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Abstract

The elliptic sinh-Gordon equation arises in the context of particular surfaces of constant
mean curvature. With the help of differential geometric considerations the space of peri-
odic solutions is parametrized by means of spectral data consisting of a Riemann surface
Y and a divisor D. It is investigated if the space M} of real periodic finite type solutions
with fixed period p can be considered as a completely integrable system (M7, 2, Hs)
with a symplectic form © and a series of commuting Hamiltonians (Hp)nen,. In partic-
ular we relate the gradients of these Hamiltonians to the Jacobi fields (wy)nen, from the
Pinkall-Sterling iteration. Moreover, a connection between the symplectic form 2 and
Serre duality is established.

Zusammenfassung

Die elliptische sinh-Gordon-Gleichung steht im Zusammenhang zu bestimmten Flichen
konstanter mittlerer Kriimmung. Mithilfe differentialgeometrischer Uberlegungen lisst
sich der Raum der periodischen Losungen durch Spektraldaten, bestehend aus einer Rie-
mannschen Fliche Y und einem Divisor D, parametrisieren. Es wird untersucht, ob der
Raum M} der reellen periodischen Losungen von endlichem Typ mit festgehaltener Peri-
ode p als ein vollstandig integrables System (M}, Q, H>) mit einer symplektischen Form
und einer Folge kommutierender Hamiltonfunktionen (H,,)nen, aufgefasst werden kann.
Insbesondere werden die Gradienten dieser Hamiltonfunktionen mit den Jacobifeldern
(Wn)nen, aus der Pinkall-Sterling-Iteration in Beziehung gebracht. Auflerdem wird eine
Verbindung zwischen der symplektischen Form €2 und der Serre-Dualitit hergestellt.
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1 Introduction

1.1 The sinh-Gordon equation and spectral data
The elliptic sinh-Gordon equation is given by
Au + 2sinh(2u) =0, (1.1.1)

where A is the Laplacian of R? with respect to the Euclidean metric and v : R?> — R is a
twice partially differentiable function which we assume to be real.

The sinh-Gordon equation arises in the context of particular surfaces of constant mean
curvature (CMC) since the function u can be extracted from the conformal factor e?* of a
conformally parameterized CMC surface. The study of CMC tori in 3-dimensional space
forms was strongly influenced by algebro-geometric methods (as described in [5]) that
led to a complete classification by Pinkall and Sterling [45] for CMC-tori in R3. More-
over, Bobenko [8, @] gave explicit formulas for CMC tori in R?, S* and H? in terms of
theta-functions and introduced a description of such tori by means of spectral data. We
also refer the interested reader to [10, [11]. Every CMC torus yields a doubly periodic
solution u : R? — R of the sinh-Gordon equation. With the help of differential geometric
considerations one can associate to every CMC torus a hyperelliptic Riemann surface Y,
the so-called spectral curve, and a holomorphic line bundle F on Y (the so-called eigenline
bundle) that is represented by a certain divisor D. Hitchin [30], and Pinkall and Sterling
[45] independently proved that all doubly periodic solutions of the sinh-Gordon equation
correspond to spectral curves of finite genus. We say that solutions of that corre-
spond to spectral curves of finite genus are of finite type.

In the present setting we will relax the condition on the periodicity and demand that wu is
only simply periodic with a fixed period. After rotating the domain of definition we can
assume that this period is real. This enables us to introduce simply periodic Cauchy data
with fixed period p € R consisting of a pair (u,u,) € C*°(R/p) x C*°(R/p). Moreover,
we demand that the corresponding solution u of the sinh-Gordon equation is of finite type.

In the following we will see that a finite type solution of the sinh-Gordon equation is
uniquely determined by its spectral data (Y, D) and investigate how Y and D fit into the
description of the sinh-Gordon equation as a completely integrable system. In order to
understand the features that are provided by completely integrable systems we introduce
a simple example of such a system in the following section.
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1.2 An example of a completely integrable system

We want to treat the sinh-Gordon equation as a completely integrable system
(compare with [23]) and illustrate its features by introducing the simplest example, i.e.
the symplectic manifold (R?", Q) with coordinates (q,p) = (q1,...,qn,p1,---,Pn) (see
[3]). The coordinates ¢ and p are often called positions and moments. The corresponding
symplectic form €2 is

Q= zn:d(b; A dp;,

i=1
i.e. for v,w € R?*" ~ T,R?" (with p € R?") one has

Qv,w) = (v, Jw)gen with J = (Oﬂ 3) .

For a smooth map H : R?® — R, the so-called Hamiltonian, one can consider its gradient
V H and define the Hamiltonian vector field as

Xg:=JVH.

Given H : R?™ — R we study the equations of motion given by

d

= <z) = Xu(g,p) = JVH(q,p)

or written out in coordinates
OH . OH

We immediately note that H is constant along the integral curves (q(t),p(t)) for the
Hamiltonian vector field X since there holds

d

T H(a®),p(t) = (VH(g,p), 4(q,p))g2n = (VH(q,p), JVH(q,p))gen =0

due to the skew-symmetry of J. A function f : R?" — R is called integral of motion for the
Hamiltonian system (R?",Q, H) if f is preserved under the flow ® x, of the Hamiltonian
vector field Xp. Expanding this condition leads to

F= (V1 2(q,p)pe = (Vf,JVH)gan = 0.

In particular the Hamiltonian H is an integral of motion. We define {f, g} := (Vf, JVg)gr2n
as the Poisson bracket of two smooth functions f,g: U C R?” — R and say that f and
g are in involution if {f, g} = 0 holds. Thus a function f is an integral of motion if and
only if f and H are in involution, i.e. {f, H} = 0.

The Hamiltonian system (R??, Q, H) is called completely integrable in the sense of Liouville
if there exist functions f1 = H, fs,..., fn such that




1.3 What is done in this work

(i) the functions fi,..., f, are pairwise in involution, i.e. {f;, f;} =0 for 1 <i,j < n,
(i) their gradients Vfi,...,V f, are linearly independent and

(iii) their Hamiltonian vector fields Xy, ,..., Xy, are complete.

n

Considering the map f := (f1,..., fn) : U — R™ for an open neighborhood U C R?" one
can show that f is a submersion. Moreover, every value is a regular value and thus every
non-empty leaf

M= el = {(¢,p) €U| f(a,p) = ¢}

is a smooth manifold of dimension n. Therefore U C R2" is foliated into these leaves.
Now we arrive at the following

Theorem 1.1 (Liouville). Let U C R?" be an open subset, xo € U a point and f :=
(fis---, fn) : U = R™ a smooth map such that

(1) the functions f1,..., fn are pairwise in involution, i.e. {f;, f;} =0 for1 <i,j <n,
(ii) their gradients V f1,...,V fn are linearly independent on N = f~ [f(x0)] and
(1) their Hamiltonian vector fields X, , ..., Xy, restricted to N are complete.

Then the connected components of N are homeomorphic to R" /T, where I is a discrete
subgroup of R™.

If the rank of I' equals n we see that the connected components of N are homeomorphic

to
R"/T ~R"/Z" ~ (R/Z)" ~ (SH)",

i.e. in that case they correspond to (compact) n-dimensional tori. If in addition N is
connected we get N ~ (S!)".

Thus we see that a completely integrable system around a compact connected leaf is
foliated into an n-parameter family of invariant tori.

1.3 What is done in this work

The main goal of this thesis is to work out the details that help us to identify the sinh-
Gordon equation as a completely integrable system. In particular we will recognize the
features that appeared in the simplest example (R?",Q, H). We now give a short overview
of the content of the various chapters.

In the second chapter we are going through some notational conventions as well as the
basic concepts of differential geometry such as the first and second fundamental form or
equivalently the three quantities u, ) and H, that is the conformal factor u, the Hopf
differential ) and the mean curvature H.
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Since the hyperelliptic spectral curve Y can be compactified in the finite type setting
this chapter also deals with compact Riemann surfaces and describes the Riemann-Roch
Theorem in terms of divisors and sheafs. We also consider Lie groups and mainly reduce
our attention to the Lie group SU(2) ~ S? and its Lie algebra su(2). Moreover, the concept
of moving frames and Lax pairs is elucidated and the relationship between solutions F' of
the system

F,=FU, F;=FV

with the compatibility condition Us; — V, — [U, V] = 0 and solutions u to the Gauss and
Codazzi equations

1
2uz + 2e*(1 + H?) — iQQe*% =0, Q:=2H.*

for given @ and H = const is investigated. This leads to the introduction of a C*-family
of flat connections d + ) and the question how the connection form a) behaves under
certain parameter transformations.

The third chapter introduces spectral data (Y, D) for periodic finite type solutions of the
sinh-Gordon equation consisting of a spectral curve Y and a divisor D. To do so we study
the monodromy M) of the A-dependent frame F) and consider its asymptotic expansion
around the points A = 0 and A = co. At these points M) has essential singularities and
it turns out that this expansion carries a lot of information concerning the solution of the
sinh-Gordon equation.

Instead of taking a periodic u defined on R? we will study a pair (u,u,) € C°(R/p) x
C*°(R/p) with fixed period p € R that corresponds to u if one considers the coordinate
y as a flow parameter. Setting y = 0 in a)(z,y) one obtains the matrix Uy (x). Now it is
possible to define finite type Cauchy data (u,u,) € C*(R/p) x C*°(R/p) by introducing
polynomial Killing fields and the appropriate space of potentials P,;. These potentials will
be used to parameterize the finite type solutions.

Since the monodromy M) and the initial value {5 € Py of the corresponding polynomial
Killing field ¢, commute, one can introduce two equivalent definitions of the spectral
curve Y (u,uy) that encodes the eigenvalues p of My and v of £y as functions on Y. In
order to describe My or £, completely one also has to encode the A\-dependent eigenlines
of My and &,. Since [M),&\] = 0 one can find eigenlines that diagonalize M) and &)
simultaneously. This will lead to the definition of the holomorphic eigenline bundle or
equivalently to the divisor D(u,u,) on Y (u,uy).

In the fourth chapter we will focus on the inverse problem that yields a bijective map
(u,uy) = (Y(u,uy), D(u,uy)). In a first step we recall the Krichever construction that
leads to linear flows on the Jacobi variety Jac(Y) of a spectral curve Y. It will be
investigated how one can obtain periodic (isospectral) flows and if there exists a suitable
basis of H'(Y, O), the Lie algebra of Jac(Y). Moreover, we will see which condition arises
if one translates the reality condition on M) or equivalently on &) to this setting.




1.3 What is done in this work

We will also investigate the Baker-Akhiezer function and its analytic properties in order
to reconstruct the z-dependent eigenvectors of My (z) = Fy '(z) My F\(z) and {)\(z).
With this tool at hand we are able to reconstruct the Cauchy data (u, u,) from the spectral
data (Y (u,uy), D(u,uy)) and thus arrive at the bijective map

(u, wy) = (Y (u, uy), D(u, uy))

that establishes a one-to-one correspondence between Cauchy data (u,u,) and spectral

data (Y, D).

The fifth chapter deals with isospectral and non-isospectral deformations of the spectral
data (Y, D). On the one hand we study non-isospectral (but isoperiodic) deformations
of spectral curves Y of genus g and will show that the space of such curves is a smooth
g-dimensional manifold. This will lead to the conclusion that the space of Cauchy data
(u,uy) that leads to such smooth spectral curves Y is a smooth 2g-dimensional manifold.
Moreover, we will identify the space of such deformations with holomorphic one-forms on
the spectral curve Y.

Since the map (u, uy) — (Y (u,uy), D(u,uy)) is bijective we can fix Y and ask for Cauchy
data (u,u,) with Y (u,u,) =Y. This leads to the isospectral set Iso(Y’). By introducing
an isospectral group action one can show that Iso(Y") is parameterized by a g-dimensional
torus. This degree of freedom corresponds to the degree of freedom for the movement of
the divisor D in the Jacobi variety Jac(Y'). Moreover, the infinitesimal deformations of
&y and Uy, that result from that isospectral group action are investigated.

The sizth chapter combines the third, fourth and fifth chapter and deals with the symplec-
tic form  on the 2g-dimensional phase space M} as well as the Hamiltonian formalism
for the sinh-Gordon hierarchy, that is induced by a Hamiltonian Hs : M} — R.

As a first step we introduce the notion of a completely integrable Hamiltonian sys-
tem and define the phase space M} as the set of finite type Cauchy data (u,u,) €
C>®(R/p) x C**(R/p) such that the resulting spectral curve Y (u, u,) obeys some special
conditions. Moreover, we define a series of functions (Hy)nen, (compare with [44]) on
the phase space that also contains the Hamiltonian Hy : M} — R. We will relate this
series to the series (wy)nen, of solutions of the linearized sinh-Gordon equation that are
obtained via the Pinkall-Sterling iteration (see [45] and [36]) and show that (Hy)nen, are
involutive integrals of motion for the Hamiltonian system (MY, Q, Hs).

Moreover, we introduce an inner product on the loop Lie algebra A,sla(C) and use this
inner product to establish a connection between the symplectic form 2 and Serre duality
as it was done in [47] for the non-linear Schrédinger operator. This part contains the
main results of the thesis.

Chapter seven summarizes the most important results of this thesis and gives an outlook
on possible interesting further research.
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2 Preliminaries

2.1 Surface theory in S?

We want to recall some basic facts from surface theory and follow the terminology intro-
duced in [22]. In the following, we will consider 2-dimensional submanifolds of

$° = {z e R*[ ||zl = 1},

where S? is equipped with the metric defined by restricting the metric (-, -)gs of R* to the
3-dimensional tangent spaces of S*. We will investigate conformal immersions

f:M—S3
where M is an arbitrary Riemann surface. The smooth function f will for now be con-

sidered as Ri-valued with ||f[|? = 1.

Definition 2.1. A Riemann surface is a pair (M,3), consisting of a connected two-
dimensional manifold M with a complex structure X, that is an equivalence class of bi-
holomorphic equivalent collections of charts, that cover M.

In the following we will describe the intrinsic geometry of a surface by its first fundamental
form and the extrinsic geometry of an immersed surface by its second fundamental form
respectively.

Definition 2.2. Let f : M — S? be an immersion. The induced metric g : TyM xT,M —
R is defined by
9(v,w) = (df (v), df (w))gs

and is called the first fundamental form. Both g and ds® are commonly used notations.

If (z,y) is a coordinate for M and f is an immersion, a basis for T, M can be chosen as

_(oF _(9f
e (3), 0= (%),

Then the metric g is represented by the matrix

g = <911 912> _ <<fxafx> <fx,fy>>
P 921 922 (fys Jo)  (fys fy)
and one has with the identification T,M ~ R? via the basis (fs, fy)

ot (e fa) (Fe B
gp(v,w) = <<fy,fx) <fy7fz>) .




Chapter 2. Preliminaries

Remark 2.3. The map f : M — S? is an immersion < the matrix gp has positive
determinant for all p.

Definition 2.4. An immersion f : M — S? is conformal if there exists a function
u: M — R, called the conformal factor, such that
; 62u 0 9
g(v,w) =v 0 Qu)W=e “(o,w)ge, v,w e T,M.

Now we turn to the extrinsic geometry of the immersed surface. The unit normal vector

field to the surface is N := H—%H, where N is given by

4
N = Zdet(ei, f, fz, fy) - €; with an orthonormal basis e, ..., es4 of R*,
i=1

i.e. N is the vector in R* that is perpendicular to f, f; and f, at every point of the surface.
Note that N is a globally defined object because M and S? are orientable manifolds.

Definition 2.5. The symmetric bilinear map b : T,M x T,M — R defined by
b(v,w) = (d*f(v,w), N)ga

1s called the second fundamental form.

Due to the definition of N we get (df, N) = 0 and therefore by Leibniz’s rule
b= (d*f,N) = —(df,dN).

Again the map b can locally be represented by a matrix

v=ln o) = () o)== () G)

Now let z = x + iy and Z = x — iy be local complex coordinates on M and define

9 ._ 1,0 ol 0 ._1/0 - 0

Let us rephrase the above objects with respect to these complex coordinates. In case of
a conformal immersion f, one can write the first fundamental form as

g = e*dzdz = 2(f., f-)dzdz
and for the second fundamental form one obtains (in general)

b= Qdz* + Hdzdz + Qdz2,
where @ is the complex-valued function

1 . .
Q= Z(bn — bag —ib12 —ib21) = (f22, N)

and H is the real valued function

1
H .= 5(511 + bo2) = 2(f.z, N).




2.1 Surface theory in S3

Definition 2.6. The quadratic differential Qdz* is called the Hopf differential of the
immersion f.

Definition 2.7. The linear map S : T,M — T,M given by
S = ggl - bp
1s called the shape operator of the immersion f.

The eigenvalues k1, ks and corresponding eigenvectors of the shape operator S are the
principal curvatures and principal curvature directions of the surface f(M) at f(p). We
can now define the Gauss and mean curvature using the objects introduced above.

Definition 2.8. Let f : M — S3 be an immersion and S = g~ 'b the corresponding shape
operator. The determinant K := det(S) of the shape operator S is the Gauss curvature
and H := %tr(S) is the mean curvature of the immersion. The immersion f is CMC
(i.e. of constant mean curvature) if H is constant, i.e. H = const.

Remark 2.9. In case of a conformal immersion one gets H = e 2.

Definition 2.10. Let M be a 2-dimensional manifold. The umbilic points of an im-
mersion f: M — S? are the points where the two principal curvatures are equal.

The Hopf differential Qdz? encodes some important information. Besides the fact that
the investigated surface will be CMC if and only if @) is holomorphic, the Hopf differential
can also be used to characterize the umbilic points of that surface.

Proposition 2.11. If M is a Riemann surface and f : M — S? is a conformal immersion,
then p € M is an umbilic point if and only if Q, = 0.

Proof. Omitting the subscript p the shape operator corresponding to the conformal im-

mersion f is given by

€2u

(Q-Q) H-Q-Q

with respect to the basis f, and f, of each tangent space of f(M). The two principal
curvatures are then the two eigenvalues of this self-adjoint operator, i.e. the solutions of

H+Q+Q-k)(H-Q-Q -k +(Q-Q)
(H=k)+(Q+Q)(H—-k)—(Q+Q) —(Q—-Q)
= (H-k?-(Q+Q)-(Q-Q)*

(H — k) —4|Q]> =0,

S—glp= L <H+Q+Q i(Q—Q))

et det(S — k1) =

and thus one obtains
k1 = H +2|Q|, k2= H —2|Q)|.

Finally one gets k1 = k2 < |Q] = 0 < @ = 0 and the result follows. O
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2.2 Compact Riemann surfaces

In this section we will focus on divisors and the Riemann-Roch Theorem for compact
Riemann surfaces that will be useful tools in the following chapters. Most results and
terminology are taken from [20] and [21].

Definition 2.12. Let Y be a Riemann surface. A divisor on'Y is a map
D:Y—Z

such that for every compact subset K C Y there are only finitely many points y € K
with D(y) # 0. With respect to addition the set of all divisors on'Y is an abelian group,
denoted by Div(Y).

For D, D" € Div(Y') we say D < D' if D(y) < D'(y) for everyy €Y.

For a Riemann surface Y let M(Y') denote the field of meromorphic functions on Y. Now
suppose that U is an open subset of Y. For a meromorphic function f € M(U) and x € U
define

0, if f is holomorphic and non-zero at z,

k, if f has a zero of order k at =,

ord, =
(/) —k, if f has a pole of order k at z,

oo, if f is identically zero in a neighborhood of z.

Thus for any meromorphic function f € M(Y)\{0}, the mapping y — ord,(f) is a divisor
on Y. It is called the divisor of f and will be denoted by (f).

The function f is said to be a multiple of the divisor D if (f) > D. Then f is holomorphic
if and only if (f) > 0.

For a meromorphic 1-form w one can define its order at a point x € U as follows. Choose
a coordinate neighborhood (V,z) of . Then on V N U one has w = fdz, where f is a
meromorphic function. Set ord, (w) = ord;(f), this is independent of the choice of (V, z).
Again the mapping y — ord,(w) is a divisor on Y, denoted by (w).

A divisor D € Div(Y) is called a principal divisor if there exists a function f € M(Y)\{0}
such that D = (f). Two divisors D, D’ € Div(Y) are said to be equivalent if their
difference D — D' is a principal divisor. A canonical divisor is the divisor of a meromorphic
1-form w.

Definition 2.13. For a compact Riemann surface Y let

deg: Din(Y) = Z, D+ Y _D(y).
yey

For D € Divn(Y) the integer deg(D) is called the degree of the divisor D.

10



2.2 Compact Riemann surfaces

The map deg : Div(Y) — Z is a group homomorphism and deg(f) = 0 for any principal
divisor (f) on a compact Riemann surface since a meromorphic function has as many
zeros as poles.

Before we can state the Riemann-Roch Theorem we have to introduce the notion of a
sheaf and of its corresponding cohomology.

Definition 2.14. Suppose Y is a topological space and T is the system of open sets in'Y.
A presheaf of abelian groups on'Y is a pair (F,p) consisting of

1. a family F = (F(U))vez of abelian groups,

2. a family p = (P\[{)U,VGI,VCU of group homomorphisms (called restriction homomor-
phisms)
o F(U) = F(V), where V is open in U,

with the following properties:

pg = idFq) for every U € T,
plyopy = ph for WV cU.

Instead of pl/(f) for f € F(U) one writes f|V. We can now define a sheaf.

Definition 2.15. A presheaf F on a topological space Y is called a sheaf if for every
open set U C'Y and every family of open subsets U; C U,i € I, with U = J;c; Ui, the
following conditions are satisfied:

(S1) If f,g € F(U) are elements such that f|U; = g|U; for every i € I, then f =g.
(S2) Given elements f; € F(U;),i € I, obeying
filUinU; = f;\U;NU; foralli,j eI,
then there exists f € F(U) such that f|U; = f; for every i € I.
(S1) and (52) are called the sheaf axioms.

Definition 2.16. Let Y be a topological space and F a sheaf of abelian groups on'Y . Let
U be an open covering of Y, i.e. a family U = (U;)icr of open subsets of Y such that
Uict Ui =Y. For q=0,1,2,... define the qth cochain group of F, with respect to U,
as

cu,F) = [ FU,n---0U,).

(i0,0yig) ETTH

The elements of C1(U,F) are called q-cochains.

11



Chapter 2. Preliminaries

Now define coboundary operators

§:C%U,F) = CHU,F)
§:CYU,F) = C*(U,F)

as follows:
1. For (fi)ie[ € C’O(L{,]-") let (5((fz)z€]) = (gij)i,jej Where

gij ‘= fj —fi € .F(UZ N Uj).

2. For (fij)i,je] c Cl(u,]:) 1et 5((fij)i,j€[) = (gijk) Where

Gijk = fik — fir + fij € F{U; N U; N Uy).

These coboundary operators are group homomorphisms. Thus we arrive at
Definition 2.17. Let
Z\U,F) = Ker(C'U,F)> C*U,F)),
BU,F) = Im(CU,F)> c u,r)).

The elements of Z'(U,F) are called 1-cocycles and those of BY(U,F) are called 1-
coboundaries.

Definition 2.18. The quotient group
H'U,F):=2"U,F)/B*U,F)

18 called the first cohomology group with coefficients in F and with respect to the
covering U.

An open covering B = (Vi )rek is finer with respect to the covering U = (U;);er, denoted
by B < U, if every V}, is contained in at least one U;. Thus there is a mapping 7: K — [
such that

Vi C U for every k € K.

We can now define a mapping
72U, F) - ZY(B, F)
in the following way. For (f;;) € Z*(U, F) let t4((fi;)) = (gr1) where
gkt = fre),r)| Ve NV, for every k.1 € K.

This mapping induces a homomorphism of the cohomology groups (also denoted by t%)
and we are finally ready to define H'(Y, F).

12



2.2 Compact Riemann surfaces

Definition 2.19. Given three open coverings such that W < B < U, one has
5, ot =44,
Now define the following equivalence relation ~ on the disjoint union of the H* (U, F),
where U runs through all open coverings of Y, for two cohomology classes € € HY (U, F),
neH' U, F) by
E~n & 3 open covering B with B <U and
B <U' such that t4(¢) = t%/ (n).

The set of equivalence classes is called the first cohomology group of Y with coefficients
in the sheaf F:

HY(Y,F) = (UHI(U,f)> [~
u
The following theorem shows how one obtains H'(Y, F) by using a single open covering

of Y.

Theorem 2.20 (Leray, [21I], Theorem 12.8). Let F be a sheaf of abelian groups on a
topological space Y and let U = (U;);e be an open covering of Y such that H (U;, F) = 0
for alli e I. Then one has

HYY,F) ~ H U, F).
Such an open covering U is called a Leray covering with respect to F.

Now suppose D is a divisor on the Riemann surface Y. For any open set U C Y define
Op(U) to be the set of all meromorphic functions on U which are multiples of the divisor
—D,ie.

Op(U) :={f e M(U) | ord,(f) > —D(x) for every x € U}.
Together with the natural restriction mappings, Op is a sheaf. In the special case of
the zero divisor D = 0 one has Og =: O, the sheaf of holomorphic functions. Note that
HY(Y,0p) and H°(Y,Op) := Op(Y) are vector spaces.

We recall the definition of the genus of a compact Riemann surface before we state the
theorem that is central in the theory of compact Riemann surfaces.
Definition 2.21. For a compact Riemann surface Y,
g :=dim H (Y, 0)
is called the genus of Y.

Theorem 2.22 (The Riemann-Roch Theorem, [21], Theorem 16.9). Suppose D is a
divisor on a compact Riemann surface Y of genus g. Then H°(Y,Op) and H*(Y,Op)
are finite dimensional vector spaces and

dim H*(Y, Op) — dim H (Y, Op) =1 — g + deg D.

13
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Definition 2.23. The non-negative integer
i(D) := dim H' (Y, Op)
1s called the index of speciality of the divisor D.

We can reformulate the Riemann-Roch Theorem in the following form
dim H*(Y,Op) =1 — g+ deg D + i(D).

We will now state the Serre Duality Theorem that permits a simpler interpretation of the
cohomology groups H'(Y,Op) in terms of differential forms.

For this purpose let Y be a compact Riemann surface. For any divisor D € Div(Y) we
denote by 2p the sheaf of meromorphic 1-forms which are multiples of —D. Thus for
any open set U C Y the linear space Qp(U) consists of all differential forms w such that
ord,(w) > —D(z) for every z € U.

Theorem 2.24 (The Duality Theorem of Serre, [21], Theorem 17.9). For any divisor D
on a compact Riemann surface Y the map

ip: H(Y,Q_p) = HY(Y,0p)*, w—ip(w)

with
in(w) : H(Y,0p) = C, € = ip(w)(€) = Res(&w)

is an isomorphism of vector spaces, i.e. H'(Y,Q_p) ~ H(Y,Op)*.
Remark 2.25. From the Serre Duality Theorem one immediately obtains
dim H'(Y,Op) = dim H*(Y,Q_p).
In particular for D =0 one has
g = dim H (Y, 0) = dim H°(Y, Q).

Thus the genus of a compact Riemann surface Y is equal to the mazximum number of
linearly independent holomorphic 1-forms on Y. One can now reformulate the Riemann-
Roch Theorem as follows:

dim H°(Y,0_p) — dim H*(Y,Qp) =1 — g — deg D.

Theorem 2.26 ([2I], Theorem 17.12). The divisor of a non-vanishing meromorphic 1-
form w on a compact Riemann surface of genus g satisfies

deg(w) = 29 — 2.

Thus the canonical divisor K satisfies deg(K) = deg(w) = 2g — 2.

14



2.3 Lie groups

2.3 Lie groups

In order to understand the concept of moving frames and the following considerations,
one has to recall some basic facts about Lie groups. We will also turn to the description
of S? via the Lie group SU(2).

Definition 2.27. Let G be a Lie group. For g € G we consider the maps of left and right
multiplication by g

Ly,:G— G, h — gh,
Ry,:G— G, hw hg

A wvector field X : G — TG is called left-invariant, if
dLgo X =X oLy forallg € G.

With the above definition it follows that left-invariant vector fields are uniquely deter-
mined through their values at the identity e, since

X(g) =dcLgX(e).

Denoting the linear space of left-invariant vector fields by I'f(G) one obtains the
following vector space isomorphism

FL(G) — TeG
X — X(e)

with inverse map given by T.G 3 ve — X € I'(G), X(g) := deLg(ve).

Definition 2.28. The Lie algebra g associated with a Lie group G is the tangent space
of G at the identity e, i.e. g = TG, together with the Lie bracket operation g X g — ¢
given by

(X, Y)(f)=XX(f) —Y(X(f)) for X,Y €g and smooth f:G — R.
Here the vector field X acts on the function f by X(f) := df (X).

Thus the left-invariant vector fields, equipped with the commutator [-, -] correspond to g.
Moreover, the tangent bundle of a Lie group is trivial:

TG — Gxg
Vg = (g,dgL;I(’Ug)),

where the inverse map of this isomorphism is given by (g,ve) — deLg(ve). We can now
define the Maurer-Cartan form.

15
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Definition 2.29. The (left) Maurer-Cartan form is the g-valued 1-form g — 04 with

0y: TG — g
vy > dgLy(vg).

This is often written as 8 = g~ 'dg.

For two g-valued 1-forms «, 3 we define the g-valued 2-form [a A 5] by
[a ABI(X,Y) == [a(X), BY)] — [a(Y), B(X)]

for vector fields X, Y. Now we arrive at the following well-known

Proposition 2.30. The Maurer-Cartan form satisfies the equation
2d0 + [0 N 6] = 0.
It is called the structure equation of or the Maurer-Cartan equation on g.

Proof. First we note that
do =d(g~ ') Adg.

To compute d(g~!), consider the function e identically equal to the unit e € G and note
that it equals the product of g and g—'. Then we have

0=d(e)=d(g'g)=d(g~")g+ g 'dg.

So, d(g~ ') = —g~(dg)g~! and thus

B B B B 1
dd = —g 1 (dg)g ' Ndg = —(g7 dg) A (g 1dg):—9A9::—§[9A9}.

We state the following proposition that will be useful later on.

Proposition 2.31. For a map f : M — G, the pullback w := f*0 also satisfies the
Maurer-Cartan equation, i.e.

2dw + [w A w] = 0.
Proof. A short calculation yields

2w + [wAw] = 2d(f*0) + [f*OA f*0] = 2f*d0 + £*[0 A 6]
= fY2d0+[0A6]) =0

and thus the claim is proved. ]
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The Lie groups SL(2,C) and SU(2). Let us consider the Lie group SL(2,C) := {A €
Ms42(C)| det(A) = 1}. The Lie algebra sly(C) := {B € Max2(C) | tr(B) =0} of SL(2,C)
is spanned by €y, e_, € with

(0 _(o0y (i 0
t—\ o) " \10/) " \0o —i)°

Remark 2.32. Another commonly used basis for sla(C) is given by the Cartan-basis

() (Y-t

It will be convenient to identify S* with the Lie group
SU(2) = {A€ Myys(C)|det(A)=1, A'=A"1})

= {(z _Zw>‘z,w€(CWith |z[2+]w|2:1}283.

w

The Lie algebra corresponding to SU(2) is denoted by su(2) and a direct computation
shows that

su(2) = {B € May2(C)|tr(B) =0, B'=—-B}

. i$4 —r3 + ixg
T3 + 122 —1Zy

The identification S* ~ SU(2) results from the following proposition (see [22], Chap. 5).

To, X3, T4 € R} ~ R3.

Proposition 2.33. The map ® : R* — ]R%/Iat given by

2 D) = X = ( e g +)
xr3+1Tr0 X1 —1T4

is an isometry, i.e. (z,y)rs = (P(x), d)(y)>R%M for all z,y € R%. Here the inner product

(-, '>R‘;J on R%, . is given by
at

(X, Y )pa

Mat

= Ltr(XY"), XY € Ry,

Remark 2.34. If we consider the complex bilinear extension of (-,-)ga to C* the inner
product (-, ->R§l\“ is replaced by (compare [22], Chap. 5)

(X,Y) = 2tr(Xo2Y'0y) with oo = (977).
Proof. Consider z,y € R* and their images X = ®(z),Y = ®(y) € R};,,. Then we get
—t
(@(2), @(y))ps,, = (X, Y)py = 5tr(XY")
_ L [<a:1 +izy —a3 +z’x2> ( Y1 —iys Y3 — iy2>]
2 T3 +ixre T — QT4 —Yy3—iy2 Y1+ iy
= T1Yy1 + T2y2 + T3Y3 + T4Ys

= <x7y>R4'

This shows that ® is an isometry and concludes the proof. O

17
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Remark 2.35. Restricting ® to the 3-sphere S® one obtains the following commutative
diagram:

TS —2% TSU(2)
Wll lﬁz
§8 —2>SU(2)

Here 7y, T3 denote the projections of the tangent bundle of S and SU(2) respectively.
Moreover, d® respects the metrics on TS and TSU(2) and there holds

(0, W)t = (dB(v), dD(w))gs = Ltr(a- B') = —Ltr(a- B)

Mat

for v,w € T,S? and a := d®(v), B := d®(w) € s5u(2).

2.4 The concept of moving frames and Lax pairs

Given a Riemann surface M with coordinates x, y we can introduce the so-called extended
frame for an immersion f : M — S3. Again, we follow the terminology introduced in [22].

Definition 2.36. Let f: M — S3 C R* be an immersion of a Riemann surface M. The
map F : M — SO(4) given by

pwf@w=0@>f@) @@WN@)

I 11y (p)
is called the (normalized) extended moving frame.

Given an immersion f : M — S* ¢ R* of a Riemann surface with complex coordinates
z,z, we set F := (f, f2, fz, N) and can check that F satisfies the following integrability
conditions.

Proposition 2.37. Let f : M — S3 be a conformal immersion of a simply-connected
Riemann surface M and set F as the matrix F = (f, f, fz, N). Then F is a solution of
the system

F.=FU, Fz=FV

with
0 0 —ie™ 0 0 —i1e®™ 0 0
1 2u, 0 -H 0 0 0 —2Qe
Z/{: —2u 5 V_
0 0 0 —2Qe 1 0 2u —H
0 Q@ LHe™ 0 0 3He™ Q@ 0

The pair of matrices (U,V) is called the Lax pair of the immersion f.

18



2.4 The concept of moving frames and Lax pairs

Proof. The result is classical, but nevertheless we present a proof in order to fix notation.
Since f maps to S® we have (f, f) = 1 and obtain (f, f.) = 0 = (f, fs) by Leibniz’s
rule. Moreover, the unit normal field N with (N, N) = 1 satisfies (f, N) = 0 as well as
(fe, N) = 0 = (fy, N) due to its definition and thus (f,, N) = 0 = (fz, N). Since f is
conformal we have (fy, f,) = 0 and (fz, fz) = €** = (fy, f,). This leads to (f., f;) =0 =
(fz, fz) and (f, fz) = %62“. Moreover, we get

diz<f7fz> = <fz;fz> + <f7 fzz> = <f7fzz> ; 0

aswell as (f.z, f.) = 0= (fz2, fz) and (f.., f.) = 0 = (fzz, fz) by taking the corresponding
derivative of (f., f.) = 0 = (fz, fz). Differentiation of (N, f) = 0 and (N, N) = 1 leads to

LN, f) = (Nay )+ (N, f2) = (N, f) = 0

and (N,,N) = 0 = (N3, N). Thus the derivatives of the entries of the extended frame
F = (f, [, [z, N) with respect to z are given by

foo= U P e 20 e 202 2 4 (g )N
.
= <fz7f2>2€%7
foo = Ao D o F2 8 (o 19202 4 (e )N
= <f227f2>2g72+<f227N>N7

foo = Afes D o F2 08 4 (o 19202 4 (e )N

= <f227f>f+ <fz§aN>Na
No = (Ve )+ (N f20225 4 (V. 2225 4+ (V. N

= (N, f2>2€j;7zu + (N, fz)Qe‘é—i.

Note that fz, fzz and Nz are obtained by complex conjugation. Recall that the Hopf
differential ) and the mean curvature H are defined by

Q= (f.-, N), $He™ = (f.z,N).

If we differentiate (f,, f) = 0 with respect to zZ we get (f.z, f) = —(f., fz) = —%62“ and
differentiating the equation (f., fz) = %62“ one obtains

(foor f2) = €®u, and  (fsz, f2) = €us.
Moreover, differentiation of the equations (N, f,) = 0 and (N, fz) = 0 leads to
<Nz7fz>:_<N,fzz>:_Q and <Nzaf2>:_<Naf2z>:_%H62u-

Equipped with all these equations one can directly check that the matrices Y = F~L1F,
and V = F~1F; are of the form stated above. ]
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Lax pairs in terms of 2 x 2 matrices. We will rework 4 x 4 Lax pairs into 2 x 2 Lax
pairs and make the following observation: Obviously the matrix Fes O(4) acts on R%,
Via the identification of R* with R}, (see Proposition one obtains an identification
of F with (F,G) € SU(2) x SU(2)

T Fr +— ®(x)— FO(2)G™' = FXG™! (2.4.1)
with
F.=FU, F:=FV, G,=GU, G:=GV (2.4.2)

or in a shorter form
dF = Fa, dG=Gp
with
a=Udz+Vdz=F 'dF, B=Udz+Vdz=G 'dG.
With respect to the group action X — FXG™! the pair (F,G) is equivalent to the pair

(—F,—G) and therefore one obtains a double cover of SO(4) by the group SU(2) x SU(2).
This leads to the following commutative diagram:

SO(4) —= SU(2) x SU(2)/ £ (1,1)

ol B

R4 R%\/Iaﬂ:

Here ¢1, ¢2 denote the group actions as stated in (2.4.1). Finally the above identification
yields the map f via

f=Fel +— [f=F®(e))G '=F1G ' =FG"
We now calculate the new Lax pairs (U, V) and (U, V) (compare with [22], Section 3.2).
Lemma 2.38. The double cover of SO(4) is SU(2) x SU(2) via the group action

X — FXG!

and the Laz pair (U, V) is transformed to

U — 1 Uz (H +i)e 1 —Uz 2e74Q
2\ —2e7UQ —u, T2\ —(H-de*  uz )’

~ 1 Uy (H —i)e" = 1 —uz 2e74Q
U= 2 <—26“Q —U, > V= 2 <—(H+i)e” uz > '

20



2.4 The concept of moving frames and Lax pairs

Proof. Consider the Pauli matrices

(01 (0 —i (1 0
=1 0) 27\ o) 7 \o -1)°

Let F, G € SU(2) be the matrices that rotate ®(e;) = 1, ®(e2) = io1, P(e3) = —ioz and
®(eq) = iog (see Proposition [2.33)) to the (2 x 2)-matrix forms of f, I;”%I’ % and N via
the group action (2.4.1)) of SU(2) x SU(2) on Ry,,,, i.e.

f=F1G™!, Jo _p (io1) G4, v _p (—ios) G7Y, N = F(io3) G™L.

| fel £yl

We now define

U — (Un U12> — FlF, V= (Vn V12> — FLE,

U1 Uz Vor Voo
ﬁ = @jll ng = G_le; ‘7 — ‘:/11 ‘212 = G_1G2
U1 U Var Ve

and can compute U, U ,V and V in terms of the conformal factor u, the mean curvature
H and the Hopf differential (). Making use of

fx _ f:}c o 0 4 -1 fy _ fy _ (O _1> -1
Je _Je _p (Y gt v v _p G
|fal et <% 0) [yl et 1o

R 0 1 —1 - su 0 0 —1
fz—zeF<O O)G , fz—zeF<1 0>G .

The entries of the matrices U,V and ﬁ, V will be derived in the following.

we get

Differentiating f5 with respect to z leads to

L 0 0\ ., 0 0\, .4
o 0 0\ 1 (0 051
s (0 (0 ) p (0 %))
. Uiz 0 1
= zJz “F 7 ad .
uzfz tie (UQQ_UH —U12> ¢

We now differentiate f, with respect to z:

re = weprier (5 () ) r(f D) @)
= usf. +ie" (FV (8 (1)) Gl F (8 é) ‘7G‘1>

Cum (Va1 Vii—Vag\ 41
= zJz F .
uszf, + ie < 0 Vo >G
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Since f,z = fz, we therefore obtain

cup (Va1 Vi — %2) —1 u < Uiz 0 > 1
Uz fr +1e"F G =u,fz +ie"F ~ ~ G
/ ( 0 Vai d Usp — U1 —Uya

and thus
. Uiz 0 ) -1 (—‘721 Vi — 1722) —1)
usf, —u,fz =ie" [ F ~ ~ G —-F G ,
4 4 < <U22 —Un —Up 0 Va1

implying

Usy — U1 —Va1 — Una
Writing out the left part of the above equation yields

Uifz_uzfi = ZeuF< 0 %Z> G_l

_uz

— iU F ‘721—1-({12 —V11+‘:/22 a1
Usg — U1 —Vo1 —Us2

Hence we get
Vit —Vag +uz =0, Uy —Up+u, =0, Voy=—Upp, Vo =—Ula. (%)

Computing f,, yields

fo = uofo+ie" <F (8 é) G—1+F(8 é) (G‘1>z>

_ T 0 1 -1 - 0 1 i —1
e (ro (0 D) () o)
—Uy Uy — [722) a1

— uzfz-l-z'e“F( 0 Uy

There holds f.. = 2u,f. + QN (see Proposition [2.37) and with the formula N =

F (io3) G we therefore obtain

—Uy Uy — ﬁ22> a1

2u, fr + QN = u, f, + ie"F ( 0 Usy

thus
ie”F<_U21 U11—U22>G—1 — W f.+QN

0 U2
. . e—uQ Uy -1
= e F( 0 —e“Q) G .
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2.5 The integrability condition and a C*-family of flat connections

This gives N _
Uy = Uy = —e"Q, U1 — U —u, =0. (%)

We consider fz, again and obtain

. Uiz 0 > 1
e = Upfz+ie"F ~ ~ |G
4 4 <U22—U11 —Uia
#) U2 0 1
B g b
ie < 0 —U12> G

With N = F (io3) G~ and fz, = —3e* f + JHe* N (compare Proposition [2.37) we get

fz: = —Lie®f+1He™N
1: u 1 u
- - 5@6 O 1 . u §H€ 0 1
= e F( 0 %ie“)G + e F< 0 —%He“ G

and thus Uy = 3(H +i)e?, Ups = $(H —i)e". Considering f= one obtains

fzz = 2uzf: + QN

) Via 0 ) -1
= uzf; +ie"F ~ ~ |G
4 (VQQ - Vi1 —Vio
and therefore N N
Vie =Vio = €_uQ, Vag = Vi1 —uz = 0. (* * *)

From the equations , and we deduce that the Lax pairs in terms of 2 x 2-
matrices are of the form

1 (& (H +1i)e 1 —uz 2e74Q
U= 2 <—2€_"Q —U, ) V= 2 <—(H —i)e'  ug ) ’

~ 1 U, (H—1i)e"\ o~ 1 —uz 2e74Q
0= (catng ") T e T00):

2.5 The integrability condition and a C*-family of flat
connections

We want to introduce a A-dependent sly(C)-valued one-form ay with A € C* following
the exposition of Hitchin in [30] to obtain a C*-family of flat connections.

Assumption 2.39. From now on we will assume that H = const. Thus the corresponding
surface will be of constant mean curvature (CMC).
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The equation dF = Fa can be solved if and only if @« = Udz + Vdz satisfies a certain
integrability condition (see [22], Section 3.1).

Theorem 2.40. Let O C C be a convex open set containing 0. For U,V : O — sly(C)
there exists a unique solution F: O — SL(2,C) of the Lax pair

F.=FU, F.=FV (+)
for an initial condition F(0) € SL(2,C) if and only if
U: =V, = [U,V]=0 with [U,V]|=UV —-VU.

FEach pair of solutions F, F of differs only by multiplication with a constant matrix
G, i.e. ' =(GF.
Proof. Suppose there exists an invertible solution F. Since F,z = Fs, one obtains
OIFzg—FEZ:FUg—F‘/;—FFgU—FZV
and therefore
0=FU;—-FV,+FVU - FUYV.
Thus Uz — V, — [U, V] = 0 must hold.

Now suppose that Uz — V. — [U,V] = 0 holds. Reworking this into the coordinates
(z,y) we get
Up + iUy — Vy +iV, — 2[U, V] = 0.

Then we can solve the ordinary differential equation
(F(2,0)), = F(z,0)(U + V)(x,0)
with initial condition F'(0,0). For each fixed z it remains to solve

(F'(20, )y = F(20,y)i(U = V)(20,y)

with initial condition F'(x¢,0). Hence F(x,y) is defined and there holds F,, = Fi(U — V)
for all x,y. Since
(Fr = F(U+V))(2,y) =0

if y =0 and F,, = Fy;, we have

(Fe —FU+V))y = Foy—F(U+V)-F(Uy+V,)
( (U =V))a—Fy(U+V)=F(Uy+ V)
(U—-V)+Fi(Uy = Vy) — Fy(U+V) - F(Uy,+ V)
Foi(U—-V)+ Fi(2[U,V]) — F,(U+V)
Fi(U-V)+ Fi(2[U,V]) — Fi(U = V)(U +V)
= (F,—F{U+V))i(U-=V).

Z

24



2.5 The integrability condition and a C*-family of flat connections

Set G = F, — F(U+ V). G is a solution of G, = Gi(U — V) with initial condition
G(0) = 0. By the uniqueness of the solution G = 0 and therefore F, — F(U + V) = 0.
Hence F' is a solution to the Lax pair, since

F,=1L1(F,—iF,)=FU, F;=3(F,+iF,)=FV.
Considering
det(F) - tr(F~'F,) = (det(F)), and det(F)-tr(F~'F;) = (det(F))z
with U,V € sly(C) we have
(det(F))z = (det(F))z =0

and it follows det(F) = 1 since det(F'(0)) = 1. Now assume that there exists another
solution F' of and consider

(FF™Y), = FUF'—FF 'FUF~!' =0,

(FF™Y; = FVF'—FF'FVF ' =0.

Thus G := FF~! is constant and therefore F = GF. If we fix the initial condition by

F(0) = F(0) the matrix G must be the identity 1 and F' = F. O
Corollary 2.41. The matrices U,V from Lemma[2.58 obey the compatibility condition
Uz =V, — [U,V] =0,

if and only if
2u,z + 2e*(1 + H?) — %QQG*Q“ =0, Q:; =2H.e*.
These are the Gauss and Codazzi equation respectively.

Remark 2.42. Since H = const. due to Assumption [2.39, we get Qz = 0 and thus Q 1is
holomorphic.

A zero-curvature condition for the connection form a. We want to take another
point of view and will treat the Gauss and Codazzi equations as a zero-curvature condition.
For this purpose recall that for a map F' : R? ~ C — SL(2,C), the pullback a = F* of
the Mauer-Cartan form 6 also satisfies the Mauer-Cartan equation

1
da+§[a/\a]:0

due to Proposition Conversely, for every solution o = o/dz + o’dz € QY(C, sl2(C))
of the Mauer-Cartan equation we have

1
doz+§[0z/\a]:0 — o, —adl —[d,d"] =0,
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and thus « integrates to a smooth map F': C — SL(2,C) with & = F*# due to Theorem
In particular one obtains the Gauss and Codazzi equations from the Maurer-Cartan
equation for a on sly(C).

If one thinks of a as a connection form, doo + o A o = dav + %[a A @] is the corresponding
curvature form. Thus the Maurer-Cartan equation is a zero curvature condition and the
corresponding connection V = d — « is flat.

A C*-family of flat connections. We want to introduce the so-called spectral param-
eter \ € C* that allows us to define a C*-family of flat sly(C)-connections V) := d — wj.
In order to achieve this we need some preparation.

For w € Q!(C, sl3(C)) we perform a splitting into the (1,0)-part w’ and the (0, 1)-part w”,
ie.

/ "
w=w +w,

according to the decomposition of the tangent bundle TC with d = 9 + 0. Setting the
x-operator on Q'(C, sl5(C)) to

*w = —iw +iw’
one obtains the following

Lemma 2.43 ([49], Lemma 2). Let f : C — SU(2) ~ S? be a conformal immersion and
w= f~Ydf. The mean curvature H is given by

2d * w = H[w A w].

The trivialiuations of T'SU(2) that are induced by the left and right multiplication in
SU(2) lead to covariant derivatives V¥ and V# such that (SU(2), VF) and (SU(2), V)
are flat. Moreover, the Levi-Civita connection for SU(2) is given by V = %(VR + VE).
In [30] Hitchin investigates harmonic maps f : M — S® from the torus to the 3-sphere
and uses the equations

d¥(w) =0, d¥(xw)=0

to construct a C*-family of flat connections on M. Here w = f~'df and dV is the exterior
derivative with respect to a connection V. In particular there holds dV" = d. We will
now derive similar formulas with the help of Lemma in order extend this ansatz to
the present situation.

Lemma 2.44. Let f : C — SU(2) ~ S? be a conformal immersion and set w = f~1df.
Then we have

d¥ (w) = 0.
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2.5 The integrability condition and a C*-family of flat connections

Beweis. Applying Cartan’s formula for the exterior derivative with respect to V we get
d¥ (W) (X0, X1) = Vxw(X1) = Vix,w(Xo) — w([Xo, X1])
1
= Viw(X1)+ 5 w(Xo), w(X1)]

1
—V,w(Xo) - 5 lw(X1), w(Xo)] — w([Xo, Xi])
1
= ¥ (@)(X0, X1) + 5l A w] (X0, X1)
= 0,
since w satisfies the Maurer-Cartan equation. O

Lemma 2.45. Let f : C — SU(2) ~ S? be a conformal immersion and set w = f~1df.
Then we have

1
dY (xw) = §H[w A w].
In particular one obtains dY (+w) = 0 in case of a minimal surface.

Proof. Setting w = f~ldf = G(a — 8)G~! one immediately obtains

sw=Nw=-wN with N =G (8 _OZ) G

Applying Cartan’s formula for the exterior derivative with respect to V we get

dV (+w)(Xo,X1) = Vx, xw(X1) — Vx, *w(Xg) — *w([Xo, X1])

= V&, xw(X1)+ %[W(Xo), *w(X1)]

VY, % 0(Xo) — S w(X1), 5(Xo)] — ([ Xo, Xa))

= 7" () (Xo, Xu) + 5 (o), Ne(X1)] ~ 3 [w(Xo), Neo(X0)]
= d¥" (sw)(Xo, X1)

= %H[w A w](Xo,Xl)

due to Lemma For a minimal surface one has H = 0 and therefore dV (xw) = 0. [

The following result is based on an observation by Uhlenbeck [50] and the calculation
presented in [36], Section 1.1.

Lemma 2.46. Let f : C — SU(2) be a conformal immersion and w = f~1df. For the
(1,0)-part " of w = w' + w"” we have

1
d'f = =51 — i)W AW
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and for the (0,1)-part " of w there holds
dw" = —%(1 +iH)[W A"
Proof. We know that w satisfies the following equations
dw + %[w/\w] = 0,

dxw = %H[w/\w].
Combining these equations one obtains d *x w + Hdw = 0, or after expanding *w
(H —i)dw' + (H +4)dw” =0 and (H —i)d"w' + (H +1i)d'w” = 0.
Moreover, one has
0=dw+ %[w Aw] =dw" +d"W + [w AW
s d'W = -d" + W AW

and therefore obtains

//CU/ — _ IUJH + [wll /\w/] — H B Z:d//w/ + [w// /\u}/]7
(3

o+
ie. 1 1
d'W = 5(1 —iH)[W' AW = —5(1 —iH)[w A"

An analogous calculation shows the equation for the (0, 1)-part w”.
Proposition 2.47. Let wy be defined by
1 1
wy = 5(1 + A HA+iH)G + 5(1 + M) (1 —iH)w" for X e C*.

Then there holds )
dwy + 5[&))\ /\w,\] =0 VX\eC,

i.e. for every A € C* the form wy is the connection form of a flat connection.

Proof. By applying the results of Lemma [2.46] a straightforward calculation shows
1
dwy + i[w)\ Awy = duwf +d"w) + [y Awh]
1 1
= SI+N0- iH)d'w" + 5(1 + A H(+iH)d'W
A+A"HA+ N0 +iH)(1 —iH)[W AW
(=2= AT A+ (@ +AHA+N)
~(1+iH)(1 —iH)[w' AW

= 0
since (1+A"H)(1+A) =2+X"1+
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2.5 The integrability condition and a C*-family of flat connections

Proposition 2.48. Let G € SU(2) be the solution of dG = GB. By performing a gauge
transformation with G the sly(C)-valued form

1 1
wy =51+ AH( 4+ i)W + S+~ iH)w"

1s transformed into

1 ( U dz — uzdz iINTH(1+iH)etdz + 26_“de>

M=y —2e "Qdz + N1 —iH)e"dz —u,dz + uzdz

Setting Ao = —1 and A\ = %J_rzg one obtains 3, € QY (C, suy(C)) resulting from the Lax
pairs (U, V) and (U, V) respectively, i.c. ay, =B and oy, = a.

Proof. By considering

=1 o . _1_1 0 2ie* dz —1
w=frdf =Gla= PG =56 gugs o )G

we obtain for wy = $(1+ A1) (1 +iH)w' + (1 + A\)(1 — iH)w”

W) —

lG 0 i1+ A" H(1+iH)et dz a1
27 \i(1+ \)(1 — iH)e" dz 0 '

Gauging wy with G leads to

ay = G luG+G G

1 0 i1+ 21 +iH)ev dz
2 i(1+ N1 —iH)evdz 0
n 1 uydz —uzdz —i(1+iH)e'dz + 2e7*Qdz
2 \—2e7"Qdz —i(1 —iH)e"dz —u,dz + uzdz
_ 1 uydz — uzdz iINTH(1 +iH)etdz + 27 Qdz
2\ —2e7Qdz +iA\(1 — iH)e%dz —u,dz + uzdz
and the claim is proved. O

Remark 2.49. Solving dF) = Fha) yields G = F\, and F' = F)\, respectively and
therefore
f=FG ' =F\F.

A transformation of the form «). Finally, we want to relate the above «a) to the
representation that has been introduced in [35] 36]. Rescaling of the conformal factor e*
and the Hopf differential @) and after performing a Mdbius transformation (with respect
to the spectral parameter \) we obtain

vi=e"V/H2+1, Q:=2QVH2+1
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and 1 —iH 1+ iH
P P e T o S o Nl
H?2+1 H?2+1

and therefore

1 (v_lvzdz — v ldz  idTlodz + iév_ldé )

Q) Q) = = ~ ~
2\ iQuldz+ i vdz  —v tu,dz + v uzdz

: 1 : N, —1+iH N, — _14iH :
The points A\g, A1 € S* are transformed into Ay = H72l+1 and A\ = Higﬂ respectively.

The mean curvature H is now given in terms of XQ and Xl, i.e. one has
Do+ A
=222
Ao — A1

In the following we return to the notation (e*, @, \) for the transformed quantities (v, Q, X)
and consider the “inverse” situation. In this general case Ay # A1 will not be symmetric
with respect to the imaginary axis as in the preceeding construction. We obtain the
following version of a result by Bobenko [9] (compare with [36], Theorem 1.1).

Theorem 2.50. Let u: C — R and @ : C — C be smooth functions and define

o — 1 u,dz — uzdz ixTletdz + iQe “dz
AT 9 1Qe “dz + ie¥dz —u,dz + uzdz ’

Then 2day + [ax A ay] = 0 if and only if Q is holomorphic, i.e. Qz = 0, and u is a
solution of the reduced Gauss equation

1 _
2u,z + 5(62“ —QQe ) = 0.

For any solution u of the above equation and corresponding extended frame F, and
Xos A1 € SY Ao # Ai, dce. A\, = €tk the map defined by the Sym-Bobenko-formula

—1
[ =F\Fy,
is a conformal immersion f : C — SU(2) ~ S® with constant mean curvature

Ao+ A
H—
Mo — XN

conformal factor v =e“//H? + 1, and Hopf differential @dz2 with @ = —i(){l —)\al)Q.

Proof. We adapt the proof of [35], Theorem 1.1. Decomposing «; into the (1,0)- and
(0,1)-parts ay = o\ dz + odz we get

= COt(to - tl),

50/ - 1 Uyz i)\_1U56u
AT 2 —iuge’“Q + Z.eiqu —Uyz ’
90 = 1 —Uzz _iuze_u@ + ie_uaz
AT 2 e Uyz ’
(o}, 0l] = 1 —e?" + QQe 2iuzA"te" + 2iu.e'Q
ATTEA 4 \ —2idu.e® — 2iuze “Q et — QQe 2
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2.5 The integrability condition and a C*-family of flat connections

Since 2day + [y Aay] = 0 is equivalent to da)y, —daf = [a}, o] we see that v must fulfill
the reduced Gauss equation and @z = 0.

Now let u be a solution of the above equation and consider for A\g, A\; € S*, A\g # A1 the
map f = F>\1F_1 defined by the Sym-Bobenko-formula. Setting w = f~1df = Fy,(ay, —

ax)Fy, ! one has
W =fof = FyFy ((3FA1)F + Iy, (OF;, ))

JF (FM%F — P\ F;, (8FA0)FA_01>
FAO (a)\l - a)\o) F)\ol

and therefore )
flof = iie“()\fl — A ) FaerFy

A similar calculation reveals f~10f = Lie“(\ — )\O)F,\Oe,Fi)l (recall that e_ = ¢, =
(99)) and it is clear that (f~10f, f~10f) = (f~10f, f~10f) = 0. For the conformal
factor one has to calculate

V= 2(f70f, F7101) = MO - A — o).

For w = f~tdf = Fy,(ay, — a,\O)F/\*O1 one has the splitting

w = 2130 (A= Ao heterdz + (M — Ao)ete_dz) Fy !
1 _ _
— 2’LF/\O (AT = A+ (A= 20)¢") Fi

where we set (' := e%e dz and (” := e“e_dz. Then another calculation shows
d+w= 1@@ Aot = MATHEy[C A CFC!
4 140 0 Ao o

and
1 B _ _
[wAw] = 5(1 — AMAg (1 = XA Ey [ A "IFy, 1

and therefore H =1 /\0+§1 is the mean curvature for f. From this formula we obtain
(H? + DT = A5 (A = Xo) =4

and thus v? = e¢?*/(H? + 1). Finally we want to determine the Hopf differential and
consider the normal N = F),eF, ! with e = (§9). Similar to the above calculations one

obtains ON = Fj, (&) € — E(J/)\O)F;O1 with

0 Lev(\Th 4 At
al/\le—eoz&():(_Qeu 2¢"( 10 o) )
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Thus one has

Q = <88f,N>:—<8f,(‘)N>:—<F*18fF)\O,F/\:1(‘)NFAO)

1 ( 051 ) ( %e“(leﬂal))t@
—Qe v 0

2
gt [(H ) ()]
1
I

A Aal)Q

and the claim is proved. O

Remark 2.51. Since Ao, A1 are not symmetric with respect to the imaginary axis in

general the formula Q) = \/WQ is not valid and one obtains the more general formula

Q= —i'()\l_l ~ X HQ from Theorem .

2.6 Transformation rules for a)

We want to investigate how the connection form «) behaves under certain parameter
transformations.

Lemma 2.52. Holomorphic transformations of the parameter z of the form z — w = w(z)
leave the Gauss and Codazzi equations invariant away from the zeros of %.

Proof. The Gauss and Codazzi equations for S® are given by
1
2u,z + 2e*(1 + H?) — 5@@672" =0, Qs=2H,e*.

Since H = const we only have to consider the first equation and investigate the trans-
formation of the corresponding terms resulting from this mapping. First we observe that
from the equation

WD) quydip = e**2) dzdz

we get

and therefore

Differentiation yields

d
QU(Z,Z)ZE = dfq,:

dw

dz

dw dw
2 wWW 1 1 1=
u(w, ) +n<dz> +n<dz>z_

z

2217(71)71)) -+ L@ + L.d%ﬂ
e\ @) a7 ) T\ () ddz)
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2.6 Transformation rules for o)

Since w is holomorphic and w anti-holomorphic we get

_ dw 2 ~ _ 1 2 2 1 3
2u(2,2)z = |52 | 2u(w, W)ws — 2’ c[liz:lvz ’ gchil; + dwy di;zli}z +0
4
dwl]?
. 20 (w, W) -
dz

Now consider the quadratic Hopf differential and its transformation rule for a given map-
ping, namely

_ ~ (dw\?
(MX:Q@P¢:Q:Q<uv.
dz
For a mapping of the above form the Gauss and Codazzi equations are transformed into
——2

2 1 (dw\? [dw\ ~= 1 ~
2u 2 —2u
2e°"(14+ H”) — B <dz> (dz) QQi(diw) @ e

dw |?

dz

- dw
ww 72

and therefore one obtains

dw

2
_ 1 ~= o~
(%@w+2§%1+fﬂ)—QQ62{):0
dz 2

From the above considerations we see that the Gauss and Codazzi equations are left
invariant away from the zeros of % and behave singular at these points. O

)

we see that the conformal factor u has a singularity at the zeros of %’.

Remark 2.53. Since
dw

dz

m%a:mmm+m<

We obtain the following version of a result by Bobenko (see [10], Section 2.3).

Theorem 2.54. The frame F)\ and the sla(C)-valued 1-form «y transform as follows
under a holomorphic mapping of the form z — w(z):

Fx— Fy-By and ay v w oy = B'azBy + By, dBy

with
Vi
Bw _ dz . %
z
0 4/ dw

sy
w
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Proof. Considering

a>\:§

(

one has to investigate the transformations of the quantities appearing in this matrix.

According to Lemma one gets

uydz — usdz
Qe "dz + iAe"dZ

ix"levdz +iQe "dz
—uydz + uzdz

)

dw\ 2y O (du)\lp
Q=(#)Q, Q=(g)Q
el — efl dﬂ dﬂ e U — e—ﬁ 1
~VaVaz B dw [do’
_pdw 11 P w11
e 2%" dz?’ = Yz 2%’ dz?
e /2 0
By first gauging with C' = < _ /2> one has
0 e ¥
1(ev2 0 e~ 2 (uydz + uzdz) 0
-1 - z z
¢do 2 ( 0 e“/2> < 0 e_“/Q(uzdz—f—uzdz))
—uydz — uzdz 0

1
2 0

and therefore

~ 1 —2uzdz ix"letdz +iQe "dz
-1 -1 z
ay:=CaC+CdC == 1. . _ .
A AC+ 2 <2Qe“dz + tAetdz —2u,dz
dw
By performing a gauge with D = dz y one obtains
w
SV
—2uzdz ixTle® dw _ 1 2+iQe ¥ dw 1 z
2uzd ATleny [ 92 \/EdJrQ Ve \/@d
D_l&)\D _ = § _ dz dz
iQe " % iiw dz+iXe™y/ % ilw dz —2u.dz
V dz V dz
_1 —2uzdz iN"eVdw + iée‘adu’)
2 \iQe "dw + iNe"dw —2u,dz
and
1 1 d’w g5
, i 0 i ﬁdz 0
— _ dz dz
D dD = 0 1 0 1 digjdz
2% J-
| (mEEdE 0
= 5 = 1 d?w .

—u,dz — uzdz

)
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2.6 Transformation rules for o)

This yields

ay = D 'ayD+ D 'dD

—2usdz + A P2dz i edw + iQeTdw

1
= = ~ - dz
2 \ Qe dw + iNdw  —2u.dz + 2L dz
dz
L omw e Qe
2 \iQe "dw + ire"dw — 20y dw :
ii/2

e

A similar calculation for the gauge with E = < o /2> transforms 5A into

0
1 ( Todw — Tpd  iN"leldw + iée—ﬂdw>
Z. )

) = — ~ ~
T2 Qe Tdw + iNdD  Tigdd — Tydw

thus
elu—u)/2 /%{’ 0
B, =CDE = %

0 e(ﬁ—u)/z\/glig

is the corresponding gauge for a mapping z — w = w(z). Since

- ) =~} log(42 - 42),
the gauge B,, is of the desired form. This concludes the proof. O

Remark 2.55.

1. From Theorem we get the formula e “/2F\D = e U2F, for the transformed
frame F and therefore

e (e“/QFA) D=e" (eaﬂﬁ\) = (e“/QFA> D= (eﬂ/QﬁA>

-1
dw
U ( dz> 0
D=e"""D = 1
[ dw

In particular the modified frame Fy' := U2 F\ satisfies FU = F;fﬁ, ie. FY(})
defines the inverse S~ of a spin-bundle S (compare with [10)], Section 2.3).

with

2. Setting V := d+«) the inverse frame F)\_1 may be regarded as a V-horizontal section
of the trivial C?-bundle V := M x C?> — M for a compact Riemann surface M of
genus g, i.e. VF/\_l = 0. We consider ay as the gauged connection form for the
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associated family fy starting from an immersion f : M — SU(2). Due to Hitchin
[30] the (1,0)-part ' = f~10f = %ie“()\fl —)\al)F)\OE_i_F);)l of w= fldf gives rise
to a line bundle

L := ker(w') with ker(w') = span{Fy, (§)} = span{F}, ({)}

of degree 1 — g. It turns out that L ® L ~ K~', where K is the canonical bundle,
i.e. S:= L7 is a spin-bundle since L~' = /K. Moreover, one obtains V = L& L.
From the proof of Theorem we see that the transformation of FY' exactly reflects
this decomposition.
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3 Spectral data for periodic solutions of
the sinh-Gordon equation

We will now derive spectral data (Y, D) for periodic finite type solutions of the sinh-
Gordon equation.

3.1 The monodromy and its expansion
The central object for the forthcoming considerations is contained in

Definition 3.1. Let F)\ be an extended frame assume that o) = F;ldFA has period T,
i.e. ax(z+7) = ax(z). Then the monodromy of the frame F) with respect to the period
T 15 given by

M7 = F\(z + 7)F ' (2).

Note that we have

dM{ = Fx(z+7)ax(z + 1)Fy 1 (2) = Fa(z + D)aa(2)Ey ()
= 0,

since ay(z 4+ 7) = a)(2) and thus M7 does not depend on z. Setting the period to p € C
and F)\(0) = 1 we get
M) := M} = F\(p)F; '(0) = FA(p)-

Assumption 3.2. Let us assume that the Hopf differential Q is constant with |Q| = 1.

We can rotate the coordinate z by the map z — w(z) = €z in such a way that we can
assume a real period p € R due to Remark Since

u(z) = u(e¥z) + In(| £ (e2)]) = u(e'2)

we get
u(e%z) = u(z) = u(z +p) = (e (z +p)) = u(e’?z + p)

for a suitable ¢ € [0,27) and p = ¢*p. For the corresponding B, (see Theorem [2.54)

there holds ,
s~z 0
5=y o)
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Chapter 3. Spectral data for periodic solutions of the sinh-Gordon equation

with 6 = e € S!. This corresponds to the isometric normalization described in [27],
Remark 1.5, and the corresponding gauged «) is of the form

1 < u.dz — uzdz ix~1oetdz + i’ye‘“dz)

= 2 \ive %dz 4+ iXdetdz —Uydz + uzdz

where the constant v € S! is given by v = §71Q = Q.

The sinh-Gordon equation. We can normalize the above parametrization with § = 1
and |y| = 1 by choosing the appropriate value for Q € S'. Then we can consider the
system

dFy = Fha) with F)\(O) =1

for
F(z,\):CxC*— SL(2,C)
and

o= 2 \ive "dz + idetdz —u,dz + uzdz

Since |y| = 1, wee see that the compatibility condition 2day + [ay Aa)] = 0 from Theorem
holds if and only if

1 ( uydz — uzdz ixTletdz + i’ye“di)

1
2uzz + 5(62“ — y¥e %) = 2u,; + sinh(2u) = 0.

Thus the reduced Gauss equation turns into the sinh-Gordon equation in that situa-
tion. The monodromy of F' is then M) = F(p, ) for a period p of the solution u of the
sinh-Gordon equation. For the following we make the additional

Assumption 3.3. Let v =9 = 1. This yields

o — 1 u,dz — uzdz ix“letdz 4 ie dz
AT 9 e tdz +iNe¥dz —wuydz fusdz )

If we evaluate a) along the vector fields 8% and a% we obtain

Uy = oz)\(a%), Vy = O‘A(a%)'

These matrices will be important for the upcoming considerations. In particular Uy reads

U, 1 ( —iuy z'xlef —i—ie“) ‘

T2 Lide® 4 ie Uy

Remark 3.4. Due to the one-to-one correspondence (u,uy) — Uy with

1 —iu ixTlet 4 je v
A e” +1e LUy

we can identify the tuple (u,u,) with the matriz Uy.
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3.1 The monodromy and its expansion

We will now investigate the Lax operator Ly(z) := - + U, (z,0) and take a closer look
at solutions F) : R — SL(2,C) of £ F\(z) = F)(z)Ux(,0). Given such a solution there
holds

L\@F @) = §HE @)+ Uz, 0Fy (@)
= —F @) Pa@)E (@) + Ua (@, 00 Fy (@)
= —F; (@) FA(2)Ux(x,0)Fy ' (2) + Ux(x, 0)Fy ' (x)

= 0,

i.e. one obtains a solution for the Lax operator Ly(z). The next lemma shows how « can
be integrated to obtain a solution F'.

Lemma 3.5. Let a: [0, p] — Max2(C) be smooth. Then the map

0 x tn to
v 1+ Z/ / / a(t)ats) -+ alty)dly - - - db
= Jo Jo 0

converges to the solution of %F = Fa with F(0) = 1. The map F is the so-called
fundamental solution.

Proof. The series converges absolutely, since for each summand of the above sum one has

’/O/Ot/ot a(t)a(ts) - - altn)dty - - - db
</ ’ / / ot ol - latt)lde -ty
< o[ [ et ot -,

< 2 ([ atnar)

Therefore exp( f; [|a(t)[|dt) is a majorant for this series and the claim is proved. O

Remark 3.6. Since My = F)(p) we see that the map X\ — M) is holomorphic for A € C*
and has essential singularities at A =0 and A = oco.

An asymptotic expansion of the monodromy M),. We seek an asymptotic expansion
of the monodromy M) corresponding to the frame F). The following lemma will be useful
for the asymptotic analysis at A = 0.

Lemma 3.7. By performing a gauge transformation with

we= 75 (o vn) (1)
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the frame Fy(z) is transformed into F\(2)gx(2) and the map Gx(2) := gr(0)"LFx(2)ga(2)
solves
dGy = G\B\ with By = gy 'axgx + g5 'dgy and GA(0) = 1.

Evaluating the form () along the wvector field 8% and setting y = 0 yields ﬁ)\(a%) =
F5B-1+ Bo + VABL with

_ (3 0 —u, _ (Lcosh(2u) —%sinh(2u)
= <(2) %) Ao = <—Uz 0 > = <2§sinh(2u) —;cosh( )> ‘

Proof. Considering
()= ez 0 1 -1
PE=RB 0 Vaes) 11

one obtains for g;la Ag) the matrix

1/1 1 u,dz — uzdz i%dz +ie2u/Ndz\ /1 —1
4\—1 1) \iLtdz+ie?/\dz —u,dz + uzdz (1 1 ) '

VA
Moreover,
14 11 1Y (undz + usdz 0 1 -1

A=y 1 0 —uydz —uzdz) \1 1 )°

and thus
By = gA_IOéAQAJrgA_ldgA
2u,dz i%dz +ie 2/ NdZ\ /1 —1
B dz + i/ \dz —2u,dz (1 1 )
1 dz +i cosh(2u)\fdz —2u.dz — isinh(2u)v/\dz

T2 2uzdz + i sinh(2u)V/\dz —i%dz — i cosh(2u)VAdz

= _1dz + Bodz + VAB1dz
with

10 0 —u, L cosh(2u) —1sinh(2u)
= (0 —é) > Po <—uz 0 ) » B <;sinh(2u) —%cosh(2u) )’
Evaluating the form [, along the vector field % and setting y = 0 yields B)\(a%) =
%5—1 + Bo 4+ VB with B_1, By and B; as given above. O

Since F) solves -2 - F\ = F)\U\(-,0) we assume that y is set to zero in the following consid-
erations. Let us consider the simplest case with u = 0.
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3.1 The monodromy and its expansion

Lemma 3.8. Setting u = 0 in the Maurer-Cartan form ay yields a frame Fo(x) with
monodromy

exp(P (L + V5
Mw—gk(“)( B exp@’(—%—ﬁ))) PO

Moreover, My o = £1 holds if and only if A € Dy with

Dy = {A €T | Myg=£1} = {A = 20" 4 2W0VER | ¢y,

Proof. Obviously the solution of

4 Gro=Grofr withu=0and G,p(0) =1

is given by Ly
B exp(x%(T + V) 0
Gro(z) = ( 0 exp(zg(—VA - \15))> '

Thus one obtains for x = p (recall that Gy o(z) = gx(0) 1 F\o(z)gx(2))

Myy = QA(O)GA(p)QA(p)_I:gA(O)GA(p)QA(O)_l

exp(B (L + V) 0
= o ( ? \g eXp(g)(—\A—l)\))) g (0)71

and finally a direct calculation shows M) o = +1 <= VI + \% € %’TZ < AeDy. O

Remark 3.9. Denoting by (A1(k))ken, and (A2(k))ken, the sequences given by

212 2 212 _ 2 212 2 212 12
Al(k): 27k p+2p7;k\/7rk P : Ag(k): 27°k*—p i:;kwﬂk P
we have the following limits for k — oo

lim Aj(k) =00, lim Aa(k) =0,

k—o0 k—o00

i.e. Dy C R has the accumulation points 0 and oco.

Let us relate the monodromy M) of the frame F(z) to that of the “vacuum” monodromy
My . Since S_1 does not depend on x we get from the theorem about variation of
parameters that the unique solution of

%GA(JJ) = Gi(x) <\%51 + Bo(z) + ﬁﬁl(w))
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Chapter 3. Spectral data for periodic solutions of the sinh-Gordon equation

with Gy (x) = gr(0) "1 Fy\(2)gx(x) and G5 (0) = 1 is given by
Ga(z) =) Gu(z) with Go(x) = exp(F:f-1) and
n=0

Griaa) = [ Gult)0(t) + VA0 exp(E55) .

Following this ansatz a careful asymptotic analysis [37] shows that for every ¢ > 0 one
can choose an appropriate neighborhood around A = 0 such that the inequality

197 (0)™ Mg — gx(0) ™ My 09x(0)]| < £]|gx(0) ™" M) 092 (0)

holds for |A| small enough and a similar inequality also holds around A = co. Moreover,
we can deduce from that inequality that the so-called double points D for a general u lie
very close to the points Dy from Remark around A = 0 and \ = oo.

A formal diagonalization of the monodromy M). We want to diagonalize the mon-
odromy M) and therefore need to diagonalize o). A diagonalization for the Schrédinger-
operator is done in [47] based on a result from [26]. In order to adapt the techniques
applied there we search for a A-dependent periodic formal power series gy (z) such that

By = Gy taadn + 9y Lag,
is a diagonal matrix, i.e.
5oy (VN b () 0 )
B = (% 3 (Vb (2)

~ ~

with m > —1. Since Fj(z) = §(0)Gx(z)ga(z) " (where G solves LG, (x) = Gy(z)Bx ()
with G (0) = 1) we get

~

My = F\(p) = 9x(0)GA(P)gr(P) ™" = 4a(0)GA(P)Gr(0)

and due to
@)= " <f0x S (V)™ (2) dt) 0
A 0 exp (_ fOx Zm(\/x)mbm(t) dt)
one has
~ _[exp (fop Zm(ﬁ)mbm(t) dt> 0
Gi(p) = 0 exp (— I S, (V) by (£) dt)
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3.1 The monodromy and its expansion

The conjugation with the matrix g)(0) leaves the eigenvalues ,u,i of M) invariant and

thus we obtain
[ = exp (/Op Z(ﬁ)mbm(t) dt)

or equivalently

Inpy= Z(\/X)m /OP b (t) dt.

From the following theorem we obtain a periodic formal power series gy(z) = 1 +
S s @m (@) (VA)™ such that ga(z) := ga(z)gx(z) (with gi(z) defined in Lemma
yields the desired result around A = 0.

Theorem 3.10. Let (u,uy) € C*(R) x C*(R) be periodic with period p. Then there
exist two series

a1(z),az(x),... € span{es,e_} of periodic off-diagonal matrices and

bi(z),ba(x),... € span{e} of periodic diagonal matrices, respectively

such that amy1(x) and by, (x) are differential polynomials in u and w, with derivatives of
order m at most and the following equality for formal power series holds asympotically
around X\ = 0:

@) (14 Y an@OA™ |+ Y L () (VA" =
m>1 m2>1
L Y am(@(VA™ | D7 bm(@) (V™ (+)

m>1 m>—1
Here b_1(z) and by(x) are given by b_1(z) = B_1 =% (§ %) and bo(z) = (7).

Remark 3.11. Since we are interested in so-called finite type solutions we can guarantee
that the power series in indeed are convergent, see Theorem .

Proof. We start the iteration with bo(z) = (J9) and will inductively solve the given
ansatz in all powers of VvV

L (VA By =1 v

2. (VA)°: B_yai(z) + Bo(x) = bo(z) = 0 and thus

@) =671 = (9, 5"
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Chapter 3. Spectral data for periodic solutions of the sinh-Gordon equation

3. (VAN Boias(x) + Bo(z)ar(z) + Bi(x) + Lai(z) = bi(x) + az(x)B-1 + a1(2)bo(z).
Rearranging terms and sorting with respect to diagonal (d) and off-diagonal (off)
matrices we get two equations:

bi(z) = Po(x)ar(z)+ Bralz)
_ (—i(@u)2 + £ cosh(2u) 0 )
(2u))’

0 i(0u)? — % cosh

[B-1,a2(z)] = —Brom(x) — fear().
In order to solve the second equation for as(z) we make the following observation:
Since [, 4] = 2iey and [e,e_| = —2ie_ we get for a(x) = ay(x)er + a—(z)e—
¢la(z)) = [B-1,a(2)] = [ze,a(z)]
= da4(v)eq —ia_(z)e_ € span{ey,e_}.

This defines a linear map ¢ : span{e;,e_} — span{e;,e_}. Obviously ker(¢) =
{0} and thus ¢ is an isomorphism. Therefore we can uniquely solve the equation
[B-1,a2(x)] = —f1om(x) — %al(ax) and obtain ag(x).

We now proceed inductively for m > 2 and assume that we already found a,,(z) and

bm—1(z). Consider the equation

Brami1(x) + Bo(@)am () + Bi(x)am 1 () + Lam(z) =

b () + amy1 (2)B1 + D ai(x)bm—i()
i=1

for the power (v/A)™. Rearranging terms and after decomposition in the diagonal (d) and
off-diagonal (off) part we get

bm(x) = /BO(x)am(x)+/81,off($)am—1(x)a

m

Bty amsi(@)] = —Bra(@)am-1(2) = fam(@) + ) ai(@)bm—i(x).

i=1
From the discussion above we see that these equations can uniquely be solved and one

obtains a,,+1(x) and by, (x). By induction one therefore obtains a unique formal solution
of with the desired properties. O

With the help of Theorem we can reproduce Proposition 3.6 presented in [36].

Corollary 3.12. The logarithm In p of the eigenvalue p of the monodromy My has the
following asymptotic expansions

. P .
Inp = %% + \F)\/O (—z’(@u)2 + %COSh(QU)) dt + O(A) at A =0,

. p _ .
In g \f)\% + \%/ (=i(0u)? + % cosh(2u)) dt + O(A™!) at A = oo.
0
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3.2 Polynomial Killing fields for finite type solutions

Proof. From Theorem we know that at A\ = 0 we have
lny = f§+f/ bi(t)dt+ > (VA / (1) dt
m>2

= 1 ZP + f/ + % cosh(2u)) dt + O(N).

1
The equation M) = (M/\ ) implies u(\) = g~ 1(A™1). Thus the expansion of In u(\)

at A = oo is equal to the expansion of —In (A=1) at A = 0 and one obtains

. p _ .
Inp= \f)\% + \%/ (—i((‘?u)2 + & cosh(2u)) dt + O\ 1) at A = .
0

3.2 Polynomial Killing fields for finite type solutions

In the following we will consider the variable y as a flow paramater. Expanding the
matrices Uy and V) with respect to this flow parameter y we get for U)

Ur(z,y) = Ux(z,0)+ysUx(z) + Oy,
%U)\(w,y) = %Uk(xao)—i—ydxé[]/\( )+O(y2)7
LUN@,y) = SUA)+O(y)

and for V) the equations

Va(z,y) = Vi(z,0) +ysVi(z) + O®y?),
IVa(z,y) = EVa(x,0) +yLoVa(z) + O

Plugging these equations into the zero-curvature condition
GO — = =[O =0
we obtain the following equation with respect to the constant term y = 0
SUN(z) — LV (2,0) — [Ur(2,0), Vi(z,0)] =0
and therefore with the Lax operator Ly(z) := £ + Uy(x,0)
SLA(z) = 6Ux(x) = £ Va(x,0) + [Ux(,0), Va(z,0)] = [La(x), Va(z,0)].

If we replace Vj(x,0) by a map Wy (z) solving -4 Z=Wia(z) = [Wi(z),Ux(z,0)] we get for the
constant term

§Ly = 6Ux(z,0) = [Ly, Wa(2)] = LWy (z) + [Ur(z,0), Wr(z)] =0,

i.e. the corresponding Lax equation 0Ly = [Ly, W] is stationary. Let us adapt Definition
2.1 in [27] to obtain the following
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Chapter 3. Spectral data for periodic solutions of the sinh-Gordon equation

Definition 3.13. A pair (u,uy) =~ Ux(-,0) corresponding to a periodic solution of the
sinh-Gordon equation is of finite type if there exists g € Ng such that

A0 et J n{ Wn €Y7y
Palz) = 2 (O 0 + Z)\ elo, —wp
n=0
s a solution of the Lax equation

d
Lo =[P )
o (@, Ua(+,0)]

for some periodic functions wy, Ty, o0n : R/p — C.

Given a map ® » of the form

% (2) = A0 et n Zg:)‘n Wy €Y,
M 00 " \e'd, —an
with expansion

Qr(z,y) = ‘i\ﬁl‘, 0) + y5&’x($)jr O(y?)
Ld\(z,y) = £O\(z,0)+yLoPr(x) + O
d%(fﬁ(ﬂﬁ,y) = 0®5(z) + O(y)

that is a solution of the Lax equation

- ~ S (z,y) = [®r(z,y), Ux(z,y)]
d®y = [Py, )] <= {da;q) (z,y) = [Pr(z,9), Va(z,y)]

we obtain a map ®, as in Definition by setting
Dy () := By(x,0).

In order to obtain a map d » we recall the purely geometric approach discovered by Pinkall
and Sterling [45] and adapted to the case of S* by Kilian and Schmidt [36].

The Pinkall-Sterling iteration for S?. We consider a normal variation of a conformal
CMC-immersion f: C — SU(2) ~ S, i.e.

f;:%,ﬂt:O:w'Na (*)

where the smooth function w : C — R represents the infinitesimal change of the surface
in the direction of the normal N. In general this variation will not lead to conformal
immersions, therefore we have to extend to

fi=710f +00f +wN (x%)
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3.2 Polynomial Killing fields for finite type solutions

with smooth functions 7,0 : C — C obeying 7 = ¢ and some differential equations. By
differentiating the sinh-Gordon equation we obtain the linearized sinh-Gordon equation

d0u + cosh(2u)i = ($A + cosh(2u)) @ = 0. (3.2.1)

Equation (3.2.1) is called the homogeneous Jacobi equation and we see that @ is a
solution of this equation. The following proposition shows that the situation for the
function w : C — R is quite similar.

Proposition 3.14 ([36], Proposition 2.1). Every Jacobi field wN along f can be supple-
mented by a tangential component TOf + 00f to yield a parametric Jacobi field. Further,
if TOf + 00f +wNN is a parametric Jacobi field, then w solves the inhomogeneous Jacobi
equation

B H€2u
We want to present a formula that comes up in the proof of the above proposition:
1 1. - HH

A parametric Jacobi field is called a Killing field, if it is induced by an infinitesimal
isometry of S3.

Proposition 3.15 ([36], Proposition 2.2). A parametric Jacobi field is a Killing field if
and only if 4 = 0.
Remark 3.16. Since the derivative of oy with respect to t is of the form
oo L U.dz — tizdz iNTietdz — iue"dz
AT 2\ —inedz + iduetdz —i,dz + UzdZ
we see that t =0 < &) = 0.

From the Sym-Bobenko formula we know that a conformal CMC-immersion f : C —
SU(2) can be written as f = FF ! Taking the derivative with respect to t we obtain

f=(FFyY) = Fu(W), — Wo)Fy ! = 70f + 0df +wN,

where W; are given by W, := F;lFZ- for 2 = 0,1. In case f is a Killing field, i.e. @ = 0,
these maps obey

aw; = d(FR) = —F (R F o+ FE
= —a;W;+ F 'Fia; + F ' Ry
= [Wia]+d
= Wi, .

Now we search for a A-dependent map ® » such that the equation dd A= [5 A, @] holds
for all A € C*. Let us omit the tilde in the following
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Chapter 3. Spectral data for periodic solutions of the sinh-Gordon equation

Proposition 3.17 ([27], Proposition 2.2). Suppose ®, is of the form
A0 et ? nf wn €Ty
Pa(2) = 2 <O 0 ) +Z)\ elo, —wp
n=0
for some u : C — R, and that ®) solves the Laz equation d®y = [Py, ay]. Then:
(i) The function u is a solution of the sinh-Gordon equation, i.e. Au+ 2sinh(2u) = 0.

(ii) The functions w, are solutions of the homogeneous Jacobi equation (3.2.1)).

(iii) The following iteration gives a formal solution of d®y = [Py, ay]. Let wy, 0n, Tn-1
with a solution wy, of (3.2.1)) be given. Now solve the system

o o .
Tn,z = 1€ Wn, Tnz= 2Z'Uaz(vun,z — WWn 2z

for 7, . and 7, z. Then define w,+1 and 0,11 by
L . . L 2 .
Wntl 1= —iTn,z — 20U, Ty,  Opt1 := €Ty + 2iWn41 2.

w) FEach 1, is defined up to a complex constant c,, so wp11 1S defined up to —2icpu,.
+
V) wo = Uy, wy—1 = cuz for some c € C, and \IP = also solves d®) = [Py, ay].
g 1/2

Proof. Let us sketch some parts of the proof since we use different normalizations for o

and ®,. Set ¢, = (g; _%TJ and consider the equation

d(I))\ = [CI))\, Oé)\].

After decomposition into the (1,0)- and (0, 1)-part we get

29 b1 Dy . (o2 D9 ou  ixTlet
b9y —Dqg - Py —Pq1 /) \ie™ —ou
. Dioie ™ — (I)Ql’i)\_leu (@11 + @11)i)\_1€u —2®150u
- 2091 0u + (—@11 — <I>11)ie_” CI)Qli)\_le“ — Pqote™

. Dot — (I)Qli)\_leu 2(1)11i)\_1€u — 2®150u
- 2091 0u — 2P 11ie (Dgl’l-)\ileu — ®ygte™

and

929 P11 Ppo B D11 Pio —u e
@21 —@11 o ‘1)21 —(I)H ’ et ou
. (I)}Qi/\eu — Pyje v ((I)H + ‘I’H)iefu + @125u
o —2®910u + (—(1911 — <I>11)i)\e“ DPojie™™ — Bigile”

. (I)lgi)\éu — Pgqie™ ¥ 2Pte™ % + 2(1)12(§U
o —2P910u — 2D1100 et Dojie™ ¥ — Digidet )
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3.2 Polynomial Killing fields for finite type solutions

Comparing coefficients we arrive at the equations

On,z tie” “w, =

2wp,; — 1Ty + ie2“an+1 = 0, (3.2.3)
Qs +ioy —ie* ',y = 0, (3.2.4)
2TpUy + Tnp — w1 = 0, (3.2.5)
Tnz — i€ 2w, = 0, (3.2.6)

2u 0 ( )

0. ( )

20Uz + Onz+ wp—1 =

We only outline the proof of (iii), since this is the part where the different normalizations
for ay and @) take effect. The equation for 7,, 3 is given by (3.2.6)). Taking the z-derivative

of equation (3.2.3]) we get

2wy 2z — iTh, + 2iuz62“an+1 + ieQuanH’z =0.

Rearranging terms and applying equations (3.2.5) and (3.2.7) leads to

. 2u 2u
Tn,z = _Qlwn,zz + 2ueMopg t+e On+1,z
3-2.7) . 2 .
= —2iWp2x + 2 opp1 — Wntt
(3.2.9) )
= —2iwn, 2, + 2uz62“0n+1 — 27U — Tz
and thus
. . . 2u .
Tnz = —lWn 2z + (U (—ie opq1 +iTy).

Now equation (3.2.3]) gives

Tn,z = 20UzWp 2 — Wn 25
The equations for w,4+1 and 0,41 are given by (3.2.5) and (3.2.4) respectively. O

In [45] Pinkall-Sterling construct a series of solutions for the induction introduced in
Proposition (iii). From this Pinkall-Sterling iteration we obtain for the first
terms of w =} - ;1 A"wy

w_1=0, wo=u, = %(uJC —Uy), Wi = Uszy — 2(u.)?,
Wo = Uszozs — 10Uz (1) — 10(uzs)?u, + 6(us)?, ...

Potentials and polynomial Killing fields. We follow the exposition given in [27],
Section 2. For g € Ny consider the 3g 4+ 1-dimensional real vector space

g
A? 15lp(C) = {Q = >N,

n=-—1

~ . — ¢
1 €iRey, & = —Eg-1-n €8I(C) forn=—1,... ,g}

and define an open subset of AY sl5(C) by

Py = {6 € AT 15by(C) | €1 € iRV ey, tr(E1&0) # 0}
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Chapter 3. Spectral data for periodic solutions of the sinh-Gordon equation

Every &) € P, satisfies the so-called reality condition
11—t
N =~
Definition 3.18. A polynomial Killing field is a map () : R — Py which solves
d .
o = U 0] with G(0) = &y € Py.
For each initial value &, € Py, there exists a unique polynomial Killing field given by

() = Py (@) Fa(2)
with £ F\(z) = F)(z)Ux(z,0), since there holds

Aoy = L(FTGR) = —F (LER)FTTOR + FY TO(LER)
= —Ux(-,0)F'&F) + FLEGFAUA(,0)
=[x UA(-0)]

In order to obtain a periodic polynomial Killing field ¢\ : R/p — P, from a pair (u,u,) ~
Ux(+,0) of finite type we set

G(x) = @a(x) = NP, 3 () and  (0) = &y = @A(0) — AT, 5 (0).

Suppose we have a polynomial Killing field

a@ = (g ) (20 O Yo (S B

Then one can associate a matrix-valued form U((y) to ¢\ defined by

_( a(z)—a(r)  AT'Bi(x) —Fo(x) .
Y <—wl<x> to(e)  —an(x) + @ol) > -

Remark 3.19. One can show that for every {x € Py there exists a unique polynomial
Killing field ¢y : R — Py that solves

%Q =[O U] with €(0) = &y

3.3 The spectral curve

In this section we want to introduce the Riemann surface associated to the monodromy
matrix M) of the frame F)(z). We start with the following

Definition 3.20. Let Y be defined by
¥ = {(A ) € C* x C*| RO\, 1) = det(l — M(A)) = 0},

Y is an open Riemann surface called multiplier curve.
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3.3 The spectral curve

Considering the eigenvalue equation of the monodromy matrix we get Y = {(\,
C* x C*| RO\, p) = pu?> — A\ + 1 = 0} and thus see that the eigenvalues of M (
given by

n) €
) are

s = % (AN = VAGE 4], AR = (M)

The branch points of the 2-valued function p : C* — C* are given by the zeros of odd
order of A(A\)? — 4.

Assumption 3.21. In the following we will assume that the function A — A(N)? —4 has
only zeros up to order two and that there are only finitely many zeros of order one.

Due to Assumption the function p defines a hyperelliptic curve with branch points
at the simple zeros of A(\)? — 4.

Considering the differential of R(\, u) = 0 we get
(20— AO) dji — A'(\)jedA = 0

We say that Y has an ordinary double point at (Ao, o) if and only if the above
differential vanishes at (Ao, o), i.e.

210 — A(Ng) =0 and A'(M\g)uo = 0.

The first condition is equivalent to A(X\g)?—4 = 0 and therefore A()\g) = +2 <= o = +1.
Taking the derivative of A(A\)2 — 4 with respect to A we get

d
L (a0 - 14) =202

and therefore & (A(X)? —4) [=x, = 2A(M)A’(Ag) = 0. Thus the double points of Y
correspond to the zeros of A(\)? — 4 of order two.

There are infinitely many double points (denoted by D) on the multiplier curve Y (recall
that for u = 0 the set of double points Dy is given by Remark . Nethertheless we can
consider its normalization, i.e. a covering 7 : Y — Y with a smooth Riemann surface ¥
such that 7r|17\7r,1(D) : Y\7~Y(D) — Y\D is biholomorphic.

Definition 3.22. Consider the normalization 7 :Y — Y of the multiplier curve Y. By
declaring A = 0,00 to be two additional branch points, one obtains a compact hyperelliptic
curve Y that is called the spectral curve. The simple zeros of %ﬁ’“) = 2u — A(N)

together with the points yo, Yoo corresponding to A =0 and A = oo define the branching
divisor b of Y.

We now want to derive some properties of Y and first study its involutions. These result
from the well-known transformation properties of the monodromy M ().
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Chapter 3. Spectral data for periodic solutions of the sinh-Gordon equation

Proposition 3.23. The monodromy satisfies

M) = (M'(\)
Proof. First we have to show that a) = —Ef—\,l holds. Obviously one has
—— } uzdz — uydz —ix"levdz — je vdz
AT 9\ —ieudz — idetdz —uzdZ + u,dz ’
=t 1 ) uzdz — u,dz —ie "dz — iletdz
AT 9 i letdz —ievdz —uzdZ + u,dz ’
Inserting A~! into al, one gets
=t 1 uzdz — u,dz —ie~"dz — i tetdz
AT 2 \—iXe¥dz —ie "dz —uzdZ + u,dz
= —Q).

t
e

() = () ) ()
() R ()
= (F) o

o\ 1
with (Ft;_l) (z0) = 1. Since the initial value problem

Since dF\ = F)\a) we have dﬁé\—l =as_, -F%q and therefore

dF)\ = F)\CM/\, F/\(Zo) =1

— -1
has a unique solution, one has F) = (F i}1> and hence the result follows from the

definition of the monodromy. O

Proposition 3.24. For the Pauli matrix oo = (? Bi) one has

(i) oaM(N)oz = (M* (X)),
(ii) ooM(A"V)og = M ().
Proof.

(ii) A short calculation yields
O903-102 = Q)

and thus
d (UQF}lUQ) = ooF1a5-109 = 02F 1020905102
= O’QF}\71O'201)\.

This gives F)\ = 02F5-102 and the claim follows.
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3.3 The spectral curve

(i) Again we are considering ay and deduce from the previous proposition the equation

L= —a5
and thus
doy (FY) o2 = oad (Fﬁ)
— oy (FY)~ 1% FL(F) o
= 09 (F)t\) 102-025;7102
Dy (F) ™ a0

Summing up we get )
F/\ = 09 (F)t\) g9

by the same argument as in the preceeding proposition. This concludes the proof.

O]

Lemma 3.25. There are three involutions on the spectral curve Y given by
i (vm) e (A1)
p: (A )= (1/A1/1)
n: (A p) = (1/AR)

and the involution 1 has no fixed points on the spectral curve Y .

Remark 3.26. Note that o is the holomorphic hyperelliptic involution and p,n are anti-
holomorphic involutions that arise for real u.

Proof. With the help of Proposition and we compute
RO Y = det(u‘lll — M) = det(5~1 — o2(M*(A)) o)
1

= det(p 'L — (M*(N) ™) = det(u™ M (N)TH(ul — M*(N)))
_ det(ull—Mt( ) _ R\ p)
2 det(MH(N)) p?
RO-L a1 = det(z=11 — M(A~1)) =det(u 11 — M(\™h))
R(A, 1)

= det(u'L - (M) =

R4 ) = det(al — M(A=1)) = det(ul — M(A™1))
= det(ul — oM (N)o2) = R(p, A)

and therefore obtain the existence of the three involutions. To complete the proof we have
to check that n has no fixed points: If v(\, u) is an eigenvector of M) for the eigenvalue
p then 5(A™Y i) is an eigenvector of My—_: for the eigenvalue u since

M5-0(AY ) = My-iwo(AY o) = o(A1, 1) = po(A 1 1),
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Chapter 3. Spectral data for periodic solutions of the sinh-Gordon equation

With M;\_1 = o9 M09 we get

=4 O’QM)\O'QTJ( , 7
& Moo\ 1) = pov( N i)

and therefore go0(A~!, i) is an eigenvector of M) for the eigenvalue . If 1 would have
fixed points, one would obtain the following identity

(Aop) = (1/A, 1)

and the eigenvectors v(\, i) =: v and g20(A ™, fi) = o90(\, pu) = 020 of M) would linearly
depend on each other, i.e. 090 = yv. But this would imply

— U = 03090 = yogv = y(090) =YYV

and therefore ¥4 = —1, which is a contradiction. Hence the eigenvectors are linearly
independent and 7 has no fixed points. O

Spectral curves defined by ) € P;. Let us introduce an equivalent definition for the
spectral curve Y that results from a periodic polynomial Killing field. For this, following
the exposition of [27], let ¢\ : R/p — P, be a periodic polynomial Killing field, i.e.
O(z 4+ p) = Of(z) for all z € R. Then Uy(()) is periodic as well with period p. For
F) :R — SL(2,C) that is a solution of %FA = F\U\(¢)) with F)\(0) = 1 we get

& =G(0) = G(p) = Fy L (p)aFa(p) = My '&My,

and therefore
[M)\a f)\] =0.

Since M) and &\ commute it is possible to diagonalize them simultaneously away from
the branch points (see Proposition [3.31). Note that tr(£,) = 0 and thus the eigenvalues
of &, are given by v? = —det £y. Then one obtains

My = f(N)éE+ 9\ (’5 M91> = (f(A)uOJrg(A) —f(/\)g+g(>\)>

for v # 0, u # +1. In particular we get the equation

p=FO+ g = 5 (B + 5 (1 + 0™ p) (%)

with
FO) =322y =1 and g(\) =5 (n+o"u) = JA(N).

v

Thus 1 = 5 (A(X) + v) with v = \/A(X)2 — 4 away from the branch points. With the help
of Theorem 8.2 in [2I] the functions f, ¢ in equation extend to holomorphic functions
on C*. Summing up one can consider y and v as two different functions on the same
Riemann surface Y.
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3.4 The eigenline bundle

Remark 3.27. From the previous considerations we see that p s a non-zero holomorphic
map on Y*.

Definition 3.28. Let Y* be defined by
Y*={(\,7) € C* x C*| det(P1 — () = ? + det(&y) = 0}

and suppose that the polynomial a(A\) = —Adet(&)) has 2g pairwise distinct roots. By
declaring A = 0,00 to be two additional branch points and setting v = v one obtains that

Y :={(\,v) € CP' x CP! | v* = \a(\)}
defines a compact hyperelliptic curve Y of genus g, the spectral curve. The genus g is
called the spectral genus.
Remark 3.29. Note that the eigenvalue v of §y is given by v = X.

We obtain two different parametrizations of the spectral curve Y, namely with coordinates
(A, ) or coordinates (A, ). In order to translate the involutions o, p, 7 to the coordinates
(A,v) one has to consider the realization of £, € P,,.

Remark 3.30. Since )\g_lﬁt = —&), the polynomial a(\) = —Adet(&)) satisfies the
reality condition

M9a(1/X) = a(N)
and therefore the involutions o, p,n with respect to (A\,v) are given by

o) (A —v), p:\v) = AL =AT190)) (L w) = (AL ATT9D),

Note that )\g_lﬁt = =&\ implies A%gt = —)\1%95,\ and thus the matriz )\%g/\ lies
in su(2) for A € S. On su(2) the determinant is the square of a norm and therefore
0 < det(A'2°€6)) = A9 det(€)) = —Aa()N)

holds for X € S'. Moreover, a()\) has distinct roots and thus A~9a(\) < 0 holds on
S}. Let us show that n has no fized points. Suppose (A, v) is a point on'Y such that
(AL A190) = (\,v). Then A € S! and

AN =y = A a(N) = A5 = v > 0,

which contradicts the previous inequality. This proves that n has no fized points.

3.4 The eigenline bundle

We want to establish a 1:1-correspondence between pairs (u,u,) that originate from so-
lutions of the sinh-Gordon equation and the so-called spectral data (Y (u,uy), D(u,uy))
consisting of the spectral curve Y (u,u,) and a divisor D(u,u,) on Y (u,u,). Let us inves-
tigate how this divisor can be constructed from a pair (u,u,). We denote the eigenvalue
v of & by v in the following.
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Chapter 3. Spectral data for periodic solutions of the sinh-Gordon equation

Proposition 3.31 ([27], Proposition 5.1). Consider the monodromy M) that satisfies
Ml/j\t = M ' and &, = (‘;‘ fa> € Py with [My,&,] = 0. Assume v # 0 and p* # 1.
Then My and &, have the same eigenvectors vy = (1, (v — a)/B)t, v— = (1, —(v + a)/B)*
with

Eavy = voy and Myvy = pog,

EHv_ = —vo_ and Myv_ = pto_,

The same argumentation as in Proposition yields for the eigenvectors of M} and &

Remark 3.32. Consider the monodromy M)y that satisfies Ml/;\t = M/\_1 and &\ =
(f; fa> € Py with [My, &) = 0. Assume v # 0 and pu? # 1. Then M and & have the
same eigenvectors wy = (1, 8/(v + )t w_ = (1, 8/(—v + )t with

Gy = vwy and Mjwy = pwy,

Sw_ = —vw_ and Miw_ = p tw_.

Lemma 3.33. The eigenvectors vy and v— have the asymptotic expansions

ie—ul(mﬁ) +0(\)  at A=0,
ieu(%)ﬁ) + O()\fl) at A = oo.

U+

Proof. Since v? = —det(£,) = —45 4+ O(1) around A\ = 0 we obtain v = 2\% around
A = 0. Moreover, there holds

\(2) = <0 5—1(56)) Al 4 <Oéo(90) 50(33))) A <Oég(37) 5;;(1’))) \9

0 0 Yo(x) —ap(x Yg(x) —ay(

and thus with &, = (,(0) we get the expansion

v—a0) 3V~ (@0 +00) 30N WA
5(0) B-1(0)A~1 +0O(1) 5_1(0)\&_14_0(\5) 28-1(0)

around A = 0. Now fB_q(z) = %e* yields the claim for A = 0. A similar consideration
gives the expansion around A\ = oo. O

If we adapt the proof of Lemma [3.33] for w and w_ we arrive at
Corollary 3.34. The transposed eigenvectors w4 and w_ have the asymptotic expansions

:teu(Ol)/\/X) +O0O(\) at A\ =0,
ie—u(lm/ﬁ) +O\)  at X =oco.
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3.4 The eigenline bundle

In the following we will see that the functions vy,v_ and wy,w_ define meromorphic
functions on the spectral curve Y.

Lemma 3.35. On the spectral curve Y there exist unique meromorphic maps v(\, i) and
w(\, i) from'Y to C? such that

(i) For all (A, ) € Y™ the value of v(\, ) is an eigenvector of My with eigenvalue
and w(A, p) is an eigenvector of Mf\ with eigenvalue p, i.e.

Myv(A, 1) = po(A, 1), Mw(A, p) = pw (A, ).

(ii) The first component of v(A\, u) and w(\, ) is equal to 1, i.e. v(\, p) = (1,v2(A\, p))*
and w(\, p) = (1L, wa(\, 1))t on Y.

Proof. Since the form « satisfies o /5 = —a, the monodromy satisfies
M, 5 =M
1/x = My

and is therefore of the form

where we set f*(\) = f(1/)) for holomorphic functions f : C* — C. In analogy to the
proof of Proposition we obtain

o=(5)- () v ()- (L)

If the denominators do not vanish identically, this gives vector-valued functions of the
desired form on Y*. From Lemma and Corollary we know that

peddoys ) HOO)  at A=,

vy =
:teu(%))\/x) + O()\_l) at A = oo.

and )
ieu(O)/\/X) +O0O(\) at A =0,
ie—u(lm/ﬁ) +O\) at A= oo

w4 =

Therefore the maps v, w are globally defined on Y. Now the subspace
Eoue) = {v € C?| My v = pov}

for (Xo, o) € Y is at least one-dimensional, that is dim(Ey, ,,)) > 1 for all (Ao, o) € Y.
Since Y is non-singular the set

Y = {(/\0,/1«0) S Y‘ dim(E()\O:MO)) = 2}
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Chapter 3. Spectral data for periodic solutions of the sinh-Gordon equation

is empty. Moreover, the set
Y .= {(/\0,/1,0) € Y‘ iﬂv = (E;) S E(Ao,uo) U 7é 0}

which is equal to (Y*)"” := {(Ao, o) € Y*| b(Ao) = 0 and a*(Ao) = po} for (Mo, o) € Y*
is a subvariety of Y and therefore either discrete or equal to Y. Due to Lemma the
point yoo € Y” and yo ¢ Y”. Thus Y” # Y is a discrete subset of Y and therefore finite.
In particular (Y*)” is finite as well. A similar reasoning holds for w. This implies that
v,w can be extended uniquely to meromorphic maps from Y to C? and concludes the
proof. O

The projector P. We will use the meromorphic maps v : ¥ — C? and w' : ¥ — C?
t

to define a matrix-valued meromorphic function on Y by setting P := 7%7-. Given a

meromorphic map f on Y we also define

vfwt

why

P(f) =
It turns out that P is a projector and has the following properties (see [47], Lemma 3.5).
Lemma 3.36.
(i) P2=P

2 Uz"wt- _ t . t .
(1it) Y7 4 wgul = 1, where vi,w] are the eigenvectors for i and vy, ws the corresponding

etgenvectors for %
(iv) The divisor of P is —b, where b is the branching divisor of Y, see Def. .

Proof.

(i) First we note that P is independent of the choice of v, w’

w! = gw' with meromorphic functions f, g one gets

, since for v = fv and

owt vw!
w v w v

Therefore we may assume that locally v, w! have neither poles nor zeros. From the

definition of P one obtains

(vw’)(vw')  v(wh)w'  vw

pP? = =P

(who)(wtv) — (who)(whv) — whv

(ii) A direct calculation gives P - M) = uP = M) - P.
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3.4 The eigenline bundle

(iii) Away from the branch points vi,ve and wi,ws are bases of C2. Moreover, the
equations Myvy = pvy and Myvy = %vg imply

1

t 1t t t t t
weMyv1 = 1 Wall = HwpVy and w]Myvy = pwyvy = 2 W1

Therefore w;v; = 0 if ¢ # j. This shows that up to a factor vi,ve and wi,wy are

t
dual bases of C? and thus Z?Zl U"w; = 1 holds.

7
w;v;

(iv) From the construction of P we see that

P(Xo, o) = <th> (Ao, to)

wtv

= <2,1L—1A(/\) ('u_bg* u E a)) (Ao, ko)

and therefore P can only have poles and those occur at the points where 2 — A(X)
vanishes. From Lemma and Corollary we see that w'v = 2 at A = 0 and
at A = co. Moreover, we have

v (0)
th—< ! ﬁ)—i—O()\)at)\—O
efu(O)\/X 1

and

t ;o -1
vw' = ) +0(MT) at A = oo
Thus P has a pole at A = 0 and A = oco. This shows that the divisor of P is the
negative branching divisor —b and concludes the proof.

O]

Remark 3.37. Considering A : Y — CP' as a holomorphic map from Y to CP' and
denoting the 2g simple zeros of 211 — A(X) by a1, ..., azg we get the following divisors

(A) =2y0 — 2Yoo, (dX) =1+ ...+ 029+ Yo — 3Yoo-

Thus Lemma (iv) implies that P% is a holomorphic 1-form on Y* since the branching
divisor b is given by b = a1 + ... + azg + Yo + Yoo-
Remark 3.38. Note that we have My = P(u) + 0*P(p) and §x = P(v) + o*P(v).

The holomorphic maps v : ¥ — CP' and w : Y — CP! from Lemma motivate the

following
Definition 3.39. Set D(u,u,) and D'(u,uy) as
D(uauy) = _(U()‘mu)) and Dt(uv Uy) = _(w()‘mu))

and denote by E(u,uy) := Op(y.u,) and E'(u,uy) = Opt(uu,) the corresponding holo-
morphic line bundles. Then E(u,u,) is called the eigenline bundle and E'(u,uy) is
called the transposed eigenline bundle.
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Chapter 3. Spectral data for periodic solutions of the sinh-Gordon equation

Since there holds
{Q 12) | (X0) = 0 and a(X) # piy = {(Ais i) | b(X) = 0 and @™ (X)) = pui}

we get
D(u,uy) = Z()\i,,ui) with b(A;) = 0 and a™(\;) = w4

and analogously
D'(u,uy) = " (Ni fii) with b*(X;) = 0 and a(X;) = fi;
on Y*. In the proof of Lemma [3.35) we saw that the set

(Y*)” = {()\OaNO) eY”| Bo = () € E(Aowo) D v F O}
= {(Xo,p0) € Y[ b(Ao) = 0 and a*(No) = po}

is finite, therefore D(u,u,) and D*(u,u,) indeed define divisors on Y.

Remark 3.40. The sections v1,v2 and wy,wy span the space of global sections of Opyu,)
and ODt(u7uy). Moreover, v and i = F)\_lv define linear equivalent divisors D ~ D',

We want to understand how the involutions of the spectral curve Y act on the divisors
D(u,uy), D'(u,u,) described above and therefore investigate how the involutions act on
the eigenvectors v, w! of the monodromy M.

Lemma 3.41. Let o5 = (? Bi). The eigenvectors v, w' transform as follows under the
inwvolutions of the spectral curve:

o*v ~oow, pfu~w, n'v~ o90.

Proof. If v(\,u~!) is an eigenvector of M) then v(A, u~!) is also an eigenvector of M/\_1
since
Myo(A, ph) = Lo\ p7h) <= M oA\ p7h) = po(A n7h).

With My ! = oo Mios we get

M oA ™) = po(A, )
& oaM{ov(\, pt) = po(A, p7t)
& Miow(\p™) = pogv(h, pt)

and therefore oov(A, u~1) is an eigenvector of M. Since
w' My, = pw' = Mf\w = pw

we see that oov(\, £~ ') must be a multiple of w and the first claim is proved.
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3.4 The eigenline bundle

With an analogous argument one can see that o(A~!, z~1) is an eigenvector of M;\__l 1 since

——1 _,v_1 __ — N _ — o~ — _v—1 ——
Moo a7t = Mo o) = oAt g t) = pe(A T Y.

With M5 1 = Mt we get

and therefore (A1, i~!) is an eigenvector of M{ and a multiple of w. Finally the last
claim follows directly from the above lemma. O

Lemma 3.42. The divisors D(u,u,) and D'(u,u,) transform as follows under the invo-
lutions of the spectral curve:

oo D(u,uy) = Dt(u,uy) +po(f), poD(u,uy) = Dt(u,uy)7
D(u,uy) —no D(u,uy) = (f) for a merom. f with fn*f = —1.

Proof. From Lemma [3.41] we know that w ~ p*v and due to the required normalization
v1 = 1 = w; even

w = p*o.
Now we get p o D(u,uy) = D*(u,uy,). From Lemma we also know that v = foon*v

and thus get
D(u,uy) = (f) +mn0 D(u,uy).

Moreover, applying the equation v = foon*v, one can compute

—v = G209v = 02 [0 = fn*(G20) = fn"(fn*0) = fn*(f)n* (n"v) = fn*(flv

and therefore fn*f = —1. This yields the last equation. In order to obtain the first
equation we calculate

a(D(u,uy)) = (pon)(D(u,uy)) = p(D(u,uy) + (f)) = Dt(u,uy) +po(f).
This equation yields the desired result and concludes the proof. ]

Remark 3.43. The meromorphic function f = F3% satisfies fn*f = —1 and there holds

n(D(u, uy)) = D(u, uy) = (f)-

Proof. A direct calculation shows n* f = “;f* and thus

c;_kH—a p—a

= —1<=p?— (a+a")p+aa* +bb* = 0.

The second statement follows directly from the definition of the divisor D(u,uy). O
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Chapter 3. Spectral data for periodic solutions of the sinh-Gordon equation

We are now able to calculate the degrees of the line bundles E(u,u,) = Ob(uu,) and
E'(u,uy) = Opr (compare with [47], Theorem 3.6).

uuy)

Theorem 3.44. The divisors D(u,uy) and D'(u, u,) have the degree g+ 1, where g is the
genus of the spectral curve Y. For solutions v,w! of Lemma the following equation
for divisors holds:

D(u,uy) + D' (u,uy) + (w' - v) = b,

where b is the branching divisor of the spectral curve Y .

Proof. From the definition of D(u, u,) resp. D'(u,u,) we get
(vw') = —D(u,uy) — D*(u, uy).

Now the equation for divisors follows directly from Lemma since

(P) = (25 ) = (o) = (w'o) = ~Dluw ) = D) = (w') = b
- D(u,uy) + D' (u,uy) + (w' - v) =b.

In order to prove the first part of the claim we first note that D'(u,u,) = p o D(u,uy)
implies
2deg D(u,uy) = degb — deg(w' - v) = degb

t

since w'v is a meromorphic function on Y. Now degb = 2g + 2 yields the claim. O

We want to consider the monodromy My (z1) of a frame G\ with a different basepoint z;
with Gy (z1) = 1.

Lemma 3.45. Consider the two fundamental solutions Fy,Gy € SL(2,C) of

dFy = Fxay,  Fi(20) =1
dG)\ == G)\Ck)\, G)\(Zl) 1

for periodic ay with period p. Then the monodromies My(zp) and My(z1) for the frames
F\ and G satisfy the following equation

M,\(zl) = F;l(zl)M)\(ZO)F)\(Zl).
Proof. Consider the system
dGy = Gy, with G)\(ZO) =: Gy

Then one obtains
G)\(Z) = G)\(Z()) . F)\(Z) Vz
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3.4 The eigenline bundle

since G)\(z0) - F\(z) is also a solution of the above system with the same initial value Gy.
In particular one has

G)\(Zl) =1= G)\(Zo) . F,\(Zl)
and therefore G (20) = Fy '(21). Since G)(21) = 1 we get
Mx(z1) = Gi(z1+p) = Gr(20)Fr(21 + P)
= Gx(20)Mx(20)Fx(21)
= Fy (z1)Ma(20) Fa(21)

and the claim follows. O

Remark 3.46. If v is an eigenvector for My(zy) with eigenvalue p then v = F/\_l(zl)fu 1
an eigenvector for the conjugated monodromy M (z1) = F5 *(21) M (20) F(21)-

If we replace z; by the variable z we see that the basepoint-dependent monodromy
My(z) = Fy ' (2) M\(20) Fa(2) satisfies
dMy(2) = —Fy'(2) (dFx(2)) Fy ' (2) Ma(20) Fa(2) + Fy, ' (2) Ma(20) (dFx(2))
= [Mi(z), an(2)].

The result of Lemma can be transfered to the situation where the monodromy de-
pends on the basepoint.

Proposition 3.47. Consider the monodromy M) that satisfies Ml/j\t = M;l and & € Py
with [My,&\] = 0. Assume v # 0 and p? # 1. Then My(z) = Fy '(z)M\Fy(z) and
O(z) = Fyl(2)6Fa(z) = (a(m) Ala) ) have the same eigenvectors vy(x) = (1,(v —

V(@) —o(z)
a(@))/B(@)), v_(z) = (1, —(v + alx))/H(x))" with
O(@)oy(2) = voy () and M(z)vy(2) = pvy (),
Ov(z)v_(x) = —vo_(x) and My (z)v_(z) = p~ to_(z).

Remark 3.48. Consider the monodromy M)y that satisfies Ml/;\t = M;l and §) € Py
with [My, &\ = 0. Assume v # 0 and p* # 1. Then Mi(z) and (i (x) have the same
eigenvectors wy(z) = (1, B(z) /(v + a(2)))!, w— = (1, 8(z)/(—v + a(z)))! with
Goyoy@) =vw(s)  and M@y () = g (@),
Gy (@) =—vw_(z)  and M@ (5) = g w_(2).

Theorem 3.49. On the spectral curve Y there exist unique holomorphic x-dependent
maps v((\, 1), ) and w((\, p),z) from'Y x R to C? such that

(i) For all (\,pu) € Y* and all x € R the value of v((\, u), x) is an eigenvector of My(x)
with eigenvalue p and w((X, 1), z) is an eigenvector of ML (xz) with eigenvalue p, i.e.

M)\(:C)U(()\,,LL),I‘) = ,LLU(()\,/L),.T), Mf\(x)w(()\,,u),x) = :U’w(()‘nu)vx)'
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Chapter 3. Spectral data for periodic solutions of the sinh-Gordon equation

(ii) The first component of v((A\, p),x) and w((A, k), z) is equal to 1, i.e. v((A,p),x) =
(1, va((A, ), 1))t and w((\, 1), z) = (1, wa((A\, 1), z))t onY x R.

x
Proof. Again we can put together vy (z),v_(z) and w4 (z), w—_(x) to obtain maps v((A, 1), x)
and w((A, 1), z). Adapting the proofs of Lemma and Corollary we get

:I:e*"l(w)\/X> + O()‘) at A =0,

vi(z) =
ieu&)ﬁ> + O()\*l) at A = oo.

and
( ) :I:e“(;)/ﬁ) + O()\) at A = 07
wy(x) =
The remaining part of the proof coincides with the proof of Lemma [3.35 O

Remark 3.50. On Y™ these maps are given by

W)
o)) = ST and w((h, ), 2)

p((A, p), )
¥1 (()" M)) x)

where
(A ), ) = Fy H@)o(A p) and o((A, p), @) = Fy(2)w(X, ).

Obviously there holds v((\, p),z + p) = v((A\, p),x) and w((A p),x + p) = w((A, pn), ).
In particular v((A, 1), P) = v((A, 11),0) = v(A, p).

Lemma 3.51. The map vy = F)\_lv+ has the asymptotic expansions

exp(7£) ((ubrys ) HOO)  ata=0,

exp(—1LY2) ((eu@l)ﬁ) + O()\*l)> at A = oo.

Proof. We follow the proof of [27], Lemma 5.2. By Proposition an eigenvector of
(\(z) and My (x) for the eigenvalues v and p is given by vy (z) = (1, (v — a(x))/B(x))".
Since (y(z) = Fy H(z)é\Fa(x) we see that 1 (z) = Fy '()v; is an eigenvector of (y(z)
and it is collinear to vy (x). This defines a function f(\,x) such that

fF 2o (x) = ¢ (x) (3.4.1)

holds. Differentiating equation (3.4.1]) we obtain

S

Yy =

S

(L fog + f(hvy) = —Unpy

and thus
FHE vy = —Usvg — oy
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3.4 The eigenline bundle

Moreover, considering the first entry of the last vector equation we get
FHED = (a0 — a0) — (A1 81 = 70) 45 (3.4.2)

Inserting the results from Lemma and Corollary into equation ([3.4.2)) we obtain

gy MNIBLEA +0(1) = -3 +0(1)  at A=0,
d”ﬁ 709{+0( )= -2 4 0(1) at \ = oo.
Now integration of f~ ( ~f) yields the claim, since ¥y (z) = f(A, z)vy(z). O

With the help of Lemma we obtain the following version of Theorem 3.10 in [47].

Corollary 3.52. For the eigenline bundle E(T,(u,uy)) of the translated Cauchy data
Ty(u,uy) = (u(- + ), uy(- + z)) we have

E(Ty(u, uy)) = E(u, uy) @ L(x),

where the holomorphic line bundle L(x) with deg(L(z)) = 0 for all z € R is defined by
the cocycles ¢g := exp(flzx) on Up\{yo} and ¢oo := exp(VAZ) on Uso\{¥Yoo}-

Proof. Translating by z results in the z-dependent monodromy M) (z). From Corollary
we know that the asymptotic expansion of In u is given by

1nu:%+0(\5\) at A\=0 and lnu—ijLO(l/\f)\) at \ = oo.

Thus Lemma [3.51] shows that the formula

(A ), ) = v "HET (@)u(, )

holds around A = 0 and A = co. Moreover, the map F *(x)v(\, 1) defines a holomorphic
line bundle that is isomorphic to E(u,u,) on Y*. This proves the claim. O

Remark 3.53. Due to Theorem[5.49 it is possible to extend the definition of the projector
P to a projector P, that is defined by

v(@) fw(z)’

w(n)in(z) = @PAE@).

Pi(f) ==

Moreover, there holds My(x) = Py(p) + 0*Py(p) and (\(x) = Py(v) + o* Py(v).

Remark 3.54. Given a doubly periodic solution of the sinh-Gordon equation with respect
to the lattice I' = Z1 & Z1e C C we see that for i := F/\_lv we obtain the equation

U(z 4+ am + b)) = e*aln’“*blnmw(z’) for (a,b) € Z*.
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Chapter 3. Spectral data for periodic solutions of the sinh-Gordon equation

Here i1, o are the eigenvalues of the monodromies My' = F\(11) and M* = Fy(12)
respectively. In order to obtain a doubly periodic 1) we make the ansatz

12; _ ecz-l—déw
and arrive at the equation
J(Z +am + ng) _ 6cz+d26a(m'1+d7"1)+b(c7'2+d7"2),¢(z +arm + ng).

In particular TZ(Z +ar + b)) = J(z) for all (a,b) € Z2 if and only if

ea(c7—1+dﬂ'—1)+b(c7'2+d7_-2) — @ In p1+bln po

A direct calculation gives

c:7_'2111M1—7_'11n,u2 d:ﬁln,ug—Tglnm

T1T2 — T1T2 TIT2 — TIT2

and
Inp; =71+ Td  for i =1,2.

Thus

@Z: exp <7_—2h”i1 —Tlln,ugz_’_ Tlln/.ﬁg —7_'21nu12> "
TIT2 — T1T2 TIT2 — T1T2
is periodic with respect to the lattice ' C C. The asymptotic expansions of M' and M;>
show -
ln,ul-w\/—lX at A=0 and Inp; ~7VA at A=o0 for i=1,2.

ThereforeCN% at A\ =0 and ¢ =0 at A\ = co. Moreover, d =0 at A\ =0 and d ~ VX
at A = co. From this we deduce that ¢ is holomorphic at A = oo and d is holomorphic at
A=0.

3.5 The associated spectral data

In this section we want to summarize the description for periodic finite type solutions of
the sinh-Gordon equation. Given a hyperelliptic Riemann surface Y with branch points
over A = 0 (yp) and A = 00 (yoo) we can deduce conditions such that Y is the spectral
curve of a periodic finite type solution of the sinh-Gordon equation.

Let us recall the well-known characterization of such spectral curves (compare with [36],
Section 1.2, in the case of immersed CMC tori in S3).

Theorem 3.55. Let Y be a hyperelliptic Riemann surface with branch points over A = 0
(yo) and X = 00 (yso). Then'Y is the spectral curve of a periodic real finite type solution
of the sinh-Gordon equation if and only if the following three conditions hold:
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3.5 The associated spectral data

(i) Besides the hyperelliptic involution o the Riemann surface Y has two further anti-
holomorphic involutions n and p = n o o. Moreover, n has no fixed points and

n(Y0) = Yoo-

(ii) There exists a non-zero holomorphic function p on Y\{yo, Yo} that obeys

1

cu=pt = p, ptp=ph

(iii) The form dlnp is a meromorphic differential of the second kind with double poles
at yo and Yoo only.
Proof. We first consider the “if”-part “=" and get the conditions (i) and (ii) from Remark
and Remark together with Lemma [3.25] From Corollary we also have
, P ,
Iy = Ly \FA/O (“i(0u)® + & cosh(2u)) di + O(\) at A =0,
. p _ .
Inp = \F)\% + \%/0 (=i(0u)? + % cosh(2u)) dt + O(A™!) at A = o0

and therefore get in the v/A-chart around A = 0 and the (1/v/))-chart around A = oo

ding = dvVA <—;i§+/p (—i(0u)? + & cosh(2u)) dt+0(\6)> at A =0,
0
*i—i—p p—i_u2 % cosh(2u at A = o0
dlnpy = ﬁ( /\2+/0 (—i(0u)* + & cosh(2 ))dt+0(1/\f>\)> t A .

This implies condition (iii). The “only if”-part “<” follows from Proposition in
Chapter 4. 0

Remark 3.56. Since o*dlnpy = dIn(1/pu) = —dlInp, we see that dlnp changes its sign
under the hyperelliptic involution o.

Following the terminology of [27, [35] B6], we will describe spectral curves of periodic real
finite type solutions of the sinh-Gordon equation via hyperelliptic curves of the form

v = Xa()\) = —\?det(&)) = (WD)

Here v is the eigenvalue of £y and ) : Y — CP! is chosen in a way such that 3y and s
correspond to A = 0 and A\ = co with

cA=X, A =A"1 pfa= "l
Note that the function A : Y — CP! is fixed only up to a Mobius transformations of the
form A — €29 \. Moreover, dIn j is of the form
dlnpy=——"—
v

where b is a polynomial of degree g+1 with A97'b(A~1) = —b()). This yields the following
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Chapter 3. Spectral data for periodic solutions of the sinh-Gordon equation

Definition 3.57. The spectral curve data of a periodic real finite type solution of the
sinh-Gordon equation is a pair (a,b) € C2[\] x CITL[\] such that

(i) N29a(A=1) = a(N\) and A™9a(N) <0 for all A € St and |a(0)| = 1.
(ii) On the hyperelliptic curve v* = Xa()\) there is a single-valued holomorphic function
w with essential singularities at A = 0 and A = oo with logarithmic differential

bY) A

dlnp =
nu 3

with b(0) = i~ 2( )p that transforms under the three involutions
P V) = (=), pr () e ATL=ATT), g (A ) = (AT ATTD)

according to o*p = p~ Y, p*u ="t and n*p = fi.

Remark 3.58. The conditions (i) and (ii) from Definition are equivalent to the
following conditions (compare with Definition 5.10 in [27]):

(i) N29a(A=1) = a()\) and A™9a()\) <0 for all X € S' and |a(0)] = 1.

—b(\) and b(0) = iYe%p,

=
(iii) fl/o“ (—% 0 for all roots cv; of a.

v

(i3) NHb(A~

(iv) The unique function h : Y — C, where Y = Y\U~: and v; are closed cycles over the

b(A) dx

straight lines connecting o; and 1/&;, obeying o*h = —h and dh = <, satisfies

h(a;) € miZ for all roots a; of a.
Since a Mobius transformation of the form A — e?¥) changes the spectral curve data

(a,b) but does not change the corresponding periodic solution of the sinh-Gordon equation
we introduce the following

Definition 3.59. For all g € Ny let M,(p) be the space of equivalence classes of spectral
curve data (a,b) from Definition with respect to the action of X\ — e*¥X\ on (a,b).
My(p) is called the moduli space of spectral curve data for Cauchy data (u,uy,) of
periodic real finite type solutions of the sinh-Gordon equation.

Each pair of polynomials (a,b) € Mg(p) represents a spectral curve Y{,; for Cauchy
data (u,uy) of a periodic real finite type solution of the sinh-Gordon equation.

Definition 3.60. Let

(p) = {(a,b) € My(p)|a has 2g pairwise distinct roots and

(a,b) have no common roots}

be the moduli space of non-degenerated smooth spectral curve data for Cauchy data (u, )
of periodic real finite type solutions of the sinh-Gordon equation.
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3.5 The associated spectral data

The term “non-degenerated” in Definition reflects the following fact (compare with
[28], Section 9): If one considers deformations of spectral curve data (a,b), the corre-
sponding integral curves have possible singularities, if ¢ and b have common roots. By
excluding the case of common roots of (a,b), one can avoid that situation and identify
the space of such deformations with certain polynomials ¢ € CI*T1[)\] (see Chapter |5)).

Remark 3.61. By studying Cauchy data (u,u,) whose spectral curve Y (u,u,) corresponds
to (a,b) € Mj(p), we have the following benefits:

1. Since (a,b) € M;(p) correspond to Cauchy data (u,u,) of finite type, we can avoid
difficult functional analytic methods for the asymptotic analysis of the spectral curves
Y at A=0 and A = .

2. Since (a,b) € Mé(p) have no common roots, we obtain non-singular smooth spectral
curves Y and can apply the standard tools from complex analysis for their investi-
gation.

Note, that these assumptions can be dropped in order to extend the results from this
thesis to the more general setting. This was done in [{7] for the case of the non-linear
Schrodinger operator, for example.

Definition 3.62. The spectral data of a periodic real finite type solution of the sinh-
Gordon equation is a pair (Y (u,uy), D(u,uy)) such that Y (u,uy) is a hyperelliptic Rie-
mann surface of genus g that obeys the conditions from Theorem and D(u,uy) is a
divisor of degree g+ 1 on Y (u,u,) that obeys n(D) — D = (f) for a meromorphic f with
fnf=-1

Remark 3.63. In the following chapter we will treat the inverse problem, that is, we will
associate a periodic real finite type solution of the sinh-Gordon equation to given spectral
data (Y, D) and thus show that the correspondence between such solutions and the spectral
data is bijective.
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4 The inverse problem

The Picard group Pic(Y (u,uy)) ~ H (Y (u,u,),O*) is the space of isomorphy classes of
holomorphic line bundles. We want to construct linear flows on Pic§+1(Y(u, uy)), i.e. on
the connected component of Pic(Y (u,u,)) of holomorphic line bundles of degree g + 1
obeying some reality condition.

The following two sections are based on notes from the lecture “Geometrical applications
of integrable systems” given by Martin Kilian and Martin U. Schmidt at the university
of Mannheim in 2005.

4.1 The space bg, ;.. and Mittag-Lefller distributions

On the compact hyperelliptic Riemann surface Y (u, u,) there lie two distinguished points
yo and Y~ that correspond to the points lying above A = 0 and A\ = oo respectively.

Definition 4.1. Let h be the algebra of germs of functions that are holomorphic in a
punctered neighborhood of 0 € C, i.e.

h:={(U,h)| 0 € U C C open and connected, h : U\{0} — C holomorphic}/~
where (U, h) ~ (U, 1) if hlwnuyogoy = Mlwnunefoy (with (U N U)o the connected

component of 0). Furthermore define the following subsets

b™ = {(U,h) € b|h extends holomorphically to 0}
b~ := {(U,h) €b|h estends holomorphically to CP'\{0} with h(co) = 0}
Onite = {(U,h) €b7 [ h has a pole at 0}.

The following lemma provides us with a decomposition of h that is analogous to the
Birkhoff factorization.

Lemma 4.2. There holds h =h @ h~.

Proof. For any h € b let h*(z) = 2%” hi@g«g. Here the integral is taken along a path in
the domain of definition of A around z and 0 in the anti-clockwise direction. Moreover, let

h=(2) = 5= M2Z here this integral is taken along a path in the domain of definition

 2m z—2z
of h around 0, but not around z, in the anti-clockwise direction. Since the form %
is closed, these integrals do not depend on the choice of the path of integration. Due
to Cauchy’s integral formula we have h = h™ + h~. Moreover, h* is holomorphic in a
neighborhood of 0 and A~ is holomorphic on CP'\{0} and vanishes at oco. O
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Chapter 4. The inverse problem

We will construct linear flows on Pico(Y (u,uy)) by means of the so-called Krichever
construction and therefore recall the following

Lemma 4.3. The cohomology group H' (Y (u,uy), O) is the Lie algebra of Pico(Y (u,uy)) ~
Jac(Y (u,uy)).

Proof. Set Y := Y (u,u,). The long cohomology exact sequence corresponding to 0 —
Z—0—=0"—=1is

exp(2mi-
(2mi-)

0— HY(Y,Z) - H\(Y,0) HY(Y,0%) 2% H2(v,2) - 0.

xp(27i-
Restricting ourselves to line bundles of degree 0, we see that the map H'(Y,O) M
HY(Y,0*) is surjective and therefore

Pico(Y) ~ Jac(Y) ~ HY(Y,0)/H (Y, Z).

It is well-known that for Gy (the connected component of the unit e of a Lie group G)
one has Gy ~ g/ ker(exp) via the exponential map. Since H!(Y,Z) = ker(exp) the claim
follows. O

The maps L and p. We will focus on the following diagram

@ h2 4>H1(Y’O)
exp(-)l lexp(%ri-)
L: H?— HYY,0%)

and describe the maps L : H> — HY(Y,0*) and ¢ : h> — H(Y,O) in more detail. Here
H denotes the Lie group of all non-vanishing holomorphic functions g = exp(h) defined
on U\{0}, where U is some neighborhood of 0. The group multiplication is given by
multiplication of functions. In particular b is the Lie algebra of H.

Let k = \g be a local parameter such that k(yo) = 0 and k = 1/v/X be a local parameter
such that k(ys) = 0. We will describe the map ¢ : h2 — HY (Y, 0), (ho, heo) + ©(ho, hoo)
and therefore consider disjoint open simply-connected neighborhoods Up, U of 4o, Yoo
such that k*hg and k*hs are defined on Up\{yo} and U \{yoo} respectively.

Setting U := Y'\{yo0, Yo} We get a cover U := {Up,U,Us} of Y. The only non-empty
intersections of neighborhoods from U are Up\{yo} and Us\{¥oo}. Thus k*ho and k*heo
are cocycles for this cover and induce a cohomology-class in H'(Y, O). Since Uy and Us,
are simply connected we have H!(Up,O) = 0 = H'(Us, ©). Moreover, HY(U,0) = 0
since U is a non-compact Riemann surface. This shows that U is a Leray cover (see
Theorem and therefore H'(Y,0) = HY (U, O). Summing up we get a surjective map

¢ :h* = H(Y,0).
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4.1 The space by ... and Mittag-Leffler distributions

Moreover, the map L : H?> — H!(Y,0*) is given by the element that corresponds to
the line bundle L(go, g) that is induced the the cocycles k*go = k* exp(hg) over Uy and
k*goo = k* exp(hoo) over Us,. Now we have the following

Lemma 4.4.

(i) The kernel of ¢ : h> — H'(Y,O) consists of those (ho, hoo) € b? that admit a holo-
morphic function h on Y\{yo, Yoo} such that h—k*hy and h—k*hs are holomorphic
at yo and Yoo Tespectively. In particular one has (h*)? C ker(yp).

(i1) (B0 = H' (Y, 0).

Proof. From the Serre Duality Theorem we know that the pairing
(w,¢(ho, hoo)) = Resy, (k*how) + Resy (k" hoow) (%)

is non-degenerate for w € H(Y, Q) and ¢(hg, hoo) € HY(Y, O), where Resy, (k*how) and
Resy (k*hoow) are defined via integrals over small paths around yy and yo respectively.

(i) If (k*ho, %*hoo) is a co-boundary, there exist holomorphic functions gg, goo on Uy and
Uy and a holomorphic h on Y\ {yo, o} such that k*hg = h — go on Up\{yo} and
E*hoo = h — goo 00 Uso\{yoo }. Thus the 1-form hw is holomorphic on Y'\{yo, yoo }
for all w € H(Y, Q) and due to the Residue Theorem [21] the equation

(w,o(ho, hoo)) = Resy,(k*how) + Resy, (k* hoow)
= Resy,(hw) + Resy_ (hw)
=0

holds for all w € HO(Y, ). Since () is non-degenerate one obtains ¢(hg, hao) = 0.
Conversely ¢(ho, hoo) = 0 € HY(Y, O) implies that (k*hg, k*hs) is a co-boundary.

(i) Since h = h* @& h~ by Lemma and [(h*)?] = 0 by (i) we have p[(h~)?] =
H'(Y,0). Denote by N the highest possible vanishing order of differentials w €
HO(Y,Q) at the points 9o, yso- For (ho,heo) € (h7)? define (hg, hso) to be the
Taylor polynomials of (hg, hoo) at co of order N + 1. Then we get

Resy, (k* (ho — ho)w) = 0 = Resy, (k*(hoo — hoo)w)

since there only appear poles of order greater or equal 2. Serre duality gives

(W, @(ho = ho, hoo — hoo)) = Resyy (k*(ho — ho)w) + Resy, (K (hoo — hoo)w)
= 0

for all w € HO(Y, Q). Therefore (ho—ho, hoo —hoo) € ker(p) and (ho—ho, heo—hoo) €
(h7)*\(Bgiee)?- This shows ¢[(hg...)%] = H'(Y, O) and concludes the proof.

O]
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Mittag-Leffler distributions. Each element (ho,hoo) € (hgi)? defines a Mittag-
Leffler distribution (M-L distribution) &(ho, heo) = (fo, f, foo) = (k*ho,0,k*heg) on Y
with respect to the cover Y. A solution of such a M-L distribution is a meromorphic
function A on Y that is holomorphic on Y* such that h—k*hg and h—k*h, are holomorphic
on Uy and Uy, respectively. Thus Lemma implies that the M-L distribution induced
by (ho, hoo) € (Bgi.)” has a solution if and only if ¢(hg, hao) = 0, i.e.

(w, @(ho, hoo)) = Resy, (K" how) + Resy, (E*hoow) =0

for all w € HO(Y,Q). Since H'(Y, M) = 0 (see [21], Corollary 17.17), for every element
[f] € HY(Y, O) there exists a Mittag-Leffler distribution & = (fo, f, foo) € C°(U, M) such
that [0¢] = [f]. Recall that 6 : CO(U, M) — Z*(U, O) is given by

5(f07f7f00) = (fo_f7foo _f)
In our situation we have £(hg, hoo) = (fo, f, foo) = (K*ho, O,E*hoo) and therefore

3(E(hoy hoo)) = (k*ho, k*hoo).-
Thus we arrive at the following diagram:

(hgnite)2 é 5[(hf;nite)2}

T

HY(Y,0)

Since ¢ = [6] o £ is surjective we see that [8] : £[(hg..)%] € CO(U, M) — HY(Y,0) is
surjective as well. We can introduce a “basis” for £[(hg...)?] C C°(U, M) for hyperelliptic
Y since every meromorphic function f can be written as

f=r\)+wvs(A)

in that situation. Here r,s are rational functions with respect to A and Y is given by
v? = Xa(A). Considering some element (fy,0, foo) € &[(h0)?] € C°(U, M) we demand
that fy has a pole at yg and that fo, has a pole at yoo. If fo and f. were of the form
fo = 70(A\) and foo = roo(A) we could reduce the question to a consideration on CP*
and hence §((fo,0, fs)) = 0 since H!(CP!,0) = 0 in that case. Since J is a group
homomorphism we get

0(f0,0, foo) = 0(ro(A) +vso(AN), 0,700 (A) + VS (A))
= 6(r0(A),0,700(A)) + (r50(A), 0, 500 (X))
= 6(vso(A),0,vs50(A))
for general (fo,0, foo). Therefore we can restrict ourselves to the case where fj is given by

fo =vsp(A) and likewise foo = VSoo(A). The following lemma provides us with a possible
choice for a basis we are looking for.
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Lemma 4.5. The equivalence classes [h;] of the g tuples h; := (f3, fi) given by h; =
(LA™ —vATY) fori=1,...,g are a basis of H'(Y,O).

Proof. We know that for i = 1,..., g the differentials w; = L:d)‘ span a basis for H(Y, Q)
and that the pairing (-,-) : HO(Y,Q) x H(Y,O) — C given by (w, [h]) — Res(hw) is non-
degenerate due to Serre duality Therefore we can calculate the dual basis of the w;
with respect to this pairing and see

<wi, [h3]> = Res,\:()fgwi + Res)\zoofgowi
= Resa—oA 771N — Resymoo A7 71

o o d\
= Resa—oA 771\ + ResyooA T2

2

= Resy—o(A771 + A7

= 2 (51]
This shows spanc{[h], ..., [hy]} = H(Y,O) and concludes the proof. O
As a direct consequence of Lemma [4.5 we get

Corollary 4.6. Any element [f] € H'(Y,0) can be represented by a function fo(\,v)

that is given by
g—1

fo(\v) = Zci/\_i_lu with (co,...,cq—1) € CY
i=0

and thus [f] = [(fo, — fo)] = (02 A1y, = T A=),

Remark 4.7. Recall the following divisor equations (written in multiplicative form,)

2

Y aq ... Q24Y0 aq ... 025Y0
(A) = 207 (dX) = 3 5 , (V)= 2g+1 5

Yo Yoo Yoo

Considering the function A= "1v we get for 0 <i < g—1

2142
(/\*ifly) Qe 42990800 " 100 SN o7
- ygg—i-lygz-m - ygg—2i—1ygi+1

and thus the expressions in (fo, foo) = (39—, Loy, — 9% LA 1Y) have the right
behaviour with respect to the poles at A = 0 and A = oco. Summing up we see that
5[(hﬁmte)2] C CO(U, M) can be parametrized by

g—1 g—1
f = (f07 07 foo) = (Z Cz‘)\iiily7 07 — Z Ci)\i1]/>
=0 i=0

with (co, ...,cq—1) € C9.
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Remark 4.8. Similarily as in Lemma all equivalence classes [Ez] of the g tuples
hi = (fE, fi) given by h; = (LATH,vA™Y) are equal to [0] € HY (Y, O) since the h; corre-
spond to solvable Mittag-Leffler distributions (vA™%,0,v\~%) that are solved by the global
meromorphic function vA'. In particular we see that the equivalence classes of

ﬁi = hi—i—ﬁi:(Ql/)\*i,O) fori=1,...,¢g

~

also define a basis of HY(Y,0) since [hi] = [0] and thus [h;] = [hi] + [h] = [hi).

4.2 The Krichever construction

The construction procedure for linear flows on Picg(Y) is due to Krichever [38] and shall
be described in the following. In [43] McIntosh desribes the Krichever construction for
finite type solutions of the sinh-Gordon equation. Every h = (ho, hoo) € (hg,:.)> defines

a one-parameter family Ly () in Pico(Y) with the cocycles k* exp(thg) and k* exp(thso)
over Up\{yo} and Us\{¥yoo} respectively. This corresponds to the assignment

C >t — exp(2mip(th)) =: L,(t) € HY(Y, 0%)

since ¢ : (B o) — H'(Y,0) maps into the Lie algebra of Pic(Y) ~ H'(Y,0%). In
particular one has Ly (t +t') = Lj(t) ® L (t') and therefore

deg(Lp(t +1')) = deg(Ln(t) ® Lp(t")) = deg(La(t)) + deg(Ln(t'))-

Since deg(Lp(0)) = 0 this flow stays in Pico(Y'), i.e. deg(Ly(t)) = 0 for all ¢, and defines a
one-parameter group. Conversely every one-parameter group in Picy(Y") is obtained that
way.

The following lemma describes the relationship between these flows and Mittag-Lefer
distributions.

Lemma 4.9.

(i) An element h = (hg, ho) € (bﬁmte)Q induces a trivial flow, i.e. Ly(t) is trivial for
all t € C, if and only if the corresponding M-L distribution is solvable.

(ii) An element h = (hg, hs) € (f)ﬁmm)2 induces a periodic flow, i.e. Lp(p) = 1, if and
only if the M-L distribution can be solved by means of a multi-valued meromorphic
function p whose values at a point differ by an element of %Z. In particular dp is

an Abelian differential of the second kind with fv dp € %Z for all v € H1(Y,Z).
Proof.

(i) The bundle Ly (t) is trivial for all ¢ € C if and only if

HY(Y,0%) 5 1 = exp(2migp(th)).
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Since the kernel of exp(2mwi-) is discrete, this is equivalent to th € ker(yp) for all
t € C. Now Lemma implies that h € ker(y) if and only if the M-L distribution
is solvable.

~Y

(ii) The condition Ly(p) = 1 (and thus that Lj(p) is a trivial holomorphic line bun-
dle) is equivalent to the existence of a nowhere vanishing holomorphic section, i.e.
there exist nowhere vanishing holomorphic functions g on Y'\{vo, ¥} and go, goo
on Uy, Uy, such that

g=Fk"exp(p - ho)go on Up\{yo}
and ~
g =k*exp(p - hoo)goo 0N Uss\{Yoo }-

Then p := %ln g is a multi-valued meromorphic function that satisfies

1 dg d 1 dgo
dp=——"=—ho(k) + ——— U,
P=0 Tk o )+pgo on Uop\{yo}
and a similar equation holds around y~. Since hg and hy have poles of order at
least one we see that dp is an Abelian differential of the second kind with the desired

properties.

O]

4.3 A reality condition on H!(Y,O)

Since we are dealing with real Cauchy data (u,u,) the spectral curve Y (u,u,) has an
anti-holomorphic involution 7 and we may ask which conditions are imposed by 7 on the
different objects we are dealing with. We start with the following

Definition 4.10. Let HL(Y,0) = {[f] € H'(Y,0) | n*[f] = [f]} be the real part of
HY(Y, ©) with respect to the involution 1 and Picy(Y) := {[g] € Pico(Y) | [n7g] = [g]} the
corresponding real part of Pico(Y).

Lemma 4.11.

(i) For the line bundle L(x) defined by E(Ty(u,uy)) ~ E(u,u,) ® L(x) we have L(x) €
Pick(Y (u,uy)) for all z € R.

(i) The cocycle [f] corresponding to the line bundle L(z) lies in the real part of H*(Y, O)
with respect to the involution n, i.e. there holds [f] € Hg(Y (u,uy), O).

Proof.
(i) From the proof of Corollary we know that

Ly _
v((\ p),a) = eP FT (@)u(A p)
around A = 0 and A = co. The cocycles (go, goo) € H(Y, O*) for L(z) are given by

T z -
((er’1 " y), (ePl ' Us)). Since *In ju = In 1 the claim follows.
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(ii) Due to (i) we know that L(x) € Picg (Y (u,uy)). Applying the inverse of the expo-
nential map we see that for the cocycle [f] corresponding to the line bundle L(x)
there holds [f] € Hg(Y (u,uy), O).

O]

Remark 4.12. We want to state an important remark concerning the involutions o, p,n
on Y and their behaviour on Uy, Uy, i.e. around the distinguished points A\ = 0 and

A = o0o. From Corollary[3.19 we know that

=1 ground A\ =0,
Inp ~ P
ivA=2< around A = oco.

-

On the other hand there holds
c'lnp=—Inp, p'lnp=—Inyp, n*lnp=Inpy.
Inserting the local expressions for In . with respect to the charts k,% we obtain

o'k=—k, o'k=—k pk=Fk nk=—Fk

The above formulas will be important in the following lemma.

Lemma 4.13. The tuple h = (hop,hoo) € (hﬁmte)2 corresponding to the function Inp

satisfies the reality condition heo(k) = n*ho(k) with respect to the involution 7.

Proof. From the previous Remark we know that n*k = —k. From Corollary |3.12| we
also obtain

. p .
Inp = %% + \5/0 (—i(0u)? + £ cosh(2u)) dt + O(A) at A =0,
, p _ .
Inpg = \f)\% + \1[\/ (—z’(au)2 + % cosh(2u)) dt + O 1) at A= oo.
0

Since p € R we get for the leading terms of this expansion

P hoo(k) = +B =" £ B = p(n*ho(k))

w5
w5

i

and the claim is proved. In particular we have ho(k) = +% and ho (k) = 1L, O

The following lemma shows which conditions are imposed on an element [f] € Hg(Y, )
and that dimg H (Y, 0) = g.

Lemma 4.14. An element [f] = [(fo, fx)] € H'(Y,0) satisfies n*[f] = [f] if and only
if foo = n*fo. The corresponding representative fuo L —fo=- Z?:_ol A"y satisfies
G = —cg—1—i fori =10,...,9 — 1. This defines a real g-dimensional subspace of C9. In
particular dimg Hg (Y, 0) = g.
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4.3 A reality condition on H(Y,O)

Proof. The first part of the lemma is obvious. Now a direct calculation gives

g—1 g—1 g—1
—n*(z A y) = — Z GANTI NI, = — Z G TIy
i=0 =0 i=0
. g—1 g—1
=g9zi-l _Zégflfj)\_j_ly 2 Zcz')\_i_lu
=0 i=0

if and only if ¢; = —¢4—1—; for i =0,...,g — 1. The subspace of elements (cg,...,cq—1) €
CY that obey these conditions is a real g-dimensional subspace. ]

Corollary 4.15. Any element [f] = [(fo,n* fo)] € HE(Y, O) can be represented by fo(\,v)
with

g—1
fol\,v) = Z A"y
=0
and ¢; = —cg—1—j fori=0,...,9— 1. In that case the function fo(\,v) can be written as

1 g—1 ‘ g—1
=5 (Z ATy — n*(z ci)\ily)> .
i=0 i=0
Remark 4.16. We already saw that the equivalence class of
.}T: (ﬁ)vfoo) f07f0 <Z:C’LA - VZCZA 1 )

is equal to [0] € HY(Y,0) since f corresponds to a solvable Mittag-Leffler distribution.
From Lemma we know that n [f] = [f] if and only if foo = fo The corresponding

representative f~oo = ﬁ) = Zgz_olgi/\_i_lu satisfies ¢; = Cg—1—i fori =0,...,9 —1. By
choosing ¢; :==¢; fori=0,...,9 — 1 we can deduce that any element of Hﬂlk(Y, O) can be
respresented by
2-1 21
F=r+f=12> aXx 2> a9
i=0 i=0

since [f] = 0] and thus [f] = [+ [f] = [f].

From the previous discussions about Krichever’s construction procedure for one-dimensional
subgroups of Pici(Y) we immediately get (see [35], Proposition 2.8)

Proposition 4.17. Cauchy data (u,u,) of finite type correspond to a periodic solution
of the sinh-Gordon equation if and only if

(i) There exists a meromorphic differential dlnp of the second kind on the spectral
curve Y with second order poles at the points yo and Yoo-
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Chapter 4. The inverse problem

(i) The differential dlnp is the logarithmic derivative of a function p on Y which
transforms under the involutions in the following way:

cu=pt pru=np"" ntu=p

Three classes of integrable systems. The Krichever construction provides us with a
way to distinguish three classes of integrable systems with respect to the following data:
a compact Riemann surface Y, the spectral curve; points yo and y on Y; and conformal
charts k, k that are centered at these points together with two elements h = (hg, hoo) and

}VL = (E077Loo) € (hgnite)2'

(I) (Finite dimensional case) The first class corresponds to finite dimensional integrable
systems. It is characterized by the property that both flows that are induced by h
and h are trivial. The corresponding Lax operators are matrices.

(IT) (Simply periodic case) The second class is characterized by a trivial flow induced by
h and a periodic flow induced by h. The corresponding Lax operators are ordinary
differential operators.

(III) (Doubly periodic case) The third class is characterized by the property that both
flows induced by h and h are periodic. The corresponding Lax operators are partial
differential operators.

Remark 4.18. In the present case we have h = (Z%, Z%) and h = (5, +). This cor-
responds to the second class (II). Here the function \ corresponds to h and Inp cor-
responds to h. In the present notation h corresponds to the Mittag-Leffler distribution
§=(8,0,8). Then

06 = (B — 0,87 —0) = (%, §7) € Hg(Y, 0).

Moreover, Inpu — B is holomorphic on Uy and Inp — n*(8Y) = Inp — 87 is holomorphic

on Uso. Thus h induces a periodic flow in Pick(Y).

4.4 The Baker-Akhiezer function

In order to tackle the inverse problem one has to implement a procedure that yields
Cauchy data (u,uy) of a periodic finite type solution of the sinh-Gordon equation from
given spectral data (Y, D) with certain properties. The function A : Y — CP! corresponds
to the trivial flow L (t) on Pico(Y’) that is induced by the solvable Mittag-Leffler distri-

bution h = (ﬁo,ﬁoo) = (z%, Z%)

By choosing a second element h = (hg, hoo) € (Bg,.)? that corresponds to a periodic
flow it is possible to determine a map that has the same analytic properties as the map
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4.4 The Baker-Akhiezer function

W((\ ), x) = Fy N (x)v(), 1) completely.

Recall that Lemma [3.51| provides us with the asymptotic expansions

% = exp (;f;) ((e“(i)ﬁ> + om) at A =0

¥ = exp (—z‘:;ﬁ) ((le) ﬁ> O(A—1)> at A = oo,

The modified Baker-Akhiezer function. We will now modify ¢ in order to obtain
an object that will play the role of the Baker-Akhiezer function in the following. Setting

2

and

2V

we see from the above expansions that 1) has two disadvantages: On the one hand °

and ¥ are x-dependent at A = 0 and A = oo respectively. On the other hand ¢ is

not holomorphic around A = oo in contrast to the holomorphic ° (around A = 0). By
1 (1-1

gauging the frame F) with the constant matrix T' = 7 (1 ] ) we get

Un=T7'U(Q)T and {=T7'GT

wo—exp<m>¢at)\—0 and woo—exp< )1/Jat/\—oo

for the corresponding Killing field that solves d%a\ = [ZA, ﬁA] Setting (\ = (O‘ s ) we

v —«
5_( 5)_1( B+ —2a+[3—’Y>
Ay —a)  2\~2a-8+7y B-v -

Denoting the eigenvalue 7 = A~'v of &, by v, we have

DRENER
] —2a+p—y

obtain

L

and the expansion

—Bo1+iVA+0(N) _ i _
w—B—y W——1+ﬁ-lﬁ+0“> atA=0, (4.4.1)
_ —~ ) Ao /VAFO(/N) i _ o

If we repeat the steps from the proof of Lemma we arrive at the following
Lemma 4.19. The map ¢ := T_1F>\_1(x)5+ (0) has the expansions

- exp (;&%) (—1+1O(ﬁ)> at A =0,
T —ix 1
eXp( 2\5) <1+O(1/ﬁ)> at A = oo.
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Chapter 4. The inverse problem

Proof. Obviously 14 (z) is an eigenvector of (y(z) = T—1¢, ()T and it is collinear to
U4 (). This defines a function f(\, x) such that

FOu ) (@) = G4 () (4.4.2)
holds. Differentiating equation we obtain
(L F)os + F(Loy) = ~Unips
with Uy = T-'U(¢,)T and thus
FHAENT = —Unvy — 47,

Moreover, setting U((y) = <g; _U(}f1> and considering the first entry of the last vector
equation we obtain

f_l(%f) = —2(Urz + Us1) — 3(—2U11 + Uy — Uzl)ﬁﬁa- (4.4.3)

Writing out equation (4.4.3) we get
UL = —3(A 1821 +90 — 0 — AB-1) — 2(2a0 — 200 + X' Bt — 70 — Fo + AB_1) =2

a
B
and thus inserting the expansion (4.4.1)) into equation (4.4.3)) gives

-1 i
. bR £ 0(1) =~ +0(1) at A=0,
/ 1<ng>={ 3 Wi
702704-0()— 252+ 0(1) at A = oo.
Now integration of f_l(%f) yields the claim, since ¥ (z) = f(\, 2)04(x). O

Remark 4.20. Since T is invertible we see that the divisor D(z) corresponding to 1(z)
is equivalent to the divisor D(z) that corresponds to ¥(z). In particular deg(D(z)) =
deg(D(z)) = g + 1 for all = € R. Moreover, the above gauge leads to constant values of
Y0 and Y™ at yo and yoo and has in addition the advantage that yo,Yso & 15(1‘) for all
z e R.

We omit the tilde in the following and arrive at the following characterization of the
entries 1); appearing in 1 = (1, 19)":

(i) For fixed = € R there holds (¢;) > —D on Y* = Y'\{v0, Yoo }-

(i) ¥9 = exp (522

at A = oo.

) 1; is holomorphic at A = 0 and 9;° = exp (”‘f> 1); is holomorphic

For fixed x € R, conditions (i) and (ii) imply that v is a holomorphic section of the bundle
Op for some divisor D of degree g + 1.
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4.4 The Baker-Akhiezer function

Lemma 4.21. Let D be a divisor of degree g+1 on'Y and assume dim H(Y, Op_yy—y..) =
0 or dim H(Y,Op_2.4,) = 0. Then dim H°(Y,Op_,,) =1 = dim H*(Y, Op_,__).

Remark 4.22. Note that D —2yg and D — 2y~ are equivalent divisors, that is D — 2y, —
(D — 2yp) = 2yo — 2Yso = (N\) and thus

H(Y,0p_2.4,) =0 < H°(Y,Op_2,.)=0.

Proof of Lemma[{.21. First assume that dim H*(Y,Op_yy—y..) = 0 holds. Due to the
Riemann-Roch Theorem [2.22 we get

dim H(Y,0p_y,) =1 — g+ deg(D — yo) + (D —yo) = 1 +i(D — yo) > 1.

Suppose dim HO(Y, Op—y,) > 1. Then there exist two linearly independent sections
Y1,y € HO(Y, Op—y,) with ¥1(yo) = 0 = ta(yo). Since dim HO(Y, Ob—yo—yos) = 0
there holds a = 11(yso) # 0 and b = ¥2(yoo) # 0. But then (hp1 — avbe)(ys) = 0, i.e.
b1 — ay € HO(Y, OD—yo—yoo) L 0. This implies that by — ayo = 0 and thus o = gwl
- a contradiction. This implies dim H(Y,Op_,,) = 1. The same reasoning leads to
dim H*(Y,Op_,..) = 1.

Now let us assume that dim H°(Y, Op-2.4,) = 0 holds. Suppose again that we have
dim H°(Y,Op_,,) > 1 and that there exist two linearly independent sections w1, €
HO(Y,Op_y,) with ¢1(yo) = 0 = h2(yo). Since dim H°(Y,Op_2.,,) = 0 the derivatives of
Y1 and 19 at yp are given by a = 9| (yo) # 0 and b = ¢5(yo) # 0. But then

(b1 — ava) (yo) = (b1 — avy)(yo) = O,

ic. by —athy € HO(Y,Op_gy,) = 0. This implies that biby — atpy = 0 and thus 1y = ¢y
- a contradiction. This implies dim H(Y,Op_,,) = 1. Due to Remark there holds
H%(Y,0p_24,) = 0if and only if H%(Y,Op_2,..) = 0. Then an analogous argumentation
leads to dim H(Y,Op_,._) = 1. O

Thus for a fixed value of x € R the map 1; obeying conditions (i) and (ii) is uniquely
determined by either

(1) the value of ¥ at yo and the value of ¥ at yo, or
(2) the value of ¥ at yo and its first derivative at yg or
(3) the value of ¢{° at yo and its first derivative at yoo.

Remark 4.23. The gauge with T = % (17') leads to v = T—1F 1 (2)v(0) and its

entries ¥; are uniquely determined by the value of 7,/1? at yo and the value of V5° at Yoo
This corresponds to condition (1). By choosing another gauge one can find normalizations
that correspond to the conditions (2) and (3).
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Chapter 4. The inverse problem

Definition 4.24. Let Pic(Y') be the Picard variety of Y and let
Pic®(Y) := {D € Pic(Y) | n(D) — D = (f) for a merom. f with fn*f = —1}
be the set of quaternionic divisors with respect to the involution n.

Note that the condition on D from Definition [4.24] arises from the reality condition on a
(or equivalently £)). Nevertheless Proposition justifies the notion “quaternionic divi-
sor”. With this definition at hand we see that the violation of condition (1) corresponds
to divisors D that are contained in the set

S1 := {D € Picy1(Y) N Pic®(Y) | dim H*(Y, Op_yy—y..) # 0}

Here Picg11(Y) is the connected component of divisors D in Pic(Y') with deg(D) = g+ 1.
Likewise the violations of conditions (2) and (3) are described by

Sy := {D € Picy1(Y) NPic®(Y) | dim H(Y, Op_a.,) # 0}
and
S3 :={D € Picy1(Y) NPic®(Y) | dim H*(Y, Op_a.,..) # 0}.
We need some preparation in order to prove that S; = () for i = 1,2, 3 in our situation.

Proposition 4.25. Let D be a divisor on Y that satisfies D — n(D) = (f) for a mero-
morphic function f with fn*f = —1. Then the space of holomorphic sections H'(Y,Op)
is a quaternionic vector space with quaternionic structure given by j : h — j(h) = %n*ﬁ.
In particular there holds dim H(Y,Op) = 2n with n € Ny.

Proof. We only have to verify that the anti-linear map j : HO(Y,0p) — H(Y,0p), h +
j(h) = %n*h (cf. [30]) satisfies j2 = —id. A direct calculation gives

>

7 (h) =

* 1 _ 1 —

=

This shows j2 = —id and concludes the proof. O

Lemma 4.26. Let Y be a hyperelliptic Riemann surface of genus g with A : Y — CP! of
degree 2 and branch points over A =0 (yp) and A = 00 (Yoo ). Let n be an anti-holomorphic
involution on'Y without fized points such that n*\ = \~1. Moreover, let D be a divisor of
degree g—1 on'Y with n(D) — D = (f) for a meromorphic function f obeying fn*f = —1.
Then one has H*(Y,Op) = 0.

Proof. First we prove that deg(f) > g holds. For this let us assume that deg(f) < g
and show that this yields a contradiction. Due to Proposition II1.7.10 in [20] the function
f must be of even degree. Moreover the proof of that proposition shows that f is a
rational function of A. But then the condition fn*f = —1 is violated and thus deg(f) > ¢
must hold. Now suppose that dim H°(Y,Op) > 0, i.e. dim H(Y,Op) > 2 due to
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4.4 The Baker-Akhiezer function

Proposition m Then there exists a meromorphic function h that satisfies (h) > —D
and an equivalent effective divisor D’ = D + (h) > 0 with deg(D’) = deg(D) = g — 1.
Moreover, there exists a corresponding meromorphic function f’ such that

n(D') = D" = (f') with f'9"f =—1.

Since D' > 0 we get deg(f’) < g—1 < g, i.e. a contradiction! Thus there must hold
H°(Y,Op) = 0 and the claim is proved. O

With the help of Lemma [4.26| we get
Proposition 4.27. There holds S; = 0 fori=1,2,3.

Proof. Let D € Picg41(Y) NPic®(Y) be an arbitrary quaternionic divisor of degree g+ 1.
We make the observation that

(D = 4o = Yoo) — (D — 40 — Yoo) = n(D) — D = (f) with fn*f = —1

holds. Thus D; := D — 3y — Yoo is a quaternionic divisor with deg(D1) = g — 1 that fulfills
all requirements of Lemma [4.26| This shows dim H(Y, Op_y,—y..) = 0 and thus S; = 0.
Now consider the equation

n(D —2yo) — (D — 2yo) = n(D) — D + 2yo — 2yoo = N(D) — D + (A) = (Af)

and set ]? := Af. Then fn*f = fn*f = —1 and thus Dy := D — 2y, is a quaternionic
divisor with deg(D2) = g — 1 that fulfills all requirements of Lemma m This shows
dim H%(Y, Op_2.4,) = 0 and thus Sy = (). Finally S5 = 0 follows from the same argumen-
tation since

N(D = 2yse) — (D = 2yos) = (D) — D — 2o + 2yoe = (D) — D + (5) = (5f)

and ]/”\ = % f also fulfills ]?anA = —1. Thus D3 := D — 2y is a quaternionic divi-
sor with deg(D3) = g — 1 that fulfills all requirements from Lemma m This yields
dim H%(Y, Op_2...) = 0 and concludes the proof. O

Remark 4.28. The situation changes significantly if one considers real solutions u :
R? — R of the cosh-Gordon equation Au = cosh(u), for example. Then the sets S; are in
general no longer empty and one obtains singularities of the solutions u (see [4],[0)]).

Definition 4.29. Let Y be a spectral curve with distinguished points yo, Yoo and charts
k,k centered at yo and yso respectively. Let D > 0 be an effective divisor on Y with
deg(D) = g+ 1 and yo,Yso ¢ D that satisfies the reality condition n(D) — D = (f) for
a meromorphic function f with fn*f = —1. Moreover, let h = (ho, hoo) € (f)ﬁmte)2 be
given. A Baker-Akhiezer function ¢ : Y x R — C? is a vector-valued map with the
following properties:
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Chapter 4. The inverse problem

(i) For fized x € R the entries 1; of Y¥(x) satisfy (v;) > —D on Y* := Y \{yo0, Yoo } -

(i) The map Y0 = k* exp(x - ho)y is holomorphic in a neighborhood of yo and the map
P> = k*exp(x - hoo )V is holomorphic in a neighborhood of Yoo.

We call a Baker-Akhiezer function 1 normalized if in addition there holds:

(iii) The maps ¥° and > from (i) are normalized by

w= () o at w

and

5 — G) +O(/VA) at yeo.

Remark 4.30. Conditions (i) and (ii) imply that 1) is a holomorphic section of the bundle
Op® Ly(x). Here the cocycles of Ly(x) are given by k* exp(z-ho) at yo and k* exp(z-hoo)
at Yoo -

The following theorem shows that ¢ : Y x R — C? is uniquely determined by the analytic
properties stated in Definition [4.29]

Theorem 4.31. Let Y be a spectral curve with distinguished points yg, Yoo and charts k, k
centered at yo and Y. Let D > 0 be an effective divisor on'Y with deg(D) = g+ 1 and
Y0, Yoo & D that satisfies the reality condition n(D)— D = (f) for a meromorphic function
f with fn*f = —1. Moreover, let h = (hg, hoo) € (hﬁm'te)Q be given. Then there exists a
unique Baker-Akhiezer function 1 that satisfies properties (i) - (iii) from Defintion .

Proof. For every x € R the bundle Lj(x) is a real line bundle (compare with Hitchin’s
terminology introduced in [30]) with deg(Lp(z)) = 0. Thus for a given quaternionic divisor
D and fixed x € R the divisor corresponding to the holomorphic line bundle Op ® Lp(x)
is quaternionic as well. Denote this divisor by D(z), i.e. D(z) € Picgy1(Y) NPic%(Y) for
every fixed x € R. First we observe that dim HY(Y, Op(z)) = 2 for every z € R since by
the Riemann-Roch Theorem [2.22] we have

dim H(Y, Op(s)) = 1 — g + deg(D()) +i(D(x)) = 2 +i(D(x)) > 2.

Moreover, there holds HY(Y, OD(2)—yo—yss) = 0 for every z € R due to Proposition
and thus dim H(Y, Op(z)) = 2 for every z € R, i.e. the space of sections of the corre-
sponding bundle is 2-dimensional. This guarantees the existence of the functions 1, ¥s.
We now prove the uniqueness of the functions 91, 92 and thus the uniqueness of ¢). There-
fore we suppose that there exist other functions ; and ¥, that obey conditions (i) to (iii)
from Definition But then Lemma shows that ¢; = v; for i = 1,2 since S; = ()
due to Proposition This implies the uniqueness of the normalized Baker-Akhiezer
function v and concludes the proof. O

Remark 4.32. Since the entries of the Baker-Akhiezer function i can be written in terms
of Riemann’s theta functions, we can deduce that v is differentiable with respect to the
spatial variable x.
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4.5 The reconstruction of (u, uy)

4.5 The reconstruction of (u,u,)

We will now describe the reconstruction procedure that allows us to identify Cauchy data
(u,uy) of periodic real finite type solution of the sinh-Gordon equation with their spectral
data (Y (u,uy), D(u,uy)) and vice versa.

Proposition 4.33. Let {+(z) = (¢ (2), 05 (2))' = T~ FH(2)7(0) and set

g (@ (@)
Ha): T(ﬁ(z) w;m)'

Then the frame F with F\(0) =1 is given by

Proof. Since %‘If = —U,\¥ with we get

d
— vyt =y,
dz U

Then Fy(x) := ¥(0)¥U~!(x) is the unique solution for %FA = F\U, with F}\(0)=1. O

Proposition 4.34. Let Y be a hyperelliptic Riemann surface of genus g with branch
points over A =0 (yo) and X = 00 (yso) and the following properties:

(i) Besides the hyperelliptic involution o the Riemann surface Y has two additional
anti-holomorphic involutions n and p = no o. Moreover, n has no fixed points and

1(H0) = Yoo-
(ii) There exists a non-zero holomorphic function p on Y\{yo, Yo} that obeys

1 1

otu=p, nta=p, ptR=p
(iii) The form dlnp is a meromorphic differential of the second kind with double poles
at yo and Yoo

Moreover, let D > 0 be an effective divisor of degree g + 1 on'Y with yo,yso ¢ D and
n(D) — D = (f) for a meromorphic function f obeying fn*f = —1. Then there exist
unique Cauchy data (u,uy) ~ Uy of a periodic real finite type solution of the sinh-Gordon
equation such that Y (u,uy) =Y and D(u,uy,) = D with (u,u,) ~ Uy =T 'U,T.

Conversely, let (u,uy) ~ Uy be Cauchy data of a periodic real finite type solution of the
sinh-Gordon equation and consider (u,uy) ~ Uy = T—YU\T. Then there exists a pair

(Y, D) of spectral data with the above properties such that the associated Cauchy data
(’ljv ay)(}/a D) Satisfy (aa ay)(ya D) = (777 ’ljy)
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Chapter 4. The inverse problem

Proof. For the first claim consider the unique Baker-Akhiezer function ¢ = (th1,h2)! for
h = (%,%) given by Theorem m In analogy to the proof of Proposition we set

PRE)
_(i(z) o*r(x)
o) = (wx) o*w2<m>>'

Then G (z) := ¥(0)¥~!(z) satisfies Gl/;\t = G, due to Lemma [3.41 and Lemma [3.42
Moreover, we have G5 (0) = ¥(0)¥(0)~! = 1. From the asymptotic expansion of 1 around
A = 0 we obtain the expansion

U (x) exp <2\O& _(; ) = By (z)¥(0)
2V/A

around A = 0, where By(z) is of the form By(z) = Y75 A'Bi(z), and thus

1T

G () = ¥(0) exp <Of s ) 1(0) By (2)

VAN

holds around A = 0. Taking the derivative yields

%G’\(x) = ¥(0) (2\;& Oi )eXp (2? Oz )\Ifl(O)Bgl(a;)

d 2V “ava
S0 _ - d _
—W(0) exp <2§ - ) wH0) By (x) (dewc)) By (x)
and therefore
_lxi x) = x 2\% O- -1 _lm—i x (x
Gy (2) - Gal(x) = Ba( )‘I’(O)< ) 23&) U(0)By  (z) (deA( )) By (z)

holds around A = 0. Gauging with 7! = % (_11 %) yields

TGy () (CZ:GA@)) T~ = TBx(2)¥(0) (? _Oif> v 0)B (@) T
2V A
-T <dde)\(.%')) BN z)T™.

From the proof of Lemma we know that

u(0)
t_ 1 7 _
vpwl = (e_“(o)ﬁ | +O(\) at A=0
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4.5 The reconstruction of (u, uy)

and w' vy =2 at A = 0. Setting \TI(O) = TU(0) and applying the projector P we get

4

- 0\ ~ . .
2VA , -1 = . * :
\1/(0)< Y _Qk)\p 0) = P(Qﬁ)ﬂf P(Qﬁ)
i @ i _ i er© i
— ( B (o%ﬁ A ﬁgﬁ) + ( - (O)zﬁ A VA 2\5)
€ A ¢ ﬁzﬁ N
0 geuO)1

around A = 0. Define U, := TG, (z) (%G,\(az)) T~!. Then the previous considerations
yield Uy = Zz‘z—l U;\'. Moreover, there holds Ul/;\lt = —U, and thus we get

Uy=U_ N +Uy+ U\

with U_j, = —U;. Note that Fy := TG\T~! (with monodromy My = TG (p)T ") solves

d
%F)\(.%) = F)\(x)Uy with F)\(O) =1.

Then the map

—1, )\ ot —1, )\ At
(@) = T(Pe (A ') + 0" P\ )T =T <¢(A@t5)¢ t+o (‘”(A@t;)@ >) 7!
solves %C,\ = [y, Ux]. Moreover, since A~y = 2\’5 around A = 0, the asymptotic
expansion of P (A~'v) + ¢*P (A"v) shows &\ := (1(0) € Py. Thus Uy ~ (u,uy) is of
finite type. The map @Z = T_nglT'ﬁ, where v is an eigenvector of MA = T'M,\T,
satisfies

d ~ =~ . = _ . d — - ~
%@z):—wp with Uy=T IUAT:G;%GA and  My1(0) = ph(0).

Moreover, J fulfills all requirements from Definition Due to the uniqueness of the
Baker-Akhiezer function from Theorem we get ¢ = 1. This proves the first claim.

Conversely, let (u,u,) ~ U) be of finite type and consider the frame F}, that is a solution of
%FA = F\U, with F)\(0) = 1, together with the corresponding monodromy M)y = F\(p).
Gauging with T yields ﬁ)\ =T 'F\T and ﬁA = T~'U,\T. Then the map @Z = T_lF)TlTﬁ,
where v is an eigenvector of M. \ = T~ M\T, satisfies

d ~ -~ ~ ~ —_ ~ ~
%u) = —Uyyp with Uy=T7'U\T and My (0) = u1(0)

and fulfills all requirements from Definition From Chapter 3 we know that U \ yields
a spectral curve Y and a divisor D with the properties stated above. On Y there exists a
unique Baker-Akhiezer function . Due to the uniqueness we get ¥ = v and the second
claim is proved. O
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Chapter 4. The inverse problem

With the help of Proposition we can prove the following

Theorem 4.35. The power series that appear in the asymptotic expansion

@) [ 14 X an@D" | + 3 Lo @A) =

m>1 m>1

L+ Y an(@VN™ ] D7 bul@(VA™ ()

m>1 m>—1

around A = 0 from Theorem are convergent if and only if the pair (u,u,) is of finite

type. Here b_y1(z) and by(z) are given by b_1(z) = f_1 =% (§ %) and bo(z) = (7).

Proof. Let (u,uy) be of finite type. For gx(z) := 1+ >, 5, am(2)(v/A)™ consider the
systems %G)\ = (G fy and

56 =GBy with Gr(0) = a(0) Ga(on(a) = oxw ([ Buinyae).
X 0

Note that By (z) = D om>_1 b (z)(v/A)™ is a diagonal matrix. Then the map

exp <2l\$ﬁ/\> ) = exp < w > Gy (z)v = exp <m> ()G (2)ga(0) v

is a convergent power series around A = 0 due to Lemma and thus g)(z) also con-
verges on a neighborhood of A = 0. This shows that the power series in are convergent
around A = 0.

Now suppose that the power series in are convergent on a small neighborhood of A = 0.
Since G (x) = exp(fy Bx(t) dt) and Gr(p) = ga(0)GA(P)gr(0) ™" we see that

Inp= Z (V)™ /OP b (t)er dt
m>—1

is a meromorphic function around A\ = 0 with a simple pole at A = 0 and a similar
statement also holds around A = co. Thus the normalization of the multiplier curve has
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finite genus g. Due to the equation

~

) =Gy (@)v = ga(2)G ga(0) Mo

we see that the corresponding Baker- Akhiezer function has only finitely many poles around
A =0 (and A\ = c0) and consequently the corresponding divisor D satisfies deg(D) < co.
Now Proposition shows that the corresponding pair (u,u,) is of finite type. ]
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5 Isospectral and non-isospectral
deformations

5.1 Deformations of spectral curves

We start this chapter with non-isospectral deformations, i.e. deformations that change
the spectral curve Y. First we need some definitions.

Definition 5.1. The group of homotopic cycles on a Riemann surface Y is called fun-
damental group and is denoted by w1(Y). The abelianization of m1(Y) is the homology
group H(Y,Z).

Definition 5.2. A basis (A, B) = (a1,...,aq,b1,...,by) of Hi(Y,Z) is called canonical
if the intersection numbers of this basis are given by

ajoar = 0,
bj o bk = 0,
aj o bk = 5jk

with j,k € {1,...,9}.

Consider the subset A, C Hq(Y,Z) of anti-invariant cycles with respect to the involution

7, i.e.
Ay ={c€ Hi(Y,Z)| e = —c}.

Then A4, is a sub-module of Hy(Y,Z) ~ Z* of rank g and the same holds for the subset
of invariant cycles
Iyn={ce Hi(Y,Z)| n*c = c}.

Since the short exact sequence
0—=1,— H(Y,Z) - Hi(Y,Z)/I,, ~ A;; = 0

does not generally split we have H1(Y,Z) # I, ® A, in general. Choosing a-cycles from
A, ~79 (ie. n*a; = —a; for i =1,..., g) the dual basis of b-cycles obeys

n*b; = b; mod (a1, ..., ag).

With this observation in mind we choose the following homology basis (A, B) of H,(Y,Z)
for the upcoming considerations:
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Chapter 5. Isospectral and non-isospectral deformations

Fori=1,...,glet a; be defined as the closed cycle surrounding the line segment [, 1/a;]
where a,...,ay € D are the (simple) zeros of the polynomial a()) in the open disk D.
Now the b-cycles again are chosen in a way such that

n*b; = b; mod (a1, ..., a4)

holds fori = 1,...,g. The resulting basis (A4, B) for H1(Y,Z) is called an adapted canonical
basis in analogy to the terminology introduced in [14].

5.1.1 Infinitesimal deformations of spectral curves

Definition 5.3. Let X denote the space of smooth hyperelliptic Riemann surfaces Y of
genus g with the properties described in Theorem|3.59], such that d1n p has no roots at the
branchpoints of Y.

We will now investigate deformations of X5 ~ M;(p). For this, following the expositions
of [24, 28] 135], we derive vector fields on open subsets of M;(p) and parametrize the cor-
responding deformations by a parameter ¢t € [0,¢). We consider deformations of Y (u, u,)
that preserve the periods of d1n u. We already know that

/dlnu:O and /dln,u627riZ fori=1,...,9.
a; b;

7 3

Considering the Taylor expansion of In u with respect to t we get
In () = In p(0) + ¢ 9y In p(0) + O(t?)
and thus
dIn pu(t) = d1n pu(0) + t dd; In u(0) + O(t).
Given a closed cycle ¢ € H{(Y,Z) we have

/dlnu(t) = /dln,u(O) —i—t/dat In 12(0) + O(t?)

C

% (/Cdlnu(t))

This shows that deformations resulting from the prescription of 9; In u|;—¢ at t = 0 preserve
the periods of dln p infinitesimally along the deformation and thus are isoperiodic. If we
set A = 0 we can consider In p as a function of A and ¢ and get

and therefore

- /d&t In 4(0) = 0.

t=0 C

In (A, 1) = In (X, 0) + ¢ 9 In (X, 0) + O(t?)

as well as
OnInp(\t) = OxIn (N, 0) + 035, In p(X, 0) + O(t?).
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5.1 Deformations of spectral curves

We know that ¥ = {(A\,u) € C* x C*| R(A\, p) = 2 — A(\)p + 1 = 0}. Differentiating
the expression R(\, 1) = 0 with respect to A we get

nw _

0
M&M—A%MM—A@mwzzﬁfﬁ—A%wﬂ—mmm 0

and therefore
N AN

2% — pA(Y) — 20— A(N)

O\Inp=

on'Y. On the compact spectral curve Y the function 9 In u is therefore given by

b(A)
Hhnp= o
and the compatibility condition 92 In uli=g = 9%,1n pli—o will lead to a deformation of
the spectral data (a,b) or equivalently to a deformation of the spectral curve Y with its
differential dIn . Therefore this deformation is non-isospectral. In the following we will
investigate which conditions d1n y := (0 In pt)|s=0 has to obey in order to obtain such a
deformation.

The Whitham deformation. Following the ansatz given in [28] we consider the function
In i as a function of A and ¢ and write In p locally as

fa,(MNVA —a; + min;  at a zero o; of a,
Inp = fo(/\))\_1/2 + ming at A =0,
Foo A2 + ing, at A = oo.
Here we choose small neighborhoods around the branch points such that each neighbor-

hood contains at most one branch point. Moreover, the functions fq,;, fo, foc do not vanish
at the corresponding branch points. If we write g for (0;g)|=0 we get

fa, VA —a; — ;j;l_i(:) at a zero «a; of a,
(G0 = { fo(A)A~1/2 atA=0,
Foo(MAL/2 at A = oo.

Since the branches of Inp differ from each other by an element in 27iZ we see that
dInp = (O¢lnp)|i—o is a single-valued meromorphic function on Y with poles at the
branch points of Y, i.e. the poles of §In u are located at the zeros of @ and at A = 0 and
A = 00. Thus we have

dlnp = @
v

with a polynomial ¢ of degree at most g + 1. Since n*6Ilnpy = §Inji and n*v = A9
the polynomial ¢ obeys the reality condition

M e(A=1) = ¢(N). (5.1.1)
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Chapter 5. Isospectral and non-isospectral deformations

Differentiating v = Aa with respect to t we get 2v = Aa. The same computation for
the derivative with respect to A gives 2v1/ = a + \a’. Now a direct calculation shows

b
2 _
at)\ln:u’tZO — at <)\]j) —o — )\2]/2 - 21/3 9

9 (c> dv—c/  2dv2 —2cvv)  2d)Na — ca — chd
A\ = = :

b\ —bA\r 2ba —ba

O3y Inpl=o =

v v? 2u3 2u3

The compatibility condition 02, In yt|;—g = 0%, In p|—o holds if and only if
— 2ba + ba = —2X ac + ac + \d'c. (5.1.2)

Both sides of this equation are polynomials of degree at most 3g+1 and therefore describe
relations for 3g + 2 coefficients. If we choose a polynomial ¢ that obeys the reality con-
dition (5.1.1)) we obtain a vector field on M} (p). Since (a,b) € M} (p) have no common

roots, the polynomials a, b, ¢ in equation uniquely define a tangent vector (d,i))
(see [28], Section 9). An application of these techniques to study CMC tori in S* and H?
can be found in [34] and [40]. In the following we will specify such polynomials ¢ that lead
to deformations which do not change the period p of (u, uy) (compare with [28], Section 9).

Preserving the period p along the deformation. If we evaluate the compatibility

equation at A =0 we get
—2b(0)a(0) 4 b(0)a(0) = a(0)c(0).

d [ b0
=2 (z a(()))

Lemma 5.4. Vector fields on M;(p) that are induced by polynomials ¢ obeying (5.1.1))
preserve the period p of (u,uy) if and only if ¢(0) = 0.

Moreover,

o —i(a(0))3? a(0)’

This proves

Let us take a closer look at the space of polynomials ¢ that induce a Whitham deformation.

Lemma 5.5. For the coefficients of the polynomial c(\) = Zf;rol e\t obeying (5.1.1)) there
holds ¢; = ¢g41—; fori=0,...,g+ 1.

Proof. Tnserting ¢(\) = 3940 ¢;\ into (5.1.1) yields

g+1 4 g+1 ‘ g+1 o g+1 '
NN T =D "a T =) g N =) el
i=0 i=0 i=0 i=0
Equating the coefficients shows ¢; = ¢441—; fori = 0,..., g+1 and concludes the proof. []
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5.1 Deformations of spectral curves

Proposition 5.6. The space of polynomials ¢ corresponding to deformations of spectral
curve data (a,b) € M;(p) (with fized period p) is g-dimensional.

Proof. The space of polynomials ¢ of degree at most g + 1 obeying the reality condition
(5.1.1) is (g+2)-dimensional. From Lemmal5.4we know that p = 0 if and only if ¢(0) = 0.
This yields the claim. O

Note that ¢ corresponds to a transformation A — e’ )\ if and only if (3 feiR:b= fe).
This equivalence can be deduced as follows. Consider \(t) = e**\ with \(t) = ipA. Then

0 ‘ b . 1 c
;I p(A())|e=0 = alnﬂ A(t) = EW)\ =7
and thus ¢ = ipb. We show that (3f € iR : b = fc) = (deg(c) = g+1 and c obeys (5.1.1))).

Since b has degree g+ 1 there also holds deg(c) = g+ 1. Moreover, b satisfies A9T1b(1/)) =
—b(\). Since f € iR we get

!

M1 /N) = —fAITLe(1/X) = —fe(N)
and thus c obeys . Finally there holds
p # 0 Bl c(0) # 0 Lep. 0.8 (deg(c) = g + 1 and ¢ obeys (5.1.1))
and thus p = 0 <= —(deg(c) = g+ 1 and c obeys (5.1.1))). Moreover,

—(deg(c) = g+ 1 and c obeys (5.1.1)) = —~(3f € iR : b = fc)

and therefore infinitesimal M&bius transformations of the form \ — e*?\ are excluded in
the case of deformations that fix the period p.

5.1.2 M;(p) is a smooth g-dimensional manifold

From Proposition [5.6] we know that the space of polynomials ¢ corresponding to defor-
mations of M;(p) with fixed period p is g-dimensional. In the following we want to
show that M;(p) is a real g-dimensional manifold. For this, we follow the terminology
introduced by Carberry and Schmidt in [14].

Let us recall the conditions that characterize a representative (a, b) € C29[\] x CI9TL[)\] of
an element in Mg(p):

(1) A29a(A~1) = a()\) and A"9a(A) < 0 for all A € S! and |a(0)| = 1.

—
=
=H

N—
=
—~
JQ
S
N~—
I
e
Q
E
NI
~[S
I

0 for the roots «; of a in the open disk D C C.
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Chapter 5. Isospectral and non-isospectral deformations

(iv) The unique function h : ¥ — C with 0*h = —h and dh = bdd satisfies h(a;) € TiZ
for all roots «; of a.

Definition 5.7. Let HI be the set of polynomials a € C?9[\] that satisfy condition (i)
and whose roots are pairwise distinct.

Every a € HY corresponds to a smooth spectral curve. Moreover, every a € HY is uniquely
determined by its roots.

Definition 5.8. For every a € HY let the space B, be given by
By := {b € CITY\] | b satisfies conditions (i) and (iii)}.

Since (iii) imposes g linearly independent constraints on the (g + 2)-dimensional space of
polynomials b € CI71[\] obeying the reality condition (ii) we get

Proposition 5.9. dimgr B, = 2. In particular every by € C uniquely determines an
element b € B, with b(0) = by.

Now we arrive at

Proposition 5.10. The set
M = {(a,b) € CH¥NxCIT [\ | a € HY, (a,b) have no common roots and b satisfies (ii)}
is an open subset of a (3g + 2)-dimensional real vector space. Moreover, the set

N :={(a,b) € M| fi(a,b) =0 fori=1,...,9}

defines a real submanifold of M of dimension 2g + 2 that is parameterized by (a,b(0)). If
b(0) = by is fized we get a real submanifold of dimension 2g.

Proof. Consider the map f = (fi,..., f;) : R?9%2 x RY — RY given by

((a7b0)7 (blv e 7b(g+1)/2>) = f(a,b) == (fi(a,b),.. '7fg(a7 b))

If we choose b € B, with b(0) = by we get f(a,b) = 0 due to Proposition Moreover,
T : A(f1,--.fq)

f is linear with respect to (b1, ...,b(g11)/2) and thus m

Now we can apply the Implicit Function Theorem and see that there exist neighborhoods

U C R¥*2 and V C RY with (a,bp) € U and (by,...,by41y2) € V and a smooth map

g: U — V with g(a,bo) = (b1, ...,beg41)/2) such that

is invertible at (a, b).

f((a,bo),g(a,by)) =0 for all (a,by) € U.

Therefore N = f71[0] defines a real submanifold of M of dimension 2g + 2 that is param-
eterized by (a, b(0)). O

The results in [27, 28] yield the following theorem (compare with Lemma 5.3 in [29]).
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5.1 Deformations of spectral curves

Theorem 5.11. For a fized choice ni,...,ng € Z the map h = (hi,...,hy) : N —
(iR/2miZ)9 ~ (SY)9 with

hj: N — iR/2miZ, (a,b) — hj(a,b) :=Inp(o;) — min
18 smooth and its differential dh has full rank. In particular M;(p) = h~Y0] defines a

real submanifold of dimension g. Here we consider b(0) = by as fized, i.e. dimg(N) = 2g.

Proof. Let us consider an integral curve (a(t), b(t)) for the vectorfield X, that corresponds
to a Whitham deformation that is induced by a polynomial ¢ obeying the reality condition
(5.1.1). Then there holds h(a(t),b(t)) = const. along this deformation and therefore

dh(a(t), b(t)) - (a(t), b(t)) = dh(a(t),b(t)) - Xc(a(t), b(t)) = 0.

From Proposition [5.6] we know that the space of polynomials ¢ that correspond to a
deformation with fixed period p is g-dimensional. We will now show that the map

¢ Xo(a(t),b(t)) = (a(t),b(t)) with h(a(t),b(t)) = const. (5.1.3)

is one-to-one and onto. The first part of the claim is obvious. For the second part consider
the functions

b(A) dA
fv;(a,b) ::/ dlnu:/ ()Azln,u(aj):mnjemz
b; b, YV

J

along (a(t),b(t)), where the b; are the b-cycles of Y. Taking the derivative yields

tieola= [ 4()

Morover, for the a-cycles a; we have

dA
:/ 8t(a,\lnﬂ)|t:0d)\:():0.
=0 A b,

Jj

faj(a7b> = fj(avb) :/

a;

dlnuz/b()\)d)‘:()
. a VA

and consequently

i dleo= [ 5 (%)

Since all integrals of 0;(9) In p)|;=o vanish, there exists a meromorphic function ¢ with

dA
N / 9 (0xIn p)[i=0 dX = 0.
t=0 a;

dgp = 0¢(OxIn ) |1=0 dA.

Due to the Whitham equation (5.1.2)) this function is given by ¢ = (O lnpu)|i=9 = <.

v

Thus the map in (5.1.3)) is bijective. This shows dim(kerdh) = ¢ and consequently
dim(im dh) = g as well. Therefore dh : R?9 — RY has full rank and the claim follows. [
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Chapter 5. Isospectral and non-isospectral deformations

5.2 Deformations of the eigenline bundle

We want to consider isospectral deformations and therefore state the following lemma,
that is motivated by the results presented in [47], Chapter 7.

Lemma 5.12. Let vy, w! be the eigenvectors for p and ve,wh the corresponding eigenvec-
tors for % of M(\). Then

IM(N)v1 + M(N)dvy = povy and SM (N)vg + M(X)dvg = iém (%)
if and only if

()

2

dv; )w!

( g (;}tz}wl> puvy — M(X)dvy
i=1 !

povy — M(X)dvy

I}
%
—
>
—
<
=

and the claim is proved. O

5.2.1 Isospectral group action and loop groups

The one-to-one correspondence between Cauchy data (u,u,) of periodic real finite type
solutions of the sinh-Gordon equation and their spectral data (Y (u,u,), D(u,u,)) estab-
lished in Proposition [4.34] allows us to deduce the following conclusions.
Definition 5.13. Let Iso(Y) := {(u, uy) of finite type | Y (u,u,) =Y} be the set of finite
type Cauchy data (u,u,) whose spectral curve Y (u,uy) equals a given Y € Bf ~ M;(p).
Definition 5.14. Let Pz’cﬂ;H(Y) := Picy11(Y) N Picd®(Y) be the real part of Picg1(Y)
with respect to the involution n (compare with Definition .
If we define (compare with Definition [3.39))

E :Iso(Y) — Picﬂ;H(Y), (u, uy) = E(u, uy),

Proposition gives
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5.2 Deformations of the eigenline bundle

Proposition 5.15. The map E induces a homeomorphism Iso(Y) ~ PichH(Y).
Before we can define the isospectral group action we need the following

Lemma 5.16. The real part Picﬂfﬂ(Y) of Picg41(Y) is connected.

Proof. Let Jacg(Y) ~ Pick(Y) denote the real part of the Jacobian Jac(Y') =~ Picy(Y) of
Y with respect to the involution 1 and let n(Jacg(Y)) be the number of connected com-
ponents of Jacg(Y'). Since the quotient Y/n is a connected manifold with zero boundary
components we can deduce from the proof of Proposition 4.4 in [25] that

n(Jacn(Y)) = {1 if g = 0 (mod 2),

2 if g=1 (mod 2).

Since Jac(Y) ~ Pico(Y') is the Lie algebra of Picyy1(Y) we see that the claim follows
immediately for ¢ = 0 (mod 2). For the case ¢ = 1 (mod 2) we have to exclude one
component in order to obtain our result. For this, consider the divisor

(g+1)/2

D= > yi+ny)
=1

with deg(D) = g+ 1 and n(D) — D = 0, i.e. D is not quaternionic. Thus only one of
the connected components of Jacg(Y') corresponds to the Lie algebra of Picﬂ;H(Y) and
therefore Pic? 11(Y") is connected. O

One gets an action on Pic§+1(Y) by the following

Theorem 5.17. The action of the tensor product on holomorphic line bundles induces a
continuous commutative and transitive action of RY on Pic§+1(Y), which is denoted by

m:RY x Picg,(Y) = Picg (Y), ((to, ... tg—1), E) = w(to, ..., tg—1)(E).
Proof. Since the map ¢ : (hg,.,.)> — Hi(Y, O) is onto, there exist elements

(B9, h3), - (W™ hESY) € (Bgiee)?

such that
span{p(hQ, h3), ..., o(h§ ™' high)} = HE(Y, 0).

Denote by L(t) = L(to,...,ty—1) the family in Pick(Y') which is obtained by applying
i 1
0’ "Yo0

Krichever’s construction procedure to (hg, hoo) := Zf’;ol ci( ) such that the cocycle

of L(t) around g is given by k* exp(fo(t)) with

g—1
Bo(t) = Bolto, ... tg—1) = Y _ citihf.
i=0
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Chapter 5. Isospectral and non-isospectral deformations

Then the group action
m:RY x Picg, (V) — Picyy,(Y)

is given by
((to, - ,tg_l),E) — W(to, - ,tg_l)(E) =F® L(to, - ,tg_1>.

Obviously this continuous action is commutative since the cocycles of the bundle L(t) are
of the form exp(zgol ticigi). Moreover, Lemma ensures that Picﬂ; " 1(Y) and Pic§ (Y)

are connected and thus for every E’ € Picﬂ;H(Y) there exists t = (to,...,t4—1) € RY such
that E' = m(to, ..., te—1)(E). This shows that the action 7 : RY x Picy,,(Y) — Picg, (V)
is transitive and concludes the proof. O

Corollary 5.18. For the isospectral set Iso(Y') there holds Iso(Y) ~ (S')?.

Proof. Since the action 7 : RY x Pic§+1(Y) — Pic§+1(Y) acts transitively one has
Pic§+1(Y) =7(RY)(FE) for some E € Pic§+1(Y). Moreover, the stabilizer subgroup

I'e ={(to,...,ty—1) € RY| w(to,...,t4—1)(E) = E}
is a discrete lattice in RY of full rank that is isomorphic to Z9 and therefore
(SY)? =R9/29 ~ RI/T(E) ~ n(RI)(E) = Picky,(Y).
Thus we get Iso(Y') ~ (Sl)g due to Proposition and the claim is proved. O

Loop groups and the Iwasawa decomposition. For real r € (0,1], denote the
circle with radius r by S, = {A € C||\| = r} and the open disk with boundary S, by
I, = {\ € C| |\] < r}. Moreover, the open annulus with boundaries S, and S, , is given
by A, ={\ € C|r < |\ < 1/r} forr € (0,1). For r =1 we set A; :=S*. The loop group
A,.SL(2,C) of SL(2,C) is the infinite dimensional Lie group of analytic maps from S, to
SL(2,C), i.e.

A SL(2,C) = O(S,, SL(2,C)).

We will also need the following two subgroups of A,.SL(2,C): First let
ASUQ2) ={F € O(A,,SL(2,C)) | F|s1 € SU(2)}.

Thus we have .
FyeASU22) <= F 5 =F "

The second subgroup is given by
AFSL(2,C) = {B € O(I, US,, SL(2,C)) | B(0) = (g jp) for p € R* and ¢ € C}.
The normalization B(0) = By ensures that
ASU(2) NASSL(2,C) = {1}.

Now we have the following important result due to Pressley-Segal [46] that has been
generalized by McIntosh [42].
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5.2 Deformations of the eigenline bundle

Theorem 5.19. The multiplication A,.SU(2) x AFSL(2,C) — A.SL(2,C) is a surjective
real analytic diffeomorphism. The unique splitting of an element ¢\ € A.SL(2,C) into

o\ = F)\B,

with Fy € A,SU(2) and By € A,fSL(2,C) is called r-Twasawa decomposition of ¢y or
Iwasawa decomposition if r = 1.

Remark 5.20. The r-Iwasawa decomposition also holds on the Lie algebra level, i.e.
A,sl5(C) = Apsus @ AFsla(C). This decomposition will play a very important role in the
following.

In the finite type situation we can consider the following r-Iwasawa decomposition for
t = (to,...,tg_1) € CY

g—1
exp <§A > )\_iti> = F)\(t)BA(D).
i=0

Since [My, )] = 0 the eigenvectors for M) also diagonalize &, = B ()‘701” 7}\0_11/) B~!and

we get
g-1 1, i1
iy ZQ_O AT Y 0 —1
exp | & A :Bexp< = I B
[#3) R
and therefore

S AT 0

4 — B,\(t)B.
0 S ti)\llu> M)

Fy ' (t)Bexp (
Due to Be; = v; we see
g—1
exp(Y_t AT F N (E)or = Ba(t)or.
i=0

In particular we obtain for ¢ = (x,0,...,0) the equation

exp(zA ") Fy Hz)vr = By (2)vr.

For 1) = F;lvl and A"y = Q\ia +O(1) around A = 0 we see again that ¢° = exp(;;—‘”&)w

is holomorphic at A = 0.

An equivariant mapping. For ¢ = (to,...,ts—1) consider the map (y(t) € A,sl>(C)
that is given by

O(t) = P()+0"P(v) = Fy'(t) (P(D) + 0" P(¥)) FA(t)
= F{U(OGFA()
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Chapter 5. Isospectral and non-isospectral deformations

with 7 = ¥. Then ()(t) obviously satisfies

diCA(t)— (A1), Un(t:)] with Un(t;) := Fa(t)™* (d%pk(t))

For i # 0 the form U,(t;) corresponds to a higher flow in the sinh-Gordon hierarchy.

Recall that the spectral curve Y € X ~ M} (p) is the compactification of Y* = {(\,v) €

C* x C* | v2 = —det(£))}. Due to Proposition we can assign to every F € PicH;H(Y)
a projector P(E) such that P(E)(A™'v) + o*P(E)(A\"1v) = &,.

Proposition 5.21. The homeomorphism
Ext Picy 1 (Y) = {6 € Pyl det(§)) = —A""a(N)}, E — &\(E)

with
E(E) := P(E)(\ ') + o*P(E) (A1)

is an equivariant mapping for the action m : RI X Pic§+1(Y) — Pz’cﬂsﬂ (Y) introduced in
Theorem and the commutative and transitive group action (compare [27]) given by

T(to, - tg—1)(E)) = Pa(t) = Fy H(H)EFA(2).

This action respects the Iwasawa decomposition for t = (to,...,tg—1) that is given by

g—1
CeXp <£)\ Z )\_Zti> = F/\(t()? s 7tg—1)B)\(t07 s 7tg—1)'
1=0

Proof. Setting v = ¥, a direct calculation shows
Entor -ty 1)(E) = E\(E S Lto,...ty1)) = R(E)D) + 0" PAE)(7)
= FU(t) (PE)®) + 0" P(E)(©)) FA(t)
= F ' (O)&(E)FA)
= 7(to,- - tg-1)(EA(E))
and thus the claim is proved. O

Considering () (z) := ¢a(t) € Apsla(C) for t = (z,0,...,0) we obtain

O(z) = Fy N (@) aFa(x).

Then () (z) satisfies the equation

L@ = (6. Dr@)

i.e. (\(x) is the polynomial Killing field with (\(0) = &\. Moreover, the r-Iwasawa
decomposition

exp(z§y) = F(x)Bx(z)

holds in that situation.
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5.2 Deformations of the eigenline bundle

5.2.2 Infinitesimal deformations of &, and U,

In order to describe the infinitesimal deformations of £y and Uy, we follow the exposition
of [2], IV.2.e. Transfering those methods to our situation yields

Theorem 5.22. Let fo(A\,v) = Zf;ol AN~y be the representative of [(fo,n*fo)] €
HL(X,0) and let

Ag, == P(fo) + 0" P(fo) = ch ATH(POATYY) + o P(ANT) Zcz 3\

be the induced element in Apslo(C). Then the vector field of the isospectral action w :
RY x Pic§+1(Y) — Pic§+1(Y) at E takes the value

& =[47,6] = -6 45
under the equivariant map E — &x\(E) from Proposition . Here Ay = A;?O + AJTO 18

the Lie algebra decomposition of the Iwasawa decomposition.

Proof. We write v for v. Obviously there holds Agv = fov. If we Write 7 = ePo®y for
local sections v of Op ® L(to, . ..,tg—1) and v of Op with fy(t) = ZZ o citix Ty we get

07 = o(t)o+ e Wou = fob + P Wy
= Ap v+ ePWsy
= PO(Ap 0+ v).

Moreover, (fy) > 0 on Y*. This shows that Ag,v+ dv is a vector-valued section of Op on
Y* and defines a map A}LO such that

Apv+ov = A}rov
holds. Since Ayv = fov we also obtain the equations

EHv =vov
§>\(A;[0v —0v) = I/(A;?Ov — ov).

This implies
Exov + [A;{O,@\]v = vov.

Differentiating the equation £ v = vv we additionally obtain
E\v + E\6v = D + vdv = viv.
Combining the last two equations yields
EAU = [A}:)af)\]v

and concludes the proof since this equation holds for a basis of eigenvectors. ]
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Chapter 5. Isospectral and non-isospectral deformations

Remark 5.23. The decomposition of Ay € Asl(2,C) = Apsuy @ Afsly(C) yields Ay =
A;{O + AJTO and therefore Agv + dv = A;[Ov implies
ov = —AJTOU.

Svw?
wly *

In particular A;O is given by A;O =->

We want to extend Theorem to obtain the value of the vectorfield induced by = :
RY x Picg, 1 (Y) = Picy,(Y) at Uy.

Theorem 5.24. Let fo(A\,v) = 2?:_01 A"y be the representative of [(fo,n*fo)] €
HL(X,0) and let

g—1 g—1
Ap(2) = Pu(fo) + 0" Pulfo) = Y ed T (B '0) + 0" B(A 1)) = ) eid T G()
=0 1=0

be the induced map Agy : R — A,slo(C). Then the vector field of the isospectral action
7RI X Pic]_(}fH(Y) — Pic;R+1(Y) at E takes the value

SUN (@) = [}, (@), La(2)] = [La(2), A7, (2)].

Here Ay, () = A;{O (x) + A} (2) is the Lie algebra decomposition of the Twasawa decompo-

sition.

Proof. Obviously Ay, (z)v(xz) = fov(z). In analogy to the proof of Theorem we obtain
a map A;[O(x) such that

Apy(@)o(x) + So(x) = AT, (2)0(a)

holds. Since Ay, (z)v(z) = fov(x) we also obtain the equations

around A = 0. This implies
Ly(@)00(x) + [AF, (2), Ly(@)]o(z) = “60(z).

Differentiating the equation Ly (z)v(z) = lnT”v(x) we additionally obtain

SLx(z)v(x) + La(z)dv(z) = 22lo(x) + BEGv(2) = 2 dv(x).
Combining the last two equations yields
dLx()v(w) = dUN(2)v() = [A} (), La(x)]v(z)

and concludes the proof since this equation holds for a basis of eigenvectors. ]
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5.3 General deformations of M, and U,

In the next lemma we consider the situation of a general variation with isospectral and
non-isospectral parts.

Lemma 5.25. Let vy, w! be the eigenvectors for p and ve,wh the corresponding eigenvec-
tors for i of M(\). Then
SM (N1 + M(A\)dvy = (dp)vr + pdvr and SM(N)vg + M(N)dva = 6(5;)va + Lov2  (¥)
if and only if
2

SM(\) = [Z (bvi)uw; M(\)

t
=1

+ (P(0p) + 0" P(op)). (xx)

wi V;

Proof. A direct calculation shows

Q - gy

t
w;V;

+ (P(op) + U*P(5u))> v = (Z ﬁz’;fj”f ) o1 — M(N)Sv1 + (5p)vn

uovy — M(A)ovy + (dp)vq
5M()\)’U1

=

An analogous calculation for ve gives

SM(A)vy = ( [Z (5”2}"95 M()

- w
=1

+ (P(dp) + U*P(5u))) 2

and the claim is proved. O

Since the arguments from the previous proof carry over to the equation M) (z)v(z) =
pv(z) we get the following

Corollary 5.26. For the z-dependent monodromy My(z) a general variation is given by

2 ¢
SMy(x) = [Z M, My (x)

— wl(z)vi(z) + (Pp(0p) + 0* Py(6p)).

The above considerations also apply for the equation Ly(x)v(x) = (% + Uyv(z) =

lnT“ -v(z) around A = 0 and yield

Lemma 5.27. Let vi(x),w!(z) be the eigenvectors for p and va(x), wh(x) the correspond-

ing eigenvectors for % of My(z) and Mf\(a:) respectively. Then

Uxvi(x) + La(x)dv1 (z) = (P20 (2) + 2L 6y () (%)

and
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Chapter 5. Isospectral and non-isospectral deformations

SUxva(x) + L ()0va(z) = —(H2E) g () — BLGvg () (%)
around X = 0 if and only if
2 t
SUs = | La(a). Y OulL)WLD) |y (p,(8las) 1 g, (Blasy), (%)

Proof. Following the steps from the proof of Lemma and keeping in mind that p = 0
in our situation yields the claim. O

Remark 5.28. The above formula reflects the decomposition of the tangent space
into isospectral and non-isospectral deformations.
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6 Hamiltonian formalism and the
symplectic form

6.1 Completely integrable Hamiltonian systems

In the following we will show that periodic finite type solutions of the sinh-Gordon equa-
tion can be considered as a completely integrable system (compare with [I5] [16] in the
context of classical string theory). We refer to [19] [31, B2] for further reading. A nice
introduction to the subject can also be found in [33]. We start with some definitions.

Definition 6.1. A bilinear mapping
{+-}: CF(M) x C*(M) = C*(M), (f,9) = {f g}
on a differentiable manifold M is called a Poisson bracket if it satisfies
(i) (Anti-symmetry) {f, g} = —{g, [},
(ii) (Jacobi identity) {f,{g,h}} +{g,{h, f}} +{h,{f,9}} =0 and

(i11) (Leibniz rule) {f,gh} = {f,g}th + g{f,h}.

A Poisson manifold (M,{-,-}) is a differentiable manifold M with a Poisson bracket
{,-} on M.

Since a Poisson bracket {-, -} satisfies (i) and (ii) from Definition|6.1]it is also a Lie bracket
and thus (C*(M),{-,-}) is a Lie algebra.

For every f € C°°(M) the map g — {f, g} is a derivation of the smooth functions on
M and therefore defines a vector field, denoted by X (f) € &Xs. In particular one has

dg(X(f)) = {f, g} and

X({f,9}) = [X(f), X(g)] for all f,g € C(M),

where [-,-] is the Lie bracket of vector fields. Thus f +— X(f) induces a Lie algebra
homomorphism ¢ : (C*(M),{-,-}) = (X, [-,])-

Definition 6.2. Let (M, {-,-}) be a Poisson manifold. Two functions f,g € C°(M) are
said to be in tnvolution if {f, g} = 0.

Definition 6.3. A symplectic manifold (M,QQ) is a differentiable manifold M with a
non-degenerate closed 2-form Q. The form Q is called symplectic form of M.
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Chapter 6. Hamiltonian formalism and the symplectic form

Definition 6.4. A Hamiltonian system (M,Q, H) is a symplectic manifold (M, )
with a smooth function H : M — R. The corresponding vector field X (H) is called
Hamiltonian vector field.

Definition 6.5. Let (M,Q, H) be a Hamiltonian system. A function f : M — R is called
integral of motion for the Hamiltonian system (M,Q, H) if f is preserved under the
flow ®x () of the Hamiltonian vector field X (H).

From Definition we immediately deduce that f : M — R is an integral of motion if
and only if 0 = %f(‘bX(H))’tzo =df(X(H)) = {f,H}, i.e. fand H are in involution.
From the formula '

(X (), X(H)] = X({f, H}) =0
we see that the corresponding Hamiltonian vector fields X (f) and X (H) commute. In
particular the Hamiltonian H itself is an integral of motion.

Definition 6.6. A Hamiltonian system (M, H) with dim(M) = 2n is called com-
pletely integrable if and only if the system has besides the Hamiltonian H =: f1 addi-
tional n — 1 integrals of motion fa, ..., fr such that the derivatives dfy, ..., df, are linear
independent in Ty M for allp € M.

Definition 6.7. A subspace of a vector space which is maximal isotropic with respect to
a symplectic form ) is called Lagrangian. A submanifold N of a symplectic manifold
(M, Q) is called Lagrangian if and only if T,N is a Lagrangian subspace with respect to Q
forallp e N.

6.2 The phase space (MP,()

In the following we will define the phase space of our integrable system. We need some
preparation and first recall the generalized Weierstrass representation [I7]. Set

A%505(C) = {&, € O(C*,51,(C)) | (Aéx)aco € Cey )

A potential is a holomorphic 1-form & dz on C with £, € A% sly(C). Given such a
potential one can solve the holomorphic ODE d¢y = ¢»&\ to obtain a map ¢, : C —
A.SL(2,C). Then Theorem yields an extended frame F) : C — A,SU(2) via the
r-Iwasawa decomposition

¢x = F\B.

It is proven in [I7] that each extended frame can be obtained from a potential £xdz by
the Iwasawa decomposition. Note, that we have the inclusions

Py € A%slp(C) C Apsla(C).

An extended frame Fy : C — A,.SU(2) is of finite type, if there exists g € N such that
the corresponding potential {xdz satisfies {, € Py C A% sl2(C). We say that a polynomial
Killing field has minimal degree if and only if it has neither roots nor poles in A € C*. We
will need the following proposition that summarizes two results by Burstall-Pedit [12, 13].
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6.2 The phase space (MY, Q)

Proposition 6.8 ([27], Proposition 4.5). For an extended frame of finite type there exists
a unique polynomial Killing field of minimal degree. There is a smooth 1:1 correspondence
between the set of extended frames of finite type and the set of polynomial Killing fields
without zeros.

Consider the map A : £ = A(£)) := —Adet &y (see [27]) and set Pj(p) := A~ [My(p)].
Moreover, denote by Cp® := C*°(R/p) the Fréchet space of real mﬁmtely differentiable
functions of period p E R*. The above discussion and Remark [3.19] yield an injective
map

¢ : Py(p) C ANsla(C) = ¢[P,(p)] € O x O, &x > (u(én), uy(€r)).

Definition 6.9. Let My denote the space of (u,u,) € C5° x C3° (with fized period p)
such that (u,uy) is of finite type in the sense of Def. where ®y is of fized degree

g € No, and (5(0) € Py (p) with ¢\ = ®) — Ag—lcbl/;, i.e. Mg := ¢[P;(p)].
Now we are able to prove the following
Lemma 6.10. The map ¢ : Pgl(p) — Mg, & — (u(€)), uy(€r)) is an embedding.

Proof. From the previous discussion we know that ¢ : 7391 (p) — M} is bijective. We
show that ¢! : MJ — P)(p) is continuous. Assume that g is the minimal degree for
&) € Py (p) (see Proposition [6.8). Then the Jacobi fields

(wo, Oywo), - - -, (Wg—1, Oywg—1) € C(C/p) x C(C/p)

are linearly independent over C with all their derivatives up to order 2g + 1. We will now
show that they stay linearly independent if we restrict them to R. For this, suppose that
they are linearly dependent on R with all their derivatives up to order 2g + 1. Since u
solves the elliptic sinh-Gordon with analytic coefficients u is analytic on C [4I]. Thus the
(wi, Oyw;) are analytic as well since they only depend on u and its k-th derivatives with
k<2i+1<2g+1 (see [45], Proposition 3.1). Thus they stay linearly dependent on an
open neighborhood and the subset M C C of points such that these functions are linearly
dependent is open and closed. Therefore M = C, a contradiction!

By considering all derivatives of (u, u,) up to order 2g+1 we get a small open neighborhood
U of (u,uy) € C*°(R/p) x C*°(R/p) such that the functions

(Wo, Oywp), - . ., (Wy—1,0ywg—1) € C*(R/p) x C*(R/p)

stay linearly independent for (u,u,) € U. Given (u,u,) € U there exist numbers
aop, . ..,aq—1 such that the g vectors

((wolay), ywol(ay)), . .., (we—1(ay), dywy—1(a;)))"

are linearly independent. Recall that (wg, Oywgy) = Zl o Ci(wi, Oyw;) in the finite type situ-
ation, which assures the existence of a polynomial Killing field. Inserting these ao,...,ag—1
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Chapter 6. Hamiltonian formalism and the symplectic form

into the equation (wg, dyw,) = Zf:_ol ¢i(w;, Oyw;) we obtain an invertible g x g matrix
and can calculate the ¢;. This shows that the coefficients ¢; continuously depend on
(u,uy) € U. Thus for (u,u,) € My and € > 0 there exists a §. > 0 such that

||£>\(u’uy) - gk(ﬂv ay)” <é

holds for all Cauchy data (@, u,) € MY with ||(u,uy) — (@, Uy)|| < &, where the norm is
given by the supremum of the first 2g 4+ 1 derivatives. O

Let us study the map
Y:MP—¥P o~ M;(p), (u,uy) = Y (u,uy)

that appears in the diagram
Py(p)

| X

Y
My ——38

Proposition 6.11. The map Y : My — X§ ~ M}(p), (u,uy) — Y (u,uy) is a prin-
ciple bundle with fibre Iso(Y (u,uy)) ~ Pic§+1(Y(u,uy)) ~ (SY)9. In particular MY is a
manifold of dimension 2g.

Proof. Due to Theorem the space M; (p) is a smooth g-dimensional manifold. From
Proposition 4.12 in [27] we know that the mapping

A:Py(p) = My(p), & — —Adet(€y)

is a principal fibre bundle with fibre (S')¢ and thus P} (p) is a manifold of dimension 2g.
Due to Lemma the map ¢ : P, (p) — Mg is an embedding and thus M} is a manifold
of dimension 2g as well. d

Note, that the structure of such “finite-gap manifolds” is also investigated in [18] and
[7,139]). It will turn out that M} can be considered as a symplectic manifold with a certain
symplectic form . To see this, we closely follow the exposition of [44] and consider the
phase space of (¢,p) € Cp° x Cp° equipped with the symplectic form

P
Q :/ dg N\ dp
0
and the Poisson bracket
p 0 1
{f,g}—/ (Vf,JVg)dz with J—( 1 0).
0 _

Here f and g are functionals of the form h : C3° x C5° — R, (¢,p) = h(q,p) and Vh
denotes the corresponding gradient of h in the function space Cp° x Cp°. Note that
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6.2 The phase space (MY, Q)

there holds {f,g} = Q(Vf,Vg). If we consider functionals H, f on the function space
M = Cg° x CF° we have

af(X) = /0 " VLX) da
and
X(H) = JVH.

Since X (H) is a vector field it defines a flow ® : O C M xR — M such that ®((qo, po), t)
solves

S((a0,10).1) = X(H)(®((g0,0), 1)) with ®((g0,p0),0) = (a0, po).

In the following we will write (q(t), p(t))! := ®((qo, po),t) for integral curves of X (H) that
start at (qo,po). A direct calculation shows

SIa0p0)| = drexn) = [vr V) de = {f.1)
0

t=0
and we see again that f is an integral of motion if and only if f and H are in involution.
Set (¢,p) = (u,uy), where u is a solution of the sinh-Gordon equation, i.e.

Au + 2sinh(2u) = Uz + uyy + 2sinh(2u) = 0.

Setting t = y we can investigate the so-called sinh-Gordon flow that is expressed by

d (u)_ Uy _ (0 1 %
dy <uy) - (—um - QSinh(Qu)> = JVi,; = (_1 0) (aa%

with the Hamiltonian
Hy(q,p) = /Op %pQ - %(qx)2 + cosh(2q) dz = /Op %(uy)2 — %(ugc)2 + cosh(2u) dz
and corresponding gradient
VHy = (quy + 25inh(2q), p)’ = (g + 2sinh(2u), uy,)" .

Remark 6.12. Since we have a loop group splitting (the r-Iwasawa decomposition) in the
finite type situation, all corresponding flows can be integrated. Thus the flow (q(y),p(y))! =
(u(z,y), uy(z,y))" that corresponds to the sinh-Gordon flow is defined for all y € R.

Due to Remark[6.12]¢(y) = u(z, y) is a periodic solution of the sinh-Gordon equation with
u(z + p,y) = u(z,y) for all (z,y) € R2. The Hamiltonian Hs is an integral of motion,
another one is associated with the flow of translation (here we set ¢t = z) induced by the
functional

p P
Hl(q,p)z/ pqmd:c=/ Uy
0 0

£(2)=(20)-rem
dzr \uy Uya

with
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6.3 Polynomial Killing fields and integrals of motion

The Pinkall-Sterling iteration generates a sequence of solutions to the homogeneous Jacobi
equation. The iteration requires for a given w,, to find 7, solving

I1y, = 0wy, — 20wndu,

Oy = —e 2wy,

and then defining w,1+1 = 07, + 27,0u. Here we use a slightly different normalization
according to the exposition given in [36]. In order to obtain 7, it is useful to introduce
auxiliary functions ¢,, with

¢n = Owy — Ty

that satisfy

o, = 20w, 0u,
¢y, = —wy sinh(2u).

In order to supplement w, and 7, at each step to a parametric Jacobi field one has to
find a function o,, that satisfies

Doy = —e 2wy,

5an = 52wn — 25wn5u.
Finally one has the formula
Oop = —6_2“(8wn_1 + Pn—1)-
We will now describe how the functions ¢((\, p), z) := Fy ' (2)v(, p) and 9((A, p), 2) ==
(% 3) (A 1), 2) can be used to describe the functions w, o, 7 from the Pinkall-Sterling

iteration. Note that we swapped the roles of ¢ and v since we follow the exposition given
in [36]. First we see that 1) is a solution of

P U B ou e "\ (1
9 o ix"let —9u 1/)2 ’

5 1/J1 . —5u et 'Lﬁl
(Y ie™"  Ou o)

ou  ie ™\ (1
ixTlet —ou) \py )’
—ou ixe™\ (1
ie”"  Ou wa )

N = N =

Likewise ¢ solves
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6.3 Polynomial Killing fields and integrals of motion

Proposition 6.13 ([36], Proposition 3.1). Let ¢ and ¢ be solutions of the above system
and define w := Y101 — Wapa. Then

(i) The functon h = ¢l satisfies dh = 0.
(i) The function w is in the kernel of the Jacobi operator and can be supplemented to a

parametric Jacobi field with corresponding (up to complex constants)

_ W it
T = o

ev B

9 - eu .

Now we get the following
Proposition 6.14 ([36], Proposition 3.3). Let h = ¢'¢. Then the entries of
P(z) = Pyt _1 <¢1<P1 1/11<P2)
Yo h \Y2p1 P22

have at A = 0 the asymptotic expansions

W 1

S Sy
2h \/anl
it P 1 G \\n
T ek ﬁnon”( o
T N > Y

from the expansion at A = 0. Since we have 7 = o we get p*(}) = % and p*
This yields

Corollary 6.15 ([36], Corollary 3.4). The entries of P(z) have at A = oo the asymptotic
expansions

iw o0
= —1 L -n
o VA n§1:( "o,

. o

o= Y (-Dmaaa
n=1

. o0

o= Y-t
n=0

Definition 6.16. Consider the asymptotic expansion

_1lup " _
lnu—ﬁ2+\f)\;cn)\ at A=20

and set Hopi1 := (=1)""'R(c,) and Hopio := (—1)" 11 S(ey,) forn > 0.

115



Chapter 6. Hamiltonian formalism and the symplectic form

Remark 6.17. Since
. p .
Inp = \%% + \&/0 (=i(0u)? + & cosh(2u)) dt + O(N)
at A = 0 we see that the functions Hi, Hy are given by

P
H, = / %uyum dzx,
0
Py 2 _ 1 21
H, = —/ 7(uy)® — 7 (ug)” + 5 cosh(2u) d.
0
These functions are proportional to the Hamiltonians that induce the flow of translation

and the sinh-Gordon flow respectively.

We will now illustrate the link between the Pinkall-Sterling iteration from Proposition
and these functions H,, (which we call Hamiltonians from now on) and show that
the functions H,, are pairwise in involution. Recall the formula

d
%H((u, uy) + t(du, duy)) =0 = dH(yu,) (5, 0uy) = Q(VH (u, uy), (du, duy))

from the first section of this chapter. First we need the following lemma.

Lemma 6.18. For the map In u we have the variational formula

o () + (5, 5ury)

b1
= / Y oUNp da
t=0 0

dt phep
with . .
_ —10Uy AT eYou — e "ou
0UN = 2 <i/\e“5u — e %u 10Uy ) ’

Proof. We follow the ansatz presented in [44], Section 6, and obtain for Fy(z) solving
%FA = F\U, with F)\(0) = 1 the variational equation

%%FA(&U, Suy) » = (iF,\(éu, duy) t0> Ux + F)\oU,
with
<$F>\(5u,5uy) t:0> (0) = (8 8)
and 1 _isu iXTle"Su — ie du
oUy = 9 (z’)\euéuZ— z’i‘“&u 101y > ’

The solution of this differential equation is given by

(6| ) o= ([ Bumws va) B

dt

t=0
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6.3 Polynomial Killing fields and integrals of motion

and evaluating at x = p yields
d

@MA(éuﬁuy)

Due to Lemma [5.25] there holds

o (/Op FA(y)sUA(y) Fy ' (v) dy> M,

d
IM) = %M,\(éu, duy)

+ (P(6p) + 0 P(6p)).

3 [i; LY

1=
wt
1

If we multiply the last equation with — from the left and vy from the right we get

wt vy wt v whvy P
o M RO =0 =g | iU da
1v1 wi1 wiv1 0 ¢

and therefore

d P
— In p(du, du = / U\ dx.
el v) o ww AP

This proves the claim. O

We now will apply Lemma and Corollary to establish a link between solutions
wp, of the homogeneous Jacobi equation from Proposition and the Hamiltonians H,.

Theorem 6.19. For the series of Hamiltonians (Hy)nen, and solutions (wn)nen, of the
homogeneous Jacobi equation from the Pinkall-Sterling iteration there holds

VHani1 = (R(wn(,0)), R(Oywn(-,0))) and VHzpiz = (S(wn(-,0)), I(0ywn(-,0))).
Proof. Considering the result of Lemma a direct calculation gives
P
= —— U dx
=0 J, e
h=p' S —ibuy ix"te du — ie"du
o /0 ﬂw (i)\euéu —ie”Yu i0u, pde
L |
/ ﬁ((wzcm(i)\e“ —ie™") + o (i et —ie ")) du
0

—i(Y1p1 — Y2p2)duy) dx
p
Prop. [6.13 / x ((Ae?r — 17— A" 1e®o + 0)du — iw duy) dx

d
p In p(du, ouy)

Prop. .17 / — (0w — w)du — iw duy) dx

= /o o (twy du — iw duy) dr = Q(fﬁ(w,wy)7 (Su, duy))

= Q(FRW), R(wy)), (Fu,0uy)) + i (72(3(w), S(wy)), (du, 6uy))
= VA (D" (R(wn), R(Dywn)), (5u, Sy )) A"

n>0

FIVAD (=1 ((S(wn), S(Dywn)), (6u, 6uy)) A

n>0
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around A = 0 due to Proposition On the other hand we know from Corollary
that we have the following asymptotic expansion of In  around A =0

Inpy = T”’ + \f/ %+ L cosh(2u)) dt + O(N)
- 771) + \f)\z A"
n>0
— T?p )\Z +1H2n+1/\n+’L.\/XZ(—1)n+1H2n+2An.
n>0 n>0
Thus we get
d
pn In p(du, ouy) = VA Z D" Q(VHapy1, (0u, duy)) A
t=0 n>0
+iVAY (—=1)"T'Q (V Hanya, (Su, 1)) A
n>0
and a comparison of the coefficients of the two power series yields the claim. ]

6.4 An inner product on A,sly(C)

We already introduced a differential operator Ly(x,y) := % + Uyx(z,y) such that the
sinh-Gordon flow can be expressed in commutator form, i.e.

T La(ey) = 0Mew) = [Ealo): Vale )] = -Valw) + [Un(a0), Vi)

In the following we will translate the symplectic form €2 with respect to the identification
(u,uy) >~ Uy. First recall that the span of {e;,e_, €} is sl3(C) and that the inner product

(+,) 1 8la(C) x 5l5(C) = C, (o, B) — (a0, ) :=tr(a- )

is non-degenerate. We will now extend the inner product (-,-) to a non-degenerate inner
product (-, )5 on A,sl5(C) = A,suz(C) & A sla(C) such that

<'7 .>A’AT5UQ(C)XA7«5L12((C) =0 and <-, .>A‘1\f5[2(<(1)><A,T5[2(<C) =0,

i.e. Aysus(C) and A;fsly(C) are isotropic subspaces of A,sl2(C) with respect to (-, -)A.
Lemma 6.20. The map (-, )z : Apsla(C) x Aysla(C) — R given by

(o, B) = {a, B =S (ResAzo%tr(a . ,6’))

1s bilinear and non-degenerate. Moreover, there holds

(s 0al A sua(©xArsua©) = 0 and () gt a0y xatsiic) = 05

i.e. Apsug(C) and Atsla(C) are isotropic subspaces of Aysla(C) with respect to (-, -)A.
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6.4 An inner product on A,sly(C)

Proof. The bilinearity of (-,-) follows from the bilinearity of tr(-). Now consider a non-
zero element § = >, Mg € Aysly(C) and pick out an index j € T such that & # 0.

Setting E: i)\*jg we obtain

~ —t
(€,8)a = 9 (ResrmoRtr(€ - §)) = tr(g; - &) € R
since &; # 0. This shows that (-,-)a is non-degenerate, i.e. the first part of the lemma.

We will now prove the second part of the lemma, namely that A,sus(C) and A;fsly(C)
are isotropic subspaces of A,sly(C) with respect to (-, -)a.

First we consider at = af =Y, Xaf, at =Y, Xa) € Aysuy(C) with

4 —

+_ at = _at
ay = —al/j\ and ay = 1//\

Then one obtains

(at,a™)y = S (RespmoRtr(at-at))

%(tr(afl . &f + ag . &g + af . atl)).
A direct calculation gives
tr(at a; +agddg +ajfat,) = tr((—at)i(—=a; )t + (—ad) (—ag )t + (—ah)(—a )b
-1 0 % 101) = 1 1 0 0 1 -1

= tr(af,af +ofag +afaty)

and thus tr(a®,af + of ag + af a’;) € R. This shows

+ &t ~+

@ A=Sr(aty-af +ad -ag +aof -at))) =0.

Now consider 8~ = > . N7, B~ = > >0 AiB; € A} sla(C) where BO_,EO_ are of the

form _
(e ) w0 %)
with ho,ﬁo € R and ey, ey € C. Then one gets
(575 = 9 (RessmoRer(5™-57)

SECE)
= 3(2hoho)
0

This yields the second claim and concludes the proof. O
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6.5 The symplectic form () and Serre duality

This section incorporates the results from Chapter 4, 5 and 6 and establishes a connection
between the symplectic form 2 and Serre Duality Moreover, we will show that
(MY, Q, Hs) is a completely integrable Hamiltonian system.

Definition 6.21. Let H(Y,Q) = {w € HY,Q)|n*fw = —w} be the real part of
HO(Y, Q) with respect to the involution 1.

The following observation is based on [24] and [47]. Let R(A,p) = 0 be the equation
that defines the Riemann surface Y (u,u,) corresponding to (u,u,). Taking the total
differential we get

OR OR
and differentiating with respect to (du, du,) yields
OR . OR .
—Adt + —pdt dt = 0.
N + 6u” +R 0 (xx)
With the help of we get
OR IR
dp=—2%d\ and dx=—Ddu.
X Em

Now a direct calculation using () and shows that for the form w = ¢ In u(dou, 61@)% -
§1n A(Su, du,) % there holds

B d\ dp  0R(6u,duy) dA
w—élnu(éu,éuy)T 61H>\(5u75uy)7 = WT
L OR(u, ouy) dp

AR

Thus we can choose that either dlnA =0 or 6Inp = 0. In the following we will usually
impose the first condition dIn A = 0. Since 7 is given by (A, u) — (1/A, i) we have

n*6lnp=0Ilnpu and n*%:_%_

Thus we arrive at the map w : T(y )My — HY (Y (u,uy), ) given by

X

(0u, duy) — w(du, duy) := 6 In p(ou, 5uy)7.
Remark 6.22. Due to Theorem we can identify the space Ty(u’uy)Elg) of infinitesimal
non-isospectral (but iso-periodic) deformations of Y (u,u,) with the space HY(Y (u,uy), )
via the map ¢ — w(c) := %% = dln ,u%. Therefore w can be identified with dY, the
derwative of Y : MY — X%. Due to Proposition the map Y : MY — XF is a

submersion. Thus the map w : Ty, My — HY(Y (u,uy), Q) is surjective.
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Note that deformations which keep the period p fixed indeed correspond to a holomorphic
1-form w since in that case we have

1)\z 9 z 1
wZ(Sln,ud)f\:C()‘)ij)‘:Zz 1€ d)\ Z d)\

Definition 6.23. Let L(yy,) C T(y, )M; be the kernel of the map w : T(u,uy)Mgp —
HY (Y (u,uy), ), ie. Luu,) = ker(w )

Now we are able to formulate and prove the main result of this work. The proof is based
on the ideas and methods presented in the proof of [47], Theorem 7.5.

Theorem 6.24.
(i) There exists an isomorphism of vector spaces d'(,4,,) : HE (Y (u,uy), 0) — Luuy)-
(ii) For all [f] € Hg(Y (u,uy),0) and all (§u,duy) € T(y My the equation
Q(dl“(uyuy)([f]), (0u, duy)) =i Res([f] w(du, duy)) (6.5.1)
holds. Here the right hand side is defined as in the Serre Duality Theorem (2.2J).
(iii) (M, Hs) is a Hamiltonian system. In particular, Q is non-degenerate on My .
Remark 6.25.

(i) From the Serre Duality Theorem we know that the pairing Res : H*(Y (u, uy), O)x
HO(Y (u,uy), Q) — C is non-degenerate.

(14) Luuy,) € Tluu, )M; is a mazimal isotropic subspace with respect to the symplectic
form Q T(u,uy)Mgp X TuuyyM§ — R, i.e. Liyu,) is Lagrangian.

Proof.

(i) Let [f] = [(fo,n*fo)] € HE(Y,O) be a cocycle with representative fy as defined in
Lemma [£.15] Then we get

g—1
Apy(@) = Pu(fo) + 0" P Zcz NPT + 0 B ) = 3 e (@)
1=0

with
U (x) = [A} (2), La(2)] = [La(x), A7, (2)]-

due to Theorem [(5.24] and moreover

dv(z) = —Ap (z)v(z)
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(i)

. _ v, wf T
holds due to Remark [5.23 with A} (z) = —3_ #

w#(g ) From Lemma |5.27| we

know that in general

OUN=) = [Lk(fﬁ)’ -2 W + (P22 4 0™ Pp(H2)).
i=1 ? v

Since 6Ux(z) = [La(z), A}, (x)] we see that J1n p(6ufo, duy?) = 0 and consequently
(5uf°,5u£°) € ker(w).

Thus we have an injective map dl'(, ) HE (Y (u,uy), 0) — Luu,)- Due to Re-
mark we know that w : Ty, )My — HY (Y (u,uy), ) is surjective. Since
dim Hp (Y (u, uy), ) = g there holds dim L, ,,) = dimker(w) = g and thus dl'(,.,,) :
HE(Y (uyuy), 0) — L(yu,) is an isomorphism of vector spaces.

For an isospectral variation of Uy (z) we have

0UA(z) = [Lx, B~ (2)] = B~ () — [Ux(z), B~ (2)]

xT

with amap B~ (z) : R — A sl5(C). In the following ¢ will denote the A, suy(C)-part
of Aysla(C) = Apsug(C) @ A sla(C) and © will correspond to the second summand
Atsly(C). Since 6Uy(x) lies in the @-part and %B‘(:c) lies in the ©-part, we see
that Uy (z) is equal to the @-part of the commutator expression —[Uy(x), B~ (z)].
Writing U for Uy(z) and B~ for B~ (z) we get

AU _; + MUy + MU,
(A NBy, U-1) + X([By,U-1] + By, Uo))
+A([By ,U-1] + By, Uo] + [By , Uh)) -

oU

!

Thus we arrive at three equations

U1 = [Bo_v U—l]v olp = ([B1_7 U—l] + [BO_7 UO])@7
Uy = ([By ,U-1] + By, Uo] + [By , Ui]) -

Recall that U) is given by

1 —iu iINTret e
U)\ == 5 ( u y —u . >
iAe" +ie 1y

and consequently

1 — 10Uy iN"retdu — ie “ou
O0UN = 2 (i)\eudu — e %u 10Uy ) )
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6.5 The symplectic form ) and Serre duality

We can now use the above equations in order to obtain relations on the coefficients
By and By of B~ =), A'B;” where By is of the form

By = (ho €o > with hg € R, eg € C,

fi —h

Lsu e
- _ (2
By = < 0 —ééu)'

Moreover, the sum [By ,U_1] + [B , Up] is given by

and By is of the form By = (}“ s > Since 6U_1 = [B,U_1] a direct calculation
yields

%eoef“—%fle“ thie —i—zeouy—i- Le~Ugy .
—5e “du —gepe” ' + fle

For the diagonal entry of [B;,U_1] + B, Uy| the @-part is given by the imaginary
part and therefore

—%&Ly = %?R(eo)e_“ — %%(fl)e“

Thus we get
duy = RN(f1)e" — RN(eg)e ™.

For B~ (x) := A} () we obtain

& (tr((SUOA;O’O) + tr(éU_lAihl)) = <& (—iéuyho — %egefuéu + %fleuéu)
= —duyR(ho) + $0u (R(f1)e" — R(eo)e™)
= % (5u5u§° — Sulo 5uy) .

Now a direct calculation gives

P
(6uo5u, — du (5uf°)d

N | —

I
O\O

SO ([F]), (B 6) =

p
tr (8UoA7, o) + tr(éU_lAJTO’l)) dz

’U

= (6Ux(z ())adx
0
p

PUAEE (6U (), Ag, (2)) pd.

[e=]
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Setting ﬁm(‘”%) = Pw(‘“n“) +0*P, ( £, we further obtain

SO (), (G Gy)) / " ([La(x), B~ (@), Apy (2))nde
- [ (B (o
0
_ /0<[B—<:c>,LA<m>LAfo<x>>Adx
- /O C(B(82e), Ap (@) ade

Recall, that tr([B~(z), Lx(z)] - Ag,(x)) = tr(B~ () - [La(z), Ag,(x)]). Moreover,
there holds [Ly(x), Af,(x)] = 0 and we get

£), Ao (2)) ade

)

1 14
2 AL ) ([£]), (0w, 0uy)) - = /<B_(ﬂf),[LA(fE)aAfo(ﬂﬂ)])AdﬂC
0

Sl Ay ())ade

5 Ag (1)) ada

= = [T, P
0

Writing out the last equation yields

O (7). G 30)) = =2 [ (Resy Rex(y ) Po(61n ) do

= —;)%(Resyo(fo-alnw?))

= i (Resy0 (fo-0lnp%) — ReSyOM)

= z(ResyO fo- 51nu ) Resywn*m>
=i (Resyy(fo 60 R) + Resy (foo - S0 %))

and thus
QX () ([f1), (0u, buy)) = iRes([flw(du, duy)).

(iii) In order to prove (iii) we have to show that € is non-degenerate on M. From
equation (6.5.1)) we know that

Q((du, duy), (du, duy)) = 0 for (du,duy), (6, 6ty) € Ly ,,) = ker(w).

Moreover, w : T(u’uy)Mgp — HY(Y (u,uy), ) is surjective since dim T(uﬂy)M; =2g
and dimker(w) = g = dim HR (Y (u, uy), ). Thus we have

(u Uy) Mp/ ker( HH%(Y(U':U’Z!)?Q)
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6.5 The symplectic form ) and Serre duality

and there exists a basis {da1,...,0aq,0b1,...,0by} of T(%uy)M; such that
span{dai,...,0aq} = ker(w) and w(span{dbi,...,dbs}] = HH%(Y(u,uy), ).

Now L(y4,) = ker(w) ~ HE (Y (u,uy),0) and since the pairing from Serre duality
is non-degenerate we obtain with equation (after choosing the appropriate
basis)

Q(dai,ébj) = 51']' and Q(dbi,éaj) = —57;]'.

Summing up the matrix representation Bq of €2 on T(%uy)M; has the form

ma= (" )

and thus €2 is of full rank. This shows (iii) and concludes the proof of Theorem
U
Corollary 6.26. The map dl'(,,,) HE (Y (u,uy), 0) — Luu,) 18 given by

dA
(w7 Wy)T~

(fo 1" fo) = (6ufo, 5ufo) = Resyo 8 (w, wy) D + Resyooo L
Proof. From Theorem and the proof of Theorem we can extract the formula

Q ((5uf0, sul), (Su, 5uy)> — i (Resao(fo - 610 %) + Resyooo (7 fo - 510 p2))

R,eS)\:()(fO : Q(#(wﬂ")y)) ((SU, 6“2/))%)
+ ReSA:oo(n*fO : Q(ﬁ(wa Wy)a (5U, 5uy))df)\>\)

= Q <Res,\:02f—§’l(w,wy)% + Res,\zoo%(w,wy)%, (6u,5uy)> :

Since € is non-degenerate due to Theorem the claim follows immediately. O

Corollary 6.27. The Hamiltonians Hy,, : My — R are in involution, i.e. {Hy, Hy} =0
forn,m =1,...,g and the Hamiltonian system (MY ,Q, Ha) is completely integrable.

Proof. From Theorem [6.19] we know that
Vi1 = (R(wn(:,0)), R(Gywn(-,0))) and VHopio = (S(wa(:,0)), S(Oywn(-,0))).
By choosing the appropriate fy we can deduce from Corollary that the elements
(R(wn(+0)), R(Oywn(+,0))) and (S(wn(-,0)), S(dywn(+,0))) lie in L,,,) = ker(w). More-
over, we get from Theorem that there exist some [f,] € Hg(Y, O) such that
{Hp, Hy} = Q(VHy, VHp) = QAL (44, ([fn]), VHR) = i Res([fn] 0(VHp)).

This gives {Hp, Hn} = i Res([fn],w(VH,,)) =0 forn,m=1,...,g. O
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Remark 6.28. For the non-linear Schrédinger operator with a potential q(x) with period
p = 1 the symplectic form is given by

0qi;(x)0q,
0. 07) = Y [ D),
i#]
where the distinct p; are the entries of the diagonal matriz p = diag(p1,...,pn) appearing

i the corresponding Lax operator

d
L= — Ap.
dx+q(fﬂ)+ p

A direct calculation shows

Oa3 ()0 (z
0(3q,09) = Z/ 4 (@ qf )d

i#£]
1
= [ tbatw)ad (p)5ita) ~ da)ad! (p)sa(a)da

1
= Reso T [ trtba(o)ed (0)3i(a) — dia)ad " (p)Sa(e)d

1
_ Resxzoo% /0 tr([L, a= (2)] ad~ (p)[L, b~ (2)]
—[L,b™ (x)]ad  (p)[L,a” (z)])dx

1
_ Resy_od) /O (L, a~ (@) ad " (p)[LL, b ()]
—[L,b™ (2)]ad " (p)[ L, a” (z)])dz

1
= ResA:OOd)\/() tr([L,a™ (2)]b” (z) — [L, b (x)]a™ (z))dx.

The techniques from the proof of [47], Theorem 7.5, lead to the reproduction of the sym-
plectic form by Serre duality .

We want to illustrate Theorem and consider the first non-trivial case ¢ = 1. It
corresponds to a solution of the sinh-Gordon equation where the “higher flow” is given
by the flow of translations and therefore the corresponding polynomial Killing field ¢y (x)
solves

£ =16, Un] with (,(0) € Py

From Lemma we know that a general variation of Uy is given by

2 t
O

=1

+ (Px((SlII)lu) +O_*Pz(61;1u))

= Ly, B @)+ (P(U5) 4 0" Po(P02))
= 0U\+ 06U}
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and that 60U, is a sum of an isospectral part dU )I\ and a non-isospectral (but iso-periodic)
part 5U}\\I. Moreover, let
SU{" = L, Ay ()

be a variation that corresponds to an element (5uf0,(5u50) € L(uu,)- In the present
situation fo and  In p are given by

A
fozcog with ¢g € iR and dlnp = c;— with ¢; € R.
v

Note that ¢(A) = ¢1 A is a polynomial of degree g = 1 since we are interested in iso-periodic
deformations dUY that leave the period p fixed. Now Ay, (z) is given by

Ap(x) = Pu(fo) + 0" Pu(fo) = co(Po(A ') + 0" P(A"'))
= cola(z).

Inserting this into equation (6.5.1]) yields

Q((6ul,6ufe), (6u,6u,)) = iRes([f]w(bu, 6uy))
= =23 (Resy, (fo - Sl pu%))
= 2icgc1 € R.

The last equation equals zero if and only if ¢g = 0 or ¢; = 0.
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7 Summary and outlook

In this chapter we summarize the results of this work, especially those which are new. We
also give some remarks on other interesting questions that are beyond the scope of this
thesis.

7.1 Summary

In this thesis we studied the sinh-Gordon equation and worked out the Hamiltonian frame-
work for periodic finite type solutions, i.e. we identified the space of such solutions as a
completely integrable Hamiltonian system (M}, Q, Hz). Moreover, we were able to prove
the classical features of integrable systems for that particular system. We now give an
overview for the results of the various chapters.

In the second chapter we introduced the A-dependent sly(C)-valued one-form «a) with
A € C* following the exposition of Hitchin in [30] to obtain a C*-family of flat connections.
The Maurer-Cartan equation for « is the sinh-Gordon equation

Au + 2sinh(2u) =0,

which arises as the integrability condition for the A-dependent extended frame F) that
solves the equation

dF\ = Fyay with F\(z) = 1.

Moreover, it was possible to describe the transformation of F\ and «) with respect to
certain parameter transformations.

In the third chapter we introduced spectral data (Y, D) for periodic finite type solutions
of the sinh-Gordon equation consisting of a spectral curve Y and a divisor D. We defined
the monodromy M) of the A-dependent frame F) and considered its asymptotic expan-
sion around the points A = 0 and A = co. At these points M) has essential singularities.
We were able to prove a formal diagonalization of the form a) around A = 0 and also
obtained a formal diagonalization of the monodromy M) around A = 0.

Instead of taking a periodic u defined on R? we studied a pair (u,u,) € C®(R/p) x
C>(R/p) with fixed period p € R that corresponds to u if one considers the coordinate y
as a flow parameter. By introducing polynomial Killing fields {\(x) and the appropriate
space of potentials Py, we parameterized the space of Cauchy data (u,u,) of finite type
and gave definitions for their spectral data (Y (u,uy), D(u,u,)) consisting of a spectral
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curve Y (u, uy) and a divisor D(u, uy) on Y (u, uy).

In the fourth chapter we showed that the map (u,uy) — (Y (u,uy), D(u,uy)) is a bi-
jection and introduced a basis of H'(Y,0). Moreover, we translated the reality con-
dition on My and &) to this setting. We also investigated the Baker-Akhiezer func-
tion and its analytic properties in order to reconstruct the x-dependent eigenvectors of
My (x) = Fy ! (x) MyFx(x) and ().

The fifth chapter dealt with isospectral and non-isospectral deformations of the spectral
data (Y, D). On the one hand we studied non-isospectral (but isoperiodc) deformations
of spectral curves Y of genus g and showed that the space of such curves is a smooth
g-dimensional manifold with the help of the Whitham deformations. This lead to the
conclusion that the space of Cauchy data (u, u,) that corresponds to such smooth spectral
curves Y is a smooth 2¢g-dimensional manifold.

We also introduced an isospectral group action on Picﬂ;H(Y) by means of Krichever’s
construction procedure for linear flows on Pich(Y') and showed that

Iso(Y) = {(u,uy) | Y (u, uy) = Y}

is parameterized by a g-dimensional torus (S')9. This degree of freedom corresponds to
the degree of freedom for the movement of the divisor D in the Jacobian Jac(Y'). More-
over, we calculated the infinitesimal deformations of &, and U, that result from that
isospectral group action.

The sizth chapter combined the third, fourth and fifth chapter and dealt with the symplec-
tic form  on the 2g-dimensional phase space M} as well as the Hamiltonian formalism
for the sinh-Gordon hierarchy.

Due to the asymptotic expansion of the monodromy M) we were able to define a series
of Hamiltonians (Hy,)nen, on the phase space and showed that the series (wp)nen, of
solutions of the linearized sinh-Gordon equation

90w + cosh(2u)w = (1A + cosh(2u)) w = 0,

that is obtained via the Pinkall-Sterling iteration, corresponds to the gradients of the
Hamiltonians (H,,)nen, in the following way:

VHyn1 = (R(wn(-,0)), R(Gywn(-,0))) and VHonio = (S(wn(-,0)), 3(dywn(-,0))).

We also showed that (H,)nen, are involutive integrals of motion for the Hamiltonian
system (MY, Q, Hy). Moreover, we introduced an inner product on the loop Lie algebra
A,sl3(C) and used this inner product to establish the formula

QAT () ([f]), (O, 6uy)) = i Res([flw(du, duy))

that relates the symplectic form 2 to Serre duality as it was done in [47] for the non-linear
Schrédinger operator. This is the main result of the thesis.
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7.2 Outlook

The Backlund transformation provides a tool for isospectral transformations of given
Cauchy data (u,u,). A good exposition for the case of complex Fermi curves of finite
genus corresponding to Dirac operators with periodic finite type potentials can be found
in [48]. For a quaternionic divisor D with deg(D) = g + 1 we see that the transformation

D D:=D+yo+ Yoo —y — n(y)

preserves this property. By calculating the corresponding Baker-Akhiezer function 12, it
should be possible to describe the transformation (u,w,) — (u,u,) with respect to the
transformation D — D.

Another interesting question arises from a result in [47], where the non-linear Schrédinger
operator with periodic potential g(x) was investigated. It was shown that the points
(i, pi)iez of the corresponding divisor D(q) are almost Darboux coordinates in the sense
that

Q(dq,0q) = Z(%M(M)hzo)(% In 11 (6G) [t=0) — (£ Ai(0G)|t=0) (% In 13 (5q) |i=0),

or in short form
Q=>d\Adlnp;.
7
An analogous result was proven in [1] for the finite-dimensional case. This result should
carry over to the present situation if we replace \; by In \; in the last equation. It would
be interesting to relate our results to the existence of such Darboux coordinates in the
present setting.

Finally, it should be possible to extend the present results to periodic solutions of the
sinh-Gordon equation of infinite type to obtain a similar description as in [47].
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