11. Übung

42. Ein Zwischenwertsatz für die Ableitung

Die Funktion $f:(a,b)\to\mathbb{R}$ sei differenzierbar und f' sei nicht konstant. Zeigen Sie, dass es zu jedem $\eta\in\mathbb{R}$ mit

$$\inf\{f'(x) : x \in (a,b)\} < \eta < \sup\{f'(x) : x \in (a,b)\}\$$

ein
$$\xi \in (a, b)$$
 gibt mit $f'(\xi) = \eta$

(6 Punkte)

[Tipp und Warnung: Betrachten Sie $g(x) := f(x) - \eta x$ und bedenken Sie, dass f' nicht notwendigerweise stetig zu sein braucht.]

43. Differenzierbarkeit

Es seien $a, b \in \mathbb{R}$ mit a < b, sowie $x^* \in (a, b)$ und $f : (a, b) \to \mathbb{R}$ eine stetige Funktion.

- (a) Es sei f in x^* differenzierbar. Wir setzen weiter voraus, dass es eine Folge $(x_n)_{n\in\mathbb{N}}$ mit $x_n \in (a,b) \setminus \{x^*\}$ für alle $n \in \mathbb{N}$ und $\lim_{n\to\infty} x_n = x^*$ gibt, so dass $f(x_n) = 0$ für alle $n \in \mathbb{N}$ gilt. Zeigen Sie: $f(x^*) = f'(x^*) = 0$. (3 Punkte) Bemerkung: Eine Nullstelle von f, die zugleich Nullstelle von f' ist, bezeichnet man auch als Nullstelle höherer Ordnung.
- (b) Nun sei f differenzierbar auf $(a,b)\setminus\{x^*\}$ und es existiere ein $c\in\mathbb{R}$ mit $\lim_{x\to x^*-} f'(x)=c=\lim_{x\to x^*+} f'(x)$. Zeigen Sie, dass f dann auch in x^* differenzierbar ist, und zwar mit $f'(x^*)=c$. (5 Punkte) [Tipp: Zu beweisen ist, dass die Funktion $h:(a,b)\to\mathbb{R}$ mit $h(x):=\frac{f(x)-f(x^*)}{x-x^*}$ für $x\neq x^*$ und $h(x^*):=c$ stetig ist. Dazu zeige man, dass h in x^* linksseitig stetig und rechtsseitig stetig ist, siehe Aufgabe 38. Denken Sie auch an den Mittelwertsatz.]

44. Die Produktregel für n-te Ableitungen

Es seien $n \in \mathbb{N}$, $I \subseteq \mathbb{R}$ ein offenes Intervall, $f,g:I \to \mathbb{R}$ zwei n-fach differenzierbare Funktionen und $h:=f\cdot g:I \to \mathbb{R}$. Beweisen Sie: h ist n-fach differenzierbar und für die n-te Ableitung $h^{(n)}$ gilt für alle $x \in I$

$$h^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} f^{(k)}(x) \cdot g^{(n-k)}(x)$$

(mit der Konvention $f^{(0)} := f$). Dabei bezeichnen $\binom{n}{k} := \frac{n!}{(n-k)!k!}$ die entsprechenden Binomial-koeffizienten.

45. Hinreichende Kriterien für Stetigkeit und Differenzierbarkeit

Es sei $X \subseteq \mathbb{R}$ nichtleer mit $0 \in X$ sowie $f: X \to \mathbb{R}$ eine Funktion und $\alpha, C > 0$.

- (a) Es gelte $|f(x)| \le C \cdot |x|^{\alpha}$ für alle $x \in X$. Zeigen Sie, dass f in $x_0 := 0$ stetig ist mit f(0) = 0.
- (b) Nun sei X sogar eine Umgebung von 0 und es gelte $|f(x)| \le C \cdot |x|^{1+\alpha}$ für alle $x \in X$. Zeigen Sie, dass f in $x_0 = 0$ differenzierbar ist mit f(0) = f'(0) = 0.
- (c) Sei nun

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \begin{cases} |x|^{1+\alpha} \sin \frac{1}{x} & \text{für} \quad x \neq 0 \\ 0 & \text{sonst} \end{cases}$$

Folgern Sie aus (a) und (b), dass f sowohl stetig, als auch differenzierbar ist. Für welche $\alpha > 0$ ist die Funktion f' in einer Umgebung um 0 unbeschränkt? Für welche $\alpha > 0$ ist f stetig differenzierbar? (3 Punkte)

46. Fixpunkt.

Sei $f:[a,b] \to [a,b]$ stetig. Zeige, dass f mindestens einen Fixpunkt hat, das heißt es existiert ein $x_0 \in [a,b]$ mit $f(x_0) = x_0$. (5 Bonuspunkte)

Die Lösungen sind bis spätestens Freitag, den 15. November 2019, 10:00 Uhr in den entsprechenden Briefkasten (Eingang A5-Gebäude, Teil C) einzuwerfen