Chapter 2

General Concepts

2.1 Types of Second Order PDEs

For PDEs of order greater than one, there does not exists a general theory. Over the
time there have been discovered different methods to solve several PDEs, in particular
those PDEs which show up in physics. Afterwards these methods were extended to larger
and larger classes of PDEs. It turned out that the successful methods of solving PDEs
differ from each other substantially. As a result there does not exists one unified theory
of PDEs, but there exist several islands of well understood families of PDEs inside the
large set of all PDEs. It was Jacobi who formulated in his lectures on Dynamics in the
years 1842-43 the following general recipe:

“The main obstacle for the integration of a given differential equations lies in the defini-
tion of adapted variables, for which there is no general rule. For this reason we should
reverse the direction of our investigation and should endeavour to find, for a successful
substitution, other problems which might be solved by the same.”

The strategy is to determine for any successful method all PDEs which can be solved by
this method. We have seen that the method of characteristics is a more-or-less general
method to solve first order PDEs. Now we investigate the second order PDEs. In this
lecture we consider only second order linear PDEs. A general second order linear PDE
has the following form

Lu(zx) = Z a;j(x)0;0;u + Z bi(z)0iu(z) + c(z)u(z) = 0.
ij=1 i=1
By Schwarz’s Theorem for twice differentiable u this expression does not change if we
replace a;; by %(aij + a;;). So we always assume that a;; is symmetric.

It is a theorem of linear algebra that a real symmetric matrix can be diagonalised (by
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an orthogonal matrix even) and the eigenvalues are all real. We use the signs of these
eigenvalues as our classification.

Definition 2.1. On an open domain 2 C R™ a partial differential operator L

n

Lu = Z a; (91:1(936] Zb 81’2 + c(z)u(z)

ij=1 i=1

with symmetric coefficients a;j = a;; s called

e clliptic if all the eigenvalues of a are non-zero and have the same sign.
e parabolic if one eigenvalue of a is zero and the others have the same sign.

e hyperbolic if one eigenvalue of a has the opposite sign to all the others.

This is not a complete classification, in the sense that there are PDEs which are not
of these three types. For example, the a matrix of a PDE may have several positive,
zero, and negative eigenvalues. If a is not constant, then of course the eigenvalues are
functions of x and may be different at different points. An operator might only be elliptic
on a subdomain of €2. And this definition only applies to second order linear PDEs.
None-the-less we will concentrate on PDEs of these three types; this is an introductory
course.

Elliptic PDEs. As we have just stated, for an elliptic PDE the eigenvalues of a all have
the same sign. Any solution of Lu = 0 is also a solution of —Lu = 0, so we can always
arrange for the eigenvalues to be positive. There is an equivalent condition that is more
often taken as the definition of ellipticity: the operator L is elliptic if and only if

viav = Z a;;(z)viv; >0 forall z € Q and all v € R™ \ {0}. (2.1)
ij=1
To see this equivalence, write a = O DO for O an orthogonal matrix and D = diag(\y, ..., \,)
the eigenvalues. Observe

vl av = vTOTDOv = (Ov)'' D(Ov) = w' Dw,

so a satisfies (2.1) if and only if D does. Now let w = e; be the jth standard basis vector.
This yields w” Dw = \;. Hence (2.1) holds if and only if all the eigenvalues are positive.

Now we consider some concrete examples. If the matrix a;; is the identity matrix and
b =0,c=0, then this is the
0?u 0?u

Laplace equation. Ay i=—=4+...+—=0.
P 4 03 oz2
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Solutions of the Laplace equation are called harmonic functions. In Chapter 3 we present
several tools which establish many properties of these harmonic functions. It turns out
that many properties of the harmonic functions also apply to general solutions of Lu = 0,
if the matrix a;; is positive (or negative) definite. There has been done a lot of work
to extend these tools to larger and larger classes of PDEs. One of the results is that
the influence of the higher order derivatives on the properties of solutions is much more
important than the influence of the lower order derivatives. We offer another lecture
which presents many of these tools for such elliptic second order PDEs.

There are also non-linear PDEs to which these methods of elliptic PDEs apply. An
important example whose investigation played a major role in the development of the
elliptic theory is the

\Y
Minimal surface equation. V- S 0, u:Q2—=R, QcCR"open.

V14 |Vul?

The graphs of solutions describe so called minimal surfaces. The area of such hypersur-
faces in R™™! does not change with respect to infinitesimal variations. Soap bubbles are
examples of such minimal surfaces. The boundary value problem of the minimal surface
equation is called Plateau’s problem. For the first proof of the existence of solutions of
this Plateau problem in the 1930s, Jesse Douglas received the first Field’s Medal. In this
non-linear second order PDE the coefficients of the second derivatives also depend on the
solution. A lot of work has been done to extend the tools of elliptic theory to elliptic
PDEs whose coefficients belong to larger and larger functions spaces. This development
induced the introduction of many new function spaces. In Section 2.4 we shall introduce
the so called space of distributions. Many of the more advanced functions spaces are
special subsets of the distributions.

Parabolic PDEs. For these linear PDEs the matrix a;; considered as a symmetric
bilinear form is only semi-definite and they belong to the boundary of the class of elliptic
PDEs. Most of the methods of elliptic PDEs have an extension to this limiting case. So
these limiting cases together with the class of elliptic PDEs form some extended class of
elliptic PDEs. In spite of the deep relationship to the elliptic PDEs these equations have
their own label. The simplest example is the:

Heat equation. uw—Au=0.

These parabolic PDEs describe diffusion processes. These are processes which level inho-
mogeneities of some quantity by some flow along the negative gradient of the quantity.
A typical example for this quantity is the temperature from which the name for the
heat equation originates. Many stochastic processes have this property. So the theory
of parabolic PDEs has a deep relationship to the theory of stochastic processes. In this
lecture we present in Chapter 4 this simplest example of linear parabolic PDE. We shall
see how the tools for the Laplace equation can be applied in modified form to this heat
equation. In case of the parabolic PDEs there also exists a non-linear example from the
geometric analysis, whose investigation played a major role for the development of the
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elliptic theory (the tensor fields g and R are defined below):

Ricci Flow. Gij = —2R;;.

This PDE describes a diffusion-like process on Riemannian manifolds. It levels the inho-
mogeneities of the metric, namely the Riemannian metric g. In the long run the corre-
sponding Riemannian manifolds converge to metric spaces with large symmetry groups.
Richard Hamilton proposed (in the 1970s) a program that aims to prove the geometriza-
tion conjecture of Thurston with the help of these PDEs. It states that every three-
dimensional manifold can be split into parts, which can be endowed with an Riemannian
metric such that the isometry group acts transitively. This conjecture implies the Poincare
conjecture, which states that every simply connected compact manifold is the 3-sphere.
Hamilton tries to control the long time limit of the Ricci flow on a general 3-dimensional
Riemannian manifold. In 2003 the Russian mathematician Grisha Perelman published on
the internet three articles which overcome the last obstacle of this program. This lead to
the first proof of one of the Millennium Problems of the American Mathematical Society
and was a great success of geometric analysis.

Hyperbolic PDEs. Besides the elliptic PDEs (including the limiting cases) the other
important class of linear PDEs are called hyperbolic. In this case the matrix a,; has one
eigenvalue of opposite sign than all other eigenvalues. The simplest example is the

2
Wave equation. % — Au = 0.
In Chapter 5 we present the methods how to solve this equation. We shall see that it
describes the propagation of waves with constant finite speed. The solutions of general
hyperbolic equations are similar to the solutions of this case, and many tools can be
generalised to all hyperbolic PDEs. The investigation of these PDEs depend on the
understanding of all trajectories, which propagate by the given speed. It was motivated
by the theory of the electrodynamic fields, whose main system of PDEs are the

E—-VXxB=—-41j B+VxE=0
V-E=4nmp V-B=0.
In this theory there is given a distribution of charges p and currents j on space time
R x R3. The unknown functions are the electric magnetic fields £ and B, which describe
the electrodynamic forces induced by the given distributions of charges and currents p and
j. The conservation of charge is formulated in the same way as in the scalar conservation
law. So the change of the total charge contained in a spatial domain is described by the
flux of the current through the boundary of the domain. By the divergence theorem this
means that distributions of charge p and currents j obey

Maxwell equations.

p+V-j=0.

Again there exists a non-linear version which stimulated the development of the theory:
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1
Einsteins field equations of general relativity. Ri; — 5 9ii R = KT3;.

Here for a given distribution of masses the energy stress tensor and the space time metric
gi; are the unknown functions. This metric is a symmetric bilinear form with one positive
and three negative eigenvalues on the tangent space of space time. The corresponding
Ricci curvature is denoted by R;; and the scalar curvature by R:

It = ligkl agj.l + agﬂ _ %9 (97) == (gi;)”" inverse metric
24 ozt Oxd Ozt )’ !
3 ! 3 3
ory;,  orek i
Ry 3" (axi = G+ 2 (kT - F??fﬁk)) EDWL
k=0 1=0 i.j=0

Integrable Systems with Lax operators. Finally [ want to mention a smaller class
of PDEs, which are the main objects of my research. They are non-linear PDEs which
describe an evolution with respect to time which is very stable. This means that the
solutions have in a specific sense a maximal number of conserved quantities. The theory
of integrable systems belongs to the field of Hamiltonian mechanics, which originated from
Newtons description of the motion of the planets. The Scottish Lord John Scott Russell
got very excited in 1934 about the observation of an solitary wave in a Scottish channel
and published a “Report on Waves”. This report was quite influential. The two Dutch
mathematicians Korteweg and De Vries translated his observation into a PDE describing
the profile of water waves travelling along the channel:

0 03
Korteweg-de-Vries equation. 490 — 6u—u _gu

or 03

First by numerical experiments in the 1950s with the first computers and latter in the
1970s by mathematical theory, the solutions of this PDE were shown to have exactly
the properties which made Lord Russell so exited: they describe waves which propagate
through each other without changing their shape. This lead to the discovery of an hidden
relation of the theory of integrable systems with the theory of Riemann surfaces, which
is another field with a long history. A major step towards the discovery of this relation
was the observation of Peter Lax that this equation can be written as

- , 0? 3ud 30u
L=[A1L] with L.—@—ku A._%+2ax+1%_

2.2 The Questions

In addition to the types of PDEs we will study, let us explain some of the questions that
we are interested in answering. Broadly speaking they are existence, uniqueness, and
reqularity.
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The first two you probably have some experience with, so let us begin with the third.
The regularity of a solution of a differential equation refers to its properties. Most often
this is its differentiability, for example, twice continuously differentiable. But it can also
be about boundedness, integrability, or the growth/decay rate of the function. These
regularity properties are usually expressed in the form of a function space, e.g. C?.

Many types of regularity can be ordered in a hierarchy. Later in this chapter we will
introduce distributions. We say have the lowest regularity. Then comes the measurable
functions. Some measurable functions are locally integrable, L} . A function f belongs
to Li if for every compact set K in its domain | f|x| has a finite integral. You might also
know the Lebesgue norms. The elements of I, describe ever smaller families of functions,
whose regularity increase with p € [1,00]. The next smallest class are Sobolev functions
whose k-th order partial derivatives belong to I .. The regularity further increases for
the functions in C*. Finally we end with the smooth functions and the analytic functions

with the highest regularity.

Consider the analogy to the algebraic equation 2241 = 0. This has no solutions € R but
two solutions x € C. Likewise, the number of solutions to a PDE can change depending on
which functions we are considering. To be concrete, perhaps there are many C? solutions,
but no bounded C? solutions. There is usually a natural level of regularity to require of
a solution: the solution to a second order PDE should be twice differentiable. But as
we have seen in the previous chapter, it is sometimes necessary to change the meaning
of ‘solution’ and consider ‘non-differentiable solutions’ (weak solutions) to a PDE, even if
that sounds like a contradiction.

Sometimes allowing lower regularity doesn’t increase the number of solutions of a differen-
tial equation. A classic example from ODE theory is ' = u. Suppose u is a differentiable
solution to this equation. But then u' = u tells us that ' is equal to a differentiable func-
tion. That means that u' is differentiable, i.e. that u is twice differentiable. Repeating
this argument, we see that u is infinitely many times differentiable (smooth). We say that
the solution has higher regularity than expected. The Laplace and heat equations both
exhibit highly regular solutions.

A problem is a differential equation on some domain together with some additional (non
PDE) conditions. A typical ODE has infinitely many solutions, but a typical partial
differential equations has an infinite dimensional space of solutions. The idea is to give
the right additional conditions so that the problem has a unique solution. A solution of
an ordinary differential equations of m-th order is in many cases uniquely determined by
fixing the values of the first m derivatives at t = 0. For partial differential equations the
solutions are functions on higher dimensional domains 2 C R™. A natural condition is the
specification of the values of the solution and some of its derivatives on the boundary of
the domain or on a hypersurface within the domain. The search for solutions which obey
this further specification are called boundary value problems. When one of the variables
represents time and we give conditions at ¢ = 0, naturally we call this an initial value
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problem.

We are most interested in problems that are well-posed. This means that (1) the problem
has a solution, (2) the solution is unique, and (3) the solution depends continuously on
the data. We have to balance the choice of regularity and how much data we give so that
the problem has a unique solution, but not too much that it doesn’t have any solution. If
we determine all possible boundary values that have solutions, then the space of solutions
is completely parameterised. Again to give an ODE analogy, the solutions of ' = u are
u(t) = Ae', so A € R parameterises the solutions.

Finally, there is the question of existence. This is perhaps the most fundamental question,
because it is about the definition of ‘a solution’. We have already mentioned how this
is affected by regularity (including weak solutions) and boundary value conditions. But
proving the existence of solutions of PDEs is in general much more difficult than for ODEs,
and there are not too many general theorems that we have. In fact, there is a famous
example of a simple-looking PDE that does not have any solutions, not even locally. This
example is a simplification by Nirenberg of an example of H. Lewy: there is no solution
u: Q — C on any open subset £ C R? of

ou ou
B +m8_y = f(z,y),

where f is a specially constructed smooth function. Notice in particular that this is first
order PDE, with analytic coefficients and a smooth inhomogeneous term. In previous
years we gave a proof of this, but it requires certain facts from complex analysis (aka
Funktionstheorie) that many students didn’t understand. Interested students may ask
me for a copy of the old script. Instead we will give a different example of a PDE without
a solution in Section 3.5 using the techniques that fit the themes of this course.

2.3 Divergence Theorem

In this section we present a generalisation of the fundamental theorem of calculus to
higher dimensions, namely the divergence theorem. This theorem has many important
consequences. In this section we present two: First we generalise partial integration
to higher dimensions. Second we explain in which sense the higher dimensional scalar
conservation law describes a conserved quantity.

The divergence theorem is a statement about the integral over a submanifold of R”, so
naturally we should define submanifolds and their integrals.

Definition 2.2. The graph of a function X : U C R¥ — R"* is the k-dimensional subset

graph(A\) = {(z,y) € U x R" % | y = \(2)} C R™.
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We allow reordering of the components of R™. By this we mean that both {(x,y, x*+y?*) €
R3} and {(z,2* + 22, z) € R3} are graphs, for example.

A subset A C R" is called a k-dimensional submanifold if it is a k-dimensional graph
locally. That means for every point x € A there exists an open O, C R™ such that
A, = ANO0O, is a k-dimensional graph.

We say that a graph or submanifold is C' (or some other regularity) if it is locally the
graph of a function \ € C'.

The classic, and for us important, example of a submanifold that is not a graph globally
is the circle S' = {(z,y) € R? | 22 + y* = 1}. This is because y = +v/1 — 22 is not a
function. However it can written as the union of four graphs

S' = {(z,+vVI—22) |z € (-1, 1)} U{(x,~vVI—2?) |z € (~1,1)}

U{(+V1I=v%y) lye (L 1D)}u{(=v1-9%y) |y € (=11}

For practical calculation it is not always the best idea to reduce a submanifold to graphs.
Often a parameterisation can cover more of the submanifold, which means less work.

Definition 2.3. A continuously differentiable injection ® : U C R¥ — A C R™ is called
a parameterisation of a submanifold A. It is called reqular if the Jacobian ®" has rank k
at every point of U.

The Jacobian of ® is an n x k matrix, so its rank cannot be greater than k. Thus a regular
parameterisation is also called full-rank. A graph is a special type of parameterisation,
one where k of the components of ® are just the k input variables. In other words ®(x) =
(z, A(z)), or some rearrangement. This is always a regular parameterisation, because ®’
contains the k x k identity matrix. For an example of a non-regular parameterisation,
consider the parameterisation (z,y) — (z,0,0) of the x-axis in R®. We see that y is not
really playing any role and the submanifold is only one-dimensional. This is the reason
we should consider regular parameterisations.

Definition 2.4. Let A C R"™ be a subset with a reqular parameterisation ® and f a
continuous function on A. We define

/f do ::/fo(I> det((P)TD") dpigr -
A U

The symbol do can be given a formal meaning, but for us it is just a reminder that it is
a ‘submanifold integral’ and not an integral on a subset of R™ in the usual sense. The
k-dimensional parallelotope spanned by the k column vectors of a n x k-matrix A has the
volume +/det(ATA). The motivation for the v/det factor in the definition of the integral
is that it measures the distortion of the parameterisation. This value turns out to be
independent of the choice of regular parameterisation of A.



CHAPTER 2. GENERAL CONCEPTS 27

Lemma 2.5. Let A = graph(\). Then the value of [, f do is does not depend on the
choice of reqular parameterisation.

Proof. ®(x) = (x,\(z)) is a regular parameterisation (without loss of generality we can
relabel the coordinates to achieve this form). Suppose that we have another regular
parameterisation ¥ : V' — A. Then define ¥ = & 1o V¥ : V — U. We claim that T
is continuously differentiable. This is not so clear, because ®~! is only defined on A,
not on a euclidean space, and so we can’t apply the chain rule directly. However, let
I1: R® — R* be the projection II(x,y) = z. Clearly Il o ®(x) = Il(z, \(x)) = z. This
shows that ®~! = II| 4. Therefore T = ITo ¥ is another formula for T. Now we can apply
the chain rule and conclude T is continuously differentiable.

Now we can carry out an computation that connects the two integrals

/ foW x /det((V)TW) dpge
v

:/Vfocj[)o’f VAt (@ 0 TY)T(® 0 1)) dyue
_ /V (£ 0® aet((@)7®)) o T |det T/ dags
_ /U fod /det((3)TD) dugs.

In the last step we applied the transformation formula of Jacobi. This shows that using
any parameterisation gives the same result as using the graph parameterisation. O

This is a very practical definition in that it gives you a concrete integral to compute.
However many submanifolds that we want to consider cannot be covered by a single
parameterisation. The typical example is the sphere: any open set U C R” is not compact
and the sphere is compact, so there cannot exist a homeomorphism ® between them.
However if we use two parameterisations, then each can cover a part of the sphere and
together they can cover the whole sphere. The trouble is now these A; can overlap, so
if we just integrate in each parameterisation then we will ‘double-count’ the points of A.
The answer to this is an elegant theoretical tool, but one that is not practically useful: a
so called partitions of unity.

Definition 2.6. (Partition of Unity) Let 2 C R™ be covered by a countable family (U;);en
of open subsets of R™, i.e. |J;c Ui = 2. A smooth partition of unity is a countable family
(hi)ien of smooth functions h; : Q — [0, 1] with the following properties:

(i) Each x € Q has a neighbourhood on which all but finitely h; vanish identically.

(ii) For all x € Q we have Y .2, hi(z) = 1.
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(iii) Fach h; vanishes outside a compact subset of Uj.

For every countable family of open subsets of R™ there exists a smooth partition of unity.
A proof can be found in many textbooks and in Prof Schmidt’s script of the lecture
Analysis II.

Definition 2.7. Let A C R" be compact k-dimensional submanifold. Because A is com-
pact and A C |J Oy, only finitely many parametrisations are needed to cover it. Choose
a partition of unity (h;)en subordinate to O;. Let f be a continuous function on A. We

define
/Afdo:zi:/Aihifdo.

The idea of this definition is that we can write f(z) =1 x f(x) = >, hi(z)f(x). Then
each function h;f is zero outside of A; so it is only necessary to integrate it on A;, not
on all of A. We assumed that A was compact so that the sum is finite and we avoid any
issues of convergence. The restriction that A is compact is not necessary, but then one
must deal with the convergence issues.

Lemma 2.8. The integral fA f do neither depends on the choice of the partition of unity
nor on the choice of the parametrizations.

Proof. Suppose that we have two covers of parameterising sets A = U;A; = U;B; and
correspondingly two partitions of unity h; and g;. Define a new cover C;; = A; N B;.
It has a partition of unity h;g;. Each set C;; can be parameterised by restricting the
parameterisation ® of A; to ®~1[A; N B;]. Observe

Z/A hif do = Z/A (Zgj) hif do = Z/A gjhif do = Z/CJ gjhif do.

The same calculation holds for the integral ; il B, 9i f do, showing that the two are equal.
We have already seen that if we use two different parameterisations for the same set that
the integral has the same value. Therefore we have shown that definition is independent
of parameterisation and partition of unity. O

Integrals over submanifolds have many of the same properties as the usual integral. This is
because ‘under the hood’ it is a the usual integral with a correction factor. An important
property that does not carry over is the change of variables formula. Only certain changes
of variables preserve the correction factor. These properties will be proved in the tutorials.

Lemma 2.9. The following properties hold for a,b € R and f,g € C(A).

(i) Linearity: [,af +bgdo=a [, fdo+b[,gdo.
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(if) Order Preserving: if f < g on A then [, f do < [, g do.
(iii) Triangle Inequality: | [, f do| < [, |f] do.

(iv) Transformation: If P : R" — R™ is a euclidean motion (translation, reflection,
rotation) and s € R* is a scaling factor then [, f do = s* f(sp)_l[A} fo(sP)do. O

We are almost ready to state the divergence theorem. In the divergence theorem we work
with a bounded and open set 2 C R. In general such sets can have very complicated
boundaries, for example fractals. We will require 02 to be a (n — 1)-dimensional subman-
ifold. The idea of requiring €2 to be bounded is that 0f2 is compact. This idea appears in
the proof when we say 2 is compact.

There are three more formulas that we will need. First, just in case you missed the first
tutorial, for a vector valued function F', the divergence of F'is V- F = 01 F| +---+ 0, F,,.
The - is meant to remind you of the formula for the dot product; it is not actually a dot
product. Second, because a submanifold is locally a graph, it is possible to understand its
geometry. In the situation of the theorem X\ : U C R"! — R is a scalar valued function.
Then e; +0;\e,, are tangent vectors to the submanifold and so (—V\, 1)7 is perpendicular
to the submanifold. Thus the unit length normal vector is

vzt (V)
VIH[VARN 1

We see that it a smooth vector field, well-defined up to a choice of sign. The last formula is
a simplification of the distortion factor for the graph parameterisation ®(v) = (v, A(v))7.
We have ® = (I,_1|VA\)T where I,,_; is the (n — 1) x (n — 1) identity matrix. Since
the (®'(z))T®’(z) is the identity on the ortgogonal complment of VA(x) and acts as the
multiplication with |VA(z)|? on VA(z)T the determinant is det(®)7®" =1+ |VA[2.

Theorem 2.10. (Divergence Theorem) Let 2 C R™ be bounded and open with OS2 being a
(n — 1)-dimensional submanifold of R™. Let F': ) — R™ be continuous and differentiable
on Q such that F' continuously extends to 02. Then we have

/V-Fd,u:/ F.-Ndo
Q o9

where N 1is the outward-pointing normal.

Proof. First we construct a cover for Q. Because the boundary is a (n — 1)-dimensional
submanifold for every point of 02 we know that there is an open set O such that 902NO =
graph()). By shrinking O, we can assume that O is a cube. Let the cover be © and all
these cubes. Due to the compactness of 0 we can find a finite subcover and choose a
subordinate partition of unity. This decomposes F' into a finite sum Y b F'. By linearity
it suffices to show the statement for any G = h;F" individually.
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This leads to two cases. For the first case, suppose we have a term G = h; I’ corresponding
to Q. In particular G and G' = (hF)" are zero on 0. The right hand side of the
divergence theorem is zero. By defining G to be zero outside of 2 we can extend G to
a continuously differentiable function on R". Choose a cube [—R, R]" which contains €.
By Fubini we may integrate the i-th term of V- G = oG, + ..., +0,G, first over dx;.
Due to the fundamental theorem of calculus this integral is the difference of the values of
G at two boundary points and vanishes (dz; means without the factor dz;):

R
Q [-R,R]" [-R,R|"—1 —R

R —_~ —_~
:/ [G] dxl...dxi...dxn:/ 0 —0]dz, ...dz; ...dz, = 0.
[-R,R]"—1 -R [-R,R]"—1

This shows that the left side of the divergence theorem also vanishes.

In the second case, we have a term G = h;F' that corresponds to a set that covers the
boundary. We assumed the set was a cube, so write it as U X (a, b). Relabel the coordinates
so that the boundary is a graph x,, = A(x) and QN (U x (a,b)) = {(}) | vy < AMu)}. We
use the variables v = (uy,...,up—1) = (21,...,2,-1) and y = x,, for convenience. We
may assume that G and G’ are zero on OU X (a,b) and U x {a}, but not that it is zero on
0). This is because OS2 is ‘inside’ the cube U x (a, b) and we only know that h; vanishes
on the outside of the cube.

Again, we handle the terms of V-G = 0,G1+- - -+9,G,, one at a time. Suppose 1 <7 <n
and consider the function

A(u)
U / Gi(u,y) dy.

It vanishes for v € QU as does its derivative

o [ ON(w) AW AG (u, )
3962-/,1 Gi(u,y)dy = or, Gi(ua)‘(u>)+/ 8—a;idy'

a

Applying the same argument as in the first case, we see that the integral of 0;-derivative
over U vanishes. Therefore

9G;(u,y) / /““’ 9G;(u,y) . OA(u) .
— T du = — 2 dyd*tu = — Gi(u, Mu)) d* tu
/Qﬂ(Ux(a,b)) Ox; : UJa ox; Y v O ( ( >)

:/Gi(u,)\(u))Ni T VAR = [ GiN,do.
U Al

Note that the signs required us to use the outward-pointing normal, which in this case
means that the last component of the vector N is positive.
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For i = n, we can just use the fundamental theorem of calculus on the inner integral

/ (9G // (9G 9Gn(u.y) yd"” 1u—/Gn(u,)\(u))d"1u
QN (U x(a,b))

:/Gn(u,)\(u))Nn 1+|V/\|2d”_1u:/ G, N, do
U W

Summing these terms together proves the theorem. O]

We consider now some special cases of the theorem that occur over and over in practice.
For a scalar valued function f the divergence theorem implies for all : =1,...,n

/ Oif dp = JNido
Q o0

For two functions f and g whose product vanishes on the boundary 92 and satisfies the
corresponding assumptions of the divergence theorem we obtain by the Leibniz rule

/f@igdu:—/g&-fdu foralli=1,...,n
Q Q

This is called integration by parts. Inductively we get for any multi-index

frgdu= (=) [ gd"fdu.
/ J

As a second application of the divergence theorem we can generalise the idea of the scalar
conservation law to vector-valued functions. For any continuously differentiable function
F:R — R" we call

wx,t) + V- F(u(z,t)) = u(x,t) + F'(u(z,t) - Vu(z,t) =0

a conservation law. For open and bounded 2 C R™ with n — 1-dimensional submanifold
0f) of R" we obtain

d "r= [ u(x Yr = — Fu(z Y= — w(z,t))-N(z)do(x
7 Qu(x,t)dx—/ﬂ (x,t)d /QVF((,t))d /mF((,t))N()d().

This is the meaning of a conservation law: the change of the integral of u(-,t) over Q C R”
is equal to the integral of the flux —F'(u(-,t)) - N through the boundary 052.

This idea also gives the following cute trick to calculate the surface area of a ball in

relation to its volume. Let the volume of the n-dimensional unit ball be w,. By scaling,
the volume of the ball B(0,7) is w,r™. Let 0, (r) denote the area of 0B(0,r) C R™. The
divergence of x — x is n, so by the divergence theorem we have

nw,r" = / V.zdy= / z-N(z)do(x) = / T do(z) = ro,(r).
B(0,r) 0B(0,r) 0B(0,r)
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In summary o, (r) = nw,r" 1.

The way that the divergence theorem relates an integral over a set to an integral over its
boundary can be used to decompose the set into layers. The typical example, and the only
relevant example for us, is that a ball B(0, R) can be thought of as spheres 0B(0,r) for
0 < r < R (the origin is measure zero and can be ignored). The layers are the level-sets of
a function ¢. For the ball ¢(x) = |z|, which has |V{| = 1 so the formula below simplifies
further. There will also be an exercise that proves this formula for the ball directly from
the definition of the submanifold integral.

Corollary 2.11 (Co-area Formula). Let £ : Q — R be a C' non-negative function.
Suppose for every t € [0,T] that Q = {x € Q | {(x) < t} is a domain to which the
divergence theorem applies. For any f € C1(Q),

[ rivd dx:/OT me da} at.

Proof. Let’s make some additional definitions to simplify the working. The gradient
of a function is always normal to its level set pointing in the direction of increase, so
N = |V/{|7'V{ is the outward pointing unit normal of 9. Define F = fN, a vector
valued function. In particular F'- N = fN - N = f.

Now we can begin. By the product rule for divergence

VA(T-0OF)=VT—-0)-F+(T -0V F
=—-VI{- fN+(T -0V -F
= —f|Vl| + (T - 0)V - F.

Rearranging this and applying the divergence theorem shows
N dx:/ (T -0V -F dx—/ V-(T-0F) dz
Qr Qr Qr

:/ﬂ (T -V - F dx_/zm (T—0OF - N dx.

On the boundary of Q7 the function ¢ = T, since the set Qp = {¢ < T} by definition.
Hence T'— ¢ = 0 on 0{27 and the second term on the right is zero. The next step is a
‘magic trick’:

/QT[T—E(Q:)]V F(z) dz = /QT [

We want to apply Fubini’s theorem to change the order of this double integral. But the
limits of the inner integral depends on the variable of the outer integral, so first we use

T T
/ 1dt]V-Fd$:/ V- F dt dz.
¢ Q

(z) 7 J ()
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an indicator function to make them independent

T T T
/ / V-F dit de = / / X{tzg(x)}v -F dt de = / / X{tzg(x)}v - F dzx dt
Qr J{(x) Qr J0 0 JQr

T
:/ V. F dx dt.
0o Ja

We apply the divergence theorem one more time to get the result.

T T T
/ /V-Fdxdt:/ / F-Ndadt:/ f do dt. O
o Jo o Joo, o Joo

2.4 Distributions

For the transport equation we developed a solution that also seems to make sense when
it is not differentiable. For the scalar conservation law we saw that there were in some
situations no solutions, except if we generalised the notion of solution to include discon-
tinuous functions. The lesson we draw from these examples is that the existence and
uniqueness of solutions depends on the notion of solution we use. In order to say that
these solutions solve the PDE, clearly all partial derivatives of a solution which occur in
the partial differential equation have to exist. The trick is to come up with a new notion
of partial derivative and interpret the PDE to be about these new derivatives.

In this section we introduce distributions (also called generalised functions) and a corre-
sponding notion of differentiation. This notion is ‘backwards compatible’: if a differen-
tiable function is considered as a distribution, the two types of derivatives are equal. Re-
markably distributions can always be differentiated and indeed they can be differentiated
infinitely many times. For this achievement we have to pay a price: these distributions
cannot be multiplied with each other in general. Linear partial differential equations
extend to well defined equations on such distributions. Distributions solving the linear
partial differential equations are called weak solutions or solutions in the sense of dis-
tributions. There exist other notions of weak solutions which also apply to non-linear
partial differential equations. The most prominent example is the notion of a Sobolev
function, which are introduced in the course “Partial Differential Equations”, the sequel
to this course. But Sobolev functions can be understood as a special type of distribution,
so even if one is interested in Sobolev functions it is helpful to start with distributions.

First we need to define a special class of very well behaved functions. The support supp f
of a function f is the closure of {z | f(z) # 0}. On an open set 2 C R™ let C§°(€2) denote
the algebra of smooth functions whose support is a compact subset of 2. We call these
test functions and say they have compact support in {2, symbolically supp f € §2.

Within the set of test functions there are a special families that we will often use called a
mollifier or approzimate identity. This is a family of non-negative test functions (A¢)eso
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with supp Ac = B(0,¢) and [ A\ dp = 1. We construct a prototype: the function

Az) = {C’exp <|m|2 1) for |z| <1

0 for |x| > 1

is a smooth function on R", has support B(0, 1), and is non-negative. By the way, this
example shows that test functions actually exist. We can choose the constant C' such that
its integral is 1. By rescaling z and \ we obtain

Ae(x) = e "Nz /e),

which has the required properties. This particular example of a mollifier is called the
standard mollifier, but for our purposes it does not matter which mollifier we use. Any
such family is called an approximate identity because of the following property. Take any
continuous function f on €2 and suppose 0 € 2. By continuity f is approximately equal
to f(0) on a sufficiently small ball B(0,¢). Therefore

/Q du = /B L = /B . JON = 50 /B = 10)

In fact, as we will prove in the next lemma, this approximation becomes an equality in
the limit € | 0.

Lemma 2.12. Let f € C(Q) and (\)eso be a mollifier. The family of smooth functions

/f )d"y

converges uniformly on any compact subset of Q2 to f as e | 0. For smooth functions the
same holds for all derivatives of f.

Proof. Choose a compact subset of 2. There is an € such that for any point x in the
compact set the ball B(x,¢) lies in 2. For this € or smaller we have

|[fe(x) = f(2)] =

[ e =)0 - Fa) Py < s (7))l

Q yEB(z,¢€)

On compact sets, continuous functions are uniformly continuous. This shows the uniform
convergence lim. g fe = f.

Observe that if f is smooth, then we can compute the derivatives of f. in the following
way. Choose any point zg € Q and let € be small enough that B(xg,2¢) C . Then for
all points x € B(x,¢€)

fulz) = /B IR / L JEm

Therefore 0“f. = (0“f). and the same convergence argument carries over to all partial
derivatives of f. O]
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The formula we see in the definition of f. turns out to be useful. We use it to define a
type of product operator on C§°(R"): the convolution

o D)= [ o=ty = [ g1 av

This product is bilinear, commutative, and associative (Exercise). One advantage of the
convolution compared to pointwise multiplication is that it behaves nicely with differen-
tiation. There is no Leibniz rule, rather

0%(g * f) = (0%) x [ = g+ (9°).

Furthermore convolution is well-behaved with respect to integral norms, which is useful
in more advanced theory. We can consider the simplest case, where integral of f * g is
the product of the integrals of f and g. This follows by noticing that the coordinate
transformation z = y — x,y = y is volume preserving, thus

[a@ar= [ [ fa-nawards= [ [ fewdza

= ( Rnf(Z) d2> (/ 9(y) dy)

Finally, we include a lemma that will be necessary later

Lemma 2.13. Suppose that f and g are rotationally symmetric about a and b respectively.
This means, for example for any orthogonal transformation O that f(a+x) = f(a+ Ox).
Then the convolution of f and g is rotationally symmetric about a + b.

Proof. The proof is just a sequence of coordinate transformations. We begin with the
definition and make the euclidean motion y = Oz + b

(fxg)a+b+Ox) = Rnf(a%—b%—Ox—y)g(y) dy = Rnf(cH—O(x —2))g(b+ Oz)dz.

It is important to see here that dy = dz since O is orthogonal. Now we use the orthogonal
properties of f and g to continue

= Rnf(a—l—x—z)g(b—l—z)dz: Rnf(a—i-x—y/—i-b)g(y/)dy’:(f*g)(a+b+x)‘ O

Now it is time to introduce distributions. We have seen in the previous lemma that the

operation of integrating a continuous function against a test function somehow retains
the information of the function. In this spirit each f € Ii () defines a linear map

F;:CP(Q) > R, ngn—>/qu5d,u.
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We will see that the information of f is also retained in this linear form. The idea of
distributions is consider not just functions integrated against test functions, but all linear
forms I acting on C3°(92).

There is a technical matter to discuss at this point. The set of test functions should be
given a different topology than the norm topology of C*°(Q2) with the supremum norm,
but this other topology is tricky and only used in a few places in this course. We use
the notation D(2) for the set of test functions equipped with this topology. Instead of
explaining the topology in full detail, let us give the criterion for when a sequence of test
functions converges. We define for any compact subset K C ) and every multi-index «
the following seminorm:

I e : G () = R, ¢ [0 ko = Su113|<9°‘¢(93)|-
xe

We say that f,, — f in D(Q) if there is a compact subset K C 2 such that the supports of
every f, and f are contained in K and that || f, — f|| k.o for every multi-index « (including
a = 0). This is a much stronger condition that convergence with respect to |||l = || |l20-

Definition 2.14. On an open subset 2 C R" the space of distributions D'($2) is defined as
the vector space space of all linear maps F : D(2) — R which are continuous with respect
to the seminorms || - ||k.a; t-e. for each compact K C ) there exist finitely many multi
indices aq, ...,y and constants Cp > 0,...,Cy > 0 such that the following inequality
holds for all test functions ¢ € D(Q2) with compact support in K :

[F(9)] < Cillllican + -+ + Curll @l k.-

The D’ for distributions indicates (for the correctly defined topology) that they are the
dual space of D. Concretely the continuity condition yields the following convergence
property for distributions: if ¢, — ¢ in D(2) then the values F(¢,,) converges to F(¢).
Similarly, a sequence of distribution F,, converges to F' if F,(¢) — F(¢) for all test
functions ¢.

As previously mentioned, any f € L} () defines in a canonical way a distribution Fy.

Let us verify now that it really meets the definition of distribution. For any compact
subset K C 2 and ¢ € D(2) with support K we have

F@) < [ 17116l do < suplo(o)] [ 171 do = suplota)] 1o

Let us give another example of a distribution, one that does not correspond to an element
of I}, (R™):

loc

§: D(R") > R ¢ > (0).
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Intuitively (and we will prove rigorously soon) any corresponding f € LI (R") would
vanish on R™\ {0} and would have a total integral one. Since {0} has measure zero such a
function does not exist. Distributions that come from I} _(£2) functions are called regular,
and those that don’t are non-regular. This distribution is called Dirac’s J-function. We
can also show that it is the limit of the sequence of distributions corresponding to the

mollifier A..

We now return to the question of whether the distribution F retains the information of
f. The answer is yes.

Lemma 2.15. (Fundamental Lemma of the Calculus of Variations) If f € I} () obeys
F¢(¢) > 0 for all non-negative test functions ¢ € C3°(S2), then f is non-negative almost
everywhere. In particular the map L1, () — D'(Q), f — Fy is injective.

loc

Proof. Tt suffices to prove the local statement for f € I[}(Q). We extend f to R" by setting
f on R™\ Q equal to zero. The extended function is also denoted by f and belongs to
f € [}R"™). For a mollifier (\)c~o we have

s f— fll = / / M)z — ) dy — f(z)] doa

<

B(0,¢)
[ A -y - fldady < sup 6= g) = 1

Rn
B(0,¢) y€B(0,¢)

If f is the characteristic function of a rectangle, then the supremum on the right hand
side converges to zero for € | 0. Due to the triangle inequality the same holds for step
functions, i.e. finite linear combinations of such functions. Since step functions are dense
in L}R") for each f € [}(R") this supremum becomes arbitrary small for sufficiently
small €. Hence the family of functions (A * f)cso converges in L'(R™) in the limit € } 0 to

f.

Moreover, the functions A x f are non-negative. This is because the mollifiers are non-
negative and we can write the convolution as the action of Iy on a test function

O D) = [ Ao = )i )& = FiOufa =) 2 0
using the assumption on F¥.

So it remains to show that a limit in I! of a sequence of non-negative functions is also
non-negative. In particular there exists a sequence (€, ),eny Which converges to zero, with
| fn = flls £27" for all n € Nfor f, = A, * f. This ensures that the series > _|fn — f|
converges in L' (R™). So for almost every point x the series > | f()— f ()] is finite, and
in particular the tail of the series converges to zero. In other words lim,,_,, f() = f(x).
This indeed shows that f is a.e. non-negative.

In particular, if f belongs to the kernel of f +— F}, then both f and —f are almost
everywhere non-negative. So f vanishes almost everywhere. [
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Two definitions for functions carry over naturally to distributions. If Q' C € then every
test function on ' extends to a test function on . In this way we can think of any
distribution on  as a distribution on €2, which we call the restriction. For regular
distributions, this is really the restriction of functions. Using restriction we can give a
definition of support. The complement of the support of a distribution is the union of all
sets on which the restriction vanishes. In symbols

(supp F)° = {¥ c Q| F(¢) =0 V¢ € D(Y)}.

The support of the delta distribution is {0}, and the support of the distribution of a
continuous function is its support in the normal sense.

We want to define as many operations on distributions as possible, in such a way that
they extend operations on functions. Restriction and support are two examples where
this is clear. The general strategy for making such definitions is to compare Fy to Flay
where A is the operation. If we can write the relation in a way that only depends on the
distribution and not directly on the function, then it is suitable to make a generalised
definitions. Let us consider the case of multiplication by a smooth function g € C*(€2).
Then for a regular distribution

Fop(6) = / (9f)6 = / £(96) = Fr(g0).

The product of a distribution with a function g € C*(2) is defined as
gF : D(Q) » R, 6 Flgo).

This product makes the embedding C*°(2) < D'(2) to a homomorphism of modules over
the algebra C'*°(2). However, the product of a distribution with a non-smooth functions
is not defined because then g¢ is not a test function.

So we come to the most important operation on distributions. If f has a derivative, then
by integration by parts we obtain

Q Q
Consequently for any distribution F' € D’'(2) we define the partial derivatives as

Here we see the advantage of choosing smooth test functions: test functions are always
differentiable and so distributions have infinitely many derivatives. These two operations
we have just defined, multiplication with a smooth function and partial differentiation,
define new distributions. Clearly these new distributions are linear. We should check that
they also obey the continuity condition, but we will skip this formality.
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We also want to extend convolution to distributions. In order to extend it to a product
between a smooth function and a distribution we calculate:

Fg*f(¢>:/n(9*f cbdnx—/n/n r—y)f(y)o(z)d'yd"s
= [ ([ ot - >dn)f<y>dy—Ff<¢*Pg>

where (Pg)(z) := g(—=z) is the point-reflection operator. Therefore we define for g €
C*(R") and F € D'(R")

gx F:DR") — R, ¢ — F(¢xPg).

Not only is this a well-defined distribution, the result of convolution is in fact always a
regular distribution that corresponds to a smooth function!

Lemma 2.16. The convolution g x F' of a test function g € C§*(R™) with a distribution
F € D'(R") belongs to C(R™). It is the function

gx F:R" — R, x— F(T,Pg)

where (T,0)(y) := ¢(y — x) is the translation operator. The support of g+ F' is contained
in the pointwise sum supp(g) + supp(F).

Proof. First we show that the function defined in the lemma exists and is smooth. The
support of T,Pgis {y € R" | v —y € supp(g)} = x —supp(g). Hence for every z the value
F(T,Pg) is well defined for F' € D’(Q2). Since continuous functions are uniformly contin-
uous on compact sets, the map x +— T,Pg is continuous with respect to the seminorms
||| k0. Furthermore, the same holds for the seminorms || - || x « since @ g=T,1eg
converges in the limit € — 0 for all g € C5°(R™) uniformly on R" to T, (>, —h;0:g).
This shows x — F(T,Pg) € C>*(R") for F' € D'(R").

Next we show this smooth function corresponds to the distribution g * F' we defined
immediately before the lemma. For any ¢ € D(R"™) appropriate Riemann sums define a
sequence of finite linear combinations of functions in {T,Pg € C§°(R™) | « € supp(¢)},
which converges with respect to || - |[x.a t0 [p. ToPg@(x)d"z. Hence the linearity and
continuity of F' gives

[ e P@o e = [ Frpgo e = ([ TPosta dc) = FiPy o)

Finally, we consider the support. If F(T,Pg) # 0, then g(z — y) # 0 for an element
y € suppF. Hence x = y+ (z — y) C supp F + suppg and supp(z — F(T,Pg)) C
supp F' + supp g. O
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This Lemma implies that even the convolution of a distribution F' € D’(R™) with a
distribution G € D’'(R") with compact support supp G is a well defined distribution:

FxG:D() = R, ¢ > F(¢ PG) with PG(¢) := G(Pg).

In particular, we can convolve any distribution with the J-distribution. Remarkably this
returns the same distribution, i.e. F'x§ = F (Exercise). We say that 0 is the identity
element or neutral element of convolution.

Further details of the theory of distributions can be found in the short and lucid first
chapter of the book of Lars Hormander: “Linear Partial Differential Operators”.



