḃk(κ)a(κ) =2c′k(κ)a(κ)(κ2 + 1)− 2ck(κ)a(κ)κ
−ck(κ)a′(κ)(κ2 + 1) + bk(κ)ȧ(κ), k = 1, 2.

Now we will prove that both sides of these equations are divisible by a(κ).
In order to do so we will show that both sides vanish at all roots αi of a(κ).
We easily see that the first summands of the right hand side depend on a(κ).
It remains to show that the last two terms also vanish there. Obviously
the terms directly depending on a(κ) vanish which leaves us with the last
two terms. Here we will need to look into the way we have defined ȧ(κ)
because it needs to be aligned in such a way that these two terms agree at
the roots of a(κ) down to the sign and in consequence vanish. But we have
already established that ȧ(αi) = α̇ia

′(αi) holds at the roots of a(κ). Now if
we evaluate the two terms not depending on a(κ) directly we get

bk(αi)α̇ia′(αi)− ck(αi)a′(αi)(α2
i + 1)

= bk(αi)
γ(αi − κ̂)a′(αi)(α2

i + 1)
αi

− γ(αi − κ̂)b̃k(αi)a′(αi)(α2
i + 1)

= b̃k(αi)γ(αi − κ̂)a′(αi)(α2
i + 1)− γ(αi − κ̂)b̃k(αi)a′(αi)(α2

i + 1)
= 0.
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That proves that the last part of the equations above vanishes at all roots
of a(κ) so both sides of these equations are divisible by a(κ). Therefore, we
can now write these two terms as a product of a(κ) with another polynomial
which we call dk(κ) so we get

bk(κ)ȧ(κ)− ck(κ)a′(κ)(κ2 + 1) = a(κ)dk(κ), k = 1, 2.

So now we can solve Equation (21) and Equation (22) for ḃ1 and ḃ2. We
see that the following needs to hold then for ḃk.

ḃk = c′k(κ)(κ2 + 1)− ck(κ)κ+ dk(κ), k = 1, 2.

We are now able to fully determine ḃk by comparing coefficients. So now we
see that every solution depends on a linear combination of γ and κ̂. Since
ck = γ(κ− κ̂)b̃k holds we see that our solution space is two-dimensional. Our
next goal is to determine how these solutions are related. In order to do so
we calculate a certain Möbius transformation. We know that

λ = κ− i
κ+ i

holds and therefore,

κ = i
λ+ 1
λ− 1 .

Our goal is now to construct a Möbius transformation that is a rotation of
λ. Therefore, we will replace λ with eitλ in our equation. That means

κ = i
eitλ+ 1
eitλ− 1

= i
eit κ−i

κ+i + 1
eit κ−i

κ+i − 1

= i
eit(κ− i) + κ+ i

eit(κ− i)− (κ+ i)

= κ(eit/2 + e−it/2) + i(e−it/2 − eit/2)
κ(ieit/2 − ieit/2) + i(ieit/2 + ie−it/2)

= cos(t/2)κ− sin(t/2)
sin(t/2)κ+ cos(t/2) .

needs to hold. Now it is possible to dilate t/2 to t without loss of generality.
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We then calculate the derivative of κ at t = 0. That gets us

κ̇ = d
dt

cos(t)κ− sin(t)
sin(t)κ+ cos(t)

∣∣∣∣∣
t=0

= (− sin(t)κ− cos(κ))(sin(t)κ+ cos(t))− (cos(t)κ− sin(t))(cos(t)κ− sin(t))
(sin(t)κ+ cos(t))2

∣∣∣∣∣
t=0

= −1− κ2

1 = −(κ2 + 1).

Now if we use this result on q̇k we will see
ck
ν

= q̇k

= −(1 + κ2) d
dκqk

= −(1 + κ2)bk
ν

1
1 + κ2

= −bk
ν
.

Therefore, the solution ck = −bk corresponds to this infinitesimal Möbius
transformation proving in turn that our solutions are one-dimensional except
for this. In a next step we can look at what happens if we add µbk to our
solutions of ck. Therefore, we recall Equation (23) and get

(c1 + µb1)b2 − (c2 + µb2)b1

=c1b2 + µb1b2 − c2b1 − µb1b2

=c1b2 − c2b1

=Qa.

Therefore, this doesn’t change our solution as well. In order to reduce the
dimension of our solutions to one we need to reduce the dimension of the
space we consider by one as well. In order to do so we try the ansatz b1 has
only a simple root at κ = 0 and ḃ1,4 = 0. Now we will use Equation (21)
at κ = 0 in order to get a condition for κ̂ and γ. We will use the solutions
for c1 and ȧ to do so. Because of our assumptions we see that b1(0) = 0 but
b′1(0) 6= 0 as well as b̃1(0) 6= 0 so we get

2c′1(0)a(0)− c1(0)a′(0) + b1(0)ȧ(0)
= 2(γb′1(0)− γκ̂b̃′1(0))a(0) + γκ̂b̃1(κ)a′(0)
= 2(γb3,1 − γκ̂b2,1)a4 + γκ̂b3,1a3

= 0.
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So now we can align this in the following way

γ(2b3,1a4 + (b3,1a3 − 2b2,1a4)κ̂) = 0.

This gets us two possible solutions

γ = 0

or

κ̂ = − 2b3,1a4

b3,1a3 − 2b2,1a4
.

However since c1 and c2 depend linearly on γ the first solution would lead
to these polynomials vanishing which means that the second equation is the
solution we need making our space of solutions one-dimensional. We can now
use our results to simplify the solutions for ck as well as ḃk. First we will
plug the solution for κ̂ into the solution for ck. That yields

ck(κ) = γ(κ− κ̂)b̃k(κ)

= γ
(
κ+ 2b3,1a4

b3,1a3 − 2b2,1a4

)
b̃k(κ).

Now we can also calculate ḃk using this and get

ḃk(κ) =
(
γb′k(κ) + 2b3,1a4γ

b3,1a3 − 2b2,1a4
b̃′k(κ)

)
(κ2 + 1)

− γ
(
κ+ 2b3,1a4

b3,1a3 − 2b2,1a4

)
b̃k(κ)

(
κ+ a′(κ)

2a(κ)(κ2 + 1)
)

+ a(κ)
2a(κ)

4∑
i=1

γ(αi − κ̂)(α2
i + 1)

αi

bk(κ)
κ− αi

= γ
(

(b′k(κ) + 2b3,1a4

b3,1a3 − 2b2,1a4
b̃′k(κ))(κ2 + 1)

−
(
κ+ 2b3,1

b3,1a3 − 2b2,1a4

)( 4∑
i=1

(κ+ 1)2

2(κ− αi)
+ κ

)
b̃k(κ)

+
4∑
i=1

(
αi + 2b3,1a4

b3,1a3−2b2,1a4

)
(α2

i + 1)

2αi(κ− αi)
bk(κ).

)
, k = 1, 2.

The next step is now as in chapter 6 of B.Schmidt (2020) to consider the case
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t 6= 0 where we write the functions a, b1, b2, c1, c2, Q as Taylor series. That
means we can write them in the following way

Q(κ) =
∞∑
i=0

Qi

i! t
i.

So we already know that Q vanishes at t = 0 as well as that it needs to be a
multiple of κ2 + 1. That means that we can consider Q1t = (κ2 + 1)t as the
lowest coefficient of Q that doesn’t vanish. That means we will plug this as
well as the Taylor series expansions for the other functions into the equation
Equation (23). In order to do so we will define likewise

a(κ) =
∞∑
i=0

Ai(κ)
i! ti

where Ai(κ) are polynomials of degree four as well as

bk(κ) =
∞∑
i=0

Bi,k(κ)
i! ti, k = 1, 2,

where Bi,k are polynomials of degree three and

ck(κ) =
∞∑
i=0

Ci,k(κ)
i! ti, k = 1, 2

where Ci,k are polynomials of degree as well. Using these formulas and com-
paring the linear coefficients then yields

A0(κ2 + 1)t = (C0,2B1,1 + C1,2B0,1 − C0,1B1,2 − C1,1B0,2)t.

This means we can now insert our solutions for the linear coefficients of
all polynomials in this solution because we already calculated them in the
previous considerations. We get the following equation

a(κ)(κ2 + 1) = c2(κ)ḃ1(κ)− c1(κ)ḃ2(κ) + C2,1(κ)b1(κ)− C1,1(κ)b2(κ)

Our goal is now to fully determine our solutions of ḃk which still depend on
γ. In order to do so we will evaluate the equation at κ = 0 because we know
that b1(κ) as well as a b2(κ) vanish at κ = 0 and so the linear coefficients
Ck,1 vanish as well. In addition to that we recall that ḃ1(0) = 0 holds as well.
So now we can look at the equation for κ = 0 and get

a(0) = c1(0)ḃ2(0)
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into which we plug in our solutions and see that

a4 = γ
( 2b3,1a4

b3,1a3 − 2b2,1a4

)
b̃1(0)γ

(
b′2(0) + 2b3,1a4

b3,1a3 − 2b2,1a4
b̃′1(0)− 2b3,1

b3,1a3 − 2b2,1a4

4∑
i=1

b̃2(0)
−2αi

)

= γ2
( 2b2

3,1a4

b3,1a3 − 2b2,1a4

)( 2b3,1a4

b3,1a3 − 2b2,1a4
(b2,1 +

4∑
i=1

b3,2

2αi
) + b3,2

)

holds. Now we can solve this for γ and get

γ = ±
√√√√√ a4(

2b2
3,1a4

b3,1a3−2b2,1a4

)(
2b3,1a4

b3,1a3−2b2,1a4
(b2,1 +∑4

i=1
b3,2
2αi

) + b3,2

)

= ±

√√√√(( 2b2
3,1

b3,1a3 − 2b2,1a4

)( 2b3,1a4

b3,1a3 − 2b2,1a4
(b2,1 −

4∑
i=1

b3,2

2αi
) + b3,2

))−1
.

That means we have two solutions for γ so the solutions is unique up to sign.
So we have uniquely determined all the solutions right now. Our next goal
is to determine C1,2 and C1,1 as well. In order to do so we isolate them as
the only terms not determined right now. So then we get the equation

a(κ)(κ2 + 1) + c1(κ)ḃ2(κ)− c2(κ)ḃ1(κ) = C2,1(κ)b1(κ)− C1,1(κ)b2(κ).

Here we see again that if have solutions for this equation which we will call
ċ1 and ċ2 because this is a linear equation we can add µb1 and µ2 to both
sides without changing the solution which we see here

a(κ)(κ2 + 1) + c1(κ)ḃ2(κ)− c2(κ)ḃ1(κ)
= (ċ1(κ) + µb2(κ))b1(κ)− (ċ2(κ) + µb1(κ))b2(κ)
= ċ1(κ)b2(κ)− ċ2(κ)b1(κ).

Therefore we get in the same way as before with the constant coefficients
that the solution space is our general solution we will now determine plus
the linear term we now introduced allowing us to reduce the dimension of
the solution space from two to one using another condition that eliminates
the Möbius transforms. Now we see that the left hand side of our equation
is divisible by κ because both b1(κ) and b2(κ) vanish at κ = 0. That reduces
the degree of the equation by one and we get

κ−1(a(κ)(κ2 + 1) + c1(κ)ḃ2(κ)− c2(κ)ḃ1(κ)) = C2,1(κ)b̃1(κ)− C1,1(κ)b̃2(κ).

Now in a next step the goal is to reduce the degree of the equation by doing
polynomial division with b̃1 of the left hand side of our equation. So we need
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to calculate
a(κ)(κ2 + 1) + c1(κ)ḃ2(κ)− c2ḃ1(κ)

κ
: b̃1

In order to do so we will plug in our solutions for the derivatives ḃk as well as
ck and calculate how the term we want to do polynomial division with turns
out. So we get

κ−1(a(κ)(κ2 + 1) + γ(κ− κ̂)b̃1(κ)γ((b′2(κ)− κ̂b̃′2(κ))(κ2 + 1)

−(κ− κ̂)b̃2

( 4∑
i=1

κ2 + 1
2(κ− αi)

+ κ
)

+ ȧ(κ)b2(κ))− γ(κ− κ̂)b̃2(κ)γ((b′1(κ)

−κ̂b̃′1(κ))(κ2 + 1)− (κ− κ̂)b̃1

( 4∑
i=1

κ2 + 1
2(κ− αi)

+ κ
)

+ ȧ(κ)b1(κ)))

=κ−1(a(κ)(κ2 + 1) + γ2(κ− κ̂)(b̃1(κ)(b′2(κ)− κ̂b̃′2(κ))(κ2 + 1)
−b̃2(κ)(b′1(κ)− κ̂b̃′1(κ))(κ2 + 1)))
=κ−1(κ2 + 1)(a(κ) + γ2(κ− κ̂)(b̃1(κ)(b′2(κ)− κ̂b̃′2(κ))− b̃2(κ)(b′1(κ)− κ̂b̃′1(κ))).

Evaluating the right bracket at κ = 0 gets us

a4 + γ2(−κ̂)(b3,1(b3,2 − κ̂b2,2)− b3,2(b3,1 − κ̂b2,1)))
= a4 + γ2κ̂2(b3,1b2,2 − b3,2b2,1)

= a4 + κ̂2(b3,1b2,2 − b3,2b2,1)
κ̂b3,1(κ̂(b2,1 −

∑4
i=1

b3,2
2αi

) + b3,2)
.

Since the other side of our equation vanishes at κ = 0 we know that the
right bracket we just evaluated needs to vanish at κ = 0. Now we are able
to proceed with our polynomial division to get

(κ2 + 1)(a(κ) + γ2(κ− κ̂)(b̃1(κ)(b′2(κ)− κ̂b̃′2(κ))− b̃2(κ)(b′1(κ)− κ̂b̃′1(κ))
κ

: b̃1

We now calculate the leading coefficient of the expression we want to divide
in order to start so we get that this has the form

γ2(3b1,1b1,2 − 3b1,2b1,1) = 0

which doesn’t come as a surprise since this is the same result we established
for Equation (21) and Equation (22) in order for the solutions to match
up by degree. So we need to actually calculate the second highest coefficient
which is

1 + γ2(2b1,1b2,2 − 2κ̂b1,1b1,2 − 3κ̂b1,1b1,2 − 2b1,2b2,1 + 2κ̂b1,2b1,1 + 3κ̂b1,2b1,1)
= 1 + γ2(2b1,1b2,2 − 2b1,2b2,1).
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So that means that the first coefficient we get from polynomial division is

a(κ)(κ2 + 1) + c1(κ)ḃ2(κ)− c2(κ)ḃ1(κ)
κ

: b̃1 =
( 1
b1,1

+ 2γ2
(
b2,2 −

b1,2b2,1

b1,1

))
κ3.

In order to calculate further coefficients we need to determine the next co-
efficients of the term we are dividing. The second highest coefficient that
doesn’t vanish is

a1 + γ2(b1,1b3,2 + 2b2,1b2,2 + 3b3,1b1,2 − κ̂(2b1,1b2,2 + 3b2,1b1,2 + 2b1,1b1,2)
+2κ̂2b1,2b1,1 − (b1,2b3,1 + 2b2,2b2,1 + 3b3,2b1,1)

+ κ̂(2b1,2b2,1 + 3b1,2b2,1 + 2b2,1b1,1))− 2κ̂2b1,2b1,1

= a1 + γ2(b1,1b3,2 − b1,2b3,1 + 3b3,1b1,2 − 3b3,2b1,1))
= a1 + 2γ2(b3,1b1,2 − b1,1b3,2).

Next we calculate the third highest coefficient to get

a2 + γ2(b2,1b3,2 + 2b3,1b2,2 − κ̂(b1,1b3,2 + 2b2,1b2,2 + 3b3,1b1,2 + b2,1b2,2 + 2b3,1b1,2)
+ κ̂2(b1,1b2,2 + 2b2,1b2,2)− (b2,2b3,1 + 2b3,1b2,1)
+ κ̂(b1,2b3,1 + 2b2,2b2,1 + 3b3,2b1,1 + b2,2b2,1 + 2b3,2b1,1)
− κ̂2(b2,1b1,2 + 2b2,2b2,1) + 1 + γ2(2b1,1b2,2 − 2b1,2b2,1)
= 1 + a2 + γ2(b3,1b2,2 − b2,1b3,2 − κ̂(4b3,1b1,2 − 4b3,2b1,1)
+ κ̂2(b1,1b2,2 − b2,1b1,2) + 2b1,1b2,2 − 2b1,2b2,1)).

Now we calculate the next coefficient which is the one belonging to κ3/κ

a3 + a1 + 2γ2(b3,1b1,2 − b1,1b3,2) + γ2(b3,1b3,2 − κ̂(b2,1b3,2 + 2b3,1b2,2 + 2b3,1b3,2)
+ κ̂2(b2,1b2,2 + 2b3,1b1,2)− b3,1b3,2 + κ̂(b3,1b2,2 + 2b2,1b3,2 + 2b3,1b3,2)
− κ̂2(b2,1b2,2 + 2b1,1b3,2))
= a3 + a1 + γ2(2b3,1b1,2 − 2b1,1b3,2 − κ̂(b3,1b2,2 − b2,1b3,2) + κ̂2(2b3,1b1,2 − 2b1,1b3,2)).

Second to last, we calculate the coefficient belonging to the linear term which
is

a2 + γ2(b2,1b3,2 − b2,1b2,2 − κ̂(3b3,1b1,2 + 2b2,1b2,2 + b1,1b3,2 + b2,1b2,2 + 2b3,1b1,2)
+ κ̂2(b1,1b2,2 + 2b2,1b2,2)− (b3,1b2,2 − b2,1b2,2)
+ κ̂(3b1,1b3,2 + 2b2,1b2,2 + b3,1b1,2 + b2,1b2,2 + 2b1,1b3,2)− κ̂2(b2,1b1,2 + 2b2,1b2,2))
= a2 + γ2(b2,1b3,2 − b3,1b2,2 − κ̂(4b3,1b1,2 − 4b1,1b3,2) + κ̂2(b1,1b2,2 − b2,1b1,2)).
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We don’t need to consider the constant coefficients times κ2 because we
already know that this vanishes by recent argumentation. And lastly we get
the lowest coefficient which is

a3 + γ2(b3,1b3,2 − κ̂(b2,1b3,2 + 2b3,1b2,2 + 2b3,1b3,2) + κ̂2(b2,1b2,2 + 2b3,1b1,2)
− b3,1b3,2 + κ̂(b3,1b2,2 + 2b2,1b3,2 + 2b3,1b3,2)− κ̂2(b2,1b2,2 + 2b1,1b3,2))
= a3 + γ2(κ̂(b2,1b3,2 − b3,1b2,2) + 2κ̂2(b3,1b1,2 − b1,1b3,2)).

That means we can now finish our polynomial division.

(
1 + γ2(2b1,1b2,2 − 2b1,2b2,1)

)
κ5 +

(
a1 + 2γ2(b3,1b1,2 − b1,1b3,2)

)
κ4

+
(

1 + a2 + γ2(b3,1b2,2 − b2,1b3,2 − κ̂(4b3,1b1,2 − 4b3,2b1,1)

+ κ̂2(b1,1b2,2 − b2,1b1,2) + 2b1,1b2,2 − 2b1,2b2,1))
)
κ3

+
(
a3 + a1 + γ2(2b3,1b1,2 − 2b1,1b3,2 − κ̂(b3,1b2,2 − b2,1b3,2) + κ̂2(2b3,1b1,2 − 2b1,1b3,2))

)
κ2

+
(
a2 + γ2(b2,1b3,2 − b3,1b2,2 − κ̂(4b3,1b1,2 − 4b1,1b3,2) + κ̂2(b1,1b2,2 − b2,1b1,2))

)
κ

+ a3 + γ2(κ̂(b2,1b3,2 − b3,1b2,2) + 2κ̂2(b3,1b1,2 − b1,1b3,2)) : b1,1κ
2 + b2,1κ+ b3,1

= 1 + 2γ2(b1,1b2,2 − b2,1b1,2)
b1,1

κ3 +O(κ2).

Now we need to calculate the new coefficients to proceed which yields

(
a1 + 2γ2(b3,1b1,2 − b1,1b3,2)− b2,1(1 + 2γ2(b1,1b2,2 − b2,1b1,2))

b1,1

)
κ4

+
(

1 + a2 + γ2(b3,1b2,2 − b2,1b3,2 − κ̂(4b3,1b1,2 − 4b3,2b1,1)

+ κ̂2(b1,1b2,2 − b2,1b1,2) + 2b1,1b2,2 − 2b1,2b2,1))− b3,1(1 + 2γ2(b1,1b2,2 − b2,1b1,2))
b1,1

)
κ3

+ O(κ2) : b1,1κ
2 + b2,1κ+ b3,1

=
(
a1 + 2γ2(b3,1b1,2 − b1,1b3,2)

b1,1
− b2,1(1 + 2γ2(b1,1b2,2 − b2,1b1,2))

b2
1,1

)
κ2 +O(κ).
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Iterating this another step gets us
(

1 + a2 + γ2(b3,1b2,2 − b2,1b3,2 − κ̂(4b3,1b1,2 − 4b3,2b1,1)

+ κ̂2(b1,1b2,2 − b2,1b1,2) + 2b1,1b2,2 − 2b1,2b2,1))− b3,1(1 + 2γ2(b1,1b2,2 − b2,1b1,2))
b1,1

− b2,1(a1 + 2γ2(b3,1b1,2 − b1,1b3,2))
b1,1

+
b2

2,1(1 + 2γ2(b1,1b2,2 − b2,1b1,2))
b2

1,1

)
κ3

+
(
a3 + a1 + γ2(2b3,1b1,2 − 2b1,1b3,2 − κ̂(b3,1b2,2 − b2,1b3,2) + κ̂2(2b3,1b1,2 − 2b1,1b3,2))

− b3,1(a1 + 2γ2(b3,1b1,2 − b1,1b3,2))
b1,1

+ b2,1b3,1(1 + 2γ2(b1,1b2,2 − b2,1b1,2))
b2

1,1

)
κ2

+ O(κ) : b1,1κ
2 + b2,1κ+ b3,1

=
(
b−1

1,1(1 + a2 + γ2(b3,1b2,2 − b2,1b3,2 − κ̂(4b3,1b1,2 − 4b3,2b1,1)

+ κ̂2(b1,1b2,2 − b2,1b1,2) + 2b1,1b2,2 − 2b1,2b2,1)))− b3,1(1 + 2γ2(b1,1b2,2 − b2,1b1,2))
b2

1,1

− b2,1(a1 + 2γ2(b3,1b1,2 − b1,1b3,2))
b2

1,1
+
b2

2,1(1 + 2γ2(b1,1b2,2 − b2,1b1,2))
b3

1,1

)
κ+ C.

Now the last step to finish this procedure is
(
a3 + a1 + γ2(2b3,1b1,2 − 2b1,1b3,2 − κ̂(b3,1b2,2 − b2,1b3,2) + κ̂2(2b3,1b1,2 − 2b1,1b3,2))

− b3,1(a1 + 2γ2(b3,1b1,2 − b1,1b3,2))
b1,1

+ b2,1b3,1(1 + 2γ2(b1,1b2,2 − b2,1b1,2))
b2

1,1

−b2,1

b1,1
(1 + a2 + γ2(b3,1b2,2 − b2,1b3,2 − κ̂(4b3,1b1,2 − 4b3,2b1,1)

+ κ̂2(b1,1b2,2 − b2,1b1,2) + 2b1,1b2,2 − 2b1,2b2,1))) + b3,1b2,1(1 + 2γ2(b1,1b2,2 − b2,1b1,2))
b2

1,1

+
b2

2,1(a1 + 2γ2(b3,1b1,2 − b1,1b3,2))
b2

1,1
−
b3

2,1(1 + 2γ2(b1,1b2,2 − b2,1b1,2))
b3

1,1

)
κ2

+
(
a2 + γ2(b2,1b3,2 − b3,1b2,2 − κ̂(4b3,1b1,2 − 4b1,1b3,2) + κ̂2(b1,1b2,2 − b2,1b1,2))

− b3,1

b1,1

(
(1 + a2 + γ2(b3,1b2,2 − b2,1b3,2 − κ̂(4b3,1b1,2 − 4b3,2b1,1)

+ κ̂2(b1,1b2,2 − b2,1b1,2) + 2b1,1b2,2 − 2b1,2b2,1)))− b3,1(1 + 2γ2(b1,1b2,2 − b2,1b1,2))
b2

1,1
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− b2,1(a1 + 2γ2(b3,1b1,2 − b1,1b3,2))
b2

1,1
+
b2

2,1(1 + 2γ2(b1,1b2,2 − b2,1b1,2))
b3

1,1

))
κ

+ a3 + γ2(κ̂(b2,1b3,2 − b3,1b2,2) + 2κ̂2(b3,1b1,2 − b1,1b3,2)) : b1,1κ
2 + b2,1κ+ b3,1

=
(
a3 + a1 + γ2(2b3,1b1,2 − 2b1,1b3,2 − κ̂(b3,1b2,2 − b2,1b3,2) + κ̂2(2b3,1b1,2 − 2b1,1b3,2))

− b3,1(a1 + 2γ2(b3,1b1,2 − b1,1b3,2))
b1,1

+ b2,1b3,1(1 + 2γ2(b1,1b2,2 − b2,1b1,2))
b2

1,1

−b2,1

b1,1
(1 + a2 + γ2(b3,1b2,2 − b2,1b3,2 − κ̂(4b3,1b1,2 − 4b3,2b1,1)

+ κ̂2(b1,1b2,2 − b2,1b1,2) + 2b1,1b2,2 − 2b1,2b2,1))) + b3,1b2,1(1 + 2γ2(b1,1b2,2 − b2,1b1,2))
b2

1,1

+
b2

2,1(a1 + 2γ2(b3,1b1,2 − b1,1b3,2))
b2

1,1
−
b3

2,1(1 + 2γ2(b1,1b2,2 − b2,1b1,2))
b3

1,1

) 1
b1,1

.

We see that polynomial division yields that the left hand side of the equation
in question can be written as

O(κ3)b̃1(κ) +O(κ).

It is now our goal to write down the O(κ) term which yields

(
a2 + γ2(b2,1b3,2 − b3,1b2,2 − κ̂(4b3,1b1,2 − 4b1,1b3,2) + κ̂2(b1,1b2,2 − b2,1b1,2))

− b3,1

b1,1

(
(1 + a2 + γ2(b3,1b2,2 − b2,1b3,2 − κ̂(4b3,1b1,2 − 4b3,2b1,1)

+ κ̂2(b1,1b2,2 − b2,1b1,2) + 2b1,1b2,2 − 2b1,2b2,1)))− b3,1(1 + 2γ2(b1,1b2,2 − b2,1b1,2))
b2

1,1

− b2,1(a1 + 2γ2(b3,1b1,2 − b1,1b3,2))
b2

1,1
+
b2

2,1(1 + 2γ2(b1,1b2,2 − b2,1b1,2))
b3

1,1

)

− b2,1

b1,1

(
a3 + a1 + γ2(2b3,1b1,2 − 2b1,1b3,2 − κ̂(b3,1b2,2 − b2,1b3,2) + κ̂2(2b3,1b1,2 − 2b1,1b3,2))

− b3,1(a1 + 2γ2(b3,1b1,2 − b1,1b3,2))
b1,1

+ b2,1b3,1(1 + 2γ2(b1,1b2,2 − b2,1b1,2))
b2

1,1
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−b2,1

b1,1
(1 + a2 + γ2(b3,1b2,2 − b2,1b3,2 − κ̂(4b3,1b1,2 − 4b3,2b1,1)

+ κ̂2(b1,1b2,2 − b2,1b1,2) + 2b1,1b2,2 − 2b1,2b2,1))) + b3,1b2,1(1 + 2γ2(b1,1b2,2 − b2,1b1,2))
b2

1,1

+
b2

2,1(a1 + 2γ2(b3,1b1,2 − b1,1b3,2))
b2

1,1
−
b3

2,1(1 + 2γ2(b1,1b2,2 − b2,1b1,2))
b3

1,1

))
κ

+ a3 + γ2(κ̂(b2,1b3,2 − b3,1b2,2) + 2κ̂2(b3,1b1,2 − b1,1b3,2))

− b3,1

b1,1

(
a3 + a1 + γ2(2b3,1b1,2 − 2b1,1b3,2 − κ̂(b3,1b2,2 − b2,1b3,2) + κ̂2(2b3,1b1,2 − 2b1,1b3,2))

− b3,1(a1 + 2γ2(b3,1b1,2 − b1,1b3,2))
b1,1

+ b2,1b3,1(1 + 2γ2(b1,1b2,2 − b2,1b1,2))
b2

1,1

−b2,1

b1,1
(1 + a2 + γ2(b3,1b2,2 − b2,1b3,2 − κ̂(4b3,1b1,2 − 4b3,2b1,1)

+ κ̂2(b1,1b2,2 − b2,1b1,2) + 2b1,1b2,2 − 2b1,2b2,1))) + b3,1b2,1(1 + 2γ2(b1,1b2,2 − b2,1b1,2))
b2

1,1

+
b2

2,1(a1 + 2γ2(b3,1b1,2 − b1,1b3,2))
b2

1,1
−
b3

2,1(1 + 2γ2(b1,1b2,2 − b2,1b1,2))
b3

1,1

)
.

This rather large polynomial now will be defined as ε1κ + ε2 in order to
make the following calculations remotely understandable. So we can write
our equation now in the form

O(κ3)b̃1(κ) + ε1κ+ ε2 − ċ2(κ)b̃1(κ) = −ċ1(κ)b̃2(κ).

Therefore, we have isolated the term −ċ1(κ)b2(κ) on the left hand side. Eval-
uating the equation at the two roots of b̃1 we get a solution of degree one for
ċ2(κ). We can also fully determine C1,2(κ) using the result from our poly-
nomial division, so we can fully solve for the coefficients of our polynomial.
In order to determine C1,2(κ) we will need to consider the part of the left
side of the equation that is a multiple of b̃1(κ) because then we know that
this polynomial is the solution for C1,2(κ). That means the solution of our
equation is now two-dimensional. We denote the roots of b̃1 with β1,1 and
β2,1 and get that

ċ1(βk,1) = −ε1βk,1 + ε2

b̃2(βk,1)
, k = 1, 2.

To further determine our solution we need to consider the equivalent of
Equation (21) for the linear term t. This means we need to calculate the
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t-derivative on both sides yielding

2(κ2 + 1)(C ′1,1(κ)A0(κ) + C ′0,1(κ)A1(κ))− 2κ(C1,1(κ)A0(κ)
+ C0,1(κ)A1(κ))− (κ2 + 1)(C1,1(κ)A′0(κ) + C0,1(κ)A′1(κ))
= 2(B1,1(κ)A1(κ) +B2,1(κ)A0(κ))− (B0,1(κ)A2(κ) +B1,1(κ)A1(κ)).

(24)

As before we have argued again that since we can add multiples of bk to our
solutions of C1,k we see that the solution space can only consist of one solution
plus a certain Möbius transform. Therefore, our solution space is a priori a
two-dimensional space but as in the case for the constant coefficient we can
fix the Möbius transform and make the solution space one-dimensional by
assuming that B2,1(0) = 0 holds as well. Using this condition we can evaluate
Equation (24) at κ = 0 where the right side vanishes and therefore, we get
an extra condition to determine C1,1(κ) so the solution space is now only a
one-dimensional space as in the case before. So we have now proven that the
solution space for the linear coefficients are a one-dimensional solution space
just like we have for the constant coefficients. That means that we can fully
determine the solutions again by using the third of the Whitham equations
for the quadratic coefficient and evaluating it at κ = 0. That means we have
solved the coefficient equations for the constant and linear coefficients. Using
the algorithm we established in solving for the linear coefficients permits one
to solve these equations inducitvely for all coefficients. That means we can
now fully determine the coefficients of the power series expansions we have
defined before.
The next step here is to evaluate the Taylor series of qk at κ = 0 using the
results we just established. Here we still know that b1 and b2 have a root at
κ = 0. Using a change of base we can easily assume that b2 has a simple root
at κ = 0 and b1 has a root of order two at κ = 0. Recallig

dqk = bk(κ)
ν

dκ, k = 1, 2,

we see that q1 has a simple root at κ = 0 as well and q2 has a root of order
two at κ = 0 since ν|κ=0 6= 0 holds. So now if we consider qk to have a Taylor
series expansion at κ = 0 in the following way

qk(κ) =
∞∑
i=0

qi,k(κ, t)
i! κi, k = 1, 2,

we can easily see that the constant coefficients need to vanish because both
qk have a root at κ = 0. We even see that the linear coefficient of q2 needs to
vanish as well. That means we can now look at the Taylor series expansion
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of dqk because we already know the other coefficients. Using the formula for
bk(κ) as well as the Taylor series expansion for ν−1 we will have the following
ansatz

dqk = bk(κ)
( ∞∑
i=0

νi
i! κ

i
)

= 1, 2.

Here we will now calculate both factors of this product. By definition we
know that

bk(κ) = b0(t) + b1(t)κ+O(κ2)

needs to hold. Now using the power series expansion for
√

1 + κ while brack-
eting gets us

ν−1 =
√

(κ2 + 1)a(κ)
−1

=
√

(κ2 + 1)(a4 + a3κ+ a2κ2 + a1κ3 + κ4)
−1

= √a4
−1
√

1 +O(κ)

= √a4
−1
(

1− a′(0)
2a4

κ+O(κ)2
)
.

That means we can now calculate the Taylor series expansion of dqk to get

qk =
(
b0(t) + b1(t)κ+ b1(t) +O(κ3)

)(√
a4
−1
(

1− a′(0)
2a4

κ+O(κ)2
))

= √a4
−1
(
b0(t) +

(
b1(t)− a′(0)b0(t)

2a4

)
κ− b1(t)a′(0)

2a4
κ2 +O(κ3)

)
.

The next step is to insert the definition of b1(κ) and b2(κ) into these poly-
nomials and then define q1 = y and q2 = x. Then the goal is to find a
polynomial in x and y such that f(x, y) = 0 holds. However since no time
was left at the end of this thesis, this was not done. Now we will use a
sequence of plots to explain how a family of curves for one connected com-
ponent of T−1(τa) looks like. Here we fix that the curves are all contracting
up until we intersect with S2.
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Figure 5.1: Family of curves V (q1, q2) before intersecting with S2

Figure 5.2: Intersection with S2

Figure 5.3: V (q1, q2) after intersecting with S2
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The dot in the graphics describes the double point of the curve where it
intersects with itself. The second to last graphic symbolizes how a curve
looks if T−1(τa) intersects with S2. It would be a goal of future research
to prove that the familiy of curves looks similar to the one pictured above
where the type of singularity the curves have changes after intersecting with
S2. In order to prove this one needs to consider f(x, y) = 0 as before. Then
it should be possible to write f(x, y) = 0 in the following way

g(x, y) = p(x)

where p(x) is a polynomial of degree three. Then p(x) should always be a
polynomial that has one double root and one simple root. The conjecture
is that this changes when intersecting with S2 from one to the other. This
would prove that V (q1, q2) needs to have a cusp when intersecting with S2.

89



6 Conclusion
In chapter 4 of this thesis we have used the results from B.Schmidt (2020) and
considered the of each connected component of the one-dimensional manifold
T−1(τa).

First we considered the case a ∈M2
2 ∪M3

2 where the polynomials a(λ) have
a double root on S1. In this case we examined the fraction a(λ)

λ2 and deduced
that since it’s derivative by s doesn’t vanish at the double roots the sign of
the fraction needs to change if we go further along the manifold which in
turn means that a ∈M2

2 ∪M3
2 is a true boundary value.

In a next step we constructed a blow-up to consider the case where coefficients
of a(λ) go to infinity. Here we were able to prove that the limit is continuous
and that we can continuously extend the definition of τa. We also proved that
the connected components of this manifold are biholomorphic to the unique
hyperelliptic curve defined by the limit of b1 and b2. We also tried to prove
that this boundary now also defines a one-dimensional manifold using the
Whitham equations. Here we made the mistake of calculating the limits first
and then calculating the derivatives, so we didn’t succeed here. A point of
further research would be to use the correct derivatives and then try to solve
the Whitham equations on T−1(τa) proving that this is a one-dimensional
manifold.

In chapter 5 we have constructed a curve V (q1, q2) in the real plane. We
have established certain properties that concern this curve using the results
in chapter 6 of B.Schmidt (2020). We have also proven that the Whitham
equations are solvable inductively for every coefficient of the Taylor series
expansions. A point of further research would be trying to prove that each
connected component of T−1(τa) intersects with S2 at most once and proving
that the family of curves has a cusp while intersecting S2.
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