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Abstract

The study of constant mean curvature (CMC) tori inevitably leads to studying the
sinh-Gordon equation. This is an elliptic partial differential equation. Examining this
equation is a very challenging task and requires several tools. Among those are the
so-called polynomial Killing fields. Solutions of the sinh-Gordon equation form a space
of potentials that is a space of matrix valued polynomials. The determinants of these
potentials yield polynomials and the degree of these polynomials is connected to the so-
called spectral genus. We are going to look at the case of spectral genus two. This means
we will have polynomials of degree four. Studying the properties of these polynomials
is central in the current research on the sinh-Gordon equation. In this thesis we will
construct a mapping that connects each of these polynomials to their corresponding
period lattice. Moreover, the roots of these polynomials can be used to construct a
homology basis that in return can be used to derive additional polynomials. All these
polynomials can be used to utilize the so-called Whitham equations. With the help of
these Whitham equations we will see that the level sets of the mapping to the period
lattice form one-dimensional submanifolds. In the end we will begin to connect our
results to the Willmore energy and point to possible future research.
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1 Introduction

In the twentieth century geometry developed rapidly. Among the aspiring geometers was
Heinz Hopf, who simultaneously to developing algebraic topology theory also conjectured
the following:

If Σ is an immersion of an oriented, closed hypersurface of constant mean curvature
H ≠ 0 in Rn then Σ is the (n − 1)-sphere.

This conjecture proves to be true with some additional constraints. This short survey
is based on a survey Bobenko did in [Bob91]. Alexandrov [Ale62] proved that it holds
if Σ is an embedded surface not only an immersion. Hopf himself showed a proof for a
simple connected surface [Hop03]. However, in 1986 Wente published a counterexample
in the general case stated above [Wen86]. He introduced the so-called Wente torus 1.1

Figure 1.1: Wente torus visualization from TU Berlin:http://page.math.tu-
berlin.de/ knoeppel/cmctorivr.html

This torus gave rise to more general tori of constant mean curvature, which have then
been extensively studied but still yield further research potential. The family of these
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tori has been classified by Pinkall and Sterling in [PS89]. All these tori have the following
Gauß-Codazzi equation

∆u + 2 sinh(2u) = 0. (1.1)

Equation (1.1) is known as the sinh-Gordon equation. It can be examined within the the-
ory of integrable systems. The study of solutions touches several areas within complex
analysis and algebraic geometry. We will look at solutions of said equation parametrized
through coefficients of related polynomials. A side goal of this thesis is also to give
future students of Prof. Schmidt in Mannheim an introduction to the field. Therefore,
it touches several introductory subjects. In order to do this, it is structured as follows.

In chapter two we will see the geometric origin of the sinh-Gordon equation as well
as the origin of the frames that give rise to methods currently used. Those frames ini-
tially use 3 × 3 matrices. But with the so-called loop group method it is possible to
transform them into 2 × 2 matrices which will be used directly in this thesis.

Chapter three gives an overview about the relevant areas of Riemann surfaces such
as hyperelliptic Riemann surfaces or the canonical homology basis and connects it to al-
gebraic curves. Furthermore, we visit some standard submanifold theory which is useful
since our main goal is to prove that certain sets are submanifolds.

With chapter four we will start explicitly working with the spectral curves of the sinh-
Gordon equation. In the first part of this chapter we see what the period lattice are
and introduces several important spaces of polynomials. Those polynomials are mainly
characterized by their roots. We will exclusively treat the case in which the polynomials
have degree four. In the second part we will prove a first result. That is that the level
sets of a mapping that connects the mentioned polynomials to their period lattices are
one-dimensional submanifolds if the polynomials have four distinct roots.

The fifth chapter deals with a problem related to special polynomials that provide us
with a singularity. This singularity occurs when the polynomials have a double root. In
this chapter we tried two equivalent approaches because the first approach turned out
to be very complex. The second approach is somewhat similar to the approach used in
chapter four. Through several steps we were able to deduct new conditions and there-
fore, also prove that the level sets also form one-dimensional submanifolds in the case
in which the polynomials have at least one double root. In other words we were able to
get rid of the singularity.
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Chapter 1. Introduction

In chapter six we see what happens if we intersect with another important set of poly-
nomials. Due to a time constraint the step could not fully be finished. However, we
were able to obtain a new result that can be connected to the Willmore energy.

Chapter seven summarizes the work done in this thesis and draws a conclusion.
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2 Differential geometric origin of
the sinh-Gordon equation

My interest in differential geometry was sparked by my bachelor’s thesis, which intro-
duced me to constant mean curvature tori. I had not thought about curvature before
and was fascinated with the idea. Even though, the topics of this thesis will be further
away from the differential geometric origin, I felt the need to go through the derivations
once. This will motivate the sinh-Gordon equation as well as the Lax-pair, which is
heavily used in the theory of integrable systems due to the inverse scattering transform.
Vania Neugebauer investigated this differential geometric origin in her diploma thesis
[Neu08] in a similar way. Therefore, this chapter partly draws from her thesis and partly
draws from [Bob91]. However, both used the following form

α = Udz + V dz̄ (2.1)

but we need
α̃ = Udx + V dy. (2.2)

Therefore, the calculations become a little longer.

2.1 The sinh-Gordon equation

Let S ⊂ R3 be a smooth surface and ⋃Ui a suitable covering of S such that fi ∶ Ui ↦ R2

forms a chart on S and holds a smooth structure. Hence, S is a 2-manifold. The
Euclidean 3-space surrounding S induces the Euclidean metric < ⋅, ⋅ > on S. The identi-
fication

R2 → C

(x, y) ↦ x + iy

gives rise to an important link to Riemann surfaces. This link enables us to choose
coordinates in a way that there exists another family of charts such that they generate
a complex structure to which g is conformal. Now let f denote the corresponding
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2.1. The sinh-Gordon equation

immersion of S, i.e.
f ∶ S → R3.

With this we can now calculate the fundamental forms. For the first fundamental form
we have

gij =< fi, fj > .

Since g is conformal fx and fy are orthogonal. This leads to

gxy = 0 = gyx.

Furthermore, we set gxx =< fx, fx >= 4e2u. Thus, we arrive at

g = 4
⎛

⎝

e2u 0

0 e2u

⎞

⎠

for the first fundamental form. We will use the following common partial derivative
operators

∂

∂z
=

1

2
(
∂

∂x
− i

∂

∂y
)

and
∂

∂z
=

1

2
(
∂

∂x
+ i

∂

∂y
).

This gives us the following expressions

< fz, fz >= <
1

2
(fx − ify),

1

2
(fx + ify) >

= <
1

2
fx,

1

2
fx > + < −

1

2
ify,

1

2
fx > + <

1

2
fx, i

1

2
fy > + < −i

1

2
fy, i

1

2
fy >

=
1

4
< fx, fx > +

1

4
< fy, fy >

=2e2u,

< fz, fz >= <
1

2
(fx − ify),

1

2
(fx − ify) >

= <
1

2
fx,

1

2
fx > + < −

1

2
ify,

1

2
fx > + <

1

2
fx,−i

1

2
fy > + < −i

1

2
fy,−i

1

2
fy >

=0

and
< fz, fz >= <

1

2
(fx + ify),

1

2
(fx + ify) >

= <
1

2
fx,

1

2
fx > + <

1

2
ify,

1

2
fx > + <

1

2
fx, i

1

2
fy > + < i

1

2
fy, i

1

2
fy >

=0.
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Chapter 2. Differential geometric origin of the sinh-Gordon equation

Let N now denote the unit normal to fx and fy. Then < fx,N >= 0 =< fy,N > and
< N,N >= 1 holds. This gives the first fundamental form

I = 4e2u
⎛

⎝

1 0

0 1

⎞

⎠
.

Now we want to calculate the second fundamental form. It is given through

II =
⎛

⎝

< N,fxx > < N,fxy >

< N,fyx > < N,fyy >

⎞

⎠
.

We set < fzz,N >= Q and < fzz,N >= 2H̃e2u. It holds

∂

∂z
=

1

2
(
∂

∂x
− i

∂

∂y
) ⇔

∂

∂x
= 2

∂

∂z
+ i

∂

∂y

and
∂

∂z
=

1

2
(
∂

∂x
+ i

∂

∂y
) ⇔

∂

∂x
= 2

∂

∂z
− i

∂

∂y
.

This yields
∂

∂y
= i(

∂

∂z
−
∂

∂z
)

and therefore
∂

∂x
=
∂

∂z
+
∂

∂z
.

Hence, the second partial derivatives become

∂2

∂z2
=
∂

∂z

1

2
(
∂

∂x
− i

∂

∂y
)

=
1

2
(
∂

∂x

∂

∂z
− i

∂

∂y

∂

∂z
)

=
1

2
(
∂

∂x

1

2
(
∂

∂x
− i

∂

∂y
) − i

∂

∂y

1

2
(
∂

∂x
− i

∂

∂y
))

=
1

4

∂2

∂x2
−

1

2
i
∂2

∂x∂y
−

1

4

∂2

∂y2
,

likewise one gets
∂2

∂z2 =
1

4

∂2

∂x2
+

1

2
i
∂2

∂x∂y
−

1

4

∂2

∂y2

and
∂2

∂z∂z
=

1

4

∂2

∂x2
+

1

4

∂2

∂y2
.
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2.1. The sinh-Gordon equation

Solving this system of equations yields
∂2

∂x2
=
∂2

∂z2
+ 2

∂2

∂z∂z
+
∂2

∂z2 ,

∂2

∂y2
= −

∂2

∂z2
+ 2

∂2

∂z∂z
−
∂2

∂z2

and
∂2

∂x∂y
= i(

∂2

∂z2
−
∂2

∂z2).

Thus, we calculate

< fxx,N >=< fzz,N > +2 < fzz̄,N > + < fz̄z̄,N >= Q + 4H̃e2u +Q,

< fyy,N >= − < fzz,N > +2 < fzz̄,N > − < fz̄z̄,N >= −Q + 4H̃e2u −Q

and
< fxy,N >= i < fzz,N > −i < fz̄z̄,N >= iQ − iQ.

Hence, we obtain

II =
⎛

⎝

Q + 4H̃e2u +Q iQ − iQ

iQ − iQ −Q + 4H̃e2u −Q

⎞

⎠
.

Now we can compute the mean curvature H.

H =
1

2
tr(I−1II) =

1

8e2u
tr

⎛

⎝

Q + 4H̃e2u +Q iQ − iQ

iQ − iQ −Q + 4H̃e2u −Q

⎞

⎠
=

8H̃e2u

8e2u
= H̃.

Thus, the mean curvature H is equal to the term H̃ used in the second fundamental
form. This fact will be of great importance in the next calculations. We can now proceed
and construct the Lax pair U and V and the frame F , which is the fundamental solution
to the following ODE for the immersion f .

Fz = UF, Fz = V F, with F = (fz, fz,N)T , where

U =

⎛
⎜
⎜
⎝

2uz 0 Q

0 0 2He2u

−H −1
2e

−2uQ 0

⎞
⎟
⎟
⎠

, V =

⎛
⎜
⎜
⎝

0 0 2He2u

0 2uz Q

−1
2e

−2uQ −H 0

⎞
⎟
⎟
⎠

.

The fundamental theorem of surface theory states that such an immersion f with the cor-
responding first and second fundamental form exists exactly when the Gauß-Mainardi-
Codazzi equations are satisfied. Due to Bonnet’s theorem the first and second fundamen-
tal form determine a surface in R3 uniquely up to a rigid motion. The Gauß-Mainardi-
Codazzi equations become

4uzz + 4H2e2u −QQe−2u =0

Qz =2Hze
2u

Qz =2Hze
2u.

8



Chapter 2. Differential geometric origin of the sinh-Gordon equation

Now we can finally come back to constant mean curvature tori in which we were initially
interested. We can without loss of generality set H = 1

2 . Since H is now constant Q must
be holomorphic. We choose Q = eiϕ where ϕ ∈ R is constant. Inserting these assumptions
into the Gauß-Mainardi-Codazzi equations we obtain

4uzz + e
2u − e−2u = 0

⇔ 4uzz + 2 sinh(2u) = 0

⇔ 4(
1

4
uxx +

1

4
uyy) + 2 sinh(2u) = 0

⇔ uxx + uyy + 2 sinh(2u) = 0

⇔∆u + 2 sinh(2u) = 0

Therefore, the sinh-Gordon equation is simply a transformed version of the Gauß-
Mainardi-Codazzi equation.

2.2 Loop group methods for 2 × 2 matrices

We will now look again at the Lax pair. It is possible to transform the 3 × 3 frame
into a 2 × 2 frame, which is heavily used in the theory developed around CMC tori and
especially in this thesis. This Lax pair of 3 × 3 matrices can be transformed into 2 × 2

matrices. This procedure is described in [FKR06]. First, we need to define the Pauli
matrices

σ1 =
⎛

⎝

0 1

1 0

⎞

⎠
, σ2 =

⎛

⎝

0 −i

i 0

⎞

⎠
and σ3 =

⎛

⎝

1 0

0 −1

⎞

⎠
.

All fulfill the equality σ2
k = 1. Then,

{1,−iσ1,−iσ2,−iσ3}

forms a basis. It is now possible to identify R3 with SU2 through these matrices with

−x1
i

2
σ1 + x2

i

2
σ2 + x3

i

2
σ3 =

−i

2

⎛

⎝

−x3 x1 + ix2

x1 − ix2 x3

⎞

⎠
.

We now set F = F (x, y, λ) ∈ SU2. That is the matrix such that

Fek = F
−iσk

2
∀ k ∈ {1,2,3}.

In other words we obtain

e1 = F
−iσ1

2
F −1, e2 = F

−iσ2

2
F −1 and e3 = F

−iσ3

2
F −1.

9



2.2. Loop group methods for 2 × 2 matrices

We denote e3 = N . Now looking at e1 and e2 we obtain

e1 =
fx
∣fx∣

=
fx
2eu

=
−i

2
F

⎛

⎝

0 1

1 0

⎞

⎠
F −1 (2.3)

and

e2 =
fy
∣fy ∣

=
fy
2eu

=
−i

2
F

⎛

⎝

0 −i

i 0

⎞

⎠
F −1 =

1

2
F

⎛

⎝

0 −1

1 0

⎞

⎠
. (2.4)

(2.3) and (2.4) then yield

fx = −ie
uF

⎛

⎝

0 1

1 0

⎞

⎠
F −1 (2.5)

and

fy = e
uF

⎛

⎝

0 −1

1 0

⎞

⎠
F −1. (2.6)

We define

U =
⎛

⎝

U11 U12

U21 U22

⎞

⎠
∶= F −1Fx

and

V =
⎛

⎝

V11 V12

V21 V22

⎞

⎠
∶= F −1Fy.

Therefore, we get FU = Fx and U−1F −1 = F −1
x as well as FV = Fy and V −1F −1 = F −1

y .
Now we calculate

fxy = uyfx − ie
u(Fy

⎛

⎝

0 1

1 0

⎞

⎠
F −1 + F

⎛

⎝

0 1

1 0

⎞

⎠
F −1
y )

= uyfx − ie
u(FV

⎛

⎝

0 1

1 0

⎞

⎠
F −1 + F

⎛

⎝

0 1

1 0

⎞

⎠
V −1F −1)

= uyfx − ie
u(F

⎛

⎝

V12 V11

V22 V21

⎞

⎠
F −1 + F

⎛

⎝

−V21 V11

V22 −V12

⎞

⎠
F −1)

= uyfx − ie
u(F

⎛

⎝

V12 − V21 2V11

2V22 V21 − V12

⎞

⎠
F −1)

and

10



Chapter 2. Differential geometric origin of the sinh-Gordon equation

fyx = uyfx + e
u(Fx

⎛

⎝

0 −1

1 0

⎞

⎠
F −1 + F

⎛

⎝

0 −1

1 0

⎞

⎠
F −1
x )

= uyfx + e
u(FU

⎛

⎝

0 −1

1 0

⎞

⎠
F −1 + F

⎛

⎝

0 −1

1 0

⎞

⎠
U−1F −1)

= uxfy + e
u(F

⎛

⎝

U12 −U11

U22 −U21

⎞

⎠
F −1 + F

⎛

⎝

U21 −U11

U22 −U12

⎞

⎠
F −1)

= uxfy + e
u(F

⎛

⎝

U12 +U21 −2U11

2U22 −U21 −U12

⎞

⎠
F −1)

Due to Schwarz’s theorem fxy = fyx holds since f is smooth. Using the corresponding
expressions calculated above we obtain

uyfx − uxfy = e
u(F

⎛

⎝

U12 +U21 + i(V12 − V21) −2U11 + 2iV11

2U22 + 2iV22 −U21 −U12 + i(V21 − V12)

⎞

⎠
F −1). (2.7)

We can further compute the left-hand side of (2.7) with

uyfx = −ie
uF

⎛

⎝

0 uy

uy 0

⎞

⎠
F −1

and

uxfy = e
uF

⎛

⎝

0 −ux

ux 0

⎞

⎠
F −1.

Thus, (2.7) yields the following four conditions on the coefficients of U and V :

1. U12 +U21 + i(V12 − V21) = 0

2. −2U11 + 2iV11 = ux − iuy

3. 2U22 + 2iV22 = −ux − iuy

4. −U21 −U12 + i(V21 − V12) = 0

11



2.2. Loop group methods for 2 × 2 matrices

Looking at fxx will yield further conditions. We already know that

fxx = fz̄z̄ + 2fzz̄ + fzz

= Q̄N + 2uz̄fz̄ + 4He2uN +QN + 2uzfz

= Q̄N +
1

2
(ux + iuy)(fx + ify) + 4He2uN +QN +

1

2
(ux − iuy)(fx − ify)

= (Q̄ + 4He2u +Q)N +
1

2
uxfx +

1

2
iuxfy +

1

2
iuyfx −

1

2
uyfy

+
1

2
uxfx −

1

2
iuxfy −

1

2
iuyfx −

1

2
uyfy

= (Q̄ + 4He2u +Q)N + uxfx − uyfy.

At the same time we can also compute fxx from fx. This yields

fxx = uxfx + (ieu)(Fx
⎛

⎝

0 1

1 0

⎞

⎠
F −1 + F

⎛

⎝

0 1

1 0

⎞

⎠
F −1
x )

= uxfx + (ieu)(FU
⎛

⎝

0 1

1 0

⎞

⎠
F −1 + F

⎛

⎝

0 1

1 0

⎞

⎠
U−1F −1)

= uxfx − ie
u(F

⎛

⎝

U12 −U21 2U11

2U22 U21 −U12

⎞

⎠
F −1).

Equating both expressions for fxx therefore yields

F
⎛

⎝

U12 −U21 2U11

2U22 U21 −U12

⎞

⎠
F −1 = F

⎛

⎝

−Q̄e−u −Qe−u − 4Heu iuy

−iuy Q̄e−u +Qe−u + 4Heu
⎞

⎠
F −1

This gives us

U11 =
iuy
2

, U22 =
−iuy

2
and U12 −U21 = −Q̄e

−u −Qe−u − 4Heu.

The same reasoning for fyy yields

fyy = −fz̄z̄ + 2fzz̄ − fzz

= −Q̄N − 2uz̄fz̄ + 4He2uN −QN − 2uzfz

= −Q̄N −
1

2
(ux + iuy)(fx + ify) + 4He2uN −QN −

1

2
(ux − iuy)(fx − ify)

= (−Q̄ + 4He2u −Q)N −
1

2
uxfx −

1

2
iuxfy −

1

2
iuyfx +

1

2
uyfy

−
1

2
uxfx +

1

2
iuxfy +

1

2
iuyfx +

1

2
uyfy

= (−Q̄ + 4He2u −Q)N − uxfx + uyfy.

12



Chapter 2. Differential geometric origin of the sinh-Gordon equation

Computing fyy from fy yields

fyy = uyfy + e
u(Fy

⎛

⎝

0 −1

1 0

⎞

⎠
F −1 + F

⎛

⎝

0 −1

1 0

⎞

⎠
F −1
y )

= uyfy + e
u(FV

⎛

⎝

0 −1

1 0

⎞

⎠
F −1 + F

⎛

⎝

0 −1

1 0

⎞

⎠
V −1F −1)

= uyfy + e
u(F

⎛

⎝

V12 + V21 −2V11

2V22 −V21 − V12

⎞

⎠
F −1).

Equating both expressions gives us

F
⎛

⎝

V12 + V21 −2V11

2V22 −V21 − V12

⎞

⎠
F −1 = F

⎛

⎝

(−Q̄e−u −Qe−u + 4Heu)i iux

iux (Q̄e−u +Qe−u − 4Heu)i

⎞

⎠
F −1.

This gives us

V11 =
−iux

2
, V22 =

iux
2

and V12 + V21 = (−Q̄e−u −Qe−u + 4Heu)i.

Now, we can further calculate fyx with U11 =
iuy
2 and U22 =

−iuy
2

fyx = e
u(F

⎛

⎝

U12 +U21 −iuy − ux

−iuy + ux −U21 −U12

⎞

⎠
F −1).

We also know

fyx = ifzz − ifz̄z̄

= iQN + 2iuufz − iQ̄N − 2iuz̄fz̄

= (iQ − iQ̄)N + uxfy + uyfx

= F
⎛

⎝

−i(iQ − iQ̄) −uxeu − iuyeu

uxeu − iuyeu i(iQ − iQ̄)

⎞

⎠
F −1.

Therefore, we obtain eu(U12 +U21) = −i(iQ − iQ̄). This yields

U12 = (Q − Q̄)e−u −U21.

Together with U12 −U21 = −Q̄e−u −Qe−u − 4Heu we obtain

U21 = Qe
−u + 2Heu

and
U12 = −Q̄e

−u − 2Heu.

13



2.2. Loop group methods for 2 × 2 matrices

Now, recall
U12 +U21 + i(V12 − V21) = 0, (2.8)

and

V12 + V21 = (−Q̄e−u −Qe−u + 4Heu)i ⇔ V12 = (−Q̄e−u −Qe−u + 4Heu)i − V21.

Those yield
V21 = −iQe

−u + 2iHeu

and
V12 = −iQ̄e

−u + 2iHeu.

Thus, we obtain

U =
⎛

⎝

U11 U12

U21 U22

⎞

⎠
=
⎛

⎝

iuy
2 −Q̄e−u − 2Heu

Qe−u + 2Heu
−iuy

2

⎞

⎠

and

V =
⎛

⎝

V11 V12

V21 V22

⎞

⎠
=
⎛

⎝

−iux
2 −iQ̄e−u + 2iHeu

−iQe−u + 2iHeu iux
2

⎞

⎠
.

For CMC tori we choose again H = 1
2 and also Q = λ ∈ S1. We also define γ = eu.

Furthermore, we define uz = −α and uz̄ = −ᾱ. This gives us
α − ᾱ

2
=
−uz + uz̄

2
=
−ux + iuy + ux + iuy

2
=
iuy
2
, (2.9)

ᾱ − α

2
=
−uz̄ + uz

2
=
−ux − iuy + ux − iuy

2
=
−iuy

2
, (2.10)

i
α + ᾱ

2
= i

−uz − uz̄
2

= i
−ux + iuy − ux − iuy

2
=
−iux

2
(2.11)

and
− i
α + ᾱ

2
= −i

−uz − uz̄
2

= −i
−ux + iuy − ux − iuy

2
=
iux
2
. (2.12)

Therefore, we obtain

U =
⎛

⎝

U11 U12

U21 U22

⎞

⎠
=
⎛

⎝

α−ᾱ
2 −λ−1γ−1 − γ

λγ−1 + γ ᾱ−α
2

⎞

⎠

and

V = i
⎛

⎝

α+ᾱ
2 −λ−1γ−1 + γ

−λγ−1 + γ −α+ᾱ2

⎞

⎠
.

These matrices will be essential in the remainder of this thesis since they form an exis-
tential part of the Lax equations:

∂ζ
∂x = [ζ,U(ζ)] ∂ζ

∂y = [ζ, V (ζ)],

where [⋅, ⋅] is the Lie bracket. We will now look at some basic theory before we continue
our work on CMC tori in chapter 4.
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3 Theoretic background for
Riemann surfaces and integrable
systems

In order to use the appropriate tools to examine the sinh-Gordon equation we need to
introduce some theory regarding Riemann surfaces and their connection to integrable
systems. Riemann surfaces are complex one-dimensional manifolds. We assume basic
knowledge of real and complex manifold theory and will not go into detail about charts,
complex structures etc., we will rather focus on the precise definitions, methods and
concepts relevant for the study of CMC tori. The reader can be referred to the lecture
series in complex analysis of Sebastian Klein [Kle20] which thoroughly introduces Rie-
mann surfaces and then builds the theory around them or to the standard literature
[For12] or [BF09]. A nice overview of the homology theory of Riemann surfaces can yet
again be found in a survey done by Bobenko [Bob11].

3.1 Algebraic curves and Riemann surfaces

As it turns out we are going to work with so-called hyperelliptic Riemann surfaces.

Definition 3.1 (Hyperelliptic Riemann surface). A hyperelliptic Riemann surface is a
Riemann surface X on which a meromorphic function f with exactly two poles exists
(counted by multiplicity).

Of special interest are compact Riemann surfaces because they bear a very nice con-
nection to algebraic curves.

Theorem 3.2. Any compact Riemann surface can be described as an algebraic curve.

The proof of theorem 3.2 is non trivial. It can be shown that any Riemann surface
can be embedded in a suitable complex projective space. CMC tori will lead to Riemann
surfaces that can be derived from algebraic curves. Therefore, it is useful to shortly visit
some facts of algebraic curves.
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3.1. Algebraic curves and Riemann surfaces

Definition 3.3 (Algebraic curve). An algebraic curve C is a so-called one-dimensional
algebraic variety, i.e. it is defined as

C = {(λ,µ) ∈ C2∣P (λ,µ) = 0},

where P is an irreducible polynomial. An algebraic curve C is called non-singular if the
gradient of the polynomial does not vanish.

The study of CMC tori leads to hyperelliptic curves.

Definition 3.4 (Hyperelliptic curve). A curve that arises from the following equation

µ2 =
N

∏
j=1

(λ − λj)

for N ≥ 3 is called hyperelliptic curve.

A hyperelliptic curve is therefore exactly non-singular if all the λj are unique (other-

wise the gradient of
N

∏
j=1

(λ−λj)−µ2 would vanish at the (at least) double root). Depending

on the genus of the surface g it either has one puncture or two, i.e. for N = 2g + 1 there
is one puncture P → ∞ ⇔ λ → ∞ and for N = 2g + 2 there are two punctures ∞±

described through P → ∞± ⇔ µ
λg+1 → ±1, λ → ∞. Furthermore, it is advantageous to

work with compact Riemann surfaces. Therefore, it is common to construct so-called
compactifications denoted by Ĉ. In the cases above we obtain Ĉ = C ∪ {∞} for odd N
and Ĉ = C ∪ {∞±} for even N . Algebraic curves can be understood as coverings of Ĉ
with the standard projection

Ĉ → Ĉ

(λ,µ) ↦ λ.

CMC tori will lead to a situation where we have an equation of the form ν2 = λa(λ),
where a is a special polynomial. As the title of this thesis already suggests we are going
to treat the case of spectral genus two. This means that a is of degree four or in other
words 2g. Thus, we can define a Riemann surface of genus 2

Σ∗ = {(λ, ν) ∈ C ∖ {0} ×C∣ν2 = λa(λ)}.

In the case that a has four distinct roots we obtain a smooth Riemann surface. Otherwise
there are singularities at these roots. Σ∗ is not compact. Therefore, those Riemann
surfaces will depend on the roots of a and be central to the observations in the following
chapters. We can compactify them through adding 0 and ∞. Then we obtain a compact
Riemann surface Σ̄.
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Chapter 3. Theoretic background for Riemann surfaces and integrable systems

3.2 Homology of Riemann surfaces

Now, it is also useful to revisit some facts about the topology of Riemann surfaces
because we want to consider homotopy and homology on Riemann surfaces.

Theorem 3.5. Any compact Riemann surface X is homeomorphic to a sphere with
handles. The number g of handles (i.e. holes of the surface as a real 2-dimensional
manifold) is called genus of X.

Therefore, two compact Riemann surfaces with different genus cannot be homeomor-
phic. The fundamental group π1(X) of a Riemann surface is generated by cycles γi
going around the holes of the surface.
To introduce the first homology group of a Riemann surface. We need to establish the
common homology theory, i.e. the chain groups C0, C1 and C2, the boundary operator
∂k that acts as connecting homeomorphism (i.e. ∂k ∶ Ck → Ck−1 and the two subgroups
Zk = ker∂k and Bk = im∂k+1. Hereby, C0 consists of a sum of points, C1 consists of a
sum of oriented curves and C2 consists of a sum of oriented domains. The first homology
group H1 is then defined as H1 = Z1/B1. We are interested in the first homology of a
Riemann surface since we want to define a basis of this group later on. In fact, the
fundamental group taken modulo the commutator group gives the first homology group.
Thus, both are strongly related. In order to define a canonical basis of the first homology
group we need to introduce intersection numbers.

Definition 3.6 (Intersection numbers). Let γ1 and γ2 be two smooth cycles (i.e. el-
ements of Z1) that transversely intersect in finitely many points P1, . . . , Pn. Then we
define (γ1 ○ γ2)Pk = ±1. The sign depends on the orientation of γ1 and γ2. The total
intersection number of both cycles is then defined as

∑
P ∈γ1∩γ2

(γ1 ○ γ2)P .

Now we can define the canonical homology basis.

Definition 3.7 (Canonical homology basis). Let A1,B1, . . .Ag,Bg be a homology basis
of a compact Riemann surface of genus g with intersection number

Ak ○Bl = δkl and Ak ○Al = Bk ○Bl = 0.

Then the basis is called a canonical homology basis.

A canonical basis for a hyperelliptic Riemann surface of genus 2 looks like 3.1.
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3.3. Line bundles

α4 α3 α2 α1 0 ∞

a1 a2

b2

b1

Figure 3.1: Canoncial basis of a Riemann surface of genus 2

Once an homology basis is obtained it is possible to determine the period of differen-
tials. This means the following.

Definition 3.8 (Period of differentials). Let X be a Riemann surface and (γi)i∈I a
homology basis. Then the period of a closed differential ω is defined as

Λi = ∫
γi

ω.

3.3 Line bundles

Another important concept in the study of geometry are line bundles. They can be used
to connect integrable systems and Riemann surfaces. We will introduce the concept
through the following example.

Example 3.9. Let the base space be X = S1 (See Figure 3.2).

S1

Figure 3.2: Base space

If we attach an orthogonal line Fx0 to S1 at x0 (see Figure 3.3) we get:
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Chapter 3. Theoretic background for Riemann surfaces and integrable systems

S1

Fx0

x0

Fx0

x0

Figure 3.3: Base space with single fiber

The intersection with the line Fx0 and S1 is a single point x0. All the points on Fx0
can be projected to x0. We will denote the projection by π (see Figure 3.4).

S1

Fx0

x0

xt
π

Fx0

x0

xt
π

Figure 3.4: Illustration of projection

This sketch motivates π−1(x0) = Fx0, which is called a fiber at x0. Since we can
construct this for all points x on S1 E = S1 × F , we get a cylinder (see Figure 3.5).
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3.3. Line bundles

Figure 3.5: Visualization of fiber bundle

Thus, we have seen an example for a trivial fibration (E,S1, π).
Since all the fibers are linear spaces they carry a vector space structure. Hence, the
bundle is a so-called vector bundle. The vector spaces have dimension one. Therefore,
the vector bundle is called line bundle.

We can extend this example to the complex space to motivate the definition of complex
line bundles.

Definition 3.10 (Complex line bundle). Let X be a Riemann surface, E be a topological
space and π ∶ X → E a continuous mapping. Furthermore, for any x ∈ X the fiber F =

Ex = π−1({x}) is a complex one-dimensional vector space. Then π ∶ E → X (sometimes
only denoted as E) is called a (complex) line bundle over X if for any x ∈X there is an
open neighborhood U and an homeomorphism h ∶ EU ∶= π−1(U) → U × C such that the
following diagram commutes

π−1(U) U ×C

Ux0

π

h

prU

and for any x ∈ U is the mapping prC ○ h∣Ex ∶ Ex → C a vector space isomorphism.
E is called the total space of the fibration.
X is called the base space of the fibration.
F = Ex = π−1({x}) is called the fiber over x ∈X.
The sets {(Uxi , hUxi)} are called local trivialization of the bundle.
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Chapter 3. Theoretic background for Riemann surfaces and integrable systems

Definition 3.11 (Equivalent fibrations). Let E and E∗ be two fibrations over X with
projections π and π∗. Both fibrations are called equivalent if there exists a homomorphism
f ∶ E → E∗ with the commutative diagram:

E E∗

X

π

f

π∗

Definition 3.12 (Trivial fibration). A locally trivial fibration (E,B,π;F ) is called trivial
fibration if it is equivalent to (B × F,B,π;F ).

Thus, we have seen a trivial fibration in the example above. Now, we are ready to
show a link to spectral theory of integrable systems as presented in Sebastian Klein’s
lecture [Kle20]. Let X = C∗ = C ∖ {0} and let

M(λ) =
⎛

⎝

α(λ) β(λ)

γ(λ) δ(λ)

⎞

⎠
∶X → SL(2,C)

be a holomorphic function. The eigenvalues of M(λ) can be obtained through

det(M(λ) − µ1) = 0 ⇔ (α(λ) − µ)(δ(λ) − µ) − γ(λ)β(λ) = 0.

This is equivalent to

µ2 − (α(λ) + δ(λ))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

tr(M(λ)

µ + 1 = 0 ⇔ µ2 − tr(M(λ)µ = −1.

We define ν ∶= µ − 1
2tr(M(λ)) and obtain

ν2 = µ2 − tr(M(λ))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

−1

+
1

4
tr(M(λ))2 =

1

4
tr(M(λ))2 − 1.

Now we define a(λ) ∶= 1
4tr(M(λ))2 − 1. Therefore, we obtain an algebraic curve that

gives us the following complex variety

Σ○ = {(λ, ν) ∈ C∗ ×C∣ν2 = a(λ)}. (3.1)

If we add points for λ = 0 and λ = ∞ we obtain a compact hyperelliptic Riemann surface.
If a(λ) only has distinct roots we obtain the so-called spectral curve corresponding to
M(λ). Now,

π ∶ E → Σ, ((λ, ν), v) ↦ (λ, ν) mit E = ⋃
(λ,ν)

{(λ, ν)} × ker(M(Λ) − (ν +
1

2
tr(M(λ)))

forms a holomorphic line bundle on Σ and is called the eigenbundle corresponding to
M(λ).
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3.4. Submanifold theory

3.4 Submanifold theory

Now, we will review some standard theory concerning submanifolds. It is not really
necessary to present the following theorems here, but since I used them in my Bachelor’s
and my Master’s thesis it might be handy for future students to have a short survey at
hand when working on their thesis.

Definition 3.13 (Rank). Let F ∶ X → Y be a smooth map between a manifold X of
dimension n and a manifold Y of dimension m. Then consider F̃ = g ○ F ○ f−1, which
is a smooth map F̃ ∶ Rn → Rm. Then we define the rank of F at x as the rank of the
derivative

DF̃ ∣
f(x)

∶ Rn → Rm

of F̃ at f(x).

Definition 3.14 (Regular point and value). Let F ∶X → Y be a smooth function between
two manifolds X of dimension n and Y of dimension m. We say that a point x ∈ X

is a regular point of F if the rank of F at x is equal to m. If x is not a regular point
it is called critical point. We say that a point y ∈ Y is a regular value if every point
x ∈ F −1({y}) is a regular point. If y is not a regular value then it is called a critical
value.

Proposition 3.15. Let F ∶ X → Y be a smooth function between two manifolds X of
dimension n and Y of dimension m. Let y ∈ Y be a regular value of F . Then the level
set

Zy = F
−1(y) ∈X

is a submanifold of X of codimension m.

Proof. Let x ∈ Zy and (U,ϕ) be a chart containing x. Now, let (V,ψ) be a chart
containing the image F (U). Naturally consider the composition

F̃ = ψ ○ F ○ ϕ−1 ∶ Ũ
´¸¶
⊂Rn

→ Ṽ
´¸¶
⊂Rm

.

This gives us
F̃ −1(ψ(y)) = ϕ(F −1(y) ∩U) = ϕ(Zy ∩U).

We know that y is a regular value of F . Hence, x is a regular point of F . This gives
us that ϕ(x) is a regular point of F̃ . Since F̃ is a smooth map between Rn and Rm we
can apply the implicit function theorem and get that there is a chart (W,ξ) on Rn such
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Chapter 3. Theoretic background for Riemann surfaces and integrable systems

that ϕ(x) ∈W ⊂ Ũ and ξ(F̃ −1(ψ(y))) = Rn−m ∩ W̃ . Thus, the chart (ϕ−1(W ), ξ ○ ϕ) on
X can be used on Zy to show that Zy satisfies the submanifold condition at x. Since we
chose an arbitrary x ∈ Zy we get that Zy is a submanifold of codimension m.

Definition 3.16 (Immersion). A smooth function F ∶ X → Y is called an immersion if
the rank of F at any point x ∈X is equal to the dimension of X (i.e. dF is injective).

We can apply the theory above also for C instead of R either if we see C as isomorphic
to R2 or if we are interested in the complex structure carried by a complex manifold
through using holomorphic functions and charts.
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4 Period lattices of CMC tori

4.1 Spectral curves of CMC tori

Solutions of the sinh-Gordon equation u ∶ R2 → R are parametrized by flow like actions
on the space of so-called Potentials, which in this case are matrix-valued polynomials.
Their degree gives rise to the so-called spectral genus. This thesis focuses exclusively on
the spectral genus two case. The corresponding space of Potentials is defined as below.

Definition 4.1 (Set of Potentials of spectral genus two).

P2 ∶= {ζ =
⎛

⎝

αλ − ᾱλ2 −γ−1 + βλ − γλ2

γλ − β̄λ2 + γ−1λ3 −αλ + ᾱλ2

⎞

⎠
∣α,β ∈ C, γ ∈ R+}

The orbit of the aforementioned flow like actions are formed by so-called Polynomial
Killing fields. Those are solutions of the Lax equations which we have already seen in
chapter 2.2 along with the origin of the matrices U and V .

Definition 4.2 (Polynomial Killing fields). Polynomial Killing fields are maps (x, y) ↦

ζ(x, y) that solve the Lax equations

∂ζ
∂x = [ζ,U(ζ)] ∂ζ

∂y = [ζ, V (ζ)],

where [⋅, ⋅] is the Lie bracket,

U(ζ) ∶=
⎛

⎝

α−ᾱ
2 −γ−1λ−1 − γ

γ + γ−1λ ᾱ−α
2

⎞

⎠

and

V (ζ) ∶=
⎛

⎝

α+ᾱ
2 −γ−1λ−1 + γ

γ − γ−1λ − ᾱ+α2

⎞

⎠
.

The solution of
∆u + 2 sinh(2u) = 0

is then given through u(x, y) = ln(γ(x, y)). The determinant of the ζ leads to so-called
spectral curves.
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4.1. Spectral curves of CMC tori

Definition 4.3 (Spectral curves). The smooth algebraic curve X that is described through

ν2 = det(ζ) = λa(λ)

is called spectral curve. The degree of the polynomial a divided by two gives the spectral
genus (in this case two).

Since a is a polynomial of degree 2g = 4 the spectral curve has degree 2g + 1 = 5 and
therefore, forms a hyperelliptic Riemann surface. The definition above leads to complex
polynomials of degree four such that a ∈ C4[λ].

det(ζ) =det
⎛

⎝

αλ − αλ̄2 −γ−1 + βλ − γλ2

γλ − β̄λ2 + γ−1λ3 −αλ + ᾱλ2

⎞

⎠

=(αλ − ᾱλ2)(−αλ + ᾱλ2) − (γλ − β̄λ2 + γ−1λ3)(−γ−1 + βλ − γλ2)

= − α2λ2 + 2αᾱλ3 − ᾱ2λ4 + γγ−1λ − γβλ2 + γ2λ3 − β̄γ−1λ2 + ββ̄λ3 − β̄γλ4 + γ−2λ3

− γ−1βλ4 + λ5

=λ(1 + (−ᾱ2 − β̄γ − γ−1β)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶ a1

λ3 + (2ᾱα + ββ̄ + γ−2 + γ2)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶ a2

λ2 + (−α2 − γβ − β̄γ−1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶ ā1

+1)

=λ (λ4 + a1λ
3 + a2λ

2 + ā1λ + 1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶ a(λ)

=λa(λ)

These polynomials fulfill a so-called reality condition i.e. a(λ) = λ4a(λ̄−1). We will often
encounter polynomials of different degree satisfying the corresponding reality condition.
Therefore, it is useful to define the space of polynomials of degree n satisfying the reality
condition.

Definition 4.4. The space of polynomials f of degree n satisfying the reality condition
f(λ) = λnf(λ̄−1) is denoted by P n

R .

Since a is a complex polynomial of degree four it has exactly four roots in C. The
space of these polynomials can be defined as

M2 ∶= {a ∈ C4[λ]∣ λa(λ) = det(ζ) for a ζ ∈ P2}.

Since only polynomials a with four distinct roots yield smooth curves it is necessary to
structure the solutions mentioned above. We will divideM2 into the following subspaces

M1
2 ∶= {a ∈ M2∣ a has four pairwise distinct simple roots absent S1},
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Chapter 4. Period lattices of CMC tori

M2
2 ∶= {a ∈ M2∣ a has one double root on S1 and two simple roots absent S1},

M3
2 ∶= {a ∈ M2∣ a has two distinct double roots on S1},

M4
2 ∶= {a ∈ M2∣ a has a fourth-order root on S1}

and

M5
2 ∶= {a ∈ M2∣ a as two distinct double roots absent S1}.

Then,

M2 =M
1
2 ⊍M

2
2 ⊍M

3
2 ⊍M

4
2 ⊍M

5
2

holds where ⊍ denotes the disjoint union.
In [KHS17] related isospectral sets and lattices are examined. Both will be used in

this thesis. Therefore, it is necessary to closely examine the theory developed.

Definition 4.5 (Isospectral set). The level sets of these polynomials a

I(a) ∶= {ζ ∈ P2∣det ζ = λa(λ)}

are going to be called isospectral sets.

The Lax equations induce actions of R2 on the set of potentials P2.

P2 → P2

ζ ↦ φ(x, y)ζ,

with φ ∶ (x, y) ∈ R2 ↦ φ(x, y).

Definition 4.6 (Isomorphic lattices). Two lattices Γ,Γ′ ⊂ C are called isomorphic if
they originate from one another through a rotation-dilation.

It is proven in [BF09], that each lattice Γ in C is isomorphic to Γτ ∶= Z + Zτ up to a
rotation-dilation with

τ ∈ {τ ∈ C∣I(τ) > 0, ∣R(τ)∣ ≤
1

2
, ∣∣τ ∣∣ ≥ 1}.

Definition 4.7. Let F denote the space of such τ with the quotient topology of the subset
of C divided by the relation ∼.
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This gives the following picture of F

Iz

Rz

F

Figure 4.1: Initial set of τ

Let a ∈ M1
2. Then Γa = {x + iy ∈ C∣∀ζ ∈ I(a) ∶ φ(x, y)(ζ) = ζ} is a lattice and hence

there are complex numbers ω1 and ω2 such that Γa ≅ ω1C + ω2C and ω1 and ω2 have
minimal length. Then Γa is isomorphic to Γτa = Z + τaZ where τa is a complex number
in F . Thus, we can construct the following mapping

T ∶ M1
2 → F

a↦ τa,

such that Γa is isomorphic to Γτa . In order to understand how this mapping works we
need to closely examine the frame F and the corresponding monodromy Mω. The frame
is the fundamental solution of the ODE system

∂F
∂x = FU(ζ), ∂F

∂y = FV (ζ), F (0,0) = Id,

where ζ is a polynomial Killing field with initial potential ζ0 ∈ P2. The existence of this
fundamental solution F is granted by the Picard-Lindelöf theorem. Now we can define
the monodromies

Mω = F (ω).

in [Hoe15] it is shown that the monodromy commutes with ζ0 and maps eigenspaces of
ζ0 into themselves. For ζ0 ∈ I(a) and a ∈ M1

2 the one-dimensional eigenspaces of ζ0 can
be parametrized as the smooth Riemann surface

Σ∗ ∶= {(λ, ν) ∈ (C/{0} ×C)∣ det(ν1 − ζo) = ν
2 + λa(λ) = 0}.

The reality condition of a gives an involution ρ through

ρ ∶ (λ, ν) z→ (λ̄−1,−λ̄−3ν̄).
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Chapter 4. Period lattices of CMC tori

Another involution σ is given by

σ ∶ (λ, ν) z→ (λ,−ν).

In [KHS17] it is shown that the monodromiesMω act on the one-dimensional eigenspaces
of ζ0 like multiplication with its eigenvalues µω, which maps Σ∗ to C ∖ {0}. Taking the
logarithmic derivative of µω gives us a meromorphic differential of second kind with poles
at λ = 0 and λ = ∞. [KHS17] showed that it has the following form

Θbω ∶= d ln(µω) =
bω(λ)

ν
d lnλ =

bω(λ)

λν
dλ with b ∈ P 3

R. (4.1)

Since a ∈ M1
2 there are four distinct roots αi for i = 1, . . . ,4 of a. Due to the reality

condition of a the roots are as follows α1, α2 = ᾱ−1
1 ,α3, α4 = ᾱ−1

3 . They are visualized in
the following.

S1

α1

α2

α3 α4

0

Iz

Rz

Figure 4.2: Roots of a ∈ M1
2

We are interested in when such µω exist, i.e. what conditions for b arise. We obtain
these conditions by looking at the periods of Θb. Hence, we are interested in the integrals
along the cycles that form a homology basis of the Riemann surface. Let Σ̄ denote
the compact Riemann surface of genus two that is a two-sheeted cover of the complex
projective line CP1 branched at the four roots αi of a, at λ = 0 and λ = ∞. A suitable
homology basis can be obtained in the following way. First of all we encircle α1, α2

and α3, α4 since they can be obtained from another through the involution ρ. The
corresponding cycles will be called A1 and A2. Additionally, we will use the cycle B1

surrounding α1 and 0 and B2 surrounding the roots α1, α2 and α3 and 0. This gives the
following image:
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A1

A2

Iz

Rz

S1

B1

B2

Iz

Rz

S1

A1

B1

A2
B2

Iz

Rz

S1

Figure 4.3: Canonical homology basis of Σ

Therefore, the chosen homology basis is the canonical basis of a hyperelliptic Riemann
surface of genus 2 described in 3.1. In [KHS17] the following existence lemma is shown.

Corollary 4.8. For all a ∈ M1
2 ∪M

2
2 ∪M

3
2 and ω ∈ C there exists a unique bω ∈ P 3

R with

1. bω(0) = ω and

2. ∫A1
θbω = 0 = ∫A2

θbω .

It is easy to see that the involution ρ preserves the B-cycles (up to an addition of
A-cycles) since it only reverses the orientation and intersection numbers. This also gives
that ∫Bk θbω is purely imaginary for k = 1,2. Furthermore, if we impose µω = ±1 at the
roots of a we immediately get the following corollary from d ln(µω) = Θbω .

Corollary 4.9. It holds ∫B1
θbω = 2πiZ and ∫B2

θbω = 2iπZ.

This shows that if Θbω has period 2πiZ such a µω exists. Therefore, we need to restrict
us to polynomials bk that have a period of the form 2πiZ.

4.2 Level sets of M1
2

Our goal is to show that level sets of T for any a ∈ M1
2 are one-dimensional submanifolds.

In order to do this we first want to extend the map T to a map T̂ that maps a triple
(a, b1, b2), where b1, b2 form a basis of

Ba = {b ∈ P 3
R∣ Θb ∶=

b(λ)dλ

λν
has purely imaginary periods}

as defined in [CS16]. In [KHS17] the following corollary is proved.
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Chapter 4. Period lattices of CMC tori

Corollary 4.10. For a ∈ M1
2 the elements of Γa are the values of ω = bω(0) of the

bω from (4.1) whose one-forms d lnµ are the logarithmic derivative of a holomorphic
function µω on Σ∗ with

Σ∗ = {(λ, ν) ∈ (C ∖ {0}) ×C∣ det(ν1 − ζ0) = y
2 + λa(λ) = 0}

Thus, we have to restrict Ba to polynomials b that have period 2πiZ and vanish along
the A cycles in order to get a lattice generated by b1(0) = ω1 and b2(0) = ω2. Therefore,
we have gathered the necessary conditions to implicitly describe how T̂ works. That
is, once we obtained b1 and b2 from a that build a basis of Ba we simply calculate
τa =

b1(0)
b2(0) . Unfortunately, this implicit description is the only way to do this since the

bi are transcendent functions only described through the conditions. Therefore, it is
impossible to calculate an explicit expression for T . Thus, we can alter the mapping T
to a mapping

M1
2 → Ba × Ba → F

a↦ (b1, b2) ↦ τa.

We may write it as
T̂ ∶ M1

2 × Ba × Ba → F

(a, b1, b2) ↦
b1(0)

b2(0)
= τa.

Now we want to calculate the rank of this map. Before we do this we want to closer
examineM1

2. Since an element looks like a(λ) = λ4 + a1λ3 + a2λ2 + ā1λ + 1, where a1 ∈ C
and a2 ∈ R. We conclude thatM1

2 is three-dimensional. The rank of a map F ∶ U → V

at a point x ∈ U is defined as the rank of its derivative dF at x. Therefore, we need to
calculate the rank of dT ∶ R3 → R2. Due to the rank-nullity theorem

rank(dT ) = dim(R3) − dim ker(dT ) = 3 − dim ker(dT )

holds. The same holds true for T̂ and we know that due to [CS16] the tangent space is
described through the triples (ȧ, ḃ1, ḃ2). Now we want to apply the Whitham deforma-
tions to the derivative of this mapping to describe its kernel as subspace of the tangent
space of (a, b1, b2). Let (ȧ, ḃ1, ḃ2) denote the tangent vector at t = 0 that preserves the
periods of Θb1 and Θb2 , i.e. (ȧ, ḃ1, ḃ2) ∈ T(a,b1,b2)F 2, where F 2 is the frame bundle of B.
Since the meromorphic differential forms d

dt
∣
t=0

Θb1 and d
dt
∣
t=0

Θb2 have vanishing periods
and no residues there exist meromorphic functions q̇1 and q̇2 on the Riemann surface Xa

that satisfy

dq̇k =
d

dt
∣
t=0

Θbk
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for k = 1,2. This gives

q̇k =
ick(λ)

y

with ck ∈ P 3
R and ν =

√
λa(λ). Together with the equation above we get the Whitham

equation
∂

∂λ

ick(λ)

ν
=
∂

∂t

bk(λ)

νλ
∣
t=0

.

Using product and chain rule we get the following expressions

(2λac′1 − ac1 − λa
′c1)i = 2aḃ1 − ȧb1 (4.2)

and

(2λac′2 − ac2 − λa
′c2)i = 2aḃ2 − ȧb2, (4.3)

where a dot (e.g. ȧ) denotes the derivative with respect to t, evaluated at t = 0 and a
prime (e.g. a′) denotes the derivative with respect to λ. Now c2⋅ (4.2) −c1⋅ (4.3) yields

2a(ic′1c2λ − ic
′
2c1λ + c1ḃ2 − c2ḃ1) = ȧ(c1b2 − c2b1).

An argumentation with the roots of a and ȧ (see [Sch17]) in return yields

c1b2 − c2b1 = Qa, (4.4)

where Q ∈ P 2
R. The kernel of dT̂ consists exactly of the triples (ȧ, ḃ1, ḃ2) that leave τa

unchanged. Since τa =
b1(0)
b2(0) holds the condition for the triple to belong to ker(dT̂ ) is

d(
b1(0)

b2(0)
)∣
t=0

= 0.

Due to product and chain rule we arrive at

ḃ1(0)b2(0) − b1(0)ḃ2(0)

b2(0)2
= 0.

Simplified we obtain the following condition

ḃ1(0)b2(0) − b1(0)ḃ2(0) = 0. (4.5)

Before we make use of this new found condition in combination with the Whitham
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Chapter 4. Period lattices of CMC tori

equations, it is useful to look at the form of the involved polynomials

a(λ) = λ4 + a1λ
3 + a2λ

2 + ā1λ + 1

b1(λ) = b31λ
3 + b21λ

2 + b̄21λ + b̄31

ḃ1(λ) = ḃ31λ
3 + ḃ21λ

2 +
¯̇b21λ +

¯̇b31

b2(λ) = b32λ
3 + b22λ

2 + b̄22λ + b̄32

ḃ2(λ) = ḃ32λ
3 + ḃ22λ

2 +
¯̇b22λ +

¯̇b32

c1(λ) = c31λ
3 + c21λ

2 + c̄21λ + c̄31

c2(λ) = c32λ
3 + c22λ

2 + c̄22λ + c̄32

Q(λ) = Q2λ
2 +Q1λ + Q̄2.

Therefore, (4.5) becomes
¯̇b31b̄32 − b̄31

¯̇b32 = 0. (4.6)

From (4.4) we obtain for λ = 0

c̄31b̄32 − c̄32b̄31 = Q̄2. (4.7)

Setting λ = 0 in the Whitham equations then give us equations for c̄31 and c̄32. From
(4.2) we obtain

c̄31i = 2¯̇b31 − b̄31 (4.8)

and from (4.3) we obtain
c̄32i = 2¯̇b32 − b̄32. (4.9)

Substituting (4.8) and (4.9) in (4.7) gives

−i(2¯̇b31 − b̄31)b̄32 + i(2
¯̇b32 − b̄32)b̄31 = Q̄2

⇔ −2i¯̇b31b̄32 + ib̄31b̄32 + 2i¯̇b32b̄31 − ib̄32b̄31 = Q̄2

⇔ −2i (¯̇b31b̄32 −
¯̇b32b̄31)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0 due to (4.6)

= Q̄2

⇔ 0 = Q̄2.

This yields Q2 = 0 as well. Therefore, Q only consists of the middle term Q(λ) = Q1λ.

Corollary 4.11. If b1 and b2 have a common root that is no root of a we can conclude
that Q1 = 0 has to hold.

Proof. Let λ0 be the common root of b1 and b2. It cannot be a root of the polynomial a
as well because then we would have λ0 ∈ S1. Thus, the structure of a immediately yields

33



4.2. Level sets ofM1
2

that a would have a double root at λ0. But this is a contradiction to a ∈ M1
2. Hence,

the left-hand side of (4.4) will vanish at λ0 and a will not. Therefore, the right-hand
side only vanishes if Q vanishes at this root. Since Q = Q1λ only vanishes when Q1 = 0

we obtain Q = 0.

Now it remains to show that the solutions obtained from (4.2), (4.3) and (4.4) form a
one-dimensional set of solutions. There are two possible situations

1. b1 and b2 have no common root

2. b1 and b2 have a common root λ0 ∈ S1.

Using Q = Q1λ we obtain
c1b2 − c2b1 = Q1λa.

If b1 and b2 do not have common roots we can use (4.4) to get enough conditions for c1

and c2. Let λ11, λ21 and λ31 be the roots of b1 and let λ12, λ22 and λ32 be the roots of
b2. Evaluating (4.4) at these roots yields the desired conditions. For the roots of b1 we
obtain the following system of equations

1. c1(λ11)b2(λ11) = Q1λ11a(λ11) ⇔ c1(λ11) =
Q1λ11a(λ11)
b2(λ11)

2. c1(λ21)b2(λ21) = Q1λ21a(λ21) ⇔ c1(λ21) =
Q1λ21a(λ21)
b2(λ21)

3. c1(λ31)b2(λ31) = Q1λ31a(λ31) ⇔ c1(λ31) =
Q1λ31a(λ31)
b2(λ31)

and for the roots of b2 we obtain

1. c2(λ12)b1(λ12) = Q1λ12a(λ12) ⇔ c2(λ12) =
Q1λ12a(λ12)
b1(λ12)

2. c2(λ22)b1(λ22) = Q1λ22a(λ22) ⇔ c2(λ22) =
Q1λ22a(λ22)
b1(λ22)

3. c2(λ32)b1(λ32) = Q1λ32a(λ32) ⇔ c2(λ32) =
Q1λ32a(λ32)
b1(λ32)

Therefore, we have enough expressions to evaluate (4.2) and (4.3) at λlk. They have the
form

(2λlka(λlk)c
′
k(λlk) − a(λlk)ck(λlk) − λlka

′(λlk)ck)i = 2a(λlk)ḃk(λlk). (4.10)

Thus, we can calculate ḃ1 and ḃ2. Since the roots of a are distinct and a has no common
roots with b1 and b2 we also obtain enough conditions to calculate ȧ. Let λk for k = 1, . . .4

denote the four distinct roots of a. Then at λk (4.2) and (4.3) become

− λa′(λk)cl(λk)i = −ȧ(λk)bl(λk). (4.11)
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for l = 1,2. All expressions for (c1, c2, ḃ1, ḃ2, ȧ) depend on Q1 ∈ R. Therefore, we have a
one-dimensional solution set. If any of the bk have a multiple root the conditions alter.
Instead of inserting all roots into (4.4) we can differentiate it once or twice to obtain one
or two additional conditions. The first derivative reads

c′1b2 + c1b
′
2 − c

′
2b1 − c2b

′
1 = Q1a +Q1λa

′. (4.12)

Assuming λ1k is a double root of bk we now obtain

± c′k(λ1k)b3−k(λ1k) ± ck(λ1k)b
′
3−k(λ1k) = Q1a(λ1k) +Q1λ1ka

′(λ1k), (4.13)

where we have + for k = 1 and − for k = 2. Thus, in case of a double root we again have
three equations. In case of a triple root we can differentiate (5.60) once more to obtain
another condition.
If b1 and b2 have a common root we obtainQ = 0 as explained in corollary 4.11. Therefore,
we get

c1b2 − c2b1 = 0, (4.14)

where b1 and b2 have a common root λ0 ∈ S1. Therefore they have the following form

bk(λ) = κk(λ − λ0)b̃k(λ),

where b̃k(λ) is a polynomial of degree two that fulfills the reality condition and therefore
is of the form

b̃k(λ) = b̃2kλ
2 + b̃1kλ +

¯̃b2k.

We can calculate the factor κk explicitly with bk(λ) = λ3bk(λ̄−1)

κk(λ − λ0)b̃k(λ) = κ̄kλ(λ̄−1 − λ0)λ
2b̃k(λ̄−1).

With b̃k(λ) = λ2b̃k(λ̄−1) the following remains

κk(λ − λ0) = κ̄kλ(λ̄−1 − λ0)

= −κ̄kλ
−1
0 (λ − λ0).

This gives us

κk =

√

−
∣κk∣2

λ0

= i
∣κk∣
√
λ0

. (4.15)

Since we also have a scaling factor included in the coefficients of b̃k we can without loss
of generality set ∣κk∣ = 1. If we plug in the remaining two roots of b1 (i.e. the two roots of
b̃1) in (4.14) we know that b2 does not vanish at these λ. Hence, c1 has to have the same
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roots as b1. Therefore, c1 is a linear combination of b1 and of b1
λ−λ0 . Likewise, looking at

the roots of b2 gives us that c2 is a linear combination of b2 and of b2
λ−λ0 . Therefore, the

polynomials ck have the following form

ck(λ) = w1bk(λ) +w2
bk(λ)

λ − λ0

, for k ∈ {1,2} with w1,w2 ∈ C.

Thus, the solution set a priori appears to be four-dimensional. But the reality condition
and the form the polynomial a has eliminates dimensions through (4.2) and (4.3).
We require ck to fulfill the reality condition. That is

ck(λ) = λ
3ck(λ̄−1).

Hence, we can calculate the wn further.
The second term of the linear combination becomes

bk(λ)

λ0 − λ
= κk(b̃2kλ

2 + b̃1kλ +
¯̃b2k).

Therefore, ck(λ) = λ3ck(λ̄−1) becomes

w1
i√
λ0

(b̃2kλ3 + λ2(b̃1k − b̃2kλ0) + λ(
¯̃b2k − b̃1kλ0) −

¯̃b2kλ0) +w2
i√
λ0

(b̃2kλ2 + b̃1kλ +
¯̃b2k)

= w̄1
−i√
λ̄0

(
¯̃b2k + λ(b̃1k −

¯̃b2kλ̄0) + λ2(b̃2k − b̃1kλ̄0) − b̃2kλ̄0λ3) + w̄2
−i√
λ̄0

(
¯̃b2kλ + b̃1kλ2 + b̃2kλ3)

This yields the following system of equations

1. w1
i√
λ0
b̃2k = −w̄1

−i√
λ̄0
b̃2kλ̄0 + w̄2

−i√
λ̄0
b̃2k

2. w1
i√
λ0

(b̃1k − b̃2kλ0) +w2
i√
λ0
b̃2k = w̄1

−i√
λ̄0

(b̃2k − b̃1kλ̄0) + w̄2
−i√
λ̄0
b̃1k

3. w1
i√
λ0

(
¯̃b2k − b̃1kλ0) +w2

i√
λ0
b̃1k = w̄1

−i√
λ̄0

(b̃1k −
¯̃b2kλ̄0) + w̄2

−i√
λ̄0

¯̃b2k

4. −w1
i√
λ0

¯̃b2kλ0 +w2
i√
λ0

¯̃b2k = w̄1
−i√
λ̄0

¯̃b2k.

This gives us

w2k = −λ0(w̄1k −w1k)

and

w̄2k = −
w1k − w̄1k

λ0

= −λ̄0(w1k − w̄1k).
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The second and third equation do not yield another condition since both sides vanish.
The second equation becomes

w1
i√
λ0

(b̃1k − b̃2kλ0) + (−λ0(w̄1k −w1k))
i√
λ0
b̃2k

= w̄1
−i√
λ̄0

(b̃2k − b̃1kλ̄0) −
w1k−w̄1k

λ0
−i√
λ̄0
b̃1k

⇔ w1(b̃1 − b̃2λ0) +
w1−w̃1

λ̄0
b̃2 = −w̃1

√
λ0√
λ̄0

(b̃2 − b̃1λ̄0) −
w̄1−w1

λ0

√
λ0
λ̄0
b̃1

⇔ w1 (b̃1 −

√
λ0

λ0

√
λ̄0

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

=
√
λ0√
λ0

=1

b̃1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

= −w̄1 (

√
λ0

√
λ̄0

´¸¶
=λ0

b̃2 −
1

λ̄0

´¸¶
=λ0

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

and the third equation becomes

w1
i√
λ0

(
¯̃b2k − b̃1kλ0) − λ0(w̄1k −w1k)

i√
λ0
b̃1k

= w̄1
−i√
λ̄0

(b̃1k −
¯̃b2kλ̄0) −

w1k−w̄1k

λ0
−i√
λ̄0

¯̃b2k

⇔ w1(
¯̃b2k − b̃1kλ0) − λ0(w̄1k −w1k)b̃1k = −w̄1

√
λ0√
λ̄0

(b̃1k −
¯̃b2kλ̄0) +

w1k−w̄1k

λ0

√
λ0√
λ̄0

¯̃b2k

⇔ w1k
¯̃b2k −w1k

¯̃b2k = −w̄1k

√
λ0√
λ̄0
b̃1k + w̄1kλ0b̃1k

⇔ 0 = 0.

Thus, a priori the dimension of solutions seems to be two dimensional. Therefore, we
need to use the other Whitham equations to fully determine the dimension of solutions.
Since we have a linear space of solutions it will suffice to show that there are combinations
that are no solutions as well as combinations that form a solution. First, we will look
at w2k = 0 (i.e. w1 ∈ R). Therefore, we choose c1 = b1 and c2 = b2 which is one of the
possibilities due to the recent argumentation. Thus, (4.2) and (4.3) now have the form

(2λab′1 − ab1 − λa
′b1)i = 2aḃ1 − ȧb1 (4.16)

and
(2λab′2 − ab2 − λa

′b2)i = 2aḃ2 − ȧb2. (4.17)

Now (4.16) unambiguously defines ḃ1 in the following way

ḃ1(λ) = λb
′
1(λ)i +m1b1(λ) (4.18)

and (4.17) unambiguously defines ḃ2 as

ḃ2(λ) = λb
′
2(λ)i +m2b2(λ). (4.19)
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Both give an unambiguous solution for ȧ as follows

ȧ(λ) = λa′(λ)i + na(λ) (4.20)

= 4iλ4 + 3ia1λ
3 + 2ia2λ

2 + iā1λ + n(λ
4 + a1λ

3 + a2λ
2 + ā1λ + 1). (4.21)

Therefore, there is no ȧ where the highest (4i + n) and lowest (n) coefficient is zero.
Hence, there is no solution for w2 = 0 (i.e. I(w1) ≠ 0. Let λ1 be one of the four distinct
roots of a. Let λl for l ∈ {1,2,3,4} be the four distinct roots of a. Then (4.2) and (4.3)
at λl become

− λla
′(λl)ck(λl)i = −ȧ(λl)bk(λl). (4.22)

Inserting ck(λ) = w1bk(λ) − 2λ0
I(w1)√
λ0
b̃k(λ) gives

ȧ(λl) = λla
′(λl)

ck(λl)i

bk(λl)
(4.23)

= λla
′(λl)

iw1bk(λl) − 2iλ0
−2iI(w1)√

λ0
b̃k(λl)

bk(λl)
(4.24)

= λla
′(λl)(iw1 − 2λ0

I(w1)

(λ0 − λl)
). (4.25)

Now, we can conclude that

ȧ(λ) = (λ2 − λ)(λ3 − λ)(λ4 − λ)λ1a
′(λ1)(iw1 − 2λ0

I(w1)

(λ0 − λ1)
)

+(λ1 − λ)(λ3 − λ)(λ4 − λ)λ2a
′(λ2)(iw1 − 2λ0

I(w1)

(λ0 − λ2)
)

+(λ1 − λ)(λ2 − λ)(λ4 − λ)λ3a
′(λ3)(iw1 − 2λ0

I(w1)

(λ0 − λ3)
)

+(λ1 − λ)(λ2 − λ)(λ3 − λ)λ4a
′(λ4)(iw1 − 2λ0

I(w1)

(λ0 − λ4)
)

+na(λ).

We also know that we need ȧ(0) = 0, ȧ has degree three and that λ1λ2λ3λ4 = 1 holds.
Therefore, we can further calculate w1 and n. Since na(λ) is the only summand that
contains λ4 we can conclude that n = 0 has to hold. With ȧ(0) = 1 we obtain

0 = a′(λ1)(iw1 − 2λ0
I(w1)

(λ0 − λ1)
) + a′(λ2)(iw1 − 2λ0

I(w1)

(λ0 − λ2)
)

+a′(λ3)(iw1 − 2λ0
I(w1)

(λ0 − λ3)
) + a′(λ4)(iw1 − 2λ0

I(w1)

(λ0 − λ4)
)

=
4

∑
l=1

a′(λk)(iR(w1) − I(w1) − 2λ0
I(w1)

λ0 − λk
).
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This gives

R(w1) =

−i
4

∑
l=1
a′(λk)(I(w1) + 2λ0

I(w1)
λ0−λk)

4

∑
l=1
a′(λk)

.

Since all solutions only depend on I(w1) and we have a linear space of solutions we also
obtain a one-dimensional set of solutions in the second case. Thus, in all possible cases
the set of solutions is one-dimensional. Therefore, dim ker(dT̂ ) = 1. Due to the rank-
nullity theorem we obtain rank(dT̂ ) = 3−1 = 2. Thus, rank(dT̂ ) = dimF = dimC = 2 and
therefore, all a ∈ M1

2 are regular points of T̂ . Furthermore, any τa ∈ T̂ (M1
2×B

′
a×B

′
a) is a

regular value (since all (a, b1, b2) ∈ M
1
2 × B

′
a × B

′
a are regular points), where B′a describes

the b ∈ B′a that have period 2πi. Together with the implicit function theorem this yields
the following theorem.

Theorem 4.12. The level sets T̂ −1(τa) of T̂ are submanifolds of dimension one for any
(a, b1, b2) ∈ M

1
2 × B

′
a × B

′
a.

Now, it remains to show that (a, b1, b2) ↦ a is an immersion. This will generalize
theorem (4.12) to the mapping T and therefore, proof corollary (4.13). We are only
interested in tangent vectors (ȧ, ḃ1.ḃ2) that infinitesimally preserve the periods of Θb1

and Θb2 . Those are exactly the solutions of the Whitham equations (4.2), (4.3) and (4.4).
We need to argue that the solution ȧ = 0 of (4.2), (4.3) and (4.4) implies ḃ1 = 0 = ḃ2.
Since a and b1, b2 have no common roots looking at (4.4) at the roots of a yields that c1

and c2 have to vanish at these roots as well. But since a has degree four and c1 and c2

have degree three and a has no double root since it is in M1
2 it follows that c1 = 0 = c2

has to hold. This implies that the right-hand side of (4.4) has to vanish as well. Hence,
Q = 0 holds. Assuming now that also ȧ = 0 holds (4.2) implies that ḃ1 = 0 and (4.3)
implies that ḃ2 = 0.

Corollary 4.13. The level sets T −1(τa) of T are submanifolds of dimension one for any
a ∈ M1

2.
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5 Singularities for M2
2 ∪M

3
2

Unfortunately, polynomials a outside of M1
2 yield singularities and therefore need a

more advanced treatment than in the previous chapter. We will focus on a ∈ M2
2 ∪M

3
2.

Therefore, a has now at least one double root. In both cases [KHS17] showed that b1

and b2 then also have at least one root at the corresponding double roots at S1. For
a ∈ M2

2 let α1 ∈ S1 denote the double root and let α2 and α3 be the other distinct roots.
Then b1 and b2 also have at least one root at λ = α1. Thus, the differential forms Θbk

change as follows for k = 1,2

Θbk =
bk(λ)

λν
dλ = bk(λ)

λ
√
λa(λ)dλ

=
(λ−α1)b̃k(λ)

λ
√
λ(λ−α1)2(λ−α2)(λ−α3)dλ

=
b̃k(λ)

λ
√
λ(λ−α2)(λ−α3)dλ,

where b̃k(λ) describes the reminder of bk such that bk(λ) = (λ − α1)b̃k(λ). Similarly, for
a ∈ M3

2 let α1 ∈ S1 and α2 = α3 ∈ S1 denote the double roots of a

Θbk =
bk(λ)

λ
√
λa(λ)dλ

=
(λ−α1)(λ−α2)b̂k(λ)
λ
√
λ(λ−α1)2(λ−α2)2dλ

=
b̂k(λ)
λ
√
λ
dλ,

where b̂k(λ) describes the reminder of bk such that bk(λ) = (λ − α1)(λ − α2)b̂k(λ). This
shows that in both cases bk(λ)

λν dλ is independent of the choice of the double roots. There-
fore, they can be moved arbitrarily. This in return leads to a singularity such that the
level sets of T as subsets of the form (a, b1, b2) are no longer smooth manifolds.

5.1 Local integrals

A first approach was to look at local connected neighborhoods Nk of the double roots.
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S1

α1

α2 α3

0

Iz

Rz

(a) For a ∈ M2
2

S1

α1

α2

0

Iz

Rz

(b) For a ∈ M3
2

S1

α1

α2 α3

N1

0

Iz

Rz

(c) For a ∈ M2
2 with neighborhood N1

S1

α1

α2N1

N2

0

Iz

Rz

(d) For a ∈ M3
2 with neighborhoods

N1 and N2

Figure 5.1: Local neighborhoods

In order to get rid of the singularities we will from now on look at the local integrals
q1 = ∫Nk

b1(λ)
λν dλ and q2 = ∫Nk

b2(λ)
λν dλ for the local connected neighborhoods Nk of the

double roots αk. q1 and q2 can be chosen in a way that they are anti-symmetric with
regard to the hyperelliptic involution

σ ∶ (λ, ν) ↦ (λ,−ν).

Then q2
1 and q2

q1
are symmetric with respect to σ. Furthermore, it holds

˙
(
q2

q1

)d(q2
1) −

˙(q2
1)d(

q2

q1

) =(
q̇2q1 − q2q̇1

q2
1

)2q1dq1 − 2q1q̇1(
dq2q1 − q2dq1

q2
1

)

=2q̇2dq1 − 2
q2q̇1dq1

q1

− 2q̇1dq2 + 2
q̇1q2dq1

q1

=2(q̇2dq1 − q̇1dq2).

(5.1)

Furthermore, we know

q̇k =
ick
ν

and
dqk =

bk
λν
dλ
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for k = 1,2 with ν =
√
λa(λ). This, together with (4.4) yields

c1b2 − c2b1 = Qa

⇔ ( ic1ν
b2
λνdλ −

ic2
ν
b1
λνdλ)(−i)ν

2 λ
dλ = Qa

⇔ (q̇1dq2 − q̇2dq1)(−i)ν2 λ
dλ = Qa

⇔ (q̇1dq2 − q̇2dq1)(−i)λa
λ
dλ = Qa

⇔ (q̇1dq2 − q̇2dq1)(−i) =
Q

λ2
dλ

Therefore, with (5.1) we get

˙
(
q2

q1

)d(q2
1) −

˙(q2
1)d(

q2

q1

) =
iQ

2λ2
dλ. (5.2)

No we choose local parameters z around the double root such that

q2
1 = P1(z),

where P1 is a polynomial which highest coefficient is equal to one and which second
highest coefficient is equal to zero. Furthermore, we obtain

q2

q1

= P2(z)f(z),

where P2 is a polynomial which highest coefficient is equal to one and where f(z) is a
locally holomorphic function that is invertible. Thus, we can transform (5.2) into

˙
(P2(z)f(z))dP1(z) − Ṗ1(z)d(P2(z)f(z)) =

iQ

2λ2
dλ.

The product rule then yields

(Ṗ2(z)f(z) + P2(z)ḟ(z))dP1(z) − Ṗ1(z)(dP2(z)f(z) + P2(z)df(z)) =
iQ

2λ2
dλ. (5.3)

We choose
P1(z) = z

2 + k1 (5.4)

and
P2(Z) = z − k2. (5.5)

Therefore, we obtain

(k̇2f(z) + (z − k2)ḟ(z))2zdz − k̇1(f(z) + (z − k2)f
′(z))dz = Q̃(z)dz, (5.6)
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where Q̃(z) describes the right-hand side in (5.3) as a series in z, which in turn can be
expressed as a convergent power series in λ. Thus, it can be written as

Q̃(z) = Q̃0 + Q̃1z +
Q̃2

2
z2 + . . . .

Together we get

(k̇2f(z)+(z−k2)ḟ(z))2zdz−k̇1(f(z)+(z−k2)f
′(z))dz = (Q̃0+Q̃1z+

Q̃2

2
z2+. . . )dz. (5.7)

Looking at z = 0 we get

− k̇1(f(0) − k2f
′(0))dz = Q̃0dz. (5.8)

This gives

− k̇1(f(0) − k2f
′(0)) = Q̃0 (5.9)

from which we can deduce a differential equation for k1

k̇1 =
−Q̃0

f(0) − k2f ′(0)
. (5.10)

In general, we know

(k̇2f(z) + (z − k2)ḟ(z))2z − k̇1(f(z) + (z − k2)f
′(z)) = (Q̃0 + Q̃1z +

Q̃2

2
z2 + . . . ). (5.11)

Setting z = k2 in equation (5.11) we obtain

(k̇2f(k2))2k2 − k̇1(f(k2)) = (Q̃0 + Q̃1k2 +
Q̃2

2
k2

2 + . . . ). (5.12)

This yields

k̇2 =
(Q̃0 + Q̃1k2 +

Q̃2

2 k
2
2 + . . . ) + k̇1f(k2)

f(k2)2k2

. (5.13)

Now, we want to use (5.10) and (5.13) to calculate (ȧ, ḃ1, ḃ2). In order to do this, we
will first look at the local parameter z. We know that P ′

1(z) = 2z. Thus, z = 0 is a root
of P ′

1 and therefore a root of d(q2
1) = 2q1dq1. Thus, z = 0 is a root of b1 (since dq1 = b1).

In other words we obtain

q2
1∣
z = 0
´¸¶

root of b1

= k1. (5.14)
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Therefore, P1 smoothly depends on b1. Now, we will look at P2 = z −k2. This has a root
at z = k2. Since we defined q2(z)

q1(z) = P2(z)f(z) we see that z = k2 also is a root of q2. At
the same time, q2

1 evaluated at z = k2 gives us

q2
1∣
z=k2

= k2
2 + k1. (5.15)

In other words we obtain

q1∣
z=k2

=
√
k2

2 + k1. (5.16)

We wanted to define the parameter in a way such that in a neighborhood of z = 0 we
can map the real axis to S1, i.e. we have

λ↦ λ̄−1 z ↦ z̄−1.

Thus, we now have to choose a sign of z to make the root in (5.16) unambiguous. Thus,
we choose k2 positive. Now, we want to show that we can obtain a unique ȧ for k̇1 and
k̇2. z = 0 is the (former) double root of a and a single root of b1. Thus, q2

1 = 0 at the
(former) double root of a. Therefore, we obtain

a(z) = P1(z)ã(z), (5.17)

where ã(z) describes the remaining two roots of a. This gives us

ȧ(z) = Ṗ1(z)ã(z) + P1(z) ˙̃a(z) (5.18)

= k̇1ã(z) + P1(z) ˙̃a(z). (5.19)

We also know
b1(z) = zb̃1(z),

where b̃1(z) describes the other roots of b1. Thus, we get

ḃ1(z) = żb̃1(z) + z
˙̃b1(z). (5.20)

For b2 it is more difficult. Trying to obtain the structure of b2 in the local parameter
z gives a new problem. We would need to look at the derivative of the function f .
Since this is not a polynomial the effort would have been very large and instead to
further pursue this approach we decided to try an alternate approach. Prof. Schmidt
is currently working on a paper that might be applied to this case. Therefore, the
observations obtained in section 5.1 might be interesting in the future.
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5.2 Additional conditions

This section will apply an alternative (yet equivalent) approach to the one seen in 5.1.
We will further follow the reaonsing done in [KHS17] to obtain more formulas connected
to the Whitham equations (4.2), (4.3) and (4.4). Together with these new conditions
we will be able to remove the singularity or in other words obtain a smooth manifold
again. The new conditions arise from the following equation

µ = f(λ) + g(λ)ν, (5.21)

where f and g are holomorphic functions mapping C ∖ {0} → C. Since this approach
is equivalent to taking the exponential of the approach in section 5.1 and since taking
the exponential is an immersion both approaches are equivalent. Now, recall that ν =
√
λa(λ). Differentiating (5.21) by t gives us

µ̇ = ḟ + ġν + gν̇. (5.22)

We also recall ˙lnµ = i cν . We will have µ1 and µ2 since we have c1 and c2 as well as b1 and
b2. Thus, we have the following reasoning for k = 1,2. From the equations above we get

i
ck
ν
= ˙lnµk =

µ̇k
µk
⇔ µ̇k = µki

ck
ν
. (5.23)

Equating (5.22) and (5.23) gives

iµk
ck
ν
= ḟk + ġkν + gkν̇. (5.24)

Multiplying (5.21) by i ckν gives us

iµk
ck
ν
= ifk

ck
ν
+ igkck. (5.25)

Equating (5.24) and (5.25) yields

ifk
ck
ν
+ igkck = ḟk + ġkν + gk

λȧ

2ν
. (5.26)

Pairing the terms with ν and without gives us the following two equations

ḟk = igkck (5.27)

and
ġkλa = ifkck − gk

λȧ

2
. (5.28)
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Now, we impose that µk = ±1 at the roots of a. This translates into the following
condition

(fk + gkν)(fk − gkν) = 1.

In other words, we obtain
f 2
k − g

2
kλa = 1. (5.29)

(5.29) shows that at λ0 we have fk(λ0) = ±1. First, we are going to look at the case
where a has no double root. In the case of a single root we simply obtain the following
at λ0 looking at (5.28) at λ0

fk(λ0)i2ck(λ0) = gk(λ0)λ0ȧ(λ0). (5.30)

We can now calculate gk(λ0) to show that we obtain the same condition as we obtain
from (4.2) or (4.3) at the single roots (e.g. λ0). We start from the relation d lnµk = Θbk

introduced in 4.1. This gives us

d ln(µk) =
bk
λν
dλ ⇔ dµk = µk

bk
λν
dλ. (5.31)

Taking the derivative with respect to λ from (5.21) gives

dµk = (f ′k + g
′
kν + gk

a + λa′

2ν
)dλ. (5.32)

Equating (5.31) and (5.32) establishes the following equation

µk
bk
λν
dλ = (f ′k + g

′
kν + gk

a + λa′

2ν
)dλ ⇔ µk

bk
λ
= f ′kν + g

′
kν

2 + gk
a + λa′

2
. (5.33)

(5.33) can be written as

(fk + gkν)
bk
λ
= f ′kν + g

′
kλa + gk

a + λa′

2
. (5.34)

Again, we compare the terms with ν and without to get

gk
bk
λ
= f ′k (5.35)

and
fk
bk
λ
= g′kλa + gk

a + λa′

2
. (5.36)

Evaluating (5.36) at λ0 gives us

fk(λ0)
bk(λ0)

λ0

= gk(λ0)
λ0a′(λ0)

2
. (5.37)
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Now we can obtain an expression for gk(λ0).

gk(λ0) = f(λ0)
2bk(λ0)

λ2
0a

′(λ0)
(5.38)

Inserting (5.38) in (5.30) gives us

fk(λ0)i2ck(λ0) = fk(λ0)
2bk(λ0)

λ2
0a

′(λ0)
λ0ȧ(λ0) ⇔ λ0a

′(λ0)ck(λ0)i = ȧ(λ0)bk(λ0). (5.39)

Hence, we have obtained the same equation as we obtain from (4.2) and (4.3) at λ0

−λ0a
′(λ0)ck(λ0)i = −ȧ(λ0)bk(λ0) ⇔ λ0a

′(λ0)ck(λ0)i = ȧ(λ0)bk(λ0).

Thus, in this case the additional conditions impose no new conditions. Now, we are
going to treat the interesting case of a double root of a at λ0. First of all, we note that
we can assume that at least one bk(λ0) ≠ 0 and a′′(λ0) ≠ 0 (otherwise we can achieve
this through a change of basis).(5.28) shows that at λ0 also fkck − gk λȧ2 has to have a
double root. Therefore, the derivative with respect to λ of (5.28) has to vanish at λ0 as
well. It is

ġ′kλa + ġka + ġkλa
′ = if ′kck + ifkc

′
k − g

′
k

λȧ

2
− gk

ȧ + λȧ′

2
. (5.40)

The left-hand side of (5.40) vanishes at λ0. Therefore, we obtain

0 = if ′k(λ0)ck(λ0) + ifk(λ0)c
′
k(λ0) − g

′
k(λ0)

λ0ȧ(λ0)

2
− gk(λ0)

ȧ(λ0) + λ0ȧ′(λ0)

2
. (5.41)

Now, let λ0 be the double root. Then we already know that bk also has a root at λ0.
Furthermore, we know that only one bk can have a root of higher order than one. Thus,
(5.39) and (5.38) with the rule of L’Hospital become

ȧ(λ0) =
λ0a′′(λ0)ck(λ0)i

λ0b′k(λ0)
(5.42)

and
gk(λ0) = fk(λ0)

2b′k(λ0)

λ2
0a

′′(λ0)
(5.43)

for at least one polynomial bk with b′k(λ0) ≠ 0. Thus, there is a k ∈ {1,2} such that
gk(λ0) ≠ 0. Furthermore (5.35) at λ0 provides us with

f ′k(λ0) = g(λ0)
bk(λ0)

λ0

= 0.

Therefore, equation (5.41) becomes

0 = fk(λ0)ic
′
k(λ0) − g

′
k(λ0)

λ0ȧ(λ0)

2
− fk(λ0)

2b′k(λ0)

λ2
0a

′′(λ0)

ȧ(λ0) + λ0ȧ′(λ0)

2
. (5.44)
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We need to find g′k(λ0) to further utilize equation (5.44). In order to find g′k(λ0) we
will differentiate (5.36) twice. The first derivative is

f ′k
bk
λ
+ fk

b′kλ − bk
λ2

= g′′kλa + g
′
ka + g

′
kλa

′ + g′k
a + λa′

2
+ gk

a′ + a′ + λa′′

2
. (5.45)

This again gives

gk(λ0) = fk(λ0)
2b′k(λ0)

λ2
0a

′′(λ0)
. (5.46)

The second derivative is

f ′′k
bk
λ
+ f ′k

b′kλ − bk
λ2

+ f ′k
b′kλ − bk
λ2

+ fk
(b′′kλ + b

′
k − b

′
k)λ

2 − 2λ(b′kλ − bk)
λ4

= g′′′k λa + g
′′
ka + g

′′
kλa

′ + g′′ka + g
′
ka

′ + g′′kλa
′ + g′ka

′ + g′kλa
′′

+g′′k
a + λa′

2
+ g′k

a′ + λa′′ + a′

2
+ g′k

a′ + a′ + λa′′

2
+ gk

a′′ + a′′ + a′′ + λa′′′

2
.

Evaluating the second derivative at λ0 gives

fk(λ0)
b′′k(λ0)λ3

0 − 2λ0b′k(λ0)

λ4
0

= g′k(λ0)λ0a
′′(λ0) + g

′
k(λ0)

λ0a′′(λ0)

2

+g′k(λ0)
λ0a′′(λ0)

2
+ gk(λ0)

3a′′(λ0) + λ0a′′′(λ0)

2
.

This gives

fk(λ0)
b′′k(λ0)λ3

0 − 2λ0b′k(λ0)

λ4
0

− gk(λ0)
3a′′(λ0) + λ0a′′′(λ0)

2
= 2g′k(λ0)λ0a

′′(λ0). (5.47)

Therefore, we obtain

g′k(λ0) = fk(λ0)
b′′k(λ0)λ3

0 − 2λ0b′k(λ0)

2λ4
0λ0a′′(λ0)

− gk(λ0)
3a′′(λ0) + λ0a′′′(λ0)

4λ0a′′(λ0)
(5.48)

= fk(λ0)
b′′k(λ0)λ3

0 − 2λ0b′k(λ0)

2λ4
0λ0a′′(λ0)

− fk(λ0)
2b′k(λ0)

λ2
0a

′′(λ0)

3a′′(λ0) + λ0a′′′(λ0)

4λ0a′′(λ0)
.(5.49)

Now, we can look at (5.44) again and insert (5.49).

0 = fk(λ0)ic
′
k(λ0) − (fk(λ0)

b′′k(λ0)λ3
0 − 2λ0b′k(λ0)

2λ4
0λ0a′′(λ0)

−fk(λ0)
2b′k(λ0)

λ2
0a

′′(λ0)

3a′′(λ0) + λ0a′′′(λ0)

4λ0a′′(λ0)
)
λ0ȧ(λ0)

2

−fk(λ0)
2b′k(λ0)

λ2
0a

′′(λ0)

ȧ(λ0) + λ0ȧ′(λ0)

2
.

(5.50)
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Using the formula for ȧ(λ0) we obtain

0 =fk(λ0)ic
′
k(λ0) − (fk(λ0)

b′′k(λ0)λ3
0 − 2λ0b′k(λ0)

2λ4
0λ0a′′(λ0)

− fk(λ0)
2b′k(λ0)

λ2
0a

′′(λ0)

3a′′(λ0) + λ0a′′′(λ0)

4λ0a′′(λ0)
)
λ0

2

λ0a′′(λ0)ck(λ0)i

λ0b′k(λ0)

− fk(λ0)
2b′k(λ0)

λ2
0a

′′(λ0)

λ0a′′(λ0)ck(λ0)i

λ0b′k(λ0)

1

2
− fk(λ0)

2b′k(λ0)

λ2
0a

′′(λ0)

λ0ȧ′(λ0)

2
.

(5.51)

Now, we can deduce a formula for ȧ′(λ0)

ȧ′(λ0) =
a′′(λ0)λ0ic′k(λ0)

b′k(λ0)
−
a′′(λ0)b′′k(λ0)ck(λ0)i

4b′k(λ0)
2

+
a′′(λ0)ck(λ0)i

2λ2
0b
′
k(λ0)

+
a′′(λ0)3ck(λ0)i

4λ0b′k(λ0)
+
a′′′(λ0)ck(λ0)i

4b′k(λ0)
−
a′′(λ0)ck(λ0)i

λ0b′k(λ0)
.

(5.52)

Since a has a double root at λ0 we also get

c1(λ0)b
′
2(λ0) − c2(λ0)b

′
1(λ0) = 0 ⇔

c1(λ0)

b′1(λ0)
=
c2(λ0)

b′2(λ0)
. (5.53)

form (4.4) with L’Hospital. Since (5.52) has to hold for k = 1,2 and since we have (5.53)
we obtain a new condition

λ0c′1(λ0)

b′1(λ0)
−
b′′1(λ0)c1(λ0)

4b′1(λ0)
2

=
λ0c′2(λ0)

b′2(λ0)
−
b′′2(λ0)c2(λ0)

4b′2(λ0)
2

. (5.54)

We can rearrange (5.54) to get

λ0c′1(λ0)

b′1(λ0)
−
λ0c′2(λ0)

b′2(λ0)
=
b′′1(λ0)c1(λ0)

4b′1(λ0)
2

−
b′′2(λ0)c2(λ0)

4b′2(λ0)
2

(5.55)

or

c′1(λ0)b
′
2(λ0) − c

′
2(λ0)b

′
1(λ0) =

b′2(λ0)b′′1(λ0)c1(λ0)

4λ0b′1(λ0)
−
b′1(λ0)b′′2(λ0)c2(λ0)

4λ0b′2(λ0)
. (5.56)

Together with (5.53) we get

c′1(λ0)b
′
2(λ0) − c

′
2(λ0)b

′
1(λ0) =

b′2(λ0)b′′1(λ0)c2(λ0)

4λ0b′2(λ0)
−
b′1(λ0)b′′2(λ0)c2(λ0)

4λ0b′2(λ0)
. (5.57)

Now, we return to the initial Whitham equations (4.2), (4.3) and (4.4) to deduce the
dimension of the solution set. Looking at (4.4) we can divide through (λ − λ0) on both
sides and get

c1b̃2 − c2b̃1 = Q1λ(λ − λ0)(λ − λ2)(λ − λ3). (5.58)
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Thus, equation (5.58) at λ0 gives us

c1(λ0)

b̃1(λ0)
=
c2(λ0)

b̃2(λ0)
. (5.59)

We can use the roots of the polynomials bk that are distinct from the roots of a. This
gives first conditions for ck. But since the left- and the right-hand side both vanish at
λ0 we need to differentiate (4.4) and get

c′1b2 + c1b
′
2 − c

′
2b1 − c2b

′
2 = Q1a +Q1λa

′. (5.60)

Differentiating (5.60) again yields

c′′1b2 + 2c′1b
′
2 + c1b

′′
2 − c

′′
2b1 − 2c′2b

′
1 − c2b

′′
1 = 2Q1a

′ +Q1λa
′′. (5.61)

Inserting λ0 gives us

2c′1(λ0)b
′
2(λ0) + c1(λ0)b

′′
2(λ0) − 2c′2(λ0)b

′
1(λ0) − c2(λ0)b

′′
1(λ0) = Q1λ0a

′′(λ0). (5.62)

Now, we can utilize (5.57) and get

b′2(λ0)b′′1(λ0)c2(λ0)

2λ0b′2(λ0)
−
b′1(λ0)b′′2(λ0)c2(λ0)

2λ0b′2(λ0)
+ c1(λ0)b

′′
2(λ0) − c2(λ0)b

′′
1(λ0)

= Q1λ0a
′′(λ0)

(5.63)

using c1(λ0) =
c2(λ0)b′1(λ0)

b′2(λ0) gives us

b′2(λ0)b′′1(λ0)c2(λ0)

2λ0b′2(λ0)
−
b′1(λ0)b′′2(λ0)c2(λ0)

2λ0b′2(λ0)
+
c2(λ0)b′1(λ0)

b′2(λ0)
b′′2(λ0) − c2(λ0)b

′′
1(λ0)

= Q1λ0a
′′(λ0).

(5.64)

Therefore, we can find a new condition on c2 (and for c1 in the same way)

c2(λ0) =
Q1λ0a′′(λ0)2λ0b′2(λ0)

b′2(λ0)b′′1(λ0) − b′1(λ0)b′′2(λ0) + 2λ0b′1(λ0)b′′2(λ0) − 2λ0b′2(λ0)b′′1(λ0)
. (5.65)

This condition holds exactly if

b′2(λ0)b
′′
1(λ0) − b

′
1(λ0)b

′′
2(λ0) + 2λ0b

′
1(λ0)b

′′
2(λ0) − 2λ0b

′
2(λ0)b

′′
1(λ0) ≠ 0. (5.66)

In other words the new found condition holds only if there is no linear combination of b1

and b2 with a root of degree three at λ0 (otherwise the second derivatives would vanish).
Since this case cannot happen the new condition holds. This means we found overall
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three conditions for each ck. The other two conditions arise from inserting the other
roots of the polynomials bk in (4.4). They read

(−1)3−kck(λ2k)b3−k(λ2k) = Q1λ2ka(λ2k) (5.67)

and
(−1)3−kck(λ3k)b3−k(λ3k) = Q1λ3ka(λ3k) (5.68)

for k = 1,2. In the case that bk has an higher order root we can use the differentiated
equation (5.60) to get three conditions. Thus, the ck only depend on Q1 ∈ R.
Solving (4.2) and (4.3) for ḃ1 and ḃ2 is now possible through inserting the roots of bk

(if bk has a higher order root we can obtain new conditions by taking the derivative of
the equation as seen in 4.2). A special treatment is necessary for λ0 since it is also a
(double) root of a now. At the other roots of bk we have

(2λ2ka(λ2k)c
′
k(λ2k) − a(λ2k)ck(λ2k) − λ2ka

′(λ2k)ck(λ2k))i = 2a(λ2k)ḃk(λ2k) (5.69)

and

(2λ3ka(λ3k)c
′
k(λ3k) − a(λ3k)ck(λ3k) − λ3ka

′(λ3k)ck(λ3k))i = 2a(λ3k)ḃk(λ3k). (5.70)

Therefore, we have two conditions for ḃk. If bk has a double root we differentiate the
Whitham equation. Differentiating (4.2) and (4.3) gives us

(2ac′k + 2λa′c′k + 2λac′′k − a
′ck − ac′k − a

′ck − λa′′ck − λa′c′k)i

= 2a′ḃk + 2aḃ′k − ȧ
′bk − ȧb′k.

(5.71)

Assuming bk has a double root we can obtain a condition on ḃ′k at the double root.
Therefore, we already have two conditions for ḃk only depending on ck. At λ0 which also
is the double root of a both equations vanish.
Inserting the double root λ0 in (5.71) gives us

λ0a
′′(λ0)ck(λ0)i = ȧ(λ0)b

′
k(λ0) ⇔

λ0a′′(λ0)ck(λ0)i

b′k(λ0)
= ȧ(λ0). (5.72)

That is the same equation as we obtained from the L’Hospital rule and also gives us

c1(λ0)

b′1(λ0)
=
c2(λ0)

b′2(λ0)
(5.73)

Differentiating the Whitham equations (4.2) and (4.3) a second time yields

(2a′c′k + 2ac′′k + 2a′c′k + 2λa′′c′k + 2λa′c′′k + 2ac′′k + 2λa′c′′k + 2λac′′′k
− a′′ck − a′c′k − a

′c′k − ac
′′
k − a

′′ck − a′c′k − a
′′ck − λa′′′ck − λa′′c′k − a

′c′k − λa
′′c′k − λa

′c′′k)i

= 2a′′ḃk + 2a′ḃ′k + 2a′ḃ′k + 2aḃ′′k − ȧ
′′bk − ȧ′b′k − ȧ

′b′k − ȧb
′′
k .

(5.74)
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Inserting λ0 gives us

(2λ0a
′′(λ0)c

′
k(λ0) − a

′′(λ0)ck(λ0) − a
′′(λ0)ck(λ0) − a

′′(λ0)ck(λ0)

− λ0a
′′′(λ0)ck(λ0) − λ0a

′′(λ0)c
′
k(λ0) − λ0a

′′(λ0)c
′
k(λ0))i

= 2a′′(λ0)ḃk(λ0) − ȧ
′(λ0)b

′
k(λ0) − ȧ

′(λ0)b
′
k(λ0) − ȧ(λ0)b

′′
k(λ0).

(5.75)

This gives us a new condition for ḃk

1

2a′′(λ0)
((2λa′′(λ0)c

′
k(λ0) − a

′′(λ0)ck(λ0) − a
′′(λ0)ck(λ0) − a

′′(λ0)ck(λ0)

− λ0a
′′′(λ0)ck(λ0) − λ0a

′′(λ0)c
′
k(λ0) − λ0a

′′(λ0)c
′
k(λ0))i

+ ȧ′(λ0)b
′
k(λ0) + ȧ

′(λ0)b
′
k(λ0) + ȧ(λ0)b

′′
k(λ0))

= ḃk(λ0),

(5.76)

where we can replace ȧ(λ0) and ȧ′(λ0) with the formulas obtained above in (5.42) and
(5.52). Therefore, ḃ1 and ḃ2 only depend on c1 and c2. It remains to solve for ȧ. Using
the two distinct roots λ2 and λ3 of a we obtain

λa′(λl)cl(λl)i = ȧ(λl)bk(λl). (5.77)

Earlier we collected conditions on the double root for ȧ(λ0) in (5.42) and ȧ′(λ0) in
(5.52). Together with ȧ = 0 and (5.57) ȧ only depends on ck. Therefore, we obtain a
one-dimensional solution set.

Since ḃ1, ḃ2 and ȧ only depend on c1 and c2 that in return only depend on Q1 ∈ R
we also have a one-dimensional set of solutions for polynomials a ∈ M2

2. Due to time
problems we cannot explicitly visit the case of a ∈ M3

2. But this not necessary since it
is merely a limiting case of a ∈ M2

2 and the argumentation will be very much the same.
Therefore, we can conclude that in the case of double roots the level sets of T also are
one-dimensional submanifolds.
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6 Intersection of the level sets of T
and the set S2

The goal of this chapter is to examine the intersection of the level sets of T and the set
S2.

Definition 6.1. The set S2 is defined as

S2 ∶= ⋃
λ0∈S1

{a ∈ H2∣b1(λ0) = 0 = b2(λ0)},

where H2 denotes the space of spectral curves of CMC tori of finite type (i.e. the ones
that can be described through spectral data see [CS16] or [Sch17] for more).

Therefore, we are now interested in the case in which b1 and b2 have a common root.
Until now we were only interested in the case in which t = 0. Now, we want to deviate
from this case. In order to do this, we will describe Q in a Taylor series in t. From 4.2
we know that Q(λ) = Q1λ. Thus, we obtain

Q(λ) =
∞
∑
j=0

Qj1

j!
tj = λ(Q01 +Q11t + . . . ).

For the derivative we obtain

dQ(λ)

dt
=

∞
∑
j=1

Qj1(λ)

(j − 1)!
tj−1 = λ(Q11 + . . . ).

Likewise, we proceed for the other polynomials and obtain

a(λ) =
∞
∑
j=0

Aj(λ)

j!
tj = A0(λ) +A1(λ)t + . . . ,

where Aj are polynomials in λ of degree four.

b1(λ) =
∞
∑
j=0

Bj1(λ)

j!
tj = B01(λ) +B11(λ)t + . . . ,
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where Bj1 are polynomials in λ of degree three.

b2(λ) =
∞
∑
j=0

Bj2(λ)

j!
tj = B02(λ) +B12(λ)t + . . . ,

where Bj2 are polynomials in λ of degree three.

c1(λ) =
∞
∑
j=0

Cj1(λ)

j!
tj = C01(λ) +C11(λ)t + . . . ,

where Cj1 are polynomials in λ of degree three.

c2(λ) =
∞
∑
j=0

Cj2(λ)

j!
tj = C02(λ) +C12(λ)t + . . . ,

where Cj2 are polynomials in λ of degree three. With these representations (4.4) becomes

(C01(λ) +C11(λ)t + . . . )(B02(λ) +B12(λ)t + . . . )

− (C02(λ) +C12(λ)t + . . . )(B01(λ) +B11(λ)t + . . . )

= λ(Q01 +Q11t + . . . )(A0(λ) +A1(λ)t + . . . ).

(6.1)

For t = 0 we get
C01(λ)B02(λ) −C02(λ)B01(λ) = Q01λA0(λ). (6.2)

In the case that B02 and B01 have a common root λ0 that is no root of A0 we obtain the
following equation at λ = λ0

0 = Q01λ0A0(λ)
´¹¹¹¹¸¹¹¹¹¹¶

≠0

.

Thus, we obtain Q01 = 0. This now gives us that the right-hand side of (6.2) is 0. Hence,
we obtain

C01(λ)B02(λ) −C02(λ)B01(λ) = 0.

Hence, we are almost in the same situation as in 4.2 in the case Q = 0. Therefore, we
obtain that C0k is a linear combination of B0k and B0k

λ0−λ where λ0 is the common root of
B01 and B02. We will denote them again as

C0k(λ) = w1B0k +w2
B0k

λ0 − λ
(6.3)

for k = 1,2. Now we differentiate (4.4) in this representation and obtain

ċ1b2 + c1ḃ2 − ċ2b1 − c2ḃ1 = Q̇a +Qȧ.
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For t = 0 this becomes

C11(λ)B02(λ) +C01(λ)B12(λ) −C12(λ)B01(λ) −C02(λ)B11(λ) = λQ11A0(λ) (6.4)

since Q01 = 0. To deduce properties of B11 and B12 we look at (4.2) and (4.3) in the
representation with Taylor coefficients. For t = 0 this gives

(2λA0(λ)C
′
01(λ) −A0(λ)C01(λ) −λA

′
0(λ)C01(λ))i = 2A0(λ)B11(λ) −A1(λ)B01(λ) (6.5)

and

(2λA0(λ)C
′
02(λ)−A0(λ)C02(λ)−λA

′
0(λ)C02(λ))i = 2A0(λ)B12(λ)−A1(λ)B02(λ). (6.6)

Using C01(λ) = w1B01 +w2
B01(λ)
λ0−λ and C02(λ) = w1B02 +w2

B02(λ)
λ0−λ therefore gives

(2λA0(λ)
d

dλ
(w1B01(λ) +w2

B01(λ)

λ0 − λ
) −A0(λ)(w1B01(λ) +w2

B01(λ)

λ0 − λ
)

− λA′
0(λ)(w1B01(λ) +w2

B01(λ)

λ0 − λ
))i = 2A0(λ)B11(λ) −A1(λ)B01(λ)

(6.7)

and

(2λA0(λ)
d

dλ
(w1B02(λ) +w2

B02(λ)

λ0 − λ
) −A0(λ)(w1B02(λ) +w2

B02(λ)

λ0 − λ
)

− λA′
0(λ)(w1B02(λ) +w2

B02(λ)

λ0 − λ
))i = 2A0(λ)B12(λ) −A1(λ)B02(λ).

(6.8)

Note that with B0k =
i√
λ0

(λ0 − λ)B̃0k(λ) where B̃0k = B̃2kλ2 + B̃1kλ +
¯̃B2k we get

d

dλ
(w1B0k +w2

B0k(λ)

λ0 − λ
) = w1B

′
0k(λ) +w2

i
√
λ0

B̃′
0k(λ)

with
B̃′

0k(λ) = 2B̃2kλ + B̃1k

where B̃′
0k(λ0) ≠ 0 for at least one k = 1,2. Thus, at λ = λ0 we get

d

dλ
(w1B0k +w2

B0k(λ)

λ0 − λ
)∣
λ=λ0

= w1B
′
0k(λ0) +w2

i
√
λ0

B̃′
0k(λ0). (6.9)

Since the other roots are distinct from the common root λ0 the derivative (6.9) of the
C0k is not zero at λ = λ0. Thus (6.7) and (6.8) evaluated at the common root λ0 yield
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(2λ0A0(λ0)(w1B
′
01(λ0) +w2

i
√
λ0

B̃′
01(λ0)))

−A0(λ0)(w1B01(λ0)

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+w2
i

√
λ0

B̃01(λ0)))

− λ0A
′
0(λ0)(w1B01(λ0)

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+w2
i

√
λ0

B̃01(λ0)))i

= 2A0(λ0)B11(λ0) −A1(λ0)B01(λ0)

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

and

(2λ0A0(λ0)(w1B
′
0k(λ0) +w2

i
√
λ0

B̃′
0k(λ0)))

−A0(λ0)(w1B02(λ0)

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+w2
i

√
λ0

B̃02(λ0))

− λ0A
′
0(λ0)(w1B02(λ0)

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+w2
i

√
λ0

B̃02(λ0))))i

= 2A0(λ0)B12(λ0) −A1(λ0)B02(λ0)

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

.

This gives us

B11(λ0) = (2λ0A0(λ0)(w1B
′
01(λ0) +w2

i
√
λ0

B̃′
01(λ0)))

−A0(λ0)w2
i

√
λ0

B̃01(λ0)) − λ0A
′
0(λ0)w2

i
√
λ0

B̃01(λ0)))i(2A0(λ0))
−1

and

B12(λ0) = (2λ0A0(λ0)(w1B
′
0k(λ0) +w2

i
√
λ0

B̃′
0k(λ0)))

−A0(λ0)w2
i

√
λ0

B̃02(λ0) − λ0A
′
0(λ0)w2

i
√
λ0

B̃02(λ0)))i(2A0(λ0))
−1

Therefore, B11(λ0) ≠ 0 and B12(λ0) ≠ 0. Furthermore, we also have B11(λ0) ≠ B12(λ0).
At λ = λ0 (6.4) becomes

C01(λ0)B12(λ0) −C02(λ0)B11(λ0) = λ0Q11A0(λ0) (6.10)

Since the left-hand side does not vanish we obtain Q11 ≠ 0. For simplicity we choose
Q11 = 1.
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Thus, Q now simply has the form Q(λ) = tλ. The reasoning above shows that the
level sets of T intersect transversely with S2. Looking again at (6.1) now gives us

(C01(λ) +C11(λ)t + . . . )(B02(λ) +B12(λ)t + . . . )

− (C02(λ) +C12(λ)t + . . . )(B01(λ) +B11(λ)t + . . . )

= λ(A0(λ)t +A1(λ)t
2 + . . . ).

(6.11)

Equating coefficients gives us

C01B02 −C02B01 = 0

fort t0 and
C01B12 +C11B02 −C02B11 −C12B01 = λA1

for t1. In general, we obtain

n

∑
k=0

Ck1

k!

B(n−k)2
(n − k)!

−
n

∑
l=0

Ck2

k!

B(n−k)1
(n − k)!

=
λAn
n!

for tn. Using the solution for C01 and C02 we obtain

(w11B01 +w21
B01

λ0 − λ
)B02 − (w12B02 +w22

B02

λ0 − λ
)B01 = 0

fort t0.
Looking at (4.2) and (4.3) we obtain

(2λ
∞
∑
j=0

Aj(λ)

j!
tj

∞
∑
j=0

C ′
j1(λ)

j!
tj −

∞
∑
j=0

Aj(λ)

j!
tj

∞
∑
j=0

Cj1(λ)

j!
tj − λ

∞
∑
j=0

A′
j(λ)

j!
tj

∞
∑
j=0

Cj1(λ)

j!
tj

= 2
∞
∑
j=0

Aj(λ)

j!
tj

∞
∑
j=1

Bj1(λ)

(j − 1)!
tj −

∞
∑
j=1

Aj(λ)

(j − 1)!
tj−1

∞
∑
j=0

Bj1(λ)

j!
tj

(6.12)

and

(2λ
∞
∑
j=0

Aj(λ)

j!
tj

∞
∑
j=0

C ′
j2(λ)

j!
tj −

∞
∑
j=0

Aj(λ)

j!
tj

∞
∑
j=0

Cj2(λ)

j!
tj − λ

∞
∑
j=0

A′
j(λ)

j!
tj

∞
∑
j=0

Cj2(λ)

j!
tj

= 2
∞
∑
j=0

Aj(λ)

j!
tj

∞
∑
j=1

Bj2(λ)

(j − 1)!
tj −

∞
∑
j=1

Aj(λ)

(j − 1)!
tj−1

∞
∑
j=0

Bj2(λ)

j!
tj.

(6.13)

Equating coefficients we obtain the following for t0

(2λA0(λ)C
′
0k(λ) −A0C0k(λ) − λA

′
0(λ)C0k(λ))i

= 2A0(λ)B1k(λ) −A1(λ)B0k(λ)
(6.14)
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6.1. Willmore energy

and for t1

(2λ(A1(λ)C
′
0k(λ) +A0(λ)C

′
1k(λ)) − (A1(λ)C0k(λ) +A0(λ)C1k(λ))

− λ(A′
1(λ)C0k(λ) +A

′
0(λ)C1k(λ)))i

= 2(A1(λ)B1k(λ) +A0(λ)B2k(λ)) − (A2(λ)B0k(λ) +A1(λ)B1k(λ)).

Therefore, we get

1

2A0(λ)
(((2λ(A1(λ)C

′
0k(λ) +A0(λ)C

′
1k(λ)) − (A1(λ)C0k(λ) +A0(λ)C1k(λ))

− λ(A′
1(λ)C0k(λ) +A

′
0(λ)C1k(λ)))i − 2A1(λ)B1k(λ) + (A2(λ)B0k(λ) +A1(λ)B1k(λ)))

= B2k(λ).

The solution set for t0 consists of a quintuple (C01,C02,B11,B12,A1) and is propor-
tional to a solution (c1, c2, ḃ1, ḃ2, ȧ) of the equations in (4.2) in the case where b1 and b2

have a common root. Both solutions only differ by a real multiple. This multiple can
be denoted as θ. Therefore, equation (6.10) becomes

θ2(c1(λ0)ḃ2(λ0) − c2(λ0)ḃ1(λ0) = λ0Q11A0(λ0). (6.15)

With this equation and the solutions from (4.2) it is possible to solve for θ. This then
gives us a solution (C01,C02,B11,B12,A1). It would now be possible to construct a
inductive formula for all the other components (Ck1,Ck2,Bk+1,1,Bk+1,2,Ak+1). However,
this calculation is omitted due to a time constraint. Nevertheless, the result obtained so
far in this chapter (Q11 ≠ 0) can be used to get a new result about the Willmore energy.

6.1 Willmore energy

It is possible to connect the result we just obtained with the Willmore energy. The
Willmore energy is a common measure in differential geometry. It measures the curving
energy of an embedded surface. It is defined as follows.

Definition 6.2 (Willmore energy). Let Σ be a smooth, embedded, compact and oriented
surface in R3. Let H denote its mean curvature. Then the Willmore energy W is defined
as

W (Σ) = ∫
σ

H2dA,

where dA is the induced volume form.
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Chapter 6. Intersection of the level sets of T and the set S2

In [KHS17] the relation between a polynomial a ∈ M1
2 ∪M

2
2 ∪M

3
2 and a conformal

immersion fa ∶ C/Γ̃a → H is explained. Which makes it possible to look at the Willmore
energy in dependence of the polynomial a. They found the following theorem.

Theorem 6.3. For all a ∈ M1
2 ∪M

2
2 ∪M

3
2 the Willmore energy of fa is equal to

W (a) = ∫
C/Γ̂

4γ2dx ∧ dy = ∫
C/Γ̃

8γ2dx ∧ dy = 4iResλ=0 log(µ2)d log(µ1). (6.16)

We know that Q1 = λt which gives us that the sign of Q1 changes around zero.
Differentiating the expression in (6.16) with respect to t now gives us

Ẇ (a) = 4iResλ=0
˙log(µ2)d log(µ1) −

˙log(µ1)d log(µ2) (6.17)

= 4iResλ=0
c2b1 − c1b2

ν2

dλ

λ
(6.18)

= 4iResλ=0
Q11λa

λa

dλ

λ
(6.19)

= 4iResλ=0t
dλ

λ
. (6.20)

Therefore, Q1 is proportional to the derivative of the Willmore functional. Thus, we
get that the monotony of the Willmore functional changes around zero. For the function
f = b2

b1
it is possible to see that the index changes. However, this step is not included in

this thesis due to time limitations.
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7 Conclusion

In this final chapter we summarize the findings of this work and point to possible future
research.

At the beginning we revisited some differential geometric theory to deduce the sinh-
Gordon equation and the 2×2 matrices existential for the current research on CMC tori.
Later on we altered the map T ∶ M1

2 → F from [KHS17] in a way that we got a mapping

T̂ ∶ (a, b1, b2) ↦ τa.

Since T̂ uses on the tripel (a, b1, b2) it was now possible to use the Whitham equations
from [CS16].

In a first step we determined that the level sets of T for a ∈ M1
2 are one-dimensional

submanifolds, i.e. the Whitham equations yield a one-dimensional set of solutions.

In a second step we examined the case of a ∈ M2
2 ∪ M

3
2. In this case a singularity

appears. At first we tried to remove the singularity with local integrals. This approach
led to even more complex equations. Therefore, we tried an equivalent approach through
introducing additional equations to the Whitham equations. With these additional equa-
tions we were able to show that the set of solutions is again one-dimensional.

In a third step we examined a special case in which the polynomials bk have a com-
mon root. This case leads to the derivative of the Willmore functional changing its sign.

Further research can be done on the third step. It is possible to use the imaginary
part of q1 and q2 to construct a closed curve on λ ∈ S1 in the real plane. It might then be
possible to show that between two points of a connected component of the level sets of
T the number of points intersection points of the curve changes. Furthermore, it might
be possible to determine existence and number of such points on the levels sets through
investigating the double points along the level set.
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