6. Übung

21. Unnötig.

(a) Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge, die gegen ein $a\in\mathbb{K}$ konvergiert. Zeige, dass die Folge $(b_n)_{n\in\mathbb{N}}$ definiert durch

$$b_n := \frac{1}{n}(a_1 + a_2 + \ldots + a_n)$$

ebenfalls gegen a konvergiert.

(4 Punkte)

- (b) Man gebe ein Beispiel einer divergenten Folge $(a_n)_{n\in\mathbb{N}}$ an, bei dem die wie in (a) definierte Folge (b_n) konvergiert. (2 Punkte)
- (c) Gibt es eine divergente reelle Folge $(a_n)_{n\in\mathbb{N}}$, sodass $a_n\geq 0\ \forall\ n\in\mathbb{N}$, mit der Eigenschaft, dass die in (a) definierte Folge $(b_n)_{n\in\mathbb{N}}$ konvergiert? (4 Punkte)

22. Bernoulli Ultimate.

Sei $k \in \mathbb{N}_0$ beliebig. Das Ziel dieser Aufgabe ist zu zeigen, dass $(a_n)_{n \in \mathbb{N}_0}$ definiert durch

$$a_n := \frac{n^k}{2^n} \tag{1}$$

eine Nullfolge ist.

(a) Zeige, dass es einen Index $N_0 \in \mathbb{N}$ gibt, mit der Eigenschaft:

$$\frac{n^k}{2^n} \le \frac{(n-1)^k}{2^{n-1}}$$

für alle $n \geq N_0$. [Tipp: Bernoulli-Ungleichung]

(5 Punkte)

(b) Zeige durch vollständige Induktion, dass für alle $k \in \mathbb{N}_0$ gilt:

$$\lim_{n \to \infty} \frac{((k+1)n)^k}{2^{n(k+1)}} \to 0.$$

[Tipp: auch hier kann Bernoulli an einer Stelle nützlich sein, benutze ausserdem die Grenz-(3 Punkte) wertsätze.]

(c) Kombiniere (a) und (b) um die Aussage zu zeigen, dass die Folge $(a_n)_{n\in\mathbb{N}}$ eine Nullfolge ist. [Tipp: (b) zeigt, dass eine Teilfolge von (1) eine Nullfolge ist.] (2 Punkte)

23. Unwahre Umkehrungen.

(a) Untersuchen Sie die im Folgenden definierten Folgen $(a_n)_{n\in\mathbb{N}}, (b_n)_{n\in\mathbb{N}}, (c_n)_{n\in\mathbb{N}}$ auf Konvergenz und bestimmen Sie gegebenenfalls ihren Grenzwert:

(i)
$$a_n := \frac{(-1)^n}{n}$$

(i)
$$a_n := \frac{(-1)^n}{n}$$
 (2 Punkte)
(ii) $b_n := \frac{1+n^2}{2+3n+n^2}$ (2 Punkte)

(iii)
$$c_n := \frac{2^n + 3^n}{5^n}$$
 (2 Punkte)

- (b) Man finde jeweils ein Beispiel für reelle Zahlenfolgen $(a_n)_{n\in\mathbb{N}}$ und ggf. $(b_n)_{n\in\mathbb{N}}$ mit den folgenden Eigenschaften, und zeige, dass das Beispiel tatsächlich die Eigenschaften besitzt.
 - (i) $(a_n)_{n\in\mathbb{N}}$ ist nach oben unbeschränkt, aber es gilt nicht $\lim_{n\to\infty} a_n = \infty$. (1 Punkt)
 - (ii) $\lim_{n\to\infty} a_n = +\infty$ und $\lim_{n\to\infty} b_n = -\infty$ und $\lim_{n\to\infty} (a_n + b_n) = c$, wobei $c \in \mathbb{R}$ eine vorgegebene Zahl ist. (1 Punkt)
 - (iii) $a_n < b_n$ für alle $n \in \mathbb{N}$, aber $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$. (2 Punkte)

24. In einem Land vor unserer Zeit.

Bereits vor 4000 Jahren war den Sumerern ein Iterationsprozess bekannt, der bei Eingabe einer Zahl a>0 eine Näherung für \sqrt{a} liefert. Wir formulieren diesen hier speziell für a=2 (also zur Näherung an $\sqrt{2}$): Dazu definieren wir eine Zahlenfolge $(x_n)_{n\in\mathbb{N}_0}$ rekursiv wie folgt:

$$x_0 := \frac{3}{2} \text{ und } \forall n \in \mathbb{N}_0 : x_{n+1} := \frac{1}{2} \cdot \left(x_n + \frac{2}{x_n}\right).$$

(a) Mithilfe eines (Taschen-)Rechners berechne man x_1, x_2, x_3 und x_4 . Sieht man daran schon, wie sich die x_n an $\sqrt{2}$ annähern? (2 Bonuspunkte)

Wir schreiben im Folgenden die x_n als Brüche, d.h. wir schreiben $x_n = \frac{p_n}{q_n}$ mit $p_n, q_n \in \mathbb{N}$ und den Startwerten $p_0 := 3$ und $q_0 := 2$.

- (b) Man zeige, dass für $n \in \mathbb{N}_0$ gilt: $p_{n+1} = p_n^2 + 2q_n^2$ und $q_{n+1} = 2p_nq_n$. (2 Bonuspunkte,
- (c) Zeigen Sie, dass $p_{n+1} \sqrt{2}q_{n+1} = (p_n \sqrt{2}q_n)^2$ und somit $p_{n+1} > \sqrt{2}q_{n+1}$ für alle $n \in \mathbb{N}_0$ gilt. [Warum kann in der letzten Ungleichung keine Gleichheit gelten?] (3 Bonuspunkte)
- (d) Zeigen Sie mit Hilfe von (c), dass die Folge $(x_n)_{n\in\mathbb{N}}$ gegen $\sqrt{2}$ konvergiert. (5 Bonuspunkte)
- (e) Man zeige $p_{n+1}^2 2q_{n+1}^2 = (p_n^2 2q_n^2)^2$ und folgere hieraus durch vollständige Induktion, dass $p_n^2 2q_n^2 = 1$ für alle $n \in \mathbb{N}_0$ gilt. (4 Bonuspunkte)
- (f) Man folgere aus (c) und (e), dass für jedes $n \in \mathbb{N}_0$ gilt:

$$\left| \frac{p_n}{q_n} - \sqrt{2} \right| < \frac{1}{2\sqrt{2}} \cdot \frac{1}{q_n^2} \tag{3 Bonuspunkte}$$

(g) Zeigen Sie mit Hilfe von (d), dass

$$\lim_{n \to \infty} q_n^2 \left(\frac{p_n}{q_n} - \sqrt{2} \right) = \frac{1}{2\sqrt{2}}$$

gilt und folgern Sie mit (f), dass $c := \frac{1}{2\sqrt{2}}$ die kleinste (und somit bestmögliche) Zahl $c \in \mathbb{R}$ ist, so dass

$$\left| \frac{p_n}{q_n} - \sqrt{2} \right| < c \cdot \frac{1}{q_n^2}$$

für alle $n \in \mathbb{N}_0$ gilt.

(3 Bonuspunkte)

Bitte beachten Sie: Wenn Sie eine vorangehende (Teil-)aufgabe nicht lösen können, dann dürfen Sie trotzdem die Aussage benutzen, um andere (Teil-)aufgaben zu zu lösen.

Beachten Sie ausserdem: Falls Sie nichts anderes lesen, dürfen Sie NUR den Stoff aus der Vorlesung und/oder aus den vergangenen Übungsblättern benutzen.

Die Lösungen sind bis spätestens **Freitag, den 11. Oktober 2019, 10:00 Uhr** in den entsprechenden Briefkasten (Eingang A5-Gebäude, Teil C) einzuwerfen.