
Chapter 4

Heat Equation

In this chapter we investigate the heat equation

u̇−△u = 0

and the corresponding inhomogeneous variant

u̇−△u = f.

The unknown function u is defined on an open domain Ω ⊂ Rn×R and the inhomogeneity
f is a given function on Ω. We shall extend some statements about harmonic functions
to solutions of the heat equation.

This heat equation describes a diffusion process. This means a time-like evolution of
space-like distributed quantities like heat, chemical concentration and others. Here the
flow density is proportional to the negative of the gradient. Then the heat equation follows
from the scalar conservation law.

4.1 Fundamental Solution

Since the heat equation is linear and contains only a first order derivative with respect to
time and only second derivatives with respect to space, for any solution u(x, t) and any
λ ∈ R the function u(λx,λ2t) is also a solution. This scaling behaviour suggests to look
for solutions which depend only on x2

t
. We invoke the following ansatz:

u(x, t) =
1

tα
v
� x

tβ

�
x ∈ Rn, t ∈ R+.

Here α and β are constants and v : Rn → R an unknown function. This ansatz is justified
by the scaling behaviour u(x, t) = λαu(λβx,λt). With λ = 1

t
we obtain v( x

tβ
) = u( x

tβ
, 1).
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This ansatz transforms the heat equation into the following PDE

−α · t−(α+1)v(y)− βt−(α+1)y ·∇v(y)− t−(α+2β)△v(y) = 0 mit y =
x

tβ
.

If we set β = 1
2
, then this equation does not depend on t and reduces to

αv + 1
2
y ·∇v +△v = 0.

Again we assume that v is a function of |y|. With v(y) = w(|y|) we obtain:

αw +
1

2
rw′ + w′′ +

n− 1

r
w′ = 0 with r =

| x |√
t
.

If we set α = n
2
, then we may integrate once:


rn−1w′�′ + 1

2
(rnw)′ = 0 rn−1w′ + 1

2
rnw = a.

The constant a vanishes, if w and w′ vanish at infinity.

w′ = −1
2
rw w = b · e− r2

4 .

For a special choice of the constants a and b we again obtain the fundamental solution.

Definition 4.1. The fundamental solution of the heat equation is defined as

Φ(x, t) =

(
1

(4πt)n/2 e
− |x|2

4t for x ∈ Rn, t > 0

0 for x ∈ Rn, t < 0
.

Lemma 4.2. For all t > 0 the fundamental solution satisfies

Z

Rn

Φ(x, t)dnx = 1.

Proof.
1

(4πt)n/2

Z

Rn

e−
|x|2
4t dnx =

1

πn/2

Z

Rn

e−x2

dnx =
1

πn/2

�Z

R
e−x2

dx

�n

= 1.

The fundamental solution is similar to a mollifier on Rn. So we may expect that the
convolution with Φ converges in the limit t ↓ 0 to the identity.

Theorem 4.3. For h ∈ Cb(Rn,R) the following function u has the properties (i)-(iii):

u(x, t) =

Z

Rn

Φ(x− y, t)h(y)dny

(i) u ∈ C∞(Rn × R+)

(ii) u̇−△u = 0 on Rn × R+
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(iii) u extends continuously and bounded to Rn × [0,∞) with lim
t→0

u(x, t) = h(x).

Proof. Since Φ(x, t) is smooth on Rn × R+ the foregoing lemmas and the boundedness
of h implies that u(x, t) is well defined, bounded and continuous on Rn × [0,∞). On
(x, t) ∈ Rd ×R+ all partial derivatives of (x, t) 7→ Φ(x− y, t) belong to L1(Rn) considered
as functions on y ∈ Rn and depend continuously on (x, t) ∈ Rn. So they define a smooth
map from (x, t) ∈ Rn×R+ into L1(Rn). The integral is a linear continuous operator from
L1(Rn) to R. So u is smooth. No (ii) follows, since Φ solves the heat equation on Rn×R+.
The continuity of h implies uniform continuity on compact subsets. For any ϵ > 0 and
any x in a compact subset of Rn there exists δ > 0, such that |h(x) − h(y)| < ϵ for all
|x− y| < δ. Furthermore there exists T > 0, such that

Z

Rn\B(0,δ)

Φ(y, t)dny =

Z

Rn\B(0,δ/
√
t)

Φ(y, 1)dny < ϵ for all t < T .

This implies |u(x, t)− h(x)| =
����
Z

Rn

Φ(x− y, t)(h(y)− h(x))dny

����

≤
Z

B(x,δ)

Φ(x− y, t) | h(y)− h(x) | dny +

Z

Rn\B(x,δ)

Φ(x− y, t)|h(y)− h(x)|dny

≤ ϵ+ 2ϵ sup{|h(y)| | y ∈ Rn} for all t < T.

So u(x, t) converges in the limit t ↓ 0 uniformly on compact subsets of Rn to h.

In this limit t ↓ 0 Φ converges as a distribution (and as a measure) to the δ–distribution.
Note that by this formula the speed of propagation is unbounded.

4.2 Inhomogeneous Initial value problem

In the forgoing section we constructed a solution of the initial value problem

u̇−△u = 0 and u(x, 0) = h(x).

Duhamel’s principle derives solutions of the inhomogeneous initial value problem from
solutions of the homogeneous initial values problem. If we write the heat equation
as u̇ = △u and recall that the Laplace operator is a linear map from the space of
smooth functions on Rn into itself, then the heat equation becomes a linear ODE in
the (infinite–dimensional) space of smooth functions on Rn. For linear ODEs the vari-
ation of constants is also a method to obtain the solutions of the inhomogeneous equa-
tion in terms of homogeneous solutions. In fact if we take the integral over the interval
[0, t] of the corresponding homogeneous solutions which are at s ∈ [0, t] equal to the
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inhomogeneity at s, then we obtain a solution of the inhomogeneous equation which
vanishes at t = 0. Now Duhamel’s principle is just the application of the variation of
constants to the heat equation considered as an ODE in the space of functions on Rn:

Let u(x, t) =

Z t

0

Z

Rn

Φ(x− y, t− s)f(y, s)dnyds. Then formally we obtain

u̇(x, t)−△u(x, t) = lim
s→0

Z

Rn

Φ(x− y, s)f(y, t− s)dny+

+

Z t

0

Z

Rn

�
Φ̇(x− y, t− s)−△xΦ(x− y, t− s)

�
f(y, s)dnyds = f(x, t).

Theorem 4.4 (Solution of the inhomogeneous initial value problem). If f is twice con-
tinuously and bounded differentiable on Rn × [0,∞), then

u(x, t) =

Z t

0

Z

Rn

Φ(x− y, t− s)f(y, s)dnyds =

Z t

0

Z

Rn

Φ(y, s)f(x− y, t− s)dnyds

solves the inhomogeneous initial value problem

u̇−△u = f on Rn × R+ and lim
t→0

u(x, t) = 0.

Proof. We already proved that vs(x, t) =
R
Rn Φ(x−y, t−s)f(y, s)dny solves on Rn×(s,∞)

the initial value problem v̇s −△vs = 0 with lim
t→s

vs(x, t) = f(x, t). So vs is on Rn × [s,∞)

continuous. This implies for all ϵ > 0 the relation

uϵ(x, t) =

Z t−ϵ

0

vs(x, t)ds =

Z t−ϵ

0

Z

Rn

Φ(x− y, t− s)f(y, s)dnyds

u̇ϵ(x, t)−△uϵ(x, t) =

Z

Rn

Φ(x− y, t− (t− ϵ))f(y, t− ϵ)dny =

Z

Rn

Φ(x− y, ϵ)f(y, t− ϵ)dny.

Theorem 4.3 (iii) implies limϵ→0 u̇ϵ −△uϵ = f on Rn × R+. On the other hand we have

uϵ(x, t) =

Z t−ϵ

0

Z

Rn

Φ(x− y, t− s)f(y, s)dnyds =

Z t

ϵ

Z

Rn

Φ(y, s)f(x− y, t− s)dnyds.

By the second integral in the Theorem and the assumptions on f we conclude that

lim
ϵ→0

(u̇ϵ(x, t)−△uϵ(x, t)) =

�
∂

∂t
−△

�
lim
ϵ→0

uϵ(x, t) =

�
∂

∂t
−△

�
u(x, t)

holds. The continuity of v gives u(x, 0) = 0.

Corollary 4.5. The inhomogeneous initial value problem has the following solution:

u̇−△u = f u(x, 0) = h(x)

u(x, t) =

Z

Rn

Φ(x− y, t)h(y)dny +

Z t

0

Z

Rn

Φ(x− y, t− s)f(y, s)dnyds.
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4.3 Mean Value Property

We use the fundamental solution Φ(x, t) in order to determine the value u(x, t) as a mean
value on some ball like domain which has to be chosen properly.

Definition 4.6. For all (x, t) ∈ Rn × R and all r > 0 we define

E(x, t, r) =
�
(y, s) ∈ Rn+1 | s ≤ t,Φ(x− y, t− s) ≥ 1

rn

	

e−
|x−y|2
4(t−s) ≥ (4π)n/2(t− s)n/2

rn
⇐⇒ e

|x−y|2
4(t−s) ≤ 1

πn/2

�
r2

4(t− s)

�n/2

⇐⇒ | x− y |2
4(t− s)

≤ n

2
(2 ln(r)− ln(4(t− s))− ln(π))

⇐⇒ | x− y |2≤ 2(t− s)n(2 ln(r)− ln(t− s)− ln(4π)).

Theorem 4.7 (mean value property of the heat equation). Let u be a solution of the
heat equation on an open domain Ω ⊂ Rn × R. For any (x, t) ∈ Ω and any r > 0 with
E(x, t, r) ⊂ Ω we have

u(x, t) =
1

Cnrn

Z

E(x,t,r)

u(y, s)
|x− y|2
(t− s)2

dnyds with Cn =

Z

E(0,0,1)

|y|2
s2

dnyds.

Proof. Due to the translation invariance we may assume (x, t) = (0, 0). We define

S(r)= 1

rn

Z

E(0,0,r)

u(z, q)
|z|2
q2

dnzdq=
1

rn

Z

E(0,0,r)

u(ry, r2s)
|ry|2
(r2s)2

dn(ry)d(r2s)=

Z

E(0,0,1)

u(ry, r2s)
|y|2
s2

dnyds.

Here we used the fact that the bijective map (y, s) 7→ (ry, r2s) maps E(x, t, 1) onto
E(rx, r2t, r) since Φ(r(x− z), r2t) = r−nΦ(x− y, t). We calculate

S ′(r) =

Z

E(0,0,1)

|y|2
s2


y ·∇u(ry, r2s) + 2rsu̇(ry, r2s)

�
dnyds

=
1

rn+1

Z

E(0,0,r)

|y|2
s2

y ·∇u(y, s)dnyds+
1

rn+1

Z

E(0,0,r)

2u̇(y, s)
| y |2
s

dnyds

For ψ = −n
2
ln(−4πs) + |y|2

4s
+ n ln r we obtain E(0, 0, r) = {(y, s) | ψ(y, s) ≥ 0}. Further-
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more ψ vanishes on the boundary of E(0, 0, r).

1

rn+1

Z

E(0,0,r)

2u̇
| y |2
s

dnyds =
1

rn+1

Z

E(0,0,r)

4u̇y ·∇ψdnyds

= − 1

rn+1

Z

E(0,0,r)

(4nu̇ψ + 4ψy ·∇u̇)dnyds

=
1

rn+1

Z

E(0,0,r)

(−4nu̇ψ + 4ψ̇y ·∇u)dnyds

=
1

rn+1

Z

E(0,0,r)

�
−4nu̇ψ+4

�
− n

2s
− | y |2

4s2

�
y ·∇u

�
dnyds.

Hence we have S ′(r) =
1

rn+1

Z

E(0,0,r)

�
−4n△uψ − 2n

s
y ·∇u

�
dnyds

=
1

rn+1

Z

E(0,0,r)

�
4n∇u ·∇ψ − 2n

s
y ·∇u

�
dnyds = 0.

This shows that S is constant. By the continuity of u and by the equation

1

rn

Z

E(0,0,r)

| y |2
s2

dnyds =
1

rn

Z

E(0,0,r)

| ry |2
(r2s)2

dnrydr2s =

Z

E(0,0,1)

| y |2
s2

dnyds = Cn

we obtain lim
r→0

S(r) = Cnu(0, 0).

It is possible to calculate the constant explicitly. The heat ball E(0, 0, 1) contains all
(y, s) ∈ Rn×(−∞, 0] with s ≤ 0 and |y|2 ≤ −2sn(2 ln(1)−ln(−s)−ln(4π)) = 2ns ln(−4πs).
By the positivity of |y|2 we have −4πs < 1 and − 1

4π
< s < 0. This gives

Cn =

Z 0

− 1
4π

1

s2

Z

B(0,
√

2ns ln(−4πs)⊂Rn

|y|2dnyds

=

Z 0

− 1
4π

1

s2

Z √
2ns ln(−4πs)

0

nωnr
n+1drds =

Z 1
4π

0

1

s2

Z √
−2ns ln(4πs)

0

nωnr
n+1drds

= nωn

Z 1
4π

0

1

s2

�
rn+2

n+ 2

�q2ns ln( 1
4πs)

0

ds =
nωn(2n)

n+2
2

n+ 2

Z 1
4π

0


s ln


1

4πs

��n+2
2

ds

s2
.

Now we substitute 4πs = e−
2
n
t2 with 2

n
t2 = ln( 1

4πs
) and 4

n
tdt = −ds

s
.

Cn =
nωn(2n)

n+2
2

n+ 2

Z ∞

0

 
e−

2
n
t2

4π

!n
2

2
n
t2
�n+2

2 4
n
tdt =

nωn2
n+2−n+1

(n+ 2)nπ
n
2

Z ∞

0

2te−t2tn+2dt

= − 8ωn

(n+ 2)π
n
2

h
e−t2tn+2

i∞
0
+

8ωn

π
n
2

Z ∞

0

e−t2tn+1dt =
4ωn

π
n
2

Z ∞

0

2te−t2tndt

= −4ωn

π
n
2

h
e−t2tn

i∞
0
+

4

π
n
2

Z ∞

0

nωne
−t2tn−1dt =

4

π
n
2

�Z ∞

−∞
e−x2

dx

�n

= 4.
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4.4 Maximum Principle

For any open domain Ω ⊂ Rn we define the parabolic cylinder as ΩT = Ω × (0, T ]. The
parabolic boundary ∂ΩT of ΩT is defined as Ω̄T \ ΩT . It is the union of (∂Ω× (0, T ]) ∪
Ω̄× 0

�
and does not contain at time t = T points inside of Ω.

Theorem 4.8 (strong maximum principle of the heat equation). Let Ω be path connected
(i.e. any x, x′ ∈ Ω are connected by a continuous path from x to x′) and let u be twice
continuously differentiable solution of the heat equation on ΩT with continuous extension
to Ω̄T . If u takes the maximal value in ΩT , then u is constant on Ω̄T .

Proof. Let (x0, t0) be an element of ΩT at which u takes the maximal value. Then there
exists r0 > 0 such that E(x0, t0, r0) is contained in ΩT . By the mean value property u is
constant on E(x0, t0, r0). Since Ω is path connected there exists for any (x, t) ∈ Ω× (0, t0)
finitely many E(x0, t0, r0), E(x1, t1, r1), . . . , E(xn, tn, rn) in Ω×(0, t0) containing the points
(x1, t1), . . . , (xn, tn), (x, t). So u is constant on Ω̄T .

Theorem 4.9 (weak maximum principle for the heat equation). Let Ω ⊂ Rn be open and
bounded and u a twice differentiable solution of the heat equation on ΩT which extends
continuously to Ω̄T . Then the maximum of u is taken on ∂ΩT .

Again this Maximum principle implies the uniqueness of a boundary value problem:

Theorem 4.10 (uniqueness of the boundary value problem). On an open and bounded
domain Ω ⊂ Rn there exists at most one solution u of the inhomogeneous heat equation
which extends continuously to Ω̄T and coincides on ∂ΩT with a given function.

Proof. Apply the weak maximum principle to the difference of two solutions.

In order to prove on Rn × R+ the uniqueness of the initial value problem we need as in
the case of the Poisson problem a bound on the growth at infinity.

Theorem 4.11 (maximum principle for the Cauchy problem). For a bounded and con-
tinuous initial value h on Rn let u be a solution on Rn × (0, T ] of the problem:

u̇−△u = 0 on Rn × (0, T ) u(x, 0) = h(x) on Rn × {0},

which is bounded by u(x, t) ≤ Aea|x|
2

on Rn × [0, T ]

for some positive constants A, a > 0. Then u is bounded by sup
Rn×[0,T ]

u = sup
Rn

h.
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Proof. We first consider the case where a and T obey 4aT < 1. Then there exists an ϵ > 0
with 4a(T + ϵ) < 1. For all y ∈ Rn and µ > 0 the following function v solves together
with the fundamental solution on Rn × (0, T + ϵ) the heat equation:

v(x, t) = u(x, t)− µ(T + ϵ− t)−
n
2 exp

�
|x−y|2

4(T+ϵ−t)

�

On any domain of the form ΩT = B(y, r)×(0, T ] the weak maximum principle applies. Due
to the assumptions both function u and h are bounded by Aea|x|

2
. Since the inequality

1
4(T+ϵ−t)

> a holds for t > 0 there exists for any µ > 0 a R > 0 such that v(x, t) ≤
sup{h(x) | x ∈ R} holds for all r > R on ∂B(y, r)T = B(y, r) × {0} ∪ ∂B(y, r) × (0, T ].
Hence the weak maximum principle implies v(x, t) ≤ sup{h(x) | x ∈ Rn} for all (x, t) ∈
Rn × [0, T ]. This holds for all µ > 0 and by continuity also for µ = 0.

For 4aT ≥ 1 we decompose the time interval into [0, T ] = [0, T1] ∪ . . . ∪ [TM , T ] with the
property 4a(Tm+1 − Tm) < 1. By induction the general case follows.

Theorem 4.12 (existence and uniqueness of the initial value problem). For h ∈ C(Rn)
and f ∈ C(Rn × [0, T ]) there exists at most one solution of the initial value problem

u̇−△u = f on Rn × (0, T ) u = h on Rn × {0}

on Rn×[0, T0] which is bounded by |u(x, t)|≤Aea|x|
2
for some A>0, a>0 and 0<T0≤T .

If h and f are bounded by |h(x)| ≤ Aea|x|
2
and f(x, t) ≤ Aea|x|

2
on (x, t) ∈ Rn × [0, T ] for

some A > 0, a > 0, and T > 0 then this unique solution is given by

u(x, t) =

Z

Rn

Φ(x− y, t)h(y)dny +

Z t

0

Z

Rn

Φ(x− y, t− s)f(y, s)dnyds.

This solution might explode at some finite t ↑ T0 ≥ 1
16a

.

Proof. By the maximum principle for for the Cauchy problem Theorem 4.11 the difference
of any two solutions vanishes. This shows uniqueness.

In order to prove existence we apply Corollary 4.5 and show that the given u(x, t) has a

bound as stated. For 0 ≤ t− s ≤ 1
16a

we have − |x−y|2
4(t−s)

≤ −2a|x− y|2 − |x−y|2
8(t−s)

and

e−2a|x|2ea|y|
2

Φ(x− y, t− s) ≤ e−2a|x|2+a|y|2−2a|x−y|2e−
|x−y|2
8(t−s)

(4π(t− s))n/2
=

2n/2e−a|2x−y|2e−
|x−y|2
8(t−s)

(8π(t− s))n/2
,

Φ(x− y, t− s) ≤ 2n/2Φ(x− y, 2(t− s))e2a|x|
2

e−a|y|2 .

The inequalities |h(x)| ≤ Aea|x|
2
and f(x, t) ≤ Aea|x|

2
which hold for (x, t) ∈ Rn × [0, T ]

first imply u(x, t) ≤ A′e2a|x|
2
for t ∈ [0, T0] with T0 = min{T, 1

16a
} and some A′ > 0. For
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f = 0 the maximum principle for the Cauchy problem Theorem 4.11 implies

sup
(x,t)∈Rn×[0,T0]

e−2a|x|2 |u(x, t)| ≤ 2
n
2 sup

(x,t)∈Rn×[0,T0]

Z

Rn

Φ(x− y, 2t)e−a|y|2 |h(y)|dny

≤ 2
n
2 sup
y∈Rn

e−a|y|2 |h(y)| ≤ 2
n
2A.

For non vanishing f we get sup
(x,t)∈Rn×[0,T0]

e−2a|x|2 |u(x, t)| ≤ 2
n
2A

�
1 +

Z t

0

ds

�
≤ 2

n
2A(1 + T ).

So the given u obeys locally in t ∈ [0, T ] a bound as stated and is the unique solution,

as long as it obeys such a bound. The solution u(x, t) = (T0 − t)−
n
2 exp

�
|x|2

4(T0−t)

�
of the

homogeneous heat equation shows that this might not be true for all t ∈ [0, T ].

Improved arguments yields the sharp bound on the extinction time T0 ≥ 1
4a
.

Example 4.13. We show by a counterexample the non uniqueness of solutions without
any bound of the initial value problem. For n = 1 we make the ansatz

u(x, t) =
∞X

l=0

gl(t)x
l, u̇(x, t)−△u(x, t) =

∞X

l=0

(ġl(t)− (l + 2)(l + 1)gl+2(t))x
l.

For a given function g0(t) = g(t) we thus obtain the following formal solution of the
homogeneous heat equation:

u(x, t) =
∞X

l=0

g(l)(t)

(2l)!
x2l.

We now show that for g(t) = exp(−t−2) this power series indeed converges to a solution
such that on every compact subset of Rn the uniform limit t ↓ 0 vanishes. We first
calculate g(l)(t) for any l ∈ N0 by a real polynomial pl of degree l solving the relation

g(l)(t) = t−lpl(t
−2) exp(−t−2) with pl+1(z) = 2zpl(z)− lpl(z)− 2zp′l(z).

This recursion relation for pl follows by differentiating by t. The first two polynomials are
p0(z) = 1 and p1(z) = 2z. We claim that the coefficient of pl(z) in front of zk is bounded

by l!7l

2kk!
. For l = 0, k = 0 this is clear. By induction we obtain with k ≤ l + 1

2
l!7l

2k−1(k − 1)!
+ l

l!7l

2kk!
+ 2k

l!7l

2kk!
=

l!7l(4k + l + 2k)

2kk!
≤ l!7l7(l + 1)

2kk!
≤ (l + 1)!7l+1

2kk!
.

This proves the claim. Using the inequalities l!
(2l)!

= 1
2l1·3···(2l−1)

≤ 1
2ll!

we conclude

|u(x, t)| ≤
∞X

l=0

l!7lx2l

(2l)!tl

lX

k=0

g(t)

2kk!t2k
≤

∞X

l=0

1

l!

�
7x2

2t

�l ∞X

k=0

g(t)

k!

�
1

2t2

�k

= exp

�
7x2

2t
− 1

2t2

�
.

Therefore the series converges absolutely and for t ↓ 0 uniformly on compact sets to 0.
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In analogy to the Laplace equation one can show the uniqueness of the boundary value
problem Theorem 4.10 and of the initial value problem Theorem 4.12 also with the mono-
tonicity of an energy functional. We define

e(t) =

Z

Ω

u2(x, t)dnx.

If u solves the homogeneous heat equation and vanishes at the boundary of Ω, then this
functional is monotonically decreasing with respect to time:

ė(t) = 2

Z

Ω

u(x, t)u̇(x, t)dnx = 2

Z

Ω

u(x, t)△u(x, t)dnx = −2

Z

Ω

(∇u(x, t))2 dnx ≤ 0.

If u(x, t) vanishes at t = 0, and if u(·, t) and ∇u(·, t) are square integrable for t > 0, then
u vanishes identically since ∇u(·, t) vanishes and u(·, t) is constant for t > 0.

4.5 Heat Kernel

In analogy to the Green’s function of the Laplace equation we define for open subsets
Ω ⊂ Rn the heat kernel HΩ.

Definition 4.14. For an open domain Ω ⊂ Rn the heat kernel HΩ : Ω× Ω×R+ → R of
Ω is characterised by the following two properties:

(i) For (x, t) ∈ Ω× R+ y 7→ HΩ(x, y, t) extends continuously to Ω̄ with value 0 on ∂Ω.

(ii) For x ∈ Ω the function (y, t) 7→ HΩ(x, y, t)−Φ(x− y, t) solves the homogeneous heat
equation and extends continuously to Ω̄× R+

0 with value 0 on (y, t) ∈ Ω̄× {0}.
Lemma 4.15. If u and v are two functions on Ω × R+ with an open domain Ω ⊂ Rn

which all three have appropriate regularity, then we have
Z T

0

Z

Ω

u(x, t)(∂tv(x, T − t) +△v(x, T − t))dnxdt

+

Z T

0

Z

Ω

(∂tu(x, t)−△u(x, t))v(x, T − t)dnxdt =

=

Z T

0

Z

∂Ω

(u(y, t)∇yv(y, T − t)−∇yu(y, t)v(y, T − t)) ·N(y)dσ(y)dt

+

Z

Ω

(u(x, T )v(x, 0)− u(x, 0)v(x, T ))dnx.

Proof. The fundamental theorem of calculus gives for the terms with t-derivatives the
final integral over Ω and the boundary terms of a partial integration with respect to y
yields the two gradients with respect to x in the integral over ∂Ω.
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The function v(y, t) = HΩ(x, y, t) has at v(x, 0) a singularity and is not defined there.
Hence we integrate with respect to dt over the interval t ∈ [0, T − ϵ] instead of t ∈ [0, T ]
and take afterwards the limit ϵ ↓ 0. Then Theorem 4.3 gives

Z T

0

Z

Ω

(u̇(y, t)−△u(y, t))HΩ(x, y, T − t)dnydt =

=

Z T

0

Z

∂Ω

u(z, t)∇zHΩ(x, z, T − t) ·N(z)dσ(z)dt+ u(x, T )−
Z

Ω

u(y, 0)HΩ(x, y, T )d
ny.

This shows also u(x, T ) =

Z T

0

Z

Ω

(u̇(y, t)−△u(y, t))HΩ(x, y, T − t)dnydt

−
Z T

0

Z

∂Ω

u(z, t)∇zHΩ(x, z, T − t)N(z)dσ(z)dt+

Z

Ω

u(y, 0)HΩ(x, y, T )d
ny.

Theorem 4.16 (solution of the initial and boundary value problem). Let f be a function
on Ω× (0, T ), g a function on ∂Ω× [0, T ] and h a function on Ω which together with the
open domain Ω ⊂ Rn have appropriate regularity such that all appearing integrals converge
absolutely. Then

u(x, T ) =

Z T

0

Z

Ω

f(y, t)HΩ(x, y, T − t)dnydt

−
Z T

0

Z

∂Ω

g(z, t)∇zHΩ(x, z, T − t)N(z)dσ(z)dt+

Z

Ω

h(y)HΩ(x, y, T )d
ny

is the unique solution of the initial and boundary value problem

u̇−△u = f on Ω× (0, T ) u = g on ∂Ω× [0, T ] u(x, 0) = h(x) on Ω.

We prepare the proof by showing that the heat kernel is symmetric:

Lemma 4.17. For all T > 0 and x, y ∈ Ω̄ we have HΩ(x, y, T ) = HΩ(y, x, T ).

Proof. We insert u(z, t) = HΩ(x, z, t) and v(z, t) = HΩ(y, z, t) in Lemma 4.15. By
Theorem 4.3 (iii) and the property (ii) of the heat kernel the following integral vanishes:
Z

Ω

(HΩ(x, z, T )HΩ(y, z, 0)−HΩ(x, z, 0)HΩ(y, z, T ))d
nz=HΩ(x, y, T )−HΩ(y, x, T ).

Sketch of the proof of Theorem 4.16. The case f = 0 = g follows from the defin-
ing properties of the heat kernel. This implies that in the second case g = 0 = h

v(x, T ) =

Z

Ω

HΩ(x, y, T − t)f(y, t)dny solves the initial value problem

v̇ −△v = 0 on Ω× (t,∞) v(x, t) = f(x, t) on Ω× {t} v(x, t) = 0 on ∂Ω× [0,∞].
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If we assume that f has appropriate regularity and extends twice continuously differ-
entiable to Ω̄ × [0, T ] as in the homogeneous initial value problem Theorem 4.4, then

u(x, T ) =

Z T

0

Z

Ω

HΩ(x, y, T − t)f(y, t)dnydt solves the initial value problem

u̇(x, t)−△u(x, t) = f on Ω× (0, T ) u(x, 0) = 0 on Ω u(x, t) = 0 on ∂Ω× [0, T ].

Finally we consider the inhomogeneous boundary value problem: In this case u solves

u̇(x, t)−△u(x, t) = 0 on Ω× (0, T ) u(x, 0) = 0 on Ω u(x, t) = g on ∂Ω× [0, T ].

We first extend any function g on ∂Ω × [0, T ] with appropriate regularity to Ω × [0, T ]
such that it vanishes outside a tubular neighbourhood of ∂Ω× [0, T ]. If we subtract from
this extension ũ the solution of f = ˙̃u−△ũ and h(x) = ũ(x, 0) then we obtain a solution
of the desired boundary value problem.

The appropriate regularity conditions depend on the heat kernel and therefore also on
the domain. All the time we assumed that the divergence theorem holds for the open
domain Ω ⊂ Rn. Before we construct the heat kernel for some special domains, we prove
the following general property of the heat kernel:

Lemma 4.18. For any bounded connected open domain Ω ⊂ Rn the corresponding heat
kernel is positive on the corresponding parabolic cylinder, if it exists.

Proof. The fundamental solution Φ(x, t) is positive on (x, t) ∈ Rn × R+. For bounded
open domains Ω ⊂ Rn and given x ∈ Ω the difference Φ(x − y, t) − HΩ(x, y, t) of the
fundamental solution minus the heat kernel is the unique solution of the heat equation
on Ω× [0, T ] which vanishes on Ω×{t = 0} and coincides on ∂Ω× [0, T ] with Φ(x− y, t).
This solution is for all ϵ > 0 on Ω×{t = ϵ} and on ∂Ω× [0, T ] not larger than Φ(x− y, t).
By the Maximum Principle it is not larger than Φ(x−y, t) and HΩ(x, y, t) is positive.

4.6 Spectral Theory and the Heat Equation

In this section we solve the initial value problem

u̇−△u = 0 on Ω× [0, T ] u = 0 on ∂Ω× [0, T ] u = h on Ω× {0}

with the help of the Laplace operator on Ω. If h is an eigenfunction of the Laplace
operator:

−△h = λh on Ω and h|∂Ω = 0,

then the initial value problem can be solved by the following ansatz:

u(x, t) = φ(t)h(x) φ̇(t)h(x) + λφ(t)h(x) = 0.
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The general solution is φ̇ = −λφ, φ(t) = e−λ(t−to). With φ(0) = 1 we obtain the unique
solution of the corresponding initial value problem u(x, t) = e−λth(x). By linearity the
corresponding solution for initial value h = h1 + . . . + hM with −△hi = λihi on Ω
and hi|∂Ω = 0 is given by u(x, t) = e−λ1th1(x) + . . . + e−λM thM(x). Hence it suffices to
decompose h into a sum of eigenfunctions of the Laplace operator on Ω with Dirichlet
boundary conditions.

To explain this strategy we first interpret the fundamental solution as such a decomposi-
tion. On Rn the Laplace operator has the following eigenfunctions:

−△e2πik·x = 4π2k2e2πikx.

The following equation of powerseries on x ∈ Rn implies that the Taylor coefficients, i.e.
the terms for each l ∈ N0 on both sides coincide. Hence it holds also for x ∈ iRn:

πn/2

∞X

l=0

(x2)l

l!
=

Z

Rn

e−(k−x)2+x2

dnk=

Z

Rn

e−k2
∞X

j=0

(2kx)j

j!
dnk=

∞X

l=0

1

(2l)!

Z

Rn

e−k2(2kx)2ldnk.

This implies e−
(x−y)2

4t
πn/2

(4π2t)n/2
=e−

(x−y)2

4t

Z

Rn

e
−
�
2πk

√
t−ix−y

2
√
t

�2

dnk=

Z

Rn

e−4π2k2te2πi(x−y)kdnk.

So by our considerations above the solution of the initial value problem

u̇−△u = 0 on Rn × [0, T ] u(x, 0) = h on Rn

is given by

u(x, t) =

Z

Rn

Z

Rn

e−4π2k2te2πi(x−y)kh(y)dnkdny.

For an integrable function h we can apply Fubini’s Theorem. So for continuous and
integrable h we conclude from lim

t↓0
u(x, t) = h(x) also

h(x) = lim
t↓0

Z

Rn

Z

Rn

e−4π2k2te2πi(x−y)kh(y)dnydnk.

We define the Fourier transform of h as ĥ(k) =

Z

Rn

e−2πikyh(y)dny. This gives

u(x, t) =

Z

Rn

e−4π2k2te2πikxĥ(k)dnk and h(x) = lim
t↓0

Z

Rn

e−4π2k2te2πikxĥ(k)dnk.

Definition 4.19. The Schwartz space S contains all smooth complex valued functions f
on Rn whose functions x 7→ |x|2l|∂αf(x)| are bounded for all l ∈ N and all α ∈ Nn

0 .

Lemma 4.20. The Fourier transformation maps S onto S. The inverse is given by

P ◦ F : S → S, ĥ 7→ h, with h(x) =

Z

Rn

e2πikxĥ(k)dnk.
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Proof. By two partial integrations we calculate

−d△h(k) = −
Z

Rn

e−2πiky△h(y)dny =

Z

Rn

4π2k2e−2πikyh(y)dny = 4π2k2ĥ(k).

So by |ĥ(k)| ≤
R
Rn |h(y)|dny the Fourier transform of any Schwartz function decays faster

then every inverse power of the coordinate. For any h ∈ C∞
0 (Rn,C) we obtain

∥ĥ∥∞ ≤ ∥h∥L1(Rn).

Since C∞
0 (Rn,C) is dense in L1(Rn), the Fourier transform extends to a continuous linear

map from L1(Rn) into the Banach space Cb(Rn,C). Furthermore, we have

|∂iĥ(k)| =
����
Z

Rn

−2πiyie
−2πiykh(y)dny

���� ≤ 2π∥|y|h(y)∥L1(Rn).

So ĥ is smooth, if h decays faster than every inverse power of the coordinate. So the
Fourier transform of an integrable function is continuous and the Fourier transform of a
Schwartz function is smooth.

Theorem 4.3 implies for any h ∈ S

h(x) = lim
t↓0

Z

Rn

e−4π2k2te2πikxĥ(k)dnk with ĥ(k) =

Z

Rn

e−2πikyh(y)dny.

Since e−4π2k2t converges in the limit t ↓ 0 on any compact subset K ⊂ Rn uniformly to
1 and since ĥ ∈ S belongs to L1(Rn), we also have P ◦ F ◦ F = 1lS and F ◦ F = P,
respectively. Now the equation

Z

Rn

e2πikxĥ(k)dnk =

Z

Rn

e−2πikxĥ(−k)dnk

implies P ◦ F = F ◦ P and therefore also F ◦ P ◦ F = F ◦ F ◦ P = 1lS .

For any Schwartz functions h and g we apply Fubini’s Theorem and obtain
Z

Rn

ĥ(k)¯̂g(k)dnk =

Z

Rn

Z

Rn

ĥ(k)ḡ(y)e2πikydnydnk

=

Z

Rn

Z

Rn

ĥ(k)e2πikyḡ(y)dnkdny =

Z

Rn

h(y)ḡ(y)dny.

This shows that the Fourier transform preserves the hermitian scalar product and the
L2(Rn)-norm. Since the Schwartz space is dense in L2(Rn) this implies that the Fourier
transform extends to an unitary operator from L2(Rn) to L2(Rn).

Definition 4.21. For any open connected domain Ω ⊂ Rn let W 2,2
0 (Ω) be the closure of

C∞
0 (Ω) in the Hilbert space with the scalar product

⟨f, g⟩W 2,2
0 (Ω) =

Z

Ω

(△f)△ḡdnx+

Z

Ω

fḡdnx.
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All functions h ∈ C∞
0 (Ω) obey

⟨△h,△h⟩L2(Ω) =

Z

Ω

(△h)△h̄dnx ≤ ⟨h, h⟩W 2,2
0 (Ω).

Therefore for any h ∈ W 2,2
0 (Ω) the function △h belongs to L2(Ω). For f ∈ L2(Ω) the

Cauchy Schwarz inequality implies
��⟨f,△h⟩L2(Ω)

�� ≤ ∥f∥L2(Ω) · ∥h∥W 2,2
0 (Ω).

A sequence (hn)n∈N in C∞
0 (Ω) converges together with (△hn)n∈N in L2(Ω), if and only if

it converges in W 2,2(Ω). So the operator H = −△ is a closed self adjoint operator on
L2(Ω) with domain W 2,2

0 (Ω) ⊂ L2(Ω). By the inequality
Z

Ω

(−△h)h̄dnx =

Z

Ω

|∇h|2 ≥ 0 for all h ∈ C∞
0 (Ω),

H is non negative. Hence the operator H has a spectral decomposition and e−tH is a
bounded operator from L2(Ω) to L2(Ω) such that the following equation holds:

∥e−tHh∥L2(Ω) ≤ ∥h∥L2(Ω).

This shows that u(x, t) = (e−tHh)(x) solves u̇(x, t) = −(He−tH)(x) = △u(x, t) with
Dirichlet boundary condition

u(x, 0) = h(x) u(x, t) = 0 for x ∈ ∂Ω.

We shall calculate with the help of this relation between the spectral theory of the Laplace
operator with Dirichlet boundary condition and the heat equation the heat kernel of the
circle S1 and the interval [−1, 1].

4.7 Heat Kernel of S1

We identify the circle S1 with the quotient R/Z. The eigenfunctions of − d2

dx2 on R/Z are
equal to e2πikx with k ∈ Z with eigenvalues 4π2k2. This eigenfunctions build an orthogonal
system of the Hilbert space L2(R/Z). By the Theorem of Stone and Weierstraß the algebra
of polynomials with respect to sin(2πx) and cos(2πx) are dense in the real Banach space
C(R/Z,R). This in turn implies that the same holds for polynomials with respect to e2πıx

and e−2πıx in the complex Banach space C(R/Z,C). Therefore the orthogonal complement
in L2(R/Z) of the former orthogonal system is trivial, and this system is an orthogonal
basis. So any h ∈ L2(R/Z) may be decomposed into a series of the eigenfunctions e2πikx

of − d2

dx2 on R/Z with eigenvalues 4π2k2:

h(x) =
X

k∈Z
ake

2πikx with ak =

Z

R/Z
e−2πikyh(y)dy.
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Therefore the heat kernel of R/Z is given by

HR/Z(x, y, t) =
X

k∈Z
e−4π2k2t+2πik(x−y) = Θ(x− y, 4πit) with Θ(x, τ) =

X

k∈Z
e2πikx+πiτk2 .

Here Θ(x, τ) is Jacobi’s Theta function. This sum converges on the domain (x, τ) ∈
C×{τ ∈ C | ℑ(τ) > 0} to a holomorphic functions since eπiτk

2
decays exponentially with

respect to k2. This Theta function is characterised by the following properties:

Θ(x+ 1, τ) = Θ(x, τ), Θ(x+ τ, τ) = Θ(x, τ)e−πiτ−2πix, Θ(1
2
+ 1

2
τ, τ) = 0.

The first property follows from the periodicity of e2πikx with period 1. The other two
properties we show by direct calculation:

Θ(x+ τ, τ) =
X

k∈Z
e2πik(x+τ)+πik2τ =

X

k∈Z
e2πikx+πi(k+1)2τ−πiτ

=
X

k∈Z
e2πi(k+1)x+πi(k+1)2τ−2πix−πiτ = Θ(x, τ)e−2πix−πiτ

Θ(1
2
+ τ

2
, t) =

X

k∈Z
(−1)keπiτ((k+

1
2
)2− 1

4
) = e−

4πiτ
4

X

l∈N0

eπiτ(l+
1
2
)2(1− 1) = 0.

Exercise 4.22. (i) Show that for all t > 0 the fundamental solution Φ(x, t) belongs to
the Schwartz space considered as a function on x ∈ Rn.

(ii) Calculate for all t > 0 the Fourier transform of the fundamental solution Φ(x, t)
considered as a function on x ∈ Rn.

(iii) Show that for any Schwartz function f on R the following series converges to a
smooth function f̃ on R which is periodic with period 1:

f̃(x) =
X

n∈Z
f(x+ n).

(iv) Let h be a periodic continuous functions on R with period 1. Show that the solution
of the heat equation with initial values h preserves periodicity with period 1 for all
t > 0. Conclude that the following series is the heat kernel of S1:

X

n∈Z
Φ(x− y + n, t).

(v) Due to Poisson’s summation formula every Schwartz function on R satisfies
X

n∈Z
f(x+ n) =

X

n∈Z
f̂(n)e2πinx.

Show with the help of this formula the relation

HS1(x, y, t) =
X

n∈Z
Φ(x− y + n, t).

(vi) Show that f(x) = e−x2
(e−x2

+ sin2 x) is a positive Schwartz function on R, whose
square root does not belong to the Schwartz space.



CHAPTER 4. HEAT EQUATION 73

4.8 Heat Kernel of (0, 1)

The eigenfunctions of − d2

dx2 on (0, 1) with Dirichlet boundary conditions, this means roots
at ∂(0, 1) = {0, 1}, are given by

√
2 sin(kπx) with k ∈ N

These functions again build an orthogonal system:

Z 1

0

√
2 sin(kπx)

√
2 sin(k′πx)dx =

Z 1

0

(cos((k − k′)πx)− cos((k + k′)πx))dx = δk,k′ .

For any continuous functions f on [0, 1] with roots at ∂(0, 1) the function

f̃(x) =

(
f(x− 2n) for x ∈ [2n, 2n+ 1] with n ∈ Z
−f(2n− x) for x ∈ [2n− 1, 2n] with n ∈ Z

is continuous on R with roots at Z and is periodic with period 2. By the Theorem of
Stone and Weierstraß the finite linear combinations of (x 7→ exp(kπıx))k∈N build a dense
subalgebra of C(R/2Z) and therefore are also dense in L2(R/2Z). The map f 7→ f̃ obeysR 2

0
f̃(x)g̃(x)dx = 2

R 1

0
f(x)g(x)dx and maps L2(0, 1) onto

A =

(
f ∈ L2(R/2Z)

�����f(n+ x) =

(
f(x) for even n ∈ 2Z and x ∈ R
−f(1− x) for odd n ∈ 2Z+ 1 and x ∈ R

)

This space A consists of all periodic odd functions on R with period 2, since n = −1 gives
f(x − 1) = −f(1 − x). A linear combination

P
k ak exp(kπıx) belongs to A, if and only

if a−k = −ak for all k ∈ Z. Hence the linear combinations of (
√
2 sin(kπx))k∈N are dense

in A and build an orthonormal basis of L2(0, 1). This implies

h =
X

k∈N
ak
√
2 sin(kπx) with ak =

Z 1

0

√
2 sin(kπy)h(y)dy for h ∈ L2(0, 1).

We conclude that the unique solution of the initial value problem

u̇(x, t)−△u(x, t) = 0 u(x, 0) = h(x) u(0, t) = u(1, t) = 0 for (x, t) ∈ (0, 1)× R+

is given by u(x, t) =

Z 1

0

H(0,1)(x, y, t)h(y)dy with

H(0,1)(x, y, t) =
∞X

k=1

e−π2k2t2 sin(kπx) sin(kπy)

=
∞X

k=1

e−π2k2t(cos(kπ(x− y))− cos(kπ(x+ y))) =
1

2
Θ(x−y

2
, πit)− 1

2
Θ(x+y

2
, πit).
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Exercise 4.23. (i) Show that the heat kernel H(0,1) is given by

H(0,1)(x, y, t) =
1

2
Θ(x−y

2
, πıt)− 1

2
Θ(x+y

2
, πıt).

(ii) Let A be the space of all continuous functions on R with the following properties:

f(n+ x) =

(
f(x) for even n ∈ 2Z and x ∈ R
−f(1− x) for odd n ∈ 2Z+ 1 and x ∈ R.

Show that the functions in A vanish at Z and that A contains all continuous odd
and periodic functions with period 2.

(iii) Show that for any Schwartz function f on R the following series converges to a
smooth functions f̃ in A:

f̃(x) =
X

n∈Z
f(2n+ x)−

X

n∈Z
f(2n− x).

(iv) Show for any h ∈ A, that the solutions of the heat equation with initial value h is
for all t > 0 a smooth function in A. Conclude from this that the following sum has
the properties of the Heat kernel of (0, 1):

X

n∈Z
Φ(x+ 2n− y, t)−

X

n∈Z
Φ(x+ 2n+ y, t).

(v) Show the relation

H(0,1)(x, y, t) =
X

n∈Z
Φ(x+ 2n− y, t)−

X

n∈Z
Φ(x+ 2n+ y, t).

The heat kernel of the Cartesian product of two domains can be easily calculated in terms
of the heat kernels of both domains:

Lemma 4.24. If Ω ⊂ Rm and Ω′ ⊂ Rn are two open, bounded and connected domains
with given heat kernels HΩ and HΩ′, then the heat kernel of Ω× Ω′ is given by

HΩ×Ω′((x, x′), (y, y′), t) = HΩ(x, y, t)HΩ′(x′, y′, t) (x, x′), (y, y′) ∈ Ω̄× Ω̄′ t ∈ R+.

Proof. For any (x, x′, t) ∈ Ω × Ω′ × R+ the function (y, y′) 7→ HΩ(x, y, t)HΩ′(x′, y′, t)
extends by the value zero continuously to ∂(Ω × Ω′) = (∂Ω × Ω′) ∪ (ω × ∂Ω′). The
Laplace operator of the Cartesian product is the sum of the corresponding Laplace op-
erators. Hence for all (x, x′) ∈ Ω × Ω′ the function (y, y′, t) 7→ HΩ(x, y, t)HΩ′(x′y′, t)
solves the homogeneous heat equation. The product of both fundamental solutions is the
fundamental solution on Rm+n. Hence for all (x, x′) ∈ Ω × Ω′ the function (y, y′, t) 7→
HΩ(x, y, t)HΩ′(x′, y′t) − Φ(x − y, t)Φ(x′ − y′, t) extends continuously to Ω̄ × Ω̄′ × R+

0 by
setting it zero on (y, y′, t) ∈ Ω̄× Ω̄′ × {0}.
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So we might have a formula for the heat kernels all tori (R/Z)n and all Cartesian products
(0, 1)n. However the boundaries of the Cartesian products (0, 1)n ⊂ Rn are no contin-
uously differentiable submanifolds of Rn and our proof of the divergence theorem does
not apply to these Cartesian products. However, the divergence theorem holds for these
Cartesian products and we prove this in the lecture Partial Differential Equations. So
we have determined the heat kernel of all tori (R/Z)n and all Cartesian products (0, 1)n.
Hence the unique solution of the initial value problem

u̇−△u = 0 on (0, 1)n × (0, T ], u(x, 0) = h(x) on (0, 1)n, u = 0 on ∂(0, 1)n × [0, T ]

is given by u(x, t) =
R
(0,1)n

Qn
i=1 H(0,1)(xi, yi, t)h(y)d

ny.

From Φ(x− y, t) = 1
rn
Φ(x

r
− y

r
, t
r2
) we obtain H[0,r]n(x, y, t) =

1

rn

nY

i=1

H(0,1)


xi

r
, yi

r
, t
r2

�
.

Corollary 4.25. Any solution u(x, t) of the homogeneous heat equation on a neighbour-
hood of [0, r]n × [0, T ] ⊂ Rn × R satisfies

u(x, T ) = −
Z T

0

Z

∂[0,r]n
u(z, t)∇zH[0,r]n(x, z, T − t)N(z)dσ(z)dt+

Z

[0,r]n
u(y, 0)H[0,r]n(x, y, T )d

ny.

In the proof of Theorem 4.3 we show that in the limit t ↓ 0 Φ(x− y, t) converges on the
complement of y ∈ B(x, δ) uniformly to zero. The same is true for all partial derivatives
and due to condition (ii) in Definition 4.14 also for H(0,1)n(x, y, t). By Lemma 4.17 the
integral for u(x, T ) is smooth at all x ∈ (0, r)n. For (z, t) ∈ ∂(0, r)n × [0, T ] the Taylor
series of x 7→ H[0,r]n(x, z, T − t) converges uniformly on compact subsets of x ∈ (0, r)n to
H[0,r]n(x, z, T − t). This implies the following Corollary:

Corollary 4.26. Any solution u of the homogeneous heat equation on an open domain
Ω ⊂ Rn × R is smooth and for fixed t analytic with respect to x.


