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Abstract

The Wente Family is the space of polynomials in S2
1

1 whose coefficients are all
real valued. The behaviour under the Whitham deformation can be described
by a vector field. We explicitly constructed the vector field and tried to prove
uniqueness of the maximal integral curves.

1Definition 3.4
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1 Introduction
A subject in differential geometry is the construction of tori of constant mean curvature
(CMC tori). These tori are described by the solutions of the sinh-Gordon equation

∆u+ sinh(2u) = 0

where ∆u means the Laplace operator of u. We only consider the solutions of finite
type. These solutions can be described by the space of potentials, which is a space of
matrix polynomials. The determinants of these matrices are called spectral curves and
are of the following form

y2 = λa(λ) = (−1)gλ
g∏
j=1

ηj
|ηj|

(λ− ηj)(λ− η̄−1
j )

Here g is the genus of the spectral curve. In the following we will consider the spec-
tral curves of genus 2. The polynomials a(λ) define the space Hg of spectral curves
of genus g. The submanifold S2

1 has a subset of polynomials with all real coefficients,
called the Wente Family. Any polynomial in the Wente Family is of the form a(λ) =
λ4 + a1λ

3 + a2λ
2 + a1λ+ 1. Every a(λ) defines a two-dimensional vector space Ba.

We will use the explicit form of a(λ) and b1, b2 to solve the Whitham equations and
construct a vector field that maps the coefficients (a, b1, b2) to (ȧ, ḃ1, ḃ2).
In chapter four we will try to show uniqueness of the maximal integral curves by exam-
ining the roots of the vector field constructed before.
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2 Preliminaries
Definition 2.1. Let X be a two-dimensional manifold. A complex chart on X is a
homeomorphism φ : U → V on an open set U ⊂ X to an open set V ⊂ C. Two complex
charts φi : Ui → Vi, i = 1, 2 are called biholomorphic compatible, if the transition map
φ2 ◦ φ−1

1 : φ1[U1 ∩ U2]→ φ2[U1 ∩ U2] is biholomorphic.

Definition 2.2. A complex atlas is a system A = {φi : Ui → Vi, i ∈ I} of pairwise
biholomorphic compatible charts with ⋃i∈I Ui = X.

Definition 2.3. A complex structure on a two-dimensional manifold is an equivalence
relation of biholomorphic equivalent atlases on X.

Definition 2.4. A Riemann Surface is a pair (X,Σ) where X is a connected, two-
dimensional manifold and Σ is a complex structure.

Definition 2.5. We will define the real projective space. Therefore we will first define
an equivalence relation on Rn+1 \ {0}:
x ∼ y :⇔ ∃λ ∈ R \ {0} : x = λy
We define RP n := (Rn+1 \ {0})/ ∼ as the real projective space.

Definition 2.6. We will now define the process of Blowing Up.
Let ∆ ⊂ Cn be a disc. We will look at the following coordinates: z = (z1, ...zn) ∈ ∆, l =
[l1, ..., ln] ∈ CP n−1. Let ∆̃ ⊂ ∆× CP n−1 be the submanifold given by

∆̃ = {(z, l) ∈ ∆× CP n−1|zilj = zjli∀i, j}

We now define a mapping

π : ∆̃→ ∆
(z, l) 7→ z

This is an isomorphism ∀z 6= 0 in ∆ and π−1[0] = {0}×CP n−1. We call (∆̃, π) the blow
up of ∆ at 0.

5



3 Spectral curves of CMC tori in R3

Constant mean curvature tori of genus one surfaces in R3 can be described by spectral
data in a way that every such immersion corresponds to a quintuple (X,λ, ρ, λ0, L)
where X is a spectral curve, which is a special kind of algebraic curve, λ is a degree two
meromorphic function which has branches at x0 = λ−1{0} and x∞ = λ−1{∞}. ρ is an
anti-holomorphic involution that has the set S1 as fixed points. λ0 is a so called sym
point in S1 and finally L is a quaternionic line bundle.

Definition 3.1. A polynomial of degree n is said to satisfy the reality condition if the
following equation holds

λnf(λ−1) = f(λ) (1)

The space of these polynomials of degree n is called P n
R

We define Hg = {a(λ) | a is a spectral curve of a CMC immersion of finite type} ⊂ P 2g.
These polynomials a(λ) satisfy

(i) the reality condition

(ii) a(λ)
λg ≥ 0

(iii) the highest coefficient of a has absolute value 1

(iv) the roots of a are pairwise distinct, meaning Xa is smooth

Xa is described by the following equation

y2 = λa(λ) = (−1)gλ
g∏
j=1

ηj
|ηj|

(λ− ηj)(λ− η̄−1
j ) (2)

Definition 3.2. ∀a ∈ Hg we define Ba as the real two-dimensional space of polynomials
of degree g + 1 with b ∈ P g+1

R and

Θb := b(λ)dλ
λy

has purely imaginary periods

Definition 3.3. ∀(a, λ0) ∈ Hg × S1 ∃ linearly independent b1, b2 ∈ Ba, µ1, µ2 functions
on Xa satisfying

(i) log(µ1) and log(µ2) are holomorphic on Xa \ {x0, x∞} and on {x0, x∞} they have
simple poles and linearly independent residues.
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(ii) Θb1 = d log(µ1), Θb2 = d log(µ2)

(iii) µ1(λ0) = µ2(λ0) = ±1

(iv) b1(λ0) = b2(λ0) = 0

Definition 3.4. (i) Sgλ0 := {a ∈ Hg|∀b ∈ Ba : b(λ0) = 0 holds}

(ii) P2
λ0 := {a ∈ Hg|Xa is the spectral curve of a CMC torus in R3} and Pgλ0 ⊂ S

g
λ0

Definition 3.5.

Pg =
⋃

λ0∈S1

Pgλ0

Sg =
⋃

λ0∈S1

Sgλ0

We will consider the genus g = 2 and λ0 = 1 in this work. As mentioned in the
introduction, the solutions of the sinh-Gordon equation

∆u+ sinh(2u) = 0 (3)

describe CMC tori. For genus 2 as we consider the solution of this equation is defined
on the space of potentials which we will now define.

Definition 3.6.

P2 = {ζλ =
(

αλ− αλ2 −γ−1 + βλ− γλ2

γλ− βλ2 + γ−1λ3 −αλ+ αλ2

)
, α, β ∈ C, γ ∈ R+}

is called the set of potentials

Every ζλ satisfies reality condition, as shown in Hoepner (2015).
The determinant of these matrices will describe our spectral curve Xa as in (2) where g
is now 2. Xa is a Riemann Surface.

Definition 3.7. The Wente family is the subset of S2
1 where all coefficients are real and

can be written as {a(λ) = λ4 + a1λ
3 + a2λ

2 + a1λ+ 1|a1, a2 ∈ R}. For all these a(λ), we
get two linearly independent polynomials in Ba of the form b1 = (λ− 1)2(λ+ 1) and ib2
= i(λ− 1)(λ2 + βλ+ 1). Since Ba has dimension two, those form a basis.
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4 Vector Field
In this chapter we will use the results of chapter 4 of B.Schmidt (2017) to construct a
vector field that describes how the Wente Family is affected by Whitham deformation.
This will describe the mapping (a1, a2, β, k1, k2) 7→ (ȧ1, ȧ2, β̇, k̇1, k̇2). The latter are the
tangent vectors at t = 0. We get 3 equations which we will solve using Mathematica to
get the explicit forms of our tangent vectors.

As seen in Definition 3.7 we have a(λ) = λ4 + a1λ
3 + a2λ

2 + a1λ + 1 and b1 = k1(λ −
1)2(λ+ 1), ib2 = ik2(λ− 1)(λ2 + βλ+ 1). From B.Schmidt (2017) we get

dq̇k = d
dt

∣∣∣∣
t=0

Θbk
, k = 1, 2

where q̇k are meromorphic functions on Xa.
The functions q̇k have the following form

q̇k = ick(λ)
y

, k = 1, 2

where ck(λ) ∈ P 3
R, k = 1, 2 and the y is from (2).

The three equations from B.Schmidt (2017) are now

(2λac′1 − ac1 − λa′c1)i = 2aḃ1 − ȧb1 (4)

(2λac′2 − ac2 − λa′c2)i = 2aiḃ2 − ȧib2 (5)

c1b2 − c2b1 = Qa, Q ∈ P 2
R (6)

First we will try to determine the coefficients of c1(λ), c2(λ) so we can eliminate them
from our equations.
Since ḃ1 = k̇1(λ− 1)2(λ+ 1) the right side of (4) vanishes at ±1 and we get

(2a(1)c′1(1)− a(1)c1(1)− a′(1)c1(1)) = 0 (7)

(−2a(−1)c′1(−1)− a(−1)c1(−1) + a′(−1)c1(−1)) = 0 (8)

We will now use Mathematica to solve these equations with the following code.

a[x_] = x^4 + a1*x^3 + a2*x^2 + a1*x + 1;
c1[x_] = c13*(x)^3 + c12*(x)^2 + c11*(x)+ c10;

pol1[x_] = Simplify[2*x*a[x]*D[c1[x],x] - a[x]*c1[x] - x*D[a[x],x]*c1[x]];
Lsg1 = Solve[pol1[1] == 0, pol1[-1] == 0, c12, c11];
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The polynomials c1(λ), c2(λ) are here described as polynomials with arbitrary coeffi-
cients: c1(λ) = c13λ

3 + c12λ
2 + c11λ + c10, c2(λ) = c23λ

3 + c22λ
2 + c21λ + c20 with

cij ∈ C∀i, j Doing so gives us the result c12 = 3c10 ∧ c11 = 3c13.
We will now do the same with c2(λ) but since ḃ2(λ) = ik̇2(λ−1)(λ2+βλ+1)+ik2(λ−1)β̇λ
we can see that b2 and ḃ2 only have one common root at −1 so we only get one equation.
We will again use Mathematica to solve this.

c2[x_] = c23*(x)^3 + c22*(x)^2 + c21*(x)+ c20;
pol2[x_] = Simplify[2*x*a[x]*D[c2[x],x] - a[x]*c2[x] - x*D[a[x],x]*c2[x]];

Lsg2 = Solve[pol2[1] == 0, c21];

That yields in c21 = −3c20 + c22 + 3c23.
Since we now have used all conditions on the roots of our polynomials, we have to
calculate our equations (4) - (6) and hope to get some new results for our polynomials
c1(λ) and c2λ).
We will again use Mathematica for these calculations:

b1dot[x_] = k1dot*(x-1)^2*(x+1);
adot[x_] = a1dot*x^3 + a2dot*x^2 + a1dot*x;

c12 = 3*c10; c11 = 3*c13;
Dgl1 = (2*x*a[x]*D[c1[x],x] - a[x]*c1[x] - x*D[a[x],x]*c1[x])*I -

(2*a[x]*b1dot[x] - adot[x]*b1[x]);
ListDgl1 = Simplify[CoefficientList[Dgl1,x]];

We get the following equation

− ic10λ
7 + (−2ia1c10 + ic11)λ6 + (−3ia2c10 + 3ic12)λ5+

(−4ia1c10 − ia2c11 + 2ia1c12 + 5ic13)λ4 + (−5ic10 + ia2c12 − 2a1c11 + 4ia1c13)λ3

+ (−3ic11 + 3ia2c13)λ2 + (−ic12 + 2ia1c13)λ+ ic13 =
2k̇1λ

7 + (2a1k̇1 − ȧ1k1 − 2k̇1)λ6 + (ȧ1k1 − ȧ2k1 − 2k̇1 − 2a1k̇1 + 2a2k̇1)λ5

(ȧ2k1 + 2k̇1 − 2a2k̇1)λ4 + (ȧ2k1 + 2k̇1 − 2a2k̇1)λ3

+ (ȧ1k1 − ȧ2k1 − 2k̇1 − 2a1k̇1 − 2a1k̇1 + 2a2k̇1)λ2

+ (2a1k̇1 − 2k̇1 − ȧ1k1)λ+ 2k̇1

By equating coefficients, we extract 8 new equations which we will use to describe c1(λ)
further and later construct our vector field.

I 2k̇1 = −ic10

II 2a1k̇1 − ȧ1k1 − 2k̇1 = −2ia1c10 + ic11

9



III ȧ1k1 − ȧ2k1 − 2k̇1 − 2a1k̇1 + 2a2k̇1 = −3ia2c10 + 3ic12

IV ȧ2k1 + 2k̇1 − 2a2k̇1 = −4ia1c10 − ia2c11 + 2ia1c12 + 5ic13

V ȧ2k1 + 2k̇1 − 2a2k̇1 = −5ic10 + ia2c12 − 2a1c11 + 4ia1c13

VI ȧ1k1 − ȧ2k1 − 2k̇1 − 2a1k̇1 − 2a1k̇1 + 2a2k̇1 = −3ic11 + 3ia2c13

VII 2a1k̇1 − 2k̇1 − ȧ1k1 = −ic12 + 2ia1c13

VIII 2k̇1 = ic13

Since the equations I and V III have the same term on the left side, we see that c13 =
−c10. Therefore, we can now describe c1(λ) with only one coefficient:
c1(λ) = c13(λ3 − 3λ2 + 3λ− 1)

We will now do the same with c2(λ), where we only have one condition as of now. We
use similar coding to extract equation (5)

b2dot[x_] = I*(k2dot*(x-1)*(x^2 + b*x +1) + k2*(x-1)*bdot*x);
c21 = -3*c20 + c22 + 3*c23;

Dgl2 = (2*x*a[x]*D[c2[x],x] - a[x]*c2[x] - x*D[a[x],x]*c2[x])*I -
(2*a[x]*b2dot[x] - adot[x]*b2[x]);

ListDgl2 = Simplify[CoefficientList[Dgl2,x]];

The result is the full version of (5)

− ic20λ
7 − i((3 + 2a1)c20 − c22 − 3c23)λ6 + i(−3a2c20 + 3c22)λ5

− i(a2(c22 − 3c20 + 3c23)− 5c23 + 2a1(2c22 − c22))λ4 + i((6a1 − 5)c20 + a2c22 − 2a1(c22 + c23))λ3

+ i(9c20 − 3c22 − 9c23 + 3a2c23)λ2 +−i(c22 − 2a1c23)λ+ ic23 =
− 2ik̇2λ

7 + i(k2(ȧ1 − 2β̇) + k̇2(2− 2a1 − 2β))λ6

− i(k2(ȧ1 − ȧ2 − ȧ1β − 2β̇ + 2a1β̇) + k̇2(2− 2a1 + 2a2 − 2β + 2a1β))λ5

+ i(k2(2ȧ1 − ȧ2 − ȧ1β + ȧ2β + 2a1β̇ − 2a2β̇) + k̇2(2 + 2a2 − 4a1 − 2βa2 + 2βa1))λ4

− i(k2(2ȧ1 − ȧ2 − ȧ1β + ȧ2β − 2a2β̇ + 2a1β̇) + k̇2(2 + 2a2 − 4a1 − 2a2β + 2a1β)λ3

− i(k2(−ȧ1 + ȧ2 + ȧ1β − 2a1β̇ + 2β̇) + k̇2(−2 + 2a1 − 2a2 + 2β − 2a1β))λ2

+ i(k2(−ȧ1 + 2β̇) + k̇2(−2 + 2a1 + 2β))λ+ 2ik̇2

Again we equate coefficients and get

I −ic20 = −2ik̇2

II −i((3 + 2a1)c20 − c22 − 3c23) = i(k2(ȧ1 − 2β̇) + k̇2(2− 2a1 − 2β))
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III i(−3a2c20 +3c22) = −i(k2(ȧ1− ȧ2− ȧ1β−2β̇+2a1β̇)+ k̇2(2−2a1 +2a2−2β+2a1β))

IV −i(a2(c22 − 3c20 + 3c23) − 5c23 + 2a1(2c22 − c22)) = i(k2(2ȧ1 − ȧ2 − ȧ1β + ȧ2β +
2a1β̇ − 2a2β̇) + k̇2(2 + 2a2 − 4a1 − 2βa2 + 2βa1))

V i((6a1 − 5)c20 + a2c22 − 2a1(c22 + c23)) = −i(k2(2ȧ1 − ȧ2 − ȧ1β + ȧ2β − 2a2β̇ +
2a1β̇) + k̇2(2 + 2a2 − 4a1 − 2a2β + 2a1β

VI i(9c20− 3c22− 9c23 + 3a2c23) = −i(k2(−ȧ1 + ȧ2 + ȧ1β− 2a1β̇+ 2β̇) + k̇2(−2 + 2a1−
2a2 + 2β − 2a1β))

VII −i(c22 − 2a1c23) = i(k2(−ȧ1 + 2β̇) + k̇2(−2 + 2a1 + 2β))

VIII ic23 = 2ik̇2

We see that that the left side of I is the left side of −V III which yields c23i = −(−c20i),
therefore it follows c23 = c20
We can see that there are no other conditions we can use to describe c2(λ) more exact,
so we will now make use of (6). The goal is to have c2(λ) and c1(λ) depend from only
one variable.

In B.Schmidt (2017) we see the exact values of Q(1), Q′(1), Q′′(1) which we will use to
calculate Q(λ) by using the Taylor series at λ = 1. The values are

Q(1) = 0

Q′(1) = c1(1)b′2(1)− c2(1)b′1(1)
a(1)

Q′′(1) =
[c1(1)− a′(1)

a(1) c1(1)]b′2(1) + c1(1)b′′2(1)− [c2(1)− a′(1)
a(1) c2(1)]b′1(1)− c2(1)b′′1(1)

a(1)

We will now calculate Q(λ) = Q(1) + Q′(1)(λ − 1) + Q′′(1)
2 (λ − 1)2 with Mathematica

and the results we already have.

Q1’[x_] = (c1[x]*D[b2[x],x] - c2[x]*D[b1[x],x])/a[x];
Q1”[x_] = ((c1[x] - D[a[x],x]/a[x]*c1[x])*D[b2[x],x] +

c1[x]*D[D[b2[x],x],x] - (c2[x] - D[a[x],x]/a[x]*c2[x])*D[b1[x],x] -
c2[x]*D[D[b1[x],x],x])/a[x];

Q1”[1]
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We see that Q′(1) = 0 because c1 has a root at λ = 1 and b1 has a double root at λ = 1
which means that b′2 also has a root there. Hence, we can calculate Q(λ) fairly easy

Q[x_] = (Q1”[1]*(x-1)^2)/2;
Dgl3 = c1[x]*b2[x] - c2[x]*c1[x] - Q[x]*a[x];
ListDgl3 = Simplify[CoefficientList[Dgl3,x]];

Lsg5 = Solve[ListDgl3 == {0,0,0,0,0,0,0}, {c22, k1, k2, c23, a1, a2, b}];

That yields in the following results

c22 = −i(2− 2a1 − 3a2 − 2β + 2a1β + a2β)c13k2

(−2 + 2a1 − a2)k1

c23 = i(6 + 2a1 − a2 − 4β)c13k2

(−2 + 2a1 − a2)k2

So now we have the following polynomials

c1(λ) = c13(λ3 − 3λ2 + 3λ− 1)

c2(λ) = c13(i(6 + 2a1 − a2 − 4β
−2 + 2a1 − a2

λ3 − i(2− 2a1 − 3a2 − 2β + 2a1β + a2β)k2

(−2 + 2a1 − a2)k1
λ2

− i(2− 2a1 − 3a2 − 2β + 2a1β + a2β)k2

(−2 + 2a1 − a2)k1
λ+ i(6 + 2a1 − a2 − 4β

−2 + 2a1 − a2
)

who both only depend on c13 ∈ C. We will now prove a theorem found in M.U.Schmidt
(2018) about the integral curves of vector fields.

Theorem 4.1. V is a finite dimensional Banach space, X ⊂ V open.
Let F : X → V be a locally Lipschitz continuous vector field, f : X → K be a continuous
function.

(i) If ∃C1 > C2 > 0 s.t. C1 > f > C2 > 0 every maximal integral curve of fF is
the composition of the maximal integral curves of F with bijective maps from the
respective intervals.

(ii) If f is locally Lipschitz continuous, fF is locally Lipschitz continuous.

(iii) If f is locally Lipschitz continuous, F and fF are complete vector fields and ∃C1 >
C2 > 0 s.t. C1 > f > C2 > 0 the respective dynamical systems have the same
trajectories.

Proof. (i) Let t0 ∈ R be arbitrary, q0 ∈ X and γ1(t) : (α, β) → X a maximal integral
curve of fF for the initial value γ1(t0) = q0. We now search a real valued map φ :
(α, β) → R. For the initial value exists a unique integral curve γ2 : (a, b) → X s.t.
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γ̇2 = F (γ2(t)). We now search a function φ : (α, β) → R where γ1 = γ2 ◦ φ holds. We
will now differentiate both sides to get a differential equation for φ.

d
dtγ2(φ(t)) = γ̇2(φ(t)) ˙φ(t) = F (γ2(φ(t))φ̇(t) = F (γ1(t))f(γ1(t)) = γ̇2(t)

So we get the differential equation

φ̇(t) = f(γ1(t))

Since the right hand side is integrable, we know that there exists such a function φ(t)
that is continuous. Since we know φ̇(t) = f(γ1(t)) > C2 > 0 we know that φ(t) is in-
jective. We also know that the image of a connected space under a continuous function
is connected. Therefore φ[(α, β)] ⊂ R is connected and as every connected subspace of
R an interval. So φ is a bijective continuous map that maps an interval to an interval
and therefore homeomorphic. We will call the image of φ[(α, β)] = (a, b) and show that
it is the maximal existence interval for the initial value problem γ2 solves. Since γ1 is a
maximal integral curve we know that on the boundaries, one of three things can occur:

(i) α = −∞, β =∞

(ii) t→ ||f(γ1(t))F (γ1(t))|| is unbounded for small ε > 0 on (α, α + ε), (β − ε, β)

(iii) The curve γ1(t) can be extended continuously to [α, β), (α, β] but limt↓α(t, γ1(t)) /∈
R×X, limt↑β(t, γ1(t)) /∈ R×X.

We will only show what happens for the lower boundaries. We start with (i). If α = −∞,
the interval has no lower bound. We know that (φ−1)′ = 1

φ′ and hence 0 < φ̇−1 < C−1
2 .

Therefore, φ−1 is bijective and Lipschitz continuous because the derivative is bounded.
So φ−1 is a bijective, Lipschitz continuous map from (a, b) to (−∞, β). Therefore (a, b)
has to have no lower bound as well and we get a = −∞.
(ii) We assume that t→ ||f(γ1(t))F (γ1(t))|| is unbounded for small ε > 0 on (α, α+ ε).
Therefore, we know that ||f(γ1(t))F (γ1(t))|| is unbounded on (α, α + ε). We also know
that ||f(γ1(t))F (γ1(t))|| < C1||F (γ1(t)|| = C1||F (γ2(φ(t))||. So we know that ||F (γ2(t))||
is unbounded on φ[(α, α+ε)]. Since φ is monotonous, we also know that that is an interval
of the form (a, a+ ε̃). So (ii) holds for γ2 as well.
(iii) We see that the condition (iii) can equivalently be seen as that the curve γ1(t) can
be extended continuously to [α, β), but limt↓α γ1(t) /∈ X. We want to show that the same
thing will happen to γ2 = γ1 ◦ φ. We know that φ is a bijective continuous mapping
from an interval to an interval and therefore monotonous. That means that limt↓α φ(t) =
a ∧ limt↑β φ(t) = b. Therefore we know limt↓a γ2(t) = limt↓a γ1(φ(t)) = limt↓α γ1(t) /∈ X.
Therefore the condition (iii) holds for γ2 as well. So we see that γ2 also has to be a
maximal integral curve, completing the proof.
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(ii) Let x ∈ V arbitrary. Since V is a finite dimensional Banach space, it is also locally
compact with respect to the norm topology. We choose Uf , UF , Kx as neighborhoods of
x s.t. Uf is the neighborhood where f is Lipschitz continuous, UF is the same with F
and Kx is a compact neighborhood of x. Therefore we get

||F (x)− F (y)|| ≤ L1||x− y|| ∀x, y ∈ UF
||f(x)− f(y)|| ≤ L2||x− y|| ∀x, y ∈ Uf

with L1, L2 ≥ 0. So now we will look at x, y ∈ Uf ∩ UF ∩Kx. We get

||f(x)F (x)− f(y)F (y)|| = ||f(x)F (x)− f(y)F (y) + f(y)F (x)− f(y)F (x)|| ≤
||f(x)F (x)− f(y)F (x)||+ ||f(y)F (x)− f(y)F (y)|| ≤ ||F (x)|| · ||f(x)− f(y)||+
||f(y)|| · ||F (x)− F (y)|| ≤ ||F (x)|| · L2||x− y||+ ||f(y)|| · L1||x− y|| ≤
(L2 · sup

x∈Uf∩UF∩Kx

||F (x)||+ L1 · sup
y∈Uf∩UF∩Kx

||f(y)||)||x− y||

We know that Uf ∩UF ∩Kx ⊂ Kx is obviously a subset of a compact space we can look
at the supremum on Kx instead of a subset, where both f and F as continuous functions
have a maximum instead of a supremum. Therefore we get

(L2 · sup
x∈Uf∩UF∩Kx

||F (x)||+ L1 · sup
y∈Uf∩UF∩Kx

||f(y)||)||x− y|| ≤ (L2 · sup
x∈Kx

||F (x)||+

L1 · sup
x∈Kx

||f(x)||)||x− y|| = (L2 ·max
x∈Kx

||F (x)||+ L1 ·max
x∈Kx

||f(x)||)||x− y|| =

(L1 · c2 + L2 · c1)||x− y|| ∀x, y ∈ Uf ∩ UF ∩Kx := UfF

We can now define LfF = L1 · c2 + L2 · c1 and get

||f(x)F (x)− f(y)F (y)|| ≤ LfF ||x− y|| ∀x, y ∈ UfF

Since we constructed this for an arbitrary x, fF is locally Lipschitz continuous.
(iii) From (ii) we know that fF is locally Lipschitz continuous. Take t0 ∈ R arbitrary.
The images of the maximal integral curves of fF, F for t0 are the trajectoriesOrb(ΦfF , t0)
and Orb(ΦF , t0). Since both vector fields are locally Lipschitz continuous, both integral
curves γ1 : I1 → X for fF and γ2 : I2 → X for F are unique. We will use the same
approach as in (i) and get the equation

φ̇(t) = f(γ1(t)) > C2 > 0

Therefore, we have a monotonous function φ that again maps the intervals on which the
integral curves are defined. In the same way as in (i) we get

(φ−1)′ = 1
φ′
, 0 < C−1

2 <
1
φ′
< C−1

1
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meaning that φ−1 is Lipschitz continuous and the derivative is bounded and can’t go to
zero. Therefore, φ−1[I1] can only be unbounded, if I1 is unbounded and φ−1[I1] has to be
unbounded if I1 is unbounded, because φ is monotonous and the derivative is bounded
by a constant greater than zero. Therefore, φ−1[R] has to be the whole space R as well,
meaning φ maps the maximal integral curves of F to the maximal integral curves of fF ,
allowing us to write the orbits as the images of our integral curves. We get

Orb(ΦfF , t0) = γ2[R] = γ1 ◦ φ[R] = γ1[R] = Orb(ΦF , t0)

Therefore, they have the same trajectories.

We already mentioned in the beginning that in the Wente family every polynomial
has only real valued coefficients. We also know that β is real valued. If we look
at our equations (4) and (5) we see that both left sides are complelety imaginary.
a(λ), ȧ(λ), b1(λ), ḃ1(λ) are all completely real valued, which means the left side in the
brackets has to be completely imaginary. Since c1(λ) or c′1(λ) appear in every coefficient,
this means c1(λ) must be imaginary, so we get c13 ∈ iR. Looking at (5) we see that
b2(λ), ḃ2(λ) are completely imaginary, making the whole right side imaginary. So both
sides are completely imaginary if c2(λ) is real valued, which is equivalent to c13 ∈ iR as
well. Hence, we choose c13 = i, and for every other version of our vector field we only
need to multiply F with an λ ∈ R to get the new vector field for another coefficient c̃13.
With our completely calculated polynomials we will now go back to the equations (4)
and (5) to calculate our vector field.

c22 = -I*((2-2*a1-3*a2-2*b+2*a1*b+a2*b)*c13*k2)/((-2+2*a1-a2)*k1);
c23 = I*((6+2*a1-a2-4*b)*c13*k2)/((-2+2*a1-a2)*k2);

c13 = I;
Dgl1 = (2*x*a[x]*D[c1[x],x] - a[x]*c1[x] - x*D[a[x],x]*c1[x])*I -

(2*a[x]*b1dot[x] - adot[x]*b1[x]);
Dgl2 = (2*x*a[x]*D[c2[x],x] - a[x]*c2[x] - x*D[a[x],x]*c2[x])*I -

(2*a[x]*b2dot[x] - adot[x]*b2[x]);
ListDgl1 = Simplify[CoefficientList[Dgl1,x]];
ListDgl2 = Simplify[CoefficientList[Dgl2,x]];

Lsg6 = Solve[ListDgl1 == {0,0,0,0,0,0,0,0},
{a1dot, a2dot, k1dot, k2dot, k1, k2, a1, a2}];

Lsg7 = Solve[ListDgl2 == {0,0,0,0,0,0,0,0},
{k2dot, bdot, a1dot, a2dot, k2, k1dot, k1, a1}];
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Those calculations yield the following solutions:

k̇1 = −1
2 (9)

k̇2 = −6− 2a1 + a2 + 4β
2(−2 + 2a1 − a2) (10)

ȧ1 = (4 + a1)
k1

(11)

ȧ2 = 2(a1 + a2 − 2)
k1

(12)

β̇ = −8 + 6β + 2a1β − a2β − 2β2

(−2 + 2a1 − a2)k1
(13)

So our vector field F maps the quintuple (k1, k2, a1, a2, β) to these solutions. One can
easily see that the last three variables depend on k1, k2 the same way. We will now try
to multiplicate F with a function f s.t. fF is a polynomial vector field. Therefore we
will define

f : R5 → R(
k1 k2 a1 a2 β

)
7→ k1(−2 + 2a1 − a2)

That leaves us with

fF : R5 → R5
k1
k2
a1
a2
β

 7→


k1(−2+2a1−a2)
2

k1(−6−2a1+a2+4β)
2

(4 + a1)(−2 + 2a1 − a2)
2(a1 + a2 − 2)(−2 + 2a1 − a2)
−8 + 6β + 2a1β − a2β − 2β2


We want to justify this approach using Theorem 4.1. But since we can’t prove that
fF and F are complete, we can’t use Theorem 4.1 (iii). Instead we will try to use
Theorem 4.1 (i). Later, we are only interested in the vector field in certain points and
their neighborhoods. Therefore, we can restrict R5 to compact neighborhoods of these
points. There we know that f will have a definite sign in these special neighborhoods,
and since f is continuous we see that there are C1, C2 s.t. either 0 < C1 < f < C2 or
0 < −C1 < −f < −C2 hold and we can then use Theorem 4.1 (i). So we know that
the integral curves are homeomorphic. Since the last three variables don’t depend on
the first two, we will now only look at the last three and try to parametrize the vector
field in an easier way. We can easily see that the term (−2 + 2a1 − a2) appears both in
ȧ1 and ȧ2 because we multiplied them with that term. One can also see that this term
is −a(−1) so we will now look at a1,−a(−1) instead of a1, a2. We get the equations
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ã = −2 + 2a1 − a2 and similar a2 = −2 + 2a1 − ã which we will use to calculate d
dt

∣∣∣∣
t=0
ã.

We know d
dt

∣∣∣∣
t=0
ã = d

dt

∣∣∣∣
t=0

(−2 + 2a1− a2) = 2ȧ1− ȧ2. We will again use Mathematica to

calculate F̃

a1dot = (4+a1)/k1;
a2dot = 2*(-2+a1+a2)/k1;

k1dot = -1/2;
atilde = -2 + 2*a1 - a2;

atildedot = Simplify[2*a1dot - a2dot,x];
c13 = k1*atildeneu*I;

a2dot = 2*a1dot - atildedot;
a1dot = 4*atildeneu + a1*atildeneu;

We now see that our new vector field has a much easier form

fF̃ : C3 → C3a1
ã
β

 7→
 ã(a1 + 4)

2ã(8− 2a1 + ã)
−(2β2 − (8− ã)β + 8)



17



5 Stability Analysis
In this chapter we will examine the vector field of chapter 4. We will try to show unique-
ness of the maximal integral curves. Therefore, we will try to see whether the integral
curves are monotonous and look at roots of our vector field and how the integral curves
behave there. We will also examine the boundaries of the integral curves and look in
which ways the flows escape the Wente family there.

We will examine the roots of our vector field because they are fixed points of the cor-
responding dynamical system. There we will examine whether the fixed points are
hyperbolic, because we want to use theorem 2.40 about hyperbolic fixed points and sta-
ble and unstable manifolds found in chapter 2.6 of M.U.Schmidt (2018). In a first step
we will look at the last version of our vector field fF̃ and calculate every root using
Mathematica

a2 = -2 + 2*a1 - atildeneu
atildedot = Simplify[2*a1dot - a2dot,x];

c13 = k1*atildeneu*I;
a2dot = 2*a1dot - atildedot;

atildedot = 2*(8*atildeneu - 2*a1*atildeneu+atildeneu^2);
bdot = -I*(8 - 8*b - atildeneu*b + 2*b^2);

Erg = Solve[{a1dot, atildedot, bdot} == {0,0,0}, {a1, atildeneu, b}];

We see that the only roots of this are (a1, ã, β) = (−4,−16,−2) and (x, 0, 2), x ∈ R.
We see that the second root is a whole linear subspace. We will now examine the first
root we found and try to apply the principle of linearized stability so we will examine
∇F (−4,−16,−2).

∇fF̃ (a1, ã, β) =

 ã 4 + a1 0
−4ã 2(8− 2a1 + 2ã) 0

0 β −(4β − 8− ã)


Therefore, we get

∇fF̃ (−4,−16,−2) =

−16 0 0
64 −32 0
0 −2 0


One can easily see that the eigenvalues of ∇fF̃ (−4,−16,−2) are -16, -32 and 0. There-
fore (−4,−16,−2) is not a hyperbolic fixed point and we have to try something else
to examine this root. First we will again use a different parametrization for our vec-
tor field. We already substituted a2 with −a(−1), and now we will substitute a1 with
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a(1). Since this is only a linear transformation, we can’t expect the roots to change in
their behaviour. Using Mathematica to transform our vector field, we get the following
formula

˙̃a1 = −2ã1ã2
˙̃a2 = −ã2(ã1 + ã2 − 16)

β̇ = −(2β2 − (8− ã2)β + 8)
The new roots of our vector field are (x, 0, 2), x ∈ R and (0, 16,−2). Since the first
two tangent vectors don’t depend on β and we didn’t change the third, we still get an
eigenvalue of zero. Therefore, we will now blow up the root (0, 16,−2). To do so we
first must parametrize our vector field so that our root is at (0, 0, 0). So we just look at
(ã1, ã2 + 16, β − 2) and we get

˙̃a1 = −2ã1(ã2 + 16)
˙̃a2 = −(ã2 + 16)(ã1 + ã2)

β̇ = −(2(β − 2)2 − (8− (ã2 + 16))(β − 2) + 8)

If we look at the definition of the blow up, we see that ∆̃ is a manifold. The condition
zilj = zjli ∀i, j means that if lj 6= 0 we get zi = li

lj
zj. Therefore, if there exists a

coordinate where l does not vanish we see that our coordinates are (z, l) = (λl, l). We
will now define Ui = {y ∈ Pn−1|yi 6= 0} = {y ∈ Pn−1|yi = 1} ∀i = 1, . . . n. Now we
will define a chart φj : Uj → Cn−1. If we take y ∈ Ui we can map y → 1

yi
(y1, . . . yn) =

(y1
yi
, . . . , 1, . . . , yn

yn
). If we take an arbitrary [y] ∈ Ui and do the calculation we used before,

we get (y1, . . . , 1, . . . yn) ∈ [y] where yi ∈ C ∀i. Therefore, we can identify [y] ∈ Pn−1

with an element (y1, . . . , yi−1, yi+1, . . . , yn) ∈ Cn−1. So we get a map
φi :Ui → Cn−1

y → (y1, . . . , yi−1, yi+1, . . . , yn)
That is obviously a chart. We can therefore construct a chart from Cn×Ui as 1Cn × φi.
We obviously get n charts which we will consider. The next step is to look at our vector
field F in these charts. For φi we get the parametrization of an x = yi(y1, . . . , 1 . . . , yn)
where we set xi = yi and xj = yiyj ∀i 6= 0. If we now look at the derivatives, we get
the following using the product rule:

ẋi = ẏi

ẋj = ẏiyj + yiẏj ∀j 6= i

We will now solve the second equation because our vector field (ẋ1, . . . ẋn) is mapped to
(ẏ1 . . . ẏn). We here get the equation

ẏj = ẋj − ẏiyj
yi
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If we solve these equations in every chart, we get the blow up of our vector field. Since
we blew up the origin, we are only looking at roots of this new vector field in the so
called exceptional fibre which means the projective space we replaced the origin with.
Therefore, we have to set yi = 0 before we look at roots.
For U1 we get the new parameters y = (y1, y2, y3)

ã1 = y1

ã2 = y1y2

β = y1y3

That means we receive the derivatives

ẏ1 = ˙̃a1(y)

ẏ2 =
˙̃a2(y)− y2ẏ1

y1

ẏ3 = β̇(y)− y3ẏ1

y1

If we use Mathematica for that we have the following code

a1dotneu = -2*a1tilde*(a2tilde+16);
a2dotneu = -(a2tilde+16)*(a1tilde + a2tilde);

bdotneu = -(2(b-2)^2 + (a2tilde-8+16)*(b-2) + 8);
a1tilde = y1;

a2tilde = y1*y2;
b = y1*y3;

y1dot = a1dotneu;
y2dot = Simplify[(a2dotneu - y1dot*y2)/y1];
y3dot = Simplify[(bdotneu - y1dot*y3)/y1];

y1 = 0;
Solve[y2dot, y3dot == 0,0, y2,y3]

With that we get the vector fieldẏ1
ẏ2
ẏ3

 =

 −2y1(16 + y1y2)
(y2 − 1)(16 + y1y2)

−2y3(y1y3 − 16) + y2(2 + y1y3)


With setting y1 = 0 we get ẏ1 = 0, ẏ2 = 16(y2 − 1), ẏ3 = 2y2 + 32y3. Therefore, our only
root in this chart is (0, 1,− 1

16).
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We will now do the same in φ2. Here we get the coordinates

ã1 = y1y2

ã2 = y2

β = y3y2

That means we get the derivatives

ẏ1 =
˙̃a1(y)− y1ẏ2

y2

ẏ2 = ˙̃a2

ẏ3 = β̇(y)− y3ẏ2

y2

We now use Mathematica to get the explicit forms

a1dotneu = -2*a1tilde*(a2tilde+16);
a2dotneu = -(a2tilde+16)*(a1tilde + a2tilde);

bdotneu = -(2(b-2)^2 + (a2tilde-8+16)*(b-2) + 8);
a2tilde = y2;

a1tilde = y1*y2;
b = y3*y2;

y2dot = Simplify[a2dotneu];
y1dot = Simplify[(a1dotneu - y2dot*y1)/y2];
y3dot = Simplify[(bdotneu - y2dot*y3)/y2];

y2 = 0;
Solve[y1dot, y3dot == 0,0, y1,y3]

The vector field has now in this chart the formẏ1
ẏ2
ẏ3

 =

 (y1 − 1)y1(16 + y2)
−(y1 + 1)y2(16 + y2)

2 + (16 + y1(16 + y2))y3 − 2y2y
2
3


By setting y2 = 0 we get ẏ1 = 16(y1 − 1)y1, ẏ2 = 0, ẏ3 = 2 + (16 + 16y1)y3. That yields
in the roots (0, 0,−1

8) and (1, 0,− 1
16).

Now we will consider the final chart φ3. We have the coordinates

ã1 = y1y3

ã2 = y2y3

β = y3
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and the derivatives

ẏ1 =
˙̃a1(y)− y1ẏ3

y3

ẏ2 =
˙̃a2(y)− y2ẏ3

y3

ẏ3 = β̇(y)
With the following Mathematica code we receive the new vector field

a1dotneu = -2*a1tilde*(a2tilde+16);
a2dotneu = -(a2tilde+16)*(a1tilde + a2tilde);

bdotneu = -(2(b-2)^2 + (a2tilde-8+16)*(b-2) + 8);
a1tilde = y1*y3;
a2tilde = y2*y3;

b = y3;
y3dot = bdotneu;

y1dot = Simplify[(a1dotneu - y3dot*y1)/y3];
y2dot = Simplify[(a2dotneu - y3dot*y2)/y3];

y3 = 0;
Solve[y1dot, y2dot == 0,0, y1,y2]

which has the formẏ1
ẏ2
ẏ3

 =

 −y1(32− 2y3 + y2(2 + y3))
−2y2(8 + y2 − y3)− y1(16 + y2y3)
−8− 2(y3 − 2)2 − (y3 − 2)(y2y3 + 8)


By again setting now y3 = 0 we get ẏ1 = −y1(32 + 2y2), ẏ2 = −16y1− 2y2(8 + y2), ẏ3 = 0
and therefore the roots (−16,−16, 0), (0,−8, 0), (0, 0, 0). Note that we will not consider
(0, 0, 0), since it is not a direction in the projective space.
So now we know every critical point of our vector field after blowing up. We will now
again try to use the theorem about hyperbolic fixed points to show that there is only
direction to flow out of the critical points. We start with the points found in φ1:
First we will calculate the Jacobi matrix of F ◦ φ1

∇(F ◦ φ1) =

−2y1y2 − 2(16 + y1y2) −2y2
1 0

(y2 − 1)y2 16 + y1(y2 − 1) + y1y2 0
y2y3 − 2y2

3 2 + y1y3 y1y2 − 2y1y3 − 2(y1y3 − 16)


If we now look at the value of our Jacobi matrix, we get−32 0 0

0 16 0
− 9

128 2 32


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One can easily see that the eigenvalues are λ1 = −32, λ2 = 16, λ3 = 32 with the cor-

responding eigenvectors v1 =


8192

9
0
1

 , v2 =

 0
8
−1

 , v3 =

0
0
1

. Now since we have a

hyperbolic fixed point we can separate the stable and the unstable manifold which are
defined as

Ws(x0) = {x ∈ V |t→ φf (t, x) exists for a t ∈ [0,∞) and lim
t→∞

φf (t, x) = x0}

Wu(x0) = {x ∈ V |t→ φf (t, x) exists for a t ∈ (−∞, 0] and lim
t→−∞

φf (t, x) = x0}

We can only flow out of the exceptional fibre if the coordinate in which we use the chart
is non zero, which is only the case for the stable manifold. Since this manifold is one
dimensional, there is only one unique way out of the exceptional fibre in this root.
Now we will look at the roots found in φ2. Our Jacobi matrix has the form

∇(F ◦ φ2) =

(2y1 − 1)(16 + y2) y1(1− y1) 0
−y2(16 + y2) −(y1 + 1)(16 + 2y2) 0
(16 + y2)y3 y1y3 − 2y2

3 16 + y1(16 + y2)− 4y2y3


If we look at the Jacobi matrix at the roots of our vector field, we get

∇(F ◦ φ2)(1, 0,− 1
16) =

16 0 0
0 −32 0
−1 − 9

128 32


We can easily see that the eigenvalues are the same as in the first chart and the root
also has a similar form suggesting that we look at the same point in different charts.

We get the eigenvectors v1 =

 0
8192

9
1

 for λ1 = −32 and v2 =

0
0
1

 for λ2 = 32 and v3 =
16

0
1

 for λ3 = 16 yielding the same results as the root in chart 1. Now we examine the

second root in chart 2

∇(F ◦ φ2)(0, 0,−1
8) =

 −16 0 0
0 −16 0

−2− 1
32 16



yielding the eigenvalues and eigenvectors λ1 = −16 with v1 =

16
0
1

 and v2 =

−
1
64

1
0

,
λ2 = 16, v3 =

0
0
1

. Note that λ1 = −16 is a double root of the characteristic polynomial,
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which is why the Eigenspace is two dimensional. We see that y2 only occurs in the stable
manifold, which is two dimensional. So there are two ways in which we can leave the
exceptional fibre. So we don’t have the result we searched.
We will now also examine the roots in the third chart

∇(F ◦ φ3) =

−32 + 2y3 − y2(2 + y3) −y1(2 + y3) −y1(y2 − 2)
y2y3 − 16 −2y2 − 2(8 + y2 − y3)− y1y3 2y2 − y1y2

0− (y3 − 2)y3 −8− (4 + y2)(y3 − 2)− y2y3


Looking at the first root we get

∇(F ◦ φ3)(−16,−16, 0) =

 0 32 −288
−16 48 −288

0 0 −32



We see that the eigenvalues and eigenvectors are λ1 = −32, v1 =

9
9
2

 , λ2 = 32, v2 =
1

1
0

 , λ3 = 16, v3 =

2
1
0

. We also see that our fixed point is hyperbolic and that the

component 3 only occurs in the stable manifold, which is one dimensional. Therefore,
there is only one way out of the exceptional fibre in this root.
We will now examine the final root

∇(F ◦ φ3)(0,−8, 0) =

−16 0 0
−16 16 −16

0 0 −16



We see that the eigenvalues are λ1 = −16, v1 =

−1
0
1

 , v2 =

2
1
0

 , λ3 = 16, v3 =

0
1
0

.
We note that the fixed point is hyperbolic and that the first eigenvalue is a double
eigenvalue, hence the eigenspace is two dimensional. The third coordinate occurs only
in the first space, therefore there are two ways out of the exceptional fibre. We see that
the algebraic blow up didn’t help us to show uniqueness of the maximal integral curves
of our vector field since there are still fixed points where our integral curves can leave
the space in more than one way.
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6 Conclusion
In this work we have constructed a vector field that describes the Wente family under
the Whitham deformation and we showed that the Whitham deformation leaves the
Wente family invariant, since our vector field F was real valued.
After that we tried to show that the vector field we contructed has only one maximal
integral curve, which we coulnd’t accomplish. Now in two next steps one could try to
show that every integral curve of the Wente family flows into the root of F (0, 16, 2) we
found in chapter 5. One could also try to prove that the Wente family only consists of
one integral curve like we tried to prove by using the condition that the meromorphic
differentials Θbi

have purely imaginary periods.
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