
Chapter 3

Laplace Equation

One of the most important PDEs is the Laplace equation

△u =
∂2u

∂x2
1

+ . . .+
∂2u

∂x2
n

= 0.

The corresponding inhomogeneous PDE is Poisson’s equation

−△u = f.

Both equations are linear PDEs of second order with the unknown function u : Rn → R.
A function that solves Laplace’s equation is called harmonic. As is typical with linear
inhomogeneous equations, the sum of a solution of Poisson’s equation and a harmonic
function is again a solution to Poisson’s equation.

These equations show up in many situations. In physics they describe for example the
potential u (also called the voltage) of an electric field in the vacuum with some distri-
bution of charges f . To give some more detail, perhaps you are familiar with Coulomb’s
law: if we have a particle with charge Q at the origin and another particle with charge q
at x, then the force on the second particle is

F =
keqQ

|x|2 x̂ = q

�
keQ

|x|2 x̂
�
,

where ke is an empirical constant. (If you haven’t seen this before, it is very much
like Newton’s equation for gravity.) If the charges have the same sign the force pushes
the second particle in the x̂ direction (repulsion); if the opposite sign the force is in
the −x̂ direction (attraction). We interpret the bracket as the electric field of the first
particle. Then this same rule could be stated that a positively-charged particle moves
in the direction of the electric field and a negatively-charged particle in the opposite
direction. And in fact this vector field is a gradient

keQ

|x|2 x̂ = ∇
�
keQ

|x|

�
.
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For historical reasons, the potential is defined E = −∇u. So then we could say that a
positively-charged particle tries to decrease the electric potential, like a ball rolling down a
hill. The steeper the change in potential, the stronger the force. We will use this example
of electric potential to give an interpretation of some of our results. Indeed, much of this
theory was developed first by physicists and some techniques seem strange if one does not
know the physics motivation!

3.1 Fundamental Solution

The Laplace equation is invariant with respect to all rotations and translations of the
Euclidean space Rn. Therefore we first look for solutions which are invariant with respect
to all rotations. These solutions depend only on the length r = |x| =

√
x · x of the

position vector x. For such functions u(x) = v(r) = v(
√
x · x) we calculate:

∇xu(x) = v′
√

x · x
�
∇xr = v′

√
x · x

� 2x
2r

.

Hence the Laplace equation simplifies to an ODE

△xu(x) = ∇x ·∇xu = v′′(r)
x2

r2
+ v′(r)

n

r
− v′(r)

x2

r2r
= v′′(r) +

n− 1

r
v′(r) = 0.

Let us solve this ODE:

v′′(r)

v′(r)
=

1− n

r
⇒ ln(v′(r)) = (1− n) ln(r) + C ⇒ v(r) =

(
C ′ ln(r) + C ′′ for n = 2
C′

rn−2 + C ′′ for n ≥ 3.

We see two things here. The space of solutions is two dimensional, with one solution
being just the constant solution u = C ′′. The other solution is not a solution on all of Rn

because is has a singularity at the origin. Never-the-less these are important ‘solutions’
to consider!

Definition 3.1. Let Φ(x) be the following solutions of the Laplace equation:

Φ(x) =

(
− 1

2π
ln |x| for n = 2
1

n(n−2)ωn|x|n−2 for n ≥ 3.

Here ωn denotes the volume of the unit ball B(0, 1) in Euclidean space Rn. We call these
fundamental solutions of the Laplace equation.

This solution lies in the space of radially symmetric solutions. And notice that for n = 3
it is the electric potential of a single particle. We have chosen C ′′ = 0, which makes
the solution tend to zero for large x. The constant C ′ is chosen in such a way that the
following theorem holds:
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Theorem 3.2. For f ∈ C2
0(Rn) a solution of Poisson’s equations −△u = f is given by

u(x) = Φ ∗ f =

Z

Rn

Φ(y)f(x− y) dny.

Moreover, the distribution corresponding to the fundamental solution obeys −△FΦ = δ.

Proof. We see that the function u is twice continuously differentiable since f is twice
continuously differentiable and because it has compact support we can differentiate under
the integral sign. We calculate

∂2u

∂xi∂xj

(x) =

Z

Rn

Φ(y)
∂2f

∂xi∂xj

(x− y) dny.

In particular, △u(x) =
R
Rn Φ(y)△xf(x− y) dy. We decompose this integral in the sum of

an integral nearby the singularity of Φ and an integral away from this singularity:

△u(x) =

Z

B(0,ϵ)

Φ(y)△xf(x− y) dy +

Z

Rn\B(0,ϵ)

Φ(y)△xf(x− y) dy

= Iϵ +Jϵ.

We use
R
r ln rdr = r2

2
(ln r − 1

2
) and

R
rdr = r2

2
and estimate the first integral for ϵ ↓ 0:

|Iϵ| ≤ ∥△xf∥L∞(Rn)

Z

B(0,ϵ)

|Φ(y)| dy ≤
(
Cϵ2(| ln ϵ|+ 1) (n = 2)

Cϵ2 (n ≥ 3).

In the Jϵ integral, because △ is second order, we can change △xf(x− y) to △y[f(x− y)]
without changing signs. Then integration by parts yields

Jϵ =

Z

Rn\B(0,ϵ)

Φ(y)∇y ·∇y[f(x− y)] dy

= −
Z

Rn\B(0,ϵ)

∇yΦ(y) ·∇y[f(x− y)] dy +

Z

∂B(0,ϵ)

Φ(y)∇y[f(x− y)] ·N dσ(y)

= Kϵ +Lϵ.

We are able to apply integration by parts because f has compact support; we can restrict
Rn to some large ball without changing the integral. The second term converges in the
limit ϵ ↓ 0 to zero:

|Lϵ| ≤ |∇f |L∞(Rn)

Z

∂B(0,ϵ)

|Φ(y)| dσ(y) ≤
(
Cϵ| ln ϵ| (n = 2)

Cϵ (n ≥ 3).

Another integration by parts of the first term yields

Kϵ =

Z

Rn\B(0,ϵ)

△yΦ(y)f(x− y) dy −
Z

∂B(0,ϵ)

∇yΦ(y)f(x− y) ·N dσ(y)

= −
Z

∂B(0,ϵ)

∇yΦ(y)f(x− y) ·N dσ(y).



CHAPTER 3. LAPLACE EQUATION 44

Here we used that Φ is harmonic for y ̸= 0. The gradient of Φ is equal to ∇Φ(y) =
− 1

nωn

y
|y|n . The outer normal N of Rn \B(0, ϵ) on ∂B(0, ϵ) points towards the origin and is

given by the expression − y
|y| . Together∇yΦ(y)·N = 1

nωn

1
|y|n−1 . As we will prove rigorously

in Lemma 3.3, the limit of Kϵ as ϵ → 0 is −f(x). We can understand this intuitively by
observing that for ϵ small and y ∈ ∂B(0, ϵ) by continuity f(x− y) ≈ f(x). Therefore

Kϵ ≈ −
Z

∂B(0,ϵ)

f(x)
1

nωn

1

|ϵ|n−1
dσ(y) = −f(x)

1

nωn|ϵ|n−1

Z

∂B(0,ϵ)

1 dσ(y) = −f(x).

Putting these three limits together

△u(x) = Iϵ +Kϵ + Lϵ → 0− f(x) + 0.

Because the left hand side is independent of ϵ, we conclude that it must have been equal
to −f(x) all along.

It remains to prove the claim about distributions. For any test function φ we have per
the definition of distribution derivative

(△FΦ)(φ) = FΦ(△φ) =

Z

Rn

Φ(y)△φ(y) dny.

But then we can see this as the calculation above with φ(y) = f(0− y). The conclusion
is that the value of the integral is −φ(0). Moving the minus sign around we arrive at
−△FΦ(φ) = φ(0). But this is the definition of the delta distribution.

In general, a fundamental solution of a constant coefficient linear PDE Lu = f has the
property that LΦ = δ in the sense of distribution. We make these assumptions on L so
that L is just the real-linear combination of partial derivatives, and so interacts well with
convolution. In particular, if we apply L to the convolution of f and the fundamental
solution

L(Φ ∗ f) = (LΦ) ∗ f = δ ∗ f = f.

This shows that the convolution Φ ∗ f solves the inhomogeneous PDE as long as it is well
defined and the derivative rule for convolutions holds.

To give the physics explanation, the fundamental solution is the potential of a single
particle with unit charge. The charge of a particle is described by the delta distribution
because it is only at a point but the total amount is finite. Consider the situation with
two particles f = Q1δp + Q2δq. This formula (pretending that δ is a function) says that
their potential is

u(x) =

Z

Rn

Φ(x− y)f(y) dny =

Z

Rn

Φ(x− y)Q1δp(y) d
ny +

Z

Rn

Φ(x− y)Q2δq(y) d
ny

= Q1Φ(x− p) +Q2Φ(x− q).
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The interpretation is that if you have charges described by f , then treat them as a sum
(or integral) of particles. Each particle produces an electric potential Q1Φ(x − p), and
the total potential u is the sum (or integral).

Fundamental solutions are not usually unique however. Consider the present case of the
Laplace equation. If we have any harmonic function v then △(Φ+ v) = △Φ+△v = δ+0
shows that Φ+ v is also a fundamental solution. The difference between two fundamental
solutions solves the Laplace equation, so this is the only possibility for other fundamental
solutions. Different fundamental solutions can produce different solutions to the PDE.
We shall see that the fundamental solution we have chosen is the only one that vanishes
at infinity, which makes it in some sense the best one.

The difference between the first and second claim of the theorem is the assumption of
regularity of f : twice continuously differentiable or smooth respectively. In fact it is
possible to generalise this theorem further: the convolution of f with Φ is defined for
continuous functions f ∈ L1(Rn) and belongs to L1(Rn). In this case the result of the
convolution may not be differentiable but it is a solution of Poisson’s equation in the sense
of distributions. However, if one assumes that f is Lipschitz continuous and belongs to
L1(Rn) then u is twice differentiable (in the usual sense) and solves the PDE. This situation
is typical of the delicate questions of regularity of the solution.

3.2 Mean Value Property

In the previous section we constructed a solution to the inhomogeneous equation. Any
other solution must differ from the constructed one by a harmonic function. We should
therefore understand harmonic functions in order to understand the space of solutions.
In this section we shall prove the following property of a harmonic function u on an open
domain Ω ⊂ Rn: the value u(x) of u at the center of any ball B(x, r) with compact closure
in Ω is equal to the mean of u on the boundary of the ball. Conversely, if this holds for all
balls with compact closure in Ω, then u is harmonic. This relation is called mean value
property and has many important consequences.

Let us introduce some notation. Given a function u let

S[u](x, r) := 1

nωnrn−1

Z

∂B(x,r)

u(y) dσ(y) =
1

nωn

Z

∂B(0,1)

u(x+ rz) dσ(z)

be its spherical mean. Here ωn denotes the volume of the unit ball in Euclidean space Rn

and equality follows from Lemma 2.9(iv) using rP (z) = x+ rz. We write S(r) when the
function and center point are clear.
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The ball mean or of u on the ball B(x, r) is

M[u](x, r) :=
1

ωnrn

Z

B(x,r)

u dµ =
1

ωnrn

Z r

0

Z

∂B(x,s)

u dσ ds,

using the co-area formula, Lemma 2.11. Many statements can therefore be made either
in terms of ball means or spherical means.

The spherical mean, and means generally, have several nice properties. First note that
the normalisation constant in the definition ensures that S[1] = 1 and likewise for any
other constant. The mean is real-linear in the function: S[au+ bv] = aS[u]+ bS[v], which
just follows from linearity of the integral. Likewise it follows from the monotonicity of the
integral that if u ≤ v then S[u] ≤ S[v]. From these basic properties follows continuity at
the center:

Lemma 3.3. If u is a continuous function then limr↓0 S[u](x, r) = u(x).

Proof. By the definition of continuity for all ε > 0 there is a radius δ such that for all
points y ∈ B(x, δ) we know |u(y)− u(x)| < ε. For any r < δ it follows that

|S[u]− u(x)| = |S[u]− S[u(x)]| = |S[u− u(x)]| ≤ S[|u− u(x)|] < S[ε] = ε.

But this is the definition that limr↓0 S[u](x, r) = u(x).

Particularly important is the relationship between the spherical mean and the Laplacian of
u. Differentiating the spherical mean with respect to the radius and using the divergence
theorem gives

∂

∂r
S(r) = 1

nωn

Z

∂B(0,1)

d

dr
(u(x+ rz)) dσ(z) =

1

nωn

Z

∂B(0,1)

∇u(x+ rz) · z dσ(z)

=
1

nωnrn−1

Z

∂B(x,r)

∇u(y) ·N dσ(y) =
1

nωnrn−1

Z

B(x,r)

△u dµ. (3.4)

Therefore if u is harmonic then S(r) is constant. With these important properties of
means prepared, we are ready to fully prove our claim.

Theorem 3.5 (Mean Value Property). Let u ∈ C(Ω) on an open domain Ω ⊂ Rn. We
say that u has the mean value property if

u(x) = S[u](x, r) = 1

nωnrn−1

Z

∂B(x,r)

u(y) dσ(y)

for all balls with B(x, r) ⊂ Ω. A twice continuously differentiable function u ∈ C2(Ω) has
the mean value property if and only if it is harmonic. Additionally, the same result holds
if ball means are used in place of spherical means.
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Proof. We have just calculated that if u is harmonic then S(r) is constant. From the
previous lemma we then conclude that S(r) = u(x) for all applicable r. Conversely, if
△u(x) ̸= 0, then by the continuity of △u there is a ball B(x, r) where △u is strictly
positive (or negative). For this ball and any ball contained in it the right hand side of
equation (3.4) is strictly positive (or negative) and the spherical mean is strictly mono-
tonic. Therefore it is not constant.

To show the statement about ball means relate it to the spherical means:

M[u](x, r) =
1

ωnrn

Z

B(x,r)

u dµ =
n

rn

Z r

0

sn−1

nωnsn−1

Z

∂B(x,s)

u dσ ds =
n

rn

Z r

0

sn−1S(s) ds.

Thus if S is constant and equal to u(x), so is the ball mean. If the ball mean is constant
and equal to u(x) then we differentiate both sides with respect to r

0 =
∂

∂r
M[u](x, r) = − n2

rn+1

Z r

0

sn−1S(s) ds+ n

rn
rn−1S(r) = −n

r
u(x) +

n

r
S(r).

Therefore S(r) = u(x) too.

Keeping with our theme of distributions, we might wonder how we can reinterpret the
mean value property for distributions. As is typical for extending definitions to distri-
butions, we first develop a formula for regular distributions. Suppose that u : Ω → R
is continuous and B(a,R) ⊂ Ω. For each point a ∈ Ω, we view the spherical mean as a
function r 7→ S[u](a, r) on (0, R). Therefore FS[u](a,r) ∈ D′((0, R)). For any test function
ψ ∈ D((0, R)) we compute

FS[u](a,r)(ψ) =

Z R

0

S[u](a, r)ψ(r) dr =
Z R

0

Z

∂B(a,r)

1

nωnrn−1
u(z)ψ(r) dσ(z) dr

=

Z

B(a,r)

u(x)
ψ(|x− a|)

nωn|x− a|n−1
dx =

Z

Ω

u(x)
ψ(|x− a|)

nωn|x− a|n−1
dx

= Fu

�
ψ(|x− a|)

nωn|x− a|n−1

�
.

Therefore we make the following definition for any distribution F ∈ D′(Ω). For any a ∈ Ω
there is a ball B(a,R) ⊂ Ω. The spherical mean Sa[F ] of F around a is the distribution
on (0, R) ⊂ R with the formula

Sa[F ](ψ) = F (ψ̃a), for ψ̃a(x) =
ψ(|x− a|)

nωn|x− a|n−1
.

This is well-defined for two reasons. First, the support of ψ excludes 0, so ψ̃a is identically
zero on a neighborhood of a. In particular, dividing by |x − a|n−1 does not produce a
singularity. And second, the support of ψ̃a is contained in B(a,R). This shows that it is
a test function on Ω.
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The mean value property is that the spherical means of the function are constant in
the radius. Hence the corresponding property of distributions should require Sa[F ] to
be ‘constant’ in a suitable sense. We will prove in an exercise that a distribution G
corresponds to a constant function if and only if

∀φ ∈ D(Ω) :

Z

Ω

φ dx = 0 ⇒ G(φ) = 0.

Together we have

Definition 3.6 (Weak Mean Value Property). Let U ∈ D′(Ω) be a distribution on an open
domain Ω ⊂ Rn. It is called harmonic if △U = 0 in the sense of distributions. We say
that U has the weak mean value property if for each a ∈ Ω the respective spherical mean
Sa[U ] is a constant distribution. More explicitly, this means that for each ball B(a,R)
with B(a,R) ⊂ Ω and each ψ ∈ C∞

0 ((0, R)) with
R
ψ dµ = 0 the distribution U vanishes

on the test function ψ̃a.

What is the relationship of the weak mean value property to the (strong) mean value
property? Suppose U = Fu for a continuous function u ∈ C(Ω). If u has the mean value
property, then we observe that

Sa[Fu](ψ) = Fu(ψ̃a) = FS[u](a,r)(ψ) = Fu(a)(ψ).

In other words, for each a ∈ Ω the distribution Sa[Fu] corresponds to the constant function
u(a). Thus Fu has the weak mean value property. Conversely, suppose that Fu has
the weak mean value property: For each point a ∈ Ω there is a constant c such that
Fc = Sa[Fu] = FS[u](a,r). But we may use the fundamental lemma of the calculus of
variations, Lemma 2.15, to conclude that c = S[u](a, r). Hence the spherical mean of u
is constant in the radius. In summary:

Lemma 3.7. For u ∈ C(Ω), u has the mean value property if and only if Fu has the weak
mean value property.

The functions ψ̃a may look a little scary, but in fact they are actually friendly once you
get to know them. They are smooth functions characterised by two properties:

1. they are radially symmetric around a, and

2. they have compact support in Rn \ {a}.

It is clear that any ψ̃a has these two properties. If a smooth function φ has Property
1, then it is a function of the distance |x − a|. Another way to state Property 2 is to
say that the support is contained in an annulus centered at a. Because it vanishes in
a neighborhood of a, there are no issues with the non-smoothness of |x − a| at x = a.
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So define ψ(|x − a|) = nωn|x − a|n−1φ(x) to get the function ψ ∈ C∞
0 ((0, R)) with the

relation φ = ψ̃a.

These functions also behave well under convolution, so long as its the convolution of a ‘big
annulus’ with a ‘little annulus’. By this we mean the following. Consider χ̃b, ψ̃a. Further
suppose that χ̃b is identically zero on B(b, R) and the support of ψ̃a lies in B(a, r) for
r < R. Then χ̃b∗ ψ̃a also obeys Property 1 and 2. Let us demonstrate this now. First, due
to Lemma 2.13 we know that χ̃b ∗ ψ̃a is rotationally symmetric around b+ a. Second, the
convolution has compact support in Rn by the addition formula for supports. It remains
to show that it vanishes in a neighbourhood of b+a. But this too follows from the addition
formula for the support of a convolution, since a+ b ̸∈ (Rn \B(b, R)) + B(a, r).

There is a final point to be made about the total integral of these functions. Recall the
formula Fu(ψ̃a) = FS[u](a,r)(ψ). We apply this to the function u ≡ 1, which has the mean

value property, to get F1(ψ̃a) = F1(ψ). Writing this out as integrals shows

Z

Ω

ψ̃a dx =

Z

(0,R)

ψ dr.

In particular, the integral of ψ̃a is zero if and only if the integral of ψ is zero. And as
a reminder, when we introduced convolutions we noted that the integral of χ̃b ∗ ψ̃a is
the product of the integral of each function. Important to the proof below is that if χ̃b

has total integral zero, so too does χ̃b ∗ ψ̃a. In particular, the weak mean value property
applies to it.

Now we ready to prove that a distribution has the weak mean value property if and only
if it is a harmonic distribution. This should be seen as a generalisation of Theorem 3.5.
Something stronger comes out of this proof, a famous result known as Weyl’s lemma. It
tells us that weak solutions of the Laplace equations coincide with the strong solutions,
and all solutions are smooth.

Weyl’s Lemma 3.8. On an open domain Ω ⊂ Rn, a distribution U ∈ D′(Ω) is harmonic
if and only if it has the weak mean value property. For each harmonic distribution U ∈
D′(Ω) there exists a harmonic function u ∈ C∞(Ω) with U = Fu.

Proof. The steps of the proof are as follows:

1. We show that harmonic distributions have the weak mean value property.

2. For any distribution U with the weak mean value property, we can define a function
u through spherical means. This function is smooth and harmonic.

3. We show that u corresponds to the original distribution U . So every distribution
with the weak mean value property is a harmonic distribution.
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Step 1. Suppose that U is a harmonic distribution. Choose any point a ∈ Ω and suppose
B(a,R) ⊂ Ω. For every ψ ∈ D((0, R)) with integral 0, we will show that there exists a
test function g ∈ D(Ω) with △g = ψ̃a. This is sufficient to prove that U has the weak
mean value property because then U(ψ̃a) = U(△g) = (△U)(g) = 0.

By the assumption on ψ that the total integral is zero we can define a test function
Ψ ∈ D((0, R)) through Ψ(r) =

R r

0
ψ with Ψ′ = ψ. Then we define

g(x) = v(|x− a|) with v(t) =

Z t

R

Ψ(r)

nωnrn−1
dr.

This function g depends only on |x− a|. Because one end of the integral is set at R and
Ψ has compact support, g has compact support in B(a,R) ⊂ Ω. Similarly it is constant
on B(a, ϵ) for some ϵ > 0. For x near a therefore, △g = 0 = ψ̃a(x). And for x ̸= a
we can reuse the calculation of the Laplacian for radial function from the search for the
fundamental solution:

△g(x) = v′′(|x− a|) + n− 1

|x− a|v
′(|x− a|).

Note

v′(t) =
Ψ(t)

nωntn−1

v′′(t) =
ψ(t)

nωntn−1
− (n− 1)Ψ(t)

nωntn
=

ψ(t)

nωntn−1
− n− 1

t

Ψ(t)

nωntn−1
,

which implies

△g(x) =
ψ(|x− a|)

nωn|x− a|n−1
= ψ̃a(x).

This concludes Step 1.

In Step 2, we assume that U has the weak mean value property and construct a smooth
harmonic function u. For any open subset Ω′ ⋐ Ω there is a radius R such that Ω′ +
B(0, R) ⋐ Ω. For all x ∈ Ω′ choose any ψ ∈ D((0, R)) with

R R

0
ψ(r) dr = 1 and define

u(x) := (ψ̃0 ∗ U)(x).

Due to Lemma 2.16, u is smooth. But we need to check that this definition is independent
of the choice of ψ. We can unwind the definitions of the convolution

u(x) = (ψ̃0 ∗ U)(x) = U(TxPψ̃0) = U(y 7→ Pψ̃0(y − x)) = U(y 7→ ψ̃0(x− y)) = U(ψ̃x).

Now suppose that χ is another choice. Then ψ̃x − χ̃x is a test function on Ω with total
integral zero (it is equal to the integral of ψ minus the integral of χ, both of which are
1). The weak mean value property now implies

U(ψ̃x)− U(χ̃x) = U(ψ̃x − χ̃x) = 0.
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Next we prove that the distribution Fu has the weak mean value property. How does Fu

act on a test function φ? Again this is answered by Lemma 2.16, Fu(φ) = U(φ ∗ Pψ̃0).
This formula simplifies a little due to ψ̃0 = Pψ̃0 being a radial function. Let χ̃b be any
function from the definition of the weak mean value property. Then we must show that
U(χ̃b ∗ ψ̃0) = 0. The trick is to use the freedom definition of u to choose a suitable ψ̃0.
We know that there is an ϵ > 0 such that χ̃b vanishes on B(x, ϵ). We can choose ψ̃0 such
that its support lies inside the ball B(0, ϵ/2). Then by the discussion above we know
that χ̃b ∗ ψ̃0 is again a function of the form considered in the weak mean value property.
Therefore Fu(χ̃b) = U(χ̃b ∗ ψ̃0) = 0. In other words Fu has the weak mean value property.
By Lemma 3.7, u has the mean value property and further by Theorem 3.5, u is harmonic.

Lastly, we have Step 3, where we prove Fu = U . The functions κϵ(t) = λϵ/3(t− 2
3
ϵ) have

support [ϵ/3, ϵ] and total integral 1. Thus the corresponding functions κ̃ϵ are a smooth
mollifier on Rn. We again use the freedom in the choice of ψ to see that Fu = κ̃ϵ ∗ U for
every ϵ. Now Lemma 2.12 implies Fu = U .

To conclude this section we show that the mean value property leads to a growth estimate.

Corollary 3.9. Let u be a harmonic function on an open domain Ω ⊂ Rn and B(x, r) a
ball with compact closure in Ω. For all multi-indices α we have the estimate

|∂αu(x)| ≤ C(n, |α|)r−|α|∥u∥L∞(B(x,r)) with C(n, |α|) = 2
|α|(1+|α|)

2 n|α|.

Proof. We have just seen in Weyl’s lemma that all harmonic functions are smooth and
thus all partial derivatives of a harmonic function are harmonic. The mean value property
and integration by parts (the divergence theorem version) yield for i = 1, . . . , n

|∂i∂αu(x)| =
����
2n

ωnrn

Z

B(x,r/2)

∂i∂
αu dµ

���� =
����
2n

ωnrn

Z

∂B(x,r/2)

∂αuNi dσ

���� ≤
2n

r
∥∂αu∥L∞(∂B(x,r/2)).

The inductive application gives first C(n, 1) = 2n, and using the induction hypothesis

∥∂αu(y)∥ ≤ 2|α|C(n, |α|)r−|α|∥u∥L∞(B(x,r)) for all y ∈ ∂B(x, r/2)

the relation C(n, 1 + |α|) = 21+|α|nC(n, |α|). The given C(n, |α|) is the solution.

Liouville’s Theorem 3.10. On Rn a bounded harmonic function is constant.

Proof. The foregoing corollary shows that |∂iu(x)| is bounded by 2n∥u∥L∞(Rn)r
−1 for each

i = 1, . . . , n and x ∈ Rn. In the limit r → ∞ the first partial derivatives vanish identically.
Therefore u is constant.
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3.3 Maximum Principle

We have already mentioned the intuition that if a harmonic function is increasing in some
direction then it must decreasing in another. This would imply that a harmonic function
cannot have a local extremum, and this is indeed the case. Suppose a harmonic function
u has a maximum at a point x of an open connected domain Ω ⊂ Rn. The mean value
property implies on all balls B(x, r) ⊂ Ω

1

rnωn

Z

B(x,r)

|u(y)− u(x)| dy =
1

rnωn

Z

B(x,r)

u(x)− u(y) dy = 0.

By the fundamental lemma of the calculus of variations (or a standard argument from
continuity), we conclude that u(y) = u(x) for all y ∈ B(x, r). Hence u takes the maximum
on all these balls B(x, r) ⊂ Ω. This shows that the set {y ∈ Ω | u(y) = u(x)} is open.
But it is also the preimage of a single value, and therefore closed. It is non-empty since
by assumption u does have a maximum. By the definition of connected, this set must be
all of Ω.

Strong Maximum Principle 3.11. If a harmonic function u has on a connected open
domain Ω ⊂ Rn a maximum, then u is constant.

There is a more geometric proof in the case that Ω is path connected. We again begin
with showing that u takes its maximum on every ball centered at x in the domain. Since
Ω is path-connected every other point y ∈ Ω is connected with x by a continuous path
γ : [0, 1] → Ω with γ(0) = x and γ(1) = y. The compact image γ[0, 1] is covered by
finitely many balls B(γ(t1), r1), . . . , B(γ(tN), rN) ⊂ Ω with 0 ≤ t1 < . . . tN ≤ 1 and
r1, . . . , rN > 0. Supplementing the balls if necessary, we can assume that the center of
each ball belongs to the previous ball. Then repeating the argument Inductively, u is
constantly u(x) on all these balls too and hence u ≡ u(x) along γ, and on Ω since this is
true for all y ∈ Ω.

A practical consequence is the following

Weak Maximum Principle 3.12. Let the harmonic function u on a bounded open
domain Ω ⊂ Rn extend continuously to the boundary ∂Ω. The maximum of u is taken on
the boundary ∂Ω.

Proof. By Heine Borel the closure Ω̄ is compact and the continuous function u takes on
Ω̄ a maximum. If it does not belong to ∂Ω, then u is constant on the corresponding
connected component and the maximum is also taken on ∂Ω.

Since the negative of a harmonic function is harmonic the same conclusion holds for
minima.
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The triumph of the Maximum Principle is that it generalises to many elliptic operators
(Definition 2.1), unlike the mean value property. It really goes to the heart of ellipticity.

Theorem 3.13. Let L be an elliptic operator on a bounded open domain Ω ⊂ Rn whose
coefficients aij and bi extend continuously and elliptic to ∂Ω, and c ≡ 0. Every twice
differentiable solution u of Lu ≥ 0 which extends continuously to ∂Ω takes its maximum
on ∂Ω.

Proof. Let us first show that L is uniform elliptic, i.e. there exists λ > 0 with

nX

i,j=1

aij(x)kikj ≥ λ

nX

i=1

k2
i for all x ∈ Ω and all k ∈ Rn.

The continuous function (x, k) 7→ Pn
i,j=1 aij(x)kikj attains on the compact set (x, k) ∈

Ω̄× Sn−1 ⊂ Ω̄× Rn a minimum λ > 0. Hence L is uniform elliptic.

Next we use a trick to move to the case where L of the function is strictly positive. For
v(x) = exp(αx1) with α > 0 we conclude

Lv = α(αa11(x) + b1(x))v ≥ α(αλ+ b1(x))v.

The continuous coefficients bi are bounded on the compact set Ω̄. Therefore there exists
α > 0 with Lv > 0. By linearity of L we obtain L(u+ ϵv) > 0 on Ω for all ϵ > 0.

Now we show that the continuous functions u + ϵv cannot attain a maximum on Ω even
though they must attain a maximum on Ω̄. At any such interior maximum x0 ∈ Ω
the first derivative of the function u + ϵv which is twice differentiable on Ω vanishes
and the Hessian is negative semi-definite. At this point we need a little bit of linear
algebra to explain the connection between the Hessian and the Laplacian. The Hessian
is a real symmetric matrix, so it is diagonalizable by an orthogonal matrix O, that is
H = OTDO. D is a diagonal matrix whose entries are the eigenvalues of H. Because H

is negative semidefinite, all the eigenvalues are negative or zero. In symbols ∂2(u+ϵv)(x0)
∂xi∂xj

=P
k OkiλkOkj. The Laplacian is the trace of the Hessian. Therefore

△u(x0, t0) = trH = tr(OTDO) = tr(DOOT ) = tr(DI) = tr(D) =
X

λi ≤ 0.

Similarly, for any elliptic operator

L(u+ ϵv)(x0) =
nX

i,j=1

aij(x)
∂2(u+ ϵv)(x0)

∂xi∂xj

+
nX

i=1

bi(x)0 =
nX

i,j,k=1

aij(x)OkiλkOkj

Because the eigenvalues are non-positive, we define Bki = Oki

√
−λk. Continuing with the

calculation

L(u+ ϵv)(x0) = −
nX

k=1

nX

i,j=1

aij(x)BkiBkj ≤ −
nX

k=1

λ
nX

i=1

B2
ki ≤ 0,
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and this contradicts L(u+ ϵv) > 0. Therefore for all ϵ > 0 the maximum of u+ ϵv belongs
to the boundary. Finally, we use the following comparison between u and u+ ϵv to reach
the conclusion.

sup
x∈Ω

u(x) + ϵ inf
x∈Ω

v(x) ≤ sup
x∈Ω

(u(x) + ϵv(x)) = max
x∈∂Ω

(u(x) + ϵv(x)) ≤ max
x∈∂Ω

u(x) + ϵmax
x∈∂Ω

v(x).

Because this holds for all ϵ > 0 the boundedness of v on Ω̄ implies the theorem.

The negative of the functions u in the theorem obey Lu ≤ 0 and take a minimum on the
boundary. In particular, the solutions u of Lu = 0 take the maximum and the minimum
on the boundary.

Now let us see why maximum principles are so important. We consider the following very
natural boundary value problem:

Dirichlet Problem 3.14. For a given function f on a bounded open domain Ω ⊂ Rn

and g on ∂Ω we look for a solution u of −△u = f on Ω which extends continuously to
∂Ω and coincides there with g.

The condition that u extends continuously to the boundary is necessary for the boundary
value problem to be meaningful. Otherwise the values on the boundary could be complete
unrelated to the rest of the function. We say that a function u is m times continuously
differentiable on the closure Ω̄ of an domain, if it is m times continuously differentiable
on Ω and all partial derivatives of order at most m extend continuously to ∂Ω.

Let Ω ⊂ Rn be an open and bounded domain and suppose that there are two solutions u1

and u2 to the Dirichlet problem for the Poisson equation with inhomogeneous term f and
boundary value g. Then the difference v := u2 − u1 solves the homogeneous problem, i.e.
it is harmonic, and v ≡ 0 on ∂Ω. Therefore by the weak maximum principle we know that
both the maximum and minimum of v on every connected component of Ω is 0. The only
possibility is that v ≡ 0 on all of Ω. This shows that solutions to the Dirichlet problem
are unique.

Putting this another way, we can uniquely determine a harmonic function if we know its
values on the boundary of its domain. This gives us a way to understand the space of
harmonic functions.

3.4 Green’s Function

We just saw that the solution to the Dirichlet problem is unique, if a solution exists. In
this section we try to find some conditions which ensure the existence.
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First we prepare some well known formulas, which hopefully you have already proved as
an exercise. In first formula we apply the Divergence Theorem to x 7→ v(x)∇u(x):

Green’s First Formula 3.15. Let the Divergence Theorem hold on the open and bounded
domain Ω ⊂ Rn. Then for two functions u, v ∈ C2(Ω̄) we have

Z

Ω

v△u dy +

Z

Ω

∇v ·∇u dy =

Z

∂Ω

v∇u ·N dσ.

If we subtract the formula for interchanged u and v, then we obtain:

Green’s Second Formula 3.16. Let the Divergence Theorem hold on the open and
bounded domain Ω ⊂ Rn. Then for two functions u, v ∈ C2(Ω̄) we have

Z

Ω

v△u− u△v dy =

Z

∂Ω

[v∇u− u∇v] ·N dσ.

The significance of these formulas becomes apparent when we apply them to the funda-
mental solution v(y) = Φ(x − y). This function is harmonic for y ̸= x, so we need to
exclude a small ball B(x, ϵ). We apply Green’s second formula on the domain Ω\B(x, ϵ).
The left hand side becomes

Z

Ω\B(x,ϵ)

Φ(x− y)△u(y) dy.

As argued in Theorem 3.2 (the part with Iϵ) this integral is well defined in the limit ϵ ↓ 0.
For the right hand side of Green’s second formula, there are two boundary components
to consider, namely ∂Ω and ∂B(x, ϵ). The integrals over ∂B(x, ϵ) are of a type Lϵ and Kϵ

respectively. We have in the limit ϵ ↓ 0

Z

∂B(x,ϵ)

Φ(x− z)∇u(z) ·N(z) dσ(z) → 0.

For the other integral, we must be very careful of signs. As required by the divergence
theorem, let N be the unit normal vector to ∂B(x, ϵ) that points towards x. It can be
expressed as N(z) = x−z

|x−z| . Therefore N(x−z′) = z′
|z′| is the unit normal vector to ∂B(0, ϵ)

pointing away from the origin. This is the opposite sign as the N in Theorem 3.2. We
have

−
Z

∂B(x,ϵ)

u(z)∇z(Φ(x− z)) ·N(z) dσ(z) =

Z

∂B(x,ϵ)

u(z)∇Φ(x− z) ·N(z) dσ(z)

=

Z

∂B(0,ϵ)

u(x− z′)∇Φ(z′) ·N(x− z′) dσ(z′) → −u(x).

Rearranging the terms gives
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Green’s Representation Theorem 3.17. Let the Divergence Theorem hold on the open
and bounded domain Ω ⊂ Rn. Then for x ∈ Ω and a function u ∈ C2(Ω̄) we have

u(x) = −
Z

Ω

Φ(x− y)△u(y) dy +

Z

∂Ω

[Φ(x− z)∇u(z)− u(z)∇z(Φ(x− z))] ·N dσ(z).

This representation formula allows us to reconstruct a function u from its Laplacian and
the values of u and the normal derivative∇u·N on ∂Ω. But the Weak Maximum Principle
implies the function is already uniquely determined by its Laplacian and boundary values,
the normal derivatives on the boundary are redundant information. The question is, how
can we calculate the normal derivatives from the other two pieces of information? If the
domain Ω admits a function of the following type, then there is a clean formula.

Green’s Function 3.18. A function GΩ : {(x, y) ∈ Ω×Ω | x ̸= y} → R is called Green’s
function for the bounded open domain Ω ⊂ Rn, if it has the following two properties:

(i) For x ∈ Ω the function y 7→ GΩ(x, y) − Φ(x − y) extends to a harmonic function on
y ∈ Ω.

(ii) For x ∈ Ω the function y 7→ GΩ(x, y) extends continuously to ∂Ω and vanishes on
y ∈ ∂Ω.

From the physics perspective, a Green’s function tells us the potential at x of a single
particle at y if the potential is forced to be zero on the boundary. This is the case if the
boundary is a metal cage (a Faraday cage). The first condition can also be expressed as
△yGΩ(x, y) = δx in the sense of distributions, where δx is the delta distribution centered
at x ∈ Ω. We could imagine expanding the definition of a Green’s function so that
unbounded domains Ω were allowed, but the potential has to go to zero ‘at infinity’ in
the second condition. The shifted fundamental solution Φ(x−y) would then be a Green’s
function of Ω = Rn.

Let’s put them to use. We apply Green’s Second Formula to the function v(y) = GΩ(x, y)−
Φ(x− y). It is a harmonic function on all of Ω so there is no need to exclude a ball this
time. Further, because we know the integrals with Φ are well defined, so therefore are the
ones with GΩ. We have

Z

Ω

GΩ(x, y)△u(y) dy −
Z

Ω

Φ(x− y)△u(y) dy

= −
Z

∂Ω

u(z)∇zGΩ(x, z) ·N dσ(z)−
Z

∂Ω

[Φ(x− z)∇u(z)− u(z)∇z(Φ(x− z))] ·N dσ(z).

Now Green’s Representation Theorem implies

u(x) = −
Z

Ω

GΩ(x, y)△yu(y) dy −
Z

∂Ω

u(z)∇zGΩ(x, z) ·N dσ(z).
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We should think of this as an improved version of Green’s representation formula, enabled
by the existence of a Green’s function. We will shortly prove that conversely that if
functions f : Ω̄ → R and g : ∂Ω → R have sufficient regularity, then

u(x) :=

Z

Ω

GΩ(x, y)f(y) d
ny −

Z

∂Ω

g(z)∇zGΩ(x, z) ·N dσ(z)

defines a function that solves the Dirichlet Problem. Therefore the Dirichlet Problem
reduces to the search of the Green’s Function.

A Green’s function is unique. If there are two Green’s functions on Ω, then their difference
is harmonic for all y ∈ Ω:

G(x, y)− G̃(x, y) = G(x, y)− Φ(x− y)− [G̃(x, y)− Φ(x− y)]

and vanishes for y ∈ Ω. By the weak maximum principle, this difference must be zero. As
an aside, if we return to the generalised case where Ω = Rn, then the difference between
two Green’s functions is a harmonic function that goes to zero at infinity. Therefore
it is bounded and Liouville’s theorem tells us it is constant (and thus constantly zero).
Therefore the shifted fundamental solution Φ(x − y) is the unique Green’s function for
Rn.

Further

Theorem 3.19 (Symmetry of the Green’s Function). If there is a Green’s Function GΩ

for the bounded domain Ω, then GΩ(x, y) = GΩ(y, x) holds for all x ̸= y ∈ Ω.

Proof. For x ̸= y ∈ Ω let ϵ > 0 be sufficiently small, such that both balls B(x, ϵ) and
B(y, ϵ) are disjoint subsets of Ω. Green’s Second Formula implies for the domain Ω \
(B(x, ϵ) ∪ B(y, ϵ)) and the functions u(z) = GΩ(x, z) and v(z) = GΩ(y, z)
Z

∂B(x,ϵ)

[GΩ(y, z)∇zGΩ(x, z)−GΩ(x, z)∇zGΩ(y, z)] ·N dσ(z)

=

Z

∂B(y,ϵ)

[GΩ(x, z)∇zGΩ(y, z)−GΩ(y, z)∇zGΩ(x, z)] ·N dσ(z).

For ϵ → 0 the estimate for Lϵ in the proof of Theorem 3.2 shows that both second terms
converge to zero. The calculation of Kϵ in the proof of Theorem 3.2 carries over and
shows that the first terms converge to GΩ(y, x) and GΩ(x, y), respectively.

Finding a Green’s function for an arbitrary domain can be difficult, and they do not
even exist for all domains. However it is feasible for highly symmetric domains, and the
advantage is that then the solution has a concrete formula. We shall calculate Green’s
function for all balls in Rn. Let us first restrict to the unit ball Ω = B(0, 1). The key is
to try and add a harmonic function to Φ(x− y) that equals it on the boundary. We may
use the inversion x 7→ ι(x) = x

|x|2 in the unit sphere ∂B(0, 1). It maps the inside of the
unit ball to the outside and vice versa, fixing the boundary.
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Green’s Function of the unit ball 3.20. The Green’s Function of B(0, 1) is

GB(0,1)(x, y) = Φ(x−y)−Φ(|x|(ι(x)−y)) =

(
Φ(x− y)− Φ(ι(x)− y)− Φ(x) for n = 2,

Φ(x− y)− |x|2−nΦ(ι(x)− y) for n > 2.

Proof. Fix x ∈ B(0, 1). There are two properties that we must satisfy. First the function
y 7→ GB(0,1)(x, y)− Φ(x− y) = Φ(|x|(ι(x)− y)) should extend to a harmonic function on
all y ∈ B(0, 1). Observe that ι(x) is a point outside unit ball, so ι(x) − y is never zero
and thus this function is well-defined for all y ∈ B(0, 1). Moreover, we have proved in a
exercise that composing a harmonic function with rescaling, reflection or translation of
its domain creates another harmonic function.

For the vanishing on the boundary, note that there is no problem extending GB(0,1)(x, y)
for y ∈ ∂B(0, 1), because x and ι(x) are not in ∂B(0, 1). To show that it’s zero, we need
some geometry. For |y| = 1 we have

��|x|(ι(x)− y)
��2 = (|x|−1x− |x|y) · (|x|−1x− |x|y) = 1− 2x · y + |x|2|y|2

= |y|2 − 2x · y + |x|2 = |x− y|2.
Because Φ is a function that only depends on the length of its argument, Φ(|x|(ι(x)− y))
and Φ(x− y) are equal on the boundary y ∈ ∂B(0, 1).

Although the definition of GB(0,1) appears to treat x and y differently, in fact
��|x|(ι(x)−

y)
��2 = 1 − 2x · y + |x|2|y|2 from the above proof, which does not use on |y| = 1, shows

that the it is symmetric as expected.

The affine map x 7→ a + rx is a diffeomorphism from B(0, 1) onto B(a, r) and a homeo-
morphism from ∂B(0, 1) onto ∂B(a, r). We can use this coordinate change to transform
a Dirichlet problem on the ball B(a, r) to one on B(0, 1). If u solves −△u = f on
B(a, r) and u|∂B(a,r) = g then v(x) = u(a+ rx) solves −△v = r2f(a+ rx) on B(0, 1) and
v(x) = g(a+ rx) for x ∈ ∂B(0, 1). The same is true in reverse. Thus the ability to solve
the Dirichlet on one ball confers the ability to solve the Dirichlet problem on every ball
(and the same for other domains related by similarity).

We can use this insight to give the Green’s function for a general ball. We use an equivalent
characterisation of the Green’s function: for every x ∈ Ω the harmonic difference u(y) :=
GΩ(x, y)− Φ(x− y) is a solution to the Dirichlet problem

△u = 0 on Ω, u(y) = 0− Φ(x− y) for y ∈ ∂Ω.

(This gives an alternative proof of uniqueness.) For Ω = B(a, r) and a point x′ = a+rx ∈
B(a, r) the related Dirichlet problem on the unit ball is v(x) = u(a+ rx) with △v = 0 on
B(0, 1) and

v(y) = −Φ(x′ − (a+ ry)) = −Φ(r(x− y)) =

(
−Φ(x− y)− r

2π
for n = 2

−r2−nΦ(x− y) for n ≥ 3
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for y ∈ ∂Ω. By linearity and since constant functions are harmonic, we can write down
the unique solution on B(0, 1) by inspection:

v(y) =

(
−Φ(|x|(ι(x)− y))− r

2π
for n = 2

−r2−nΦ(|x|(ι(x)− y)) for n ≥ 3.

Putting this all together gives

GB(a,r)(x
′, y′) = Φ(x′ − y′) + u(y′) = Φ(r(x− y)) + v(y)

=

(
Φ(x− y) + r

2π
− Φ(|x|(ι(x)− y))− r

2π
for n = 2

r2−nΦ(x− y)− r2−nΦ(|x|(ι(x)− y)) for n ≥ 3

= r2−n [Φ(x− y)− Φ(|x|(ι(x)− y))]

= r2−nGB(0,1)(
x′−a
r

, y
′−a
r

).

It remains to prove therefore that taking the Green’s representation formula and inserting
f and g with sufficient regularity does indeed define a solution to the Dirichlet problem.
We do this only for the specific example of the unit ball, but by the above discussion an
analogous result will hold for any ball.

Poisson’s Representation Formula 3.21. For Ω = B(0, 1), f ∈ C2(Ω) and g ∈ C(∂Ω)
the unique solution of the Dirichlet Problem on Ω is given by

u(x) =

Z

B(0,1)

GB(0,1)(x, y)f(y) d
ny −

Z

∂B(0,1)

g(y)∇yGB(0,1)(x, y) · y dσ(y).

Proof. It suffices to consider the two cases g = 0 and f = 0 separately.

Consider g = 0 first. The essential point is the symmetry of the Green’s function, so
whatever properties hold in the second variable also hold in the first. From Theorem 3.2
we have function v(x) that satisfies −△v = f . Their difference has the formula

u(x)− v(x) =

Z

B(0,1)

h
GB(0,1)(x, y)− Φ(x− y)

i
f(y) dny.

But the bracketed expression is harmonic in x and therefore u−v is harmonic. This shows
that −△u = −△v = f . Moreover, we know that GB(0,1)(x, y) is zero for x ∈ ∂B(0, 1) and
hence so too is u(x).

The f = 0 case is the new part. We define the Poisson kernel K(x, y) := −∇yGB(0,1)(x, y)·
y. By the Symmetry of the Green’s Function the function x 7→ K(x, y) is harmonic. Hence
for f = 0 the given function u is harmonic. It remains to show

u(x) =

Z

∂B(0,1)

g(y)K(x, y) dσ(y)
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extends continuously to x ∈ ∂B(0, 1) and coincides there with g(x). The issue is that the
integral is over y ∈ ∂B(0, 1) so their is a singularity in the integration in this limit. We
compute for |y| = 1 and n > 2 (the reader should check this same formula holds for n = 2
too):

K(x, y) =
−1

n(n− 2)ωn

y ·∇y

�
1

|x− y|n−2
− 1

|x|n−2 |ι(x)−y|n−2

�

=
1

nωn

y ·
�

y − x

|x− y|n − |x|2(y − ι(x))

|x|n |ι(x)− y|n
�

=
1− x · y − |x|2 + x · y

nωn|x− y|n =
1− |x|2

nωn|x− y|n .

This clearly shows the singularity at y = x but that for all other x ∈ ∂B(0, 1) it is zero.
We observe

(i) the integral kernel K(x, y) is positive for (x, y) ∈ B(0, 1)× ∂B(0, 1).

(ii) The following formula, which follows from Green’s Representation Formula for the
function u = 1 on the domain Ω = B(0, 1):

Z

∂B(0,1)

K(x, y) dσ(y) = 1 for x ∈ B(0, 1).

(iii) For all x ∈ ∂B(0, 1), δ > 0, and y ∈ ∂B(0, 1)\B(x, δ) there is the bound K(λx, y) ≤
1

nωnδn
(1− λ2) Therefore the family of functions y 7→ K(λx, y) converge uniformly to

zero for λ ↑ 1 on y ∈ ∂B(0, 1) \ B(x, δ).

We will now prove that for continuous g the properties (i)-(iii) ensure that in the limit λ ↑ 1
the family of functions x 7→

R
∂B(0,1)

g(y)K(λx, y) dσ(y) converge on ∂B(0, 1) uniformly to

g. For any x ∈ ∂B(0, 1), 0 < λ < 1, and δ > 0 we have estimate

|u(λx)− g(x)| =
����
Z

∂B(0,1)

g(y)K(λx, y)− g(x)K(λx, y) dσ(y)

���� using (ii)

≤
Z

∂B(0,1)

|g(y)− g(x)|K(λx, y) dσ(y) using (i)

=

�Z

∂B(0,1)\B(x,δ)

+

Z

∂B(0,1)∩B(x,δ)

�
|g(y)− g(x)|K(λx, y) dσ(y)

≤ sup
y∈∂B(0,1)

|g(y)− g(x)| × (1− λ2)δ−n using (iii)

+ sup
y∈∂B(0,1)∩B(x,δ)

|g(y)− g(x)| × 1 using (ii).
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Therefore for any δ > 0 and 0 < λ < 1 we have the uniform estimate

∥u(λx)− g(x)∥∞ ≤ (1− λ2)δ−n sup
x,y∈∂B(0,1)

|g(y)− g(x)|+ sup
x∈∂B(0,1)

y∈∂B(0,1)∩B(x,δ)

|g(y)− g(x)|.

Taking the limit λ ↑ 1 we see that the limit is bounded by the second term for any δ > 0,
since the first term tends to zero. But the second term can be arbitrarily small, and
therefore the uniform limit must be zero. This proves the claim.

A harmonic function u on B(a, r) which extends continuously to ∂B(a, r) obeys

u(x) =
r2 − |x− a|2

nrωn

Z

∂B(a,r)

u(y)

|x− y|n dσ(y).

Like the Weak Maximum Principle, this shows that u is completely determined by the
values on ∂B(a, r), except here the result is constructive. One can also integrate this
formula in x over a ball, and after interchanging the integral and using some geometry,
arrive at the Mean Value property.

One new consequence of this formula is an additional regularity result for harmonic
functions. The dependence on x in the formula is well-behaved for x ∈ B(a, r′) with
r′ < r, because |x − y|−n is bounded away from its singularity. Therefore partial deriva-
tives of u with respect to x can be expressed with similar formulas depending only
on the values of u on a fixed ball B(a, r). For all y ∈ ∂B(a, r′) the Taylor series of
x 7→ |x − y|−n = (y2 − 2xy + x2)−

n
2 in x = z converges uniformly to |x − y|−n. This

implies:

Corollary 3.22. Harmonic functions on an open domain Ω ⊂ Rn are analytic.

Another regularity result, which speaks to the connection between harmonic functions and
holomorphic functions (if you know some complex analysis), is the so called ‘removable
singularities’ theorem:

Lemma 3.23. Let Ω ⊂ Rn be an open neighbourhood of 0 and u a bounded harmonic
function on Ω \ {0}. Then u extends as a harmonic function to Ω.

Proof. On a ball B(0, r) with compact closure in Ω, Theorem 3.21 gives a harmonic
function ũ which coincides on ∂B(0, r) with u. The family of harmonic functions uϵ(x) =
ũ(x) − u(x) + ϵGB(0,r)(x, 0) on B(0, r) \ {0} vanish on ∂B(0, r). If for any ϵ > 0 the
function uϵ takes on B(0, r) \ {0} a negative value, then due to the boundedness of u
and ũ and the unboundedness of GB(0,r)(·, 0) the harmonic function uϵ has a negative
minimum on B(0, r) \ {0}. This contradicts the Strong Maximum Principle. Hence uϵ is
non-negative. Analogously uϵ us for negative ϵ non-positive. Otherwise uϵ would have a
positive maximum in B(0, r) \ {0}. In both limits ϵ ↓ 0 and ϵ ↑ 0 u0 = ũ − u vanishes
identically on B(0, r) \ {0} and ũ is a harmonic extension of u to Ω.
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The proof shows a slightly stronger statement. Each harmonic function on Ω \ {0} whose
absolute value |u(x)| is for all ϵ > 0 bounded by ϵGB(0,r)(x, 0) on B(0, δ) \ {0} with
sufficiently small δ > 0 depending on ϵ has an harmonic extension to Ω.

3.5 A PDE with no solutions

In this optional section we deliver on the promise in Section 2.2 to give a PDE without
any solutions. The key is the following lemma, which shows that no (nontrivial) function
has a Laplacian that grows negatively faster than the function grows. This should be
compared to Liouville’s theorem 3.10, in which a growth bound is used to show that a
harmonic function (a solution to △u = 0) is constant. Then we only need to construct
a PDE which implies this property but that u ≡ 0 does not solve. The idea and lemma
come from the paper “Nonexistence of weak solutions for some degenerate elliptic and
parabolic problems on Rn” (Mitidieri and Pohozaev, 2001).

Lemma 3.24. Let Ω = R2 \ {0}. The only twice-differentiable function u : Ω → R that
satisfies

−|x|2△u ≥ u2

is u ≡ 0.

Proof. The trick is to choose a particular family of test functions φR ∈ C∞
0 (Ω) and use

them to derive decreasing bounds on the integral of u that can only be satisfied by u ≡ 0.
Choose a smooth bump function ψ0 on R that has the value 0 for |t| ≥ 2, the value 1 for
|t| ≤ 1, and is monotonic increasing/decreasing for 1 < |t| < 2. We define

φR(x) = ψR(|x|) and ψR(r) = ψ0


R−1 ln r

�
.

Because they are radially symmetric, it is easy to describe their supports:

x ∈ suppφR ⇔ R−1 ln |x| ≤ 2 ⇔ −2R ≤ ln |x| ≤ 2R ⇔ e−2R ≤ |x| ≤ e2R.

So φR is positive on the open annulus AR = B(0, e2R) \ B(0, e−2R). Likewise φR ≡ 1 on
the closed annulus A′

R = B(0, eR) \B(0, e−R).

We will bound the integral of u2/|x|2 on A′
R. Because we are working with non-negative

functions we can increase the domain of the integral:

IR :=

Z

A′
R

u2

|x|2 dx =

Z

A′
R

u2

|x|2φR dx ≤
Z

AR

u2

|x|2φR dx =: JR ≤
Z

AR

(−△u)φR dx.

Now we apply Green’s second formula on AR. The test function and all its derivatives
vanish on the boundary ∂AR, the result is to transfer the Laplacian to φR.

JR ≤
Z

AR

(−u)△φR dx =

Z

AR

(−u)
√
φR

|x|
|x|△φR√

φR

dx.
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The introduction of these strange factors will become clear in a moment. In the next step
we use a result you might not know. You should be familiar with the Cauchy-Schwarz
inequality for vectors, which says a · b ≤ ∥a∥ ∥b∥ for a, b ∈ Rn. But it holds for all inner
products, including the L2 inner product on functions.

Z

AR

(−u)
√
φR

|x|
|x|△φR√

φR

dx =

�
(−u)

√
φR

|x| ,
|x|△φR√

φR

�

L2

≤





(−u)

√
φR

|x|






L2






|x|△φR√

φR






L2

=

 Z

AR

����
(−u)

√
φR

|x|

����
2

dx

!1/2 Z

AR

����
|x|△φR√

φR

����
2

dx

!1/2

= J
1/2
R

�Z

AR

|x|2(△φR)
2

φR

dx

�1/2

.

Now we see that the choice of factors has created another JR on the right hand side. We
can manipulate the inequality, by dividing J

1/2
R across and squaring:

JR ≤ J
1/2
R

�Z

AR

|x|2(△φR)
2

φR

dx

�1/2

⇒ JR ≤
Z

AR

|x|2(△φR)
2

φR

dx.

This bound is useful because u does not appear on the right hand side, it is solely in terms
of φR.

In the next phase of the proof we use the specific form of φR (until now, we have only
used that Green’s formula applies to AR). Recall that the Laplacian in polar coordinates
is

△v =
∂2v

∂r2
+

1

r

∂v

∂r
+

1

r2
∂2v

∂θ2
.

We use the chain rule:

∂φR

∂r
= ψ′

0

�
ln r

R

�
1

rR

∂2φR

∂r2
= ψ′′

0

�
ln r

R

�
1

r2R2
− ψ′

0

�
ln r

R

�
1

r2R

△φR = ψ′′
0

�
ln r

R

�
1

r2R2
− ψ′

0

�
ln r

R

�
1

r2R
+

1

r
ψ′
0

�
ln r

R

�
1

rR
+ 0

= ψ′′
0

�
ln r

R

�
1

r2R2
.

We substitute this into the integral and then make the change of variable t = R−1 ln r
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(which implies dt = R−1r−1 dr and ψR(r) = ψ0(t)):

JR ≤
Z

AR

|x|2(△φR)
2

φR

dx =

Z 2π

0

Z e2R

e−2R

r2

ψR(r)

�
ψ′′
0

�
ln r

R

�
1

r2R2

�2

r dr dθ

= 2π

Z e2R

e−2R

1

ψR(r)
ψ′′
0

�
ln r

R

�2
1

rR4
dr = 2π

1

R3

Z 2

−2

1

ψ0(t)
ψ′′
0 (t)

2 dt.

Now we have an integral that doesn’t even depend on R. Of course the precise value of
the integral depends on the choice of ψ0, but it is possible to choose one such that the
integral is finite. Therefore we have a bound

IR =

Z

A′
R

u2

|x|2 dx ≤ JR ≤ 2πCR−3.

Finally we can prove the statement of the lemma. Choose any point x ∈ Ω = R2 \ {0}
and let S be such that x ∈ A′

S. Consider IS. For all R > S we have IR ≥ IS since the
integrand is positive and this is expanding the domain. But this implies 0 ≤ IS ≤ 2πCR−3

for all R > S. The only possibility is IS = 0. But this implies u ≡ 0 on A′
S. Therefore

u(x) = 0.

With this lemma it is easy to construct a PDE with no solutions, even before we impose
any boundary conditions, namely −|x|2△u = u2 + 1. Any solution has the property

−|x|2△u = u2 + 1 ≥ u2,

and therefore u ≡ 0. But u ≡ 0 doesn’t solve the PDE.


