
Chapter 1

First Order PDEs

In this introductory chapter we first introduce partial differential equations and then
consider first order partial differential equations. We shall see that they are simpler than
higher order partial differential equations. In contrast to higher order partial differential
equations these first order partial differential equations are similar to ordinary differential
equations and can be solved by using the theory of ordinary differential equations. After
this introductory chapter we shall focus on second order partial differential equations.
Before we consider the three main examples of second order differential equations we
introduce some general concepts in the next chapter. These general concepts are partially
motivated by observations contained in the first chapter.

A partial differential equation is an equation on the partial derivatives of a function
depending on at least two variables.

Definition 1.1. A possibly vector valued equation of the following form

F

Dku(x), Dk−1u(x), . . . , Du(x), u(x), x

�
= 0

is called partial differential equation of order k. Here F is a given function and u an
unknown function. The expressions Dku denotes the vector of all partial derivatives of
the function u of order k. The function u is called a solution of the differential equation,
if u is k times differentiable and obeys the partial differential equation.

On open subsets Ω ⊂ Rn we denote the partial derivatives of higher order by ∂γ =Q
i ∂

γi
i =

Q
i(

∂
∂xi

)γi with multi-indices γ ∈ Nn
0 of length |γ| =Pi γi. The multi-indices are

ordered by δ ≤ γ ⇐⇒ δi ≤ γi for i = 1, . . . , n. The partial derivative acts only on the
immediately following function; they only act on a product of functions if the product is
grouped together in brackets.
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1.1 Homogeneous Transport Equation

One of the simplest partial differential equations is the transport equation:

u̇+ b ·∇u = 0.

Here u̇ denotes the partial derivative ∂u
∂t

of the unknown function u : Rn×R → R, b ∈ Rn

is a vector, and the product b · ∇u denotes the scalar product of the vector b with the
vector of the first partial derivatives of u with respect to x:

b ·∇u(x, t) = b1
∂u(x, t)

∂x1

+ . . .+ bn
∂u(x, t)

∂xn

.

Let us first assume that u(x, t) is a differentiable solution of the transport equation. For
all fixed (x0, t0) ∈ Rn × R the function

z(s) = u(x0 + s · b, t0 + s)

is a differentiable function on s ∈ R, whose first derivative vanishes:

z′(s) = b∇u(x0 + s · b, t0 + s) + u̇(x0 + s · b, t0 + s) = 0.

Therefore u is constant along all parallel straight lines in direction of (b, 1). Furthermore,
u is completely determined by the values on all these parallel straight lines.

Initial Value Problem 1.2. We seek a solution u : Rn × R → R of the transport
equation u̇+ b ·∇u = 0 with given b ∈ Rn, which at t0 = 0 is equal to some given function
g : Rn → R. We call this the Cauchy problem (or initial value problem) for the transport
equation.

With the additional initial data, we can now uniquely determine a solution. We set t0 = 0.
All parallel straight lines in direction of (b, 1) intersect Rn × {0} exactly once. The point
(x, t) lies on the line (x0 + sb, s) with s = t and x = x0 + tb. Thus the value of u(x, t) is
determined by the initial condition at u(x0, 0) = g(x0) with x0 = x− bt. These lines are
in general called characteristic curves. The solution has to be equal to

u(x, t) = u(x0 + tb, t) = u(x0, 0) = g(x0) = g(x− tb).

If g is differentiable on Rn, then this function indeed solves the transport equation. In this
case the initial value problem has a unique solution. Otherwise, if g is not differentiable
on Rn, then the initial value problem does not have a solution. As we have seen above,
whenever the initial value problem has a solution, then the function u(x, t) = g(x − tb)
is the unique solution. So it might be that this candidate is a solution in a more general
sense.
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1.2 Inhomogeneous Transport Equation

Now we consider the corresponding inhomogeneous transport equation:

u̇+ b ·∇u = f.

Again b ∈ Rn is a given vector, f : Rn × R → R is a given function and u : Rn × R → R
is the unknown function.

Initial Value Problem 1.3. Given a vector b ∈ R, a function f : Rn × R → R and an
initial value g : Rn → R, we seek a solution to the Cauchy problem for the inhomogeneous
transport equation: a function u : Rn × R → R that satisfies

u̇+ b ·∇u = f with u(x, 0) = g(x).

Similar to the homogeneous case, we define for each (x0, 0) ∈ Rn ×R the function z(s) =
u(x0 + sb, s) which solves

z′(s) = b ·∇u(x0 + sb, s) + u̇(x0 + sb, s) = f(x0 + sb, s).

Notice that the right hand side is only a function of s. Moreover z(0) = u(x0, 0) = g(x0)
is known. Thus we can integrate and determine z(s) completely. This tells us the value
of u and any point on the line (x0 + sb, s) ∈ Rn × R.

We can also gather this information into a formula for u. The point (x, t) lies on the line
(x0 + sb, s) with s = t and x0 = x− tb. Therefore

u(x, t) = z(t) = z(0) +

Z t

0

z′(s) ds = g(x0) +

Z t

0

f(x0 + sb, s) ds

= g(x− tb) +

Z t

0

f(x+ (s− t)b, s) ds.

We observe that this formula is analogous to the formula for solutions of inhomogeneous
initial value problems of linear ODEs. The unique solution is the sum of the unique
solution of the corresponding homogeneous initial value problem and the integral over so-
lution of the homogeneous equation with the inhomogeneity as initial values. We obtained
these solutions of the first order homogeneous and inhomogeneous transport equation by
solving an ODE. We shall generalise this method in Section 1.6 and solve more general
first order PDEs by solving an appropriate chosen system of first order ODEs.

1.3 Scalar Conservation Laws

In this section we consider the following class of non-linear first order differential equations

u̇(x, t) +
∂f(u(x, t))

∂x
= u̇(x, t) + f ′(u(x, t)) · ∂u(x, t)

∂x
= 0
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for a smooth function f : R → R. Here u : R × R → R is the unknown function. This
equation is called a scalar conservation law and is a non-linear first order PDE. For any
compact interval [a, b] we calculate

d

dt

Z b

a

u(x, t)dx =

Z b

a

u̇(x, t)dx = −
Z b

a

∂f(u(x, t))

∂x
dx = f(u(a, t))− f(u(b, t)).

This is the meaning of a conservation law: the change of the integral of u(·, t) over [a, b]
is equal to the ’flux’ of f(u(x, t)) through the ’boundary’ ∂[a, b] = {a, b}.

Thinking of t as time, the natural boundary condition to consider is u(x, 0) = g(x) for
all x ∈ R with some given function g : R → R. Let us try to apply the method of
characteristics to these equations, namely we assume that there exists a solution u try
to understand how the value of u changes along a curve (x(s), s) in its domain. The
difference to the transport equation is that we do not assume that the curves are straight
lines; it remains to be seen which curves we should choose. Let z(s) = u(x(s), t(s)). The
derivative is

z′(s) =
∂u(x(s), t(s))

∂x
x′(s) +

∂u(x(s), t(s))

∂t
t′(s)

Hence if we choose the curve x(s) with the property that x′(s) = f ′(u(x(s), s)) and t(s)
with the property that t′(s) = 1 then

z′(s) =
∂u(x(s), s)

∂x
f ′(u(x(s), s)) + u̇(x(s), s) = 0.

This shows that z is constant along these particular curves.

There remain two things to determine: what is the value of z and does there even exist a
curve x(s) with the required property? We make the assumption that the characteristic
curve begins at the point (x0, 0). In other words x(0) = x0. By the constancy of z and
the initial conditions we have z(s) = u(x(0), 0) = u(x0, 0) = g(x0). This answers the first
question. The second question is now answerable too: the derivative of x(s) is constant
equal to

x′(s) = f ′(u(x(s), s)) = f ′(z(s)) = f ′(g(x0)).

The characteristic curve is therefore x(s) = x0 + sf ′(g(x0)). Together this shows that the
solution of the PDE is uniquely determine from the initial condition, if it exists.

Instead of thinking about a single characteristic curve and initial point, let us think about
all characteristic curves. This point of view implies the solution obeys

u(x0 + tf ′(g(x0)), t) = g(x0) for all x0, t ∈ R.

The characteristic curves with initial points x1, x2 ∈ R with g(x1) ̸= g(x2) might intersect
at t ∈ R+. In this case the method of characteristic implies g(x1) = u(x1+ tf ′(g(x1)), t) =
u(x2 + tf ′(g(x2)), t) = g(x2), which is impossible. This situation is called crossing char-
acteristics. But otherwise the above implicit equation for u can be solved and defines a
solution to the PDE.
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Theorem 1.4. If f ∈ C2(R,R) and g ∈ C1(R,R) with f ′′(g(x))g′(x) > −α for all x ∈ R
and some α ≥ 0, then there is a unique C1-solution of the initial value problem for the
scalar conservation law

∂u(x, t)

∂t
+ f ′(u(x, t))

∂u(x, t)

∂x
= 0 with u(x, 0) = g(x)

on (x, t) ∈ R× [0,α−1) for α > 0 and on (x, t) ∈ R× [0,∞) for α = 0.

Proof. By the method of characteristics the solution u(x, t) is on the lines x0 + tf ′(g(x0))
equal to g(x0). For all t ≥ 0 with 1− tα > 0 the derivative of x0 7→ x0 + tf ′(g(x0)) obeys

1 + tf ′′(g(x0))g
′(x0) ≥ 1− tα > 0.

Hence x0 + tf ′(g(x0)) is a strictly increasing function of x0 and therefore injective. More-
over limx0→±∞ x0 + tf ′(g(x0)) = ±∞, because there is a minimum rate of growth. So
x0 7→ x0 + tf ′(g(x0)) is a C1-diffeomorphism from R onto R. Therefore there exists for
any x ∈ R a unique x0 with x0 + tf ′(g(x0)) = x. Then u(x, t) = g(x0) solves the initial
value problem.

Example 1.5. For n = 1 and f(u) = 1
2
u2 we obtain Burgers equation:

u̇(x, t) + u(x, t)
∂u(x, t)

∂x
= 0.

The solutions of the corresponding characteristic equations are x(t) = x0+ g(x0)t. There-
fore the solutions of the corresponding initial value problem obey

u(x+ tg(x), t) = g(x).

If g is continuously differentiable and monotonic increasing, then for all t ∈ [0,∞) the
map x 7→ x + tg(x) is a C1-diffeomorphism from R onto R and there is a unique C1-
solution on R× [0,∞). More generally, if g′(x) > −α with α ≥ 0, then there is a unique
C1-solution on R× [0,α−1) for α > 0 and (x, t) ∈ R× [0,∞) for α = 0.

1.4 Weak Solutions

In the first few sections there were situations with no solutions, or the method of char-
acteristics gave a ‘solution’ that was not differentiable. In this section we take a scalar
conservation law and look for more general notions of solutions which allow us to ex-
tend solutions across the crossing characteristics by allowing a limited amount of non-
differentiability. But if we don’t have differentiability, what does it meant to satisfy a
PDE? For this purpose we use the conserved integrals. Since we will restrict ourselves to
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the one-dimensional situation for the moment, the natural domains are intervals Ω = [a, b]
with a < b ∈ R. In this case the conservation law implies

d

dt

Z b

a

u(x, t)dx = f(u(a, t))− f(u(b, t)).

Now we look for functions u with discontinuities along the graph {(x, t) | x = y(t)} of a
C1-function y. In the case that y(t) belongs to [a, b], we split the integral over [a, b] into
the integrals over [a, b] = [a, y(t)] ∪ [y(t), b]. In such a case let us calculate the derivative
of the integral over [a, b]:

d

dt

Z b

a

u(x, t)dx =
d

dt

Z y(t)

a

u(x, t)dx+
d

dt

Z b

y(t)

u(x, t)dx =

= ẏ(t) lim
x↑y(t)

u(x, t) +

Z y(t)

a

u̇(x, t)dx− ẏ(t) lim
x↓y(t)

u(x, t) +

Z b

y(t)

u̇(x, t)dx.

We abbreviate limx↑y(t) u(x, t) as ul(y(t), t) and limx↓y(t) u(x, t) as ur(y(t), t) and assume
that on both sides of the graph of y the function u is a classical solution of the conservation
law:

d

dt

Z b

a

u(x, t)dx

= ẏ(t)(ul(y(t), t)− ur(y(t), t))−
Z y(t)

a

d

dx
f(u(x, t))dx−

Z b

y(t)

d

dx
f(u(x, t))dx

= ẏ(t)(ul(y(t), t)− ur(y(t), t)) + f(u(a, t))− f(u(b, t)) + f(ur(y(t), t))− f(ul(y(t), t)).

Hence the integrated version of the conservation law still holds, if the following Rankine-
Hugonoit condition is fulfilled:

ẏ(t) =
f(ur(y, t))− f(ul(y, t))

ur(y, t)− ul(y, t)
.

Example 1.6. We consider Burgers equation u̇(x, t) + u(x, t)∂u
∂x
(x, t) = 0 for (x, t) ∈

R× R+ with the following continuous initial values u(x, 0) = g(x) and

g(x) =





1 for x ≤ 0,

1− x for 0 ≤ x < 1

0 for 1 ≤ x.

The first crossing of characteristics happens for t = 1:

x = x0 + tg(x0) =





x0 + t for x0 ≤ 0,

x0 + t(1− x0) for 0 < x0 < 1,

x0 for 1 ≤ x0.
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For t < 1 the evaluation at t is a homeomorphism from R onto itself with inverse

x 7→





x− t for x ≤ t,
x−t
1−t

for t < x < 1,

x for 1 ≤ x.

Therefore the solution is for 0 < t < 1 equal to

u(x, t) =





1 for x < t,
x−1
t−1

for t < x < 1,

0 for 1 ≤ x.

At t = 1 the solutions of the characteristic equations starting at x ∈ [0, 1] all meet at x = 1.
For t > 1 there exists a unique solution satisfying the Rankine-Hugonoit condition, which
is 1 on some interval (∞, y(t)) and 0 on the interval (y(t),∞). The corresponding regions
have to be separated by a path with velocity 1

2
which starts at (x, t) = (1, 1). This gives

y(t) = 1 + t−1
2
. For t ≥ 1 this solution is equal to

u(x, t) =

(
1 for x < 1 + t−1

2
,

0 for 1 + t−1
2

< x.

The second initial value problem is not continuous but monotonic increasing. For contin-
uous monotonic increasing functions g the evaluation at t of the solutions of the charac-
teristic equation would be a homeomorphism for all t > 0. Therefore in such cases there
exists a unique continuous solution for all t > 0. But for non-continuous initial values
this is not the case.

Example 1.7. We again consider Burgers equation u̇(x, t)+u(x, t)∂u
∂x
(x, t) = 0 for (x, t) ∈

R× R+ with the following non-continuous initial values u(x, 0) = g(x) and

g(x) =

(
0 for x < 0,

1 for 0 < x.

Again there is a unique discontinuous solution which is 0 on some interval (−∞, y(t)) and
1 on the interval (y(t),∞). By the Rankine-Hugonoit condition both regions are separated
by a path with velocity 1

2
. This solution is equal to

u(x, t) =

(
0 for x < t

2
,

1 for 1
2
< x.

But there exists another continuous solution, which clearly also satisfies the Rankine-
Hugonoit condition:

u(x, t) =





0 for x ≤ 0,
x
t

for 0 < x < t,

1 for t ≤ x.
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These solutions are constant along the lines x = ct for c ∈ [0, 1]. These lines all intersect
in the discontinuity at (x, t) = (0, 0). Besides these two extreme cases there exists infinitely
many other solutions with several regions of discontinuity, which all satisfy the Rankine-
Hugonoit condition.

These examples show that such weak solutions exists for all t ≥ 0 but are not unique.
We now restrict the space of weak solutions such that they have a unique solution for all
t ≥ 0. Since we want to maximise the regularity we only accept discontinuities if there
are no continuous solutions. In the last example we prefer the continuous solution. So
for Burgers equation this means we only accept discontinuous solutions that take larger
values for smaller x and smaller values for larger x.

Definition 1.8 (Lax Entropy condition). A discontinuity of a weak solution along a C1-
path t 7→ y(t) satisfies the Lax entropy condition, if along the path the following inequality
is fulfilled:

f ′(ul(y, t)) > ẏ(t) > f ′(ur(y, t)).

A weak solutions with discontinuities along C1-paths is called an admissible solution, if
along the path both the Rankine-Hugonoit condition and the Lax Entropy condition are
satisfied.

There is a justification of the entropy condition on physical grounds in Evans’ book p. 142-
3.

For continuous g there is a crossing of characteristics if f ′(g(x1)) > f ′(g(x2)) for x1 < x2.
So this condition ensures that discontinuities can only show up if we cannot avoid a
crossing of characteristics.

Theorem 1.9. Let f ∈ C1(R,R) be convex and u and v two admissible solutions of

u̇(x, t) + f ′(u(x, t))
∂u

∂x
(x, t) = 0.

in L1(R). Then t 7→ ∥u(·, t)− v(·, t)∥L1(R) is monotonically decreasing.

Proof. We divide R into maximal intervals I = [a(t), b(t)] with the property that either
u(x, t) > v(x, t) or v(x, t) > u(x, t) for all x ∈ (a(t), b(t)). This means that either x 7→ u−v
vanishes at the boundary, or is discontinuous and changes sign at the boundary. We claim
that the boundaries a(t) and b(t) of these maximal intervals are differentiable. We prove
this only for a(t). For b(t) the proof is analogous. If either u(·, t) or v(·, t) is discontinuous
at a, then by definition of an admissible solution the locus of the discontinuity a is
differentiable with respect to t. On the other hand, suppose u and v are both continuously
differentiable at (a(t1), t1) with u(a(t1), t1) = v(a(t1), t1). Then we know that u and v
have a common characteristic through this point s 7→ (a(t1) + sf ′(u(a(t1), t1)), t1 + s),
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and moreover they are equal along this characteristic. Hence the line of equality is given
by a(t) = a(t1) + (t− t1)f

′(u(a(t1), t1)).

To simplify notation we will sometimes write a and b instead of a(t) and b(t). Additionally,
we only consider intervals on whose interior u > v. On the other intervals these arguments
apply with interchanged u and v. Now we calculate

d

dt

Z b(t)

a(t)

(u(x, t)− v(x, t))dx

=

Z b(t)

a(t)

�
u̇(x, t)− v̇(x, t)

�
dx+ ḃ(t)

�
u(b, t)− v(b, t)

�
− ȧ(t)

�
u(a, t)− v(a, t)

�

=

Z b(t)

a(t)

d

dx

�
f(v(x, t))− f(u(x, t))

�
dx+ ḃ(t)

�
u(b, t)− v(b, t)

�
− ȧ(t)

�
u(a, t)− v(a, t)

�

= f(v(b, t))− f(u(b, t)) + ḃ(t)
�
u(b, t)− v(b, t)

�

+ f(u(a, t))− f(v(a, t)) + ȧ(t)
�
v(a, t)− u(a, t)

�
.

If u and v are both differentiable at (a, t), then they take the same values at (a, t) and
the corresponding terms in the last line vanishes. The same holds, if u and v are both
differentiable at (b, t). For convex f the derivative f ′ is monotonically increasing and the
Lax-Entropy condition implies at all discontinuities y of u(·, t) and v(·, t)

ul(y, t) > ur(y, t), vl(y, t) > vr(y, t),

respectively. If one of the two solutions u and v is at the boundary of I continuous and the
other is non-continuous, then the value of the continuous solution belongs to the closed
interval between the limits of the non-continuous solution, because at the boundary either
u − v becomes zero or changes sign. For v being continuous and u being discontinuous
at a we would have ul(a, t) ≤ v(a, t) ≤ ur(a, t) by u > v on (a, b) in contradiction to
the former inequality. So either u(·, t) is continuous and differentiable at a and v(·, t) is
discontinuous at a(t) and analogously u is discontinuous at b and v is continuous and
differentiable at b. The Rankine Hugonoit condition determines ȧ(t) and ḃ(t). At a(t) the
corresponding contribution to d

dt
∥u(·, t)− v(·, t)∥1 is

f(u(a, t))− f(vr(a, t)) + ȧ(t) (vr(a, t)− u(a, t)) =

= f(u(a, t))− f(vr(a, t)) +
f(vr(a, t))− f(vl(a, t))

vr(a, t)− vl(a, t)
(vr(a, t)− u(a, t))

= f(u(a, t))−
�
f(vr(a, t))

vl(a, t)− u(a, t)

vl(a, t)− vr(a, t)
+ f(vl(a, t))

u(a, t)− vr(a, t)

vl(a, t)− vr(a, t)

�
.

Since f is convex the secant lies above the graph of f . Since u(a, t) ∈ [vr(a, t), vl(a, t)]
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this expression is non-positive. At b(t) this contribution is

f(v(b, t))− f(ul(b, t)) + ḃ(t)

ul(b, t)− v(b, t)

�
=

= f(v(b, t))− f(ul(b, t)) +
f(ur(b, t))− f(ul(b, t))

ur(b, t)− ul(b, t)


ul(b, t)− v(b, t)

�

= f(v(b, t))−
�
f(ur(b, t))

ul(b, t)− v(b, t)

ul(b, t)− ur(b, t)
+ f(ul(b, t))

v(b, t)− ur(b, t)

ul(b, t)− ur(b, t)

�
.

Again due to v(b, t) ∈ [ur(b, t), ul(b, t)] this expression is non-positive.

If finally both solutions are discontinuous at a(t) or b(t). Since u(·, t) − v(·, t) is posi-
tive on I, the Lax Entropy condition implies [ur(a, t), ul, (a, t)] ⊂ [vr(a, t), vl(a, t)] and
[vr(b, t), vl(b, t)] ⊂ [ur(b, t), ul(b, t)], respectively. The corresponding contributions to
d
dt
∥u(·, t)− v(·, t)∥1 are again non-positive:

f(ur(a, t))− f(vr(a, t)) + ȧ(t) (vr(a, t)− ur(a, t)) =

= f(ur(a, t))− f(vr(a, t)) +
f(vr(a, t))− f(vl(a, t))

vr(a, t)− vl(a, t)
(vr(a, t)− ur(a, t))

= f(ur(a, t))−
�
f(vr(a, t))

vl(a, t)− ur(a, t)

vl(a, t)− vr(a, t)
+ f(vl(a, t))

ur(a, t)− vr(a, t)

vl(a, t)− vr(a, t)

�
.

f(vl(b, t))− f(ul(b, t)) + ḃ(t)

ul(b, t)− vl(b, t)

�
=

= f(vl(b, t))− f(ul(b, t)) +
f(ur(b, t))− f(ul(b, t))

ur(b, t)− ul(b, t)


ul(b, t)− vl(b, t)

�

= f(vl(b, t))−
�
f(ur(b, t))

ul(b, t)− vl(b, t)

ul(b, t)− ur(b, t)
+ f(ul(b, t))

vl(b, t)− ur(b, t)

ul(b, t)− ur(b, t)

�
.

Hence the contributions to d
dt
∥u(·, t)− v(·, t)∥1 of all intervals are non-positive.

This implies that admissible solutions to an IVP are unique, if they exist. By utilising
an explicit formula for admissible solutions one can also prove the existence of admissi-
ble solutions. The following theorem is Theorem 10.3 in the lecture notes “Hyperbolic
Partial Differential Equations” by Peter Lax, Courant Lecture Notes in Mathematics 14,
American Mathematical Society (2006), which also supplies a proof.

Theorem 1.10. For f ∈ C2(R,R) is strictly convex and g ∈ L1(R) ∩ L∞(R) there exists
an unique admissible solution u(x, t) of

u̇(x, t) + f ′(u(x, t))
∂u

∂x
(x, t) = 0 and u(x, 0) = g(x) for all x ∈ R.
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1.5 Noncharacteristic Hypersurfaces

Until now we have only considered specific PDEs where one variable was labelled ‘time’
and the initial conditions was t = 0. In this section we shall consider boundary conditions
for the general first order PDE:

F (∇u(x), u(x), x) = 0

on the domain Ω ⊆ Rn with the boundary condition u(y) = g(y) for all y ∈ Σ. Here
u is a real unknown function on an open domain Ω ⊂ Rn and F is a real function
on an open subset of W ⊂ Rn × R × Ω. For the boundary condition we assume that
Σ = {x ∈ Ω | φ(x) = φ(x0)} is the level-set of the function φ, which we call a hypersurface.

We will first show that locally every Cauchy problem can be brought into the following
form:

u(y) = g(y) for all y ∈ Ω ∩H with H = {x ∈ Rn | x · en = x0 · en}.
Here en = (0, . . . , 0, 1) denotes the n-th element of the canonical basis and H the unique
hyperplane through x0 ∈ Ω orthogonal to en. If∇φ(x0) ̸= 0 we may assume without loss of
generality that ∂φ

∂xn
(x0) ̸= 0 (relabel the variables if necessary). Then we apply the inverse

function theorem to x 7→ Φ(x) = (x1, . . . , xn−1,φ(x)) to get a continuously differentiable
coordinate transformation x = Φ−1(y) in a neighbourhood of x0. This coordinate change
has the property that φ(x) = φ(x0) if and only if y · en = yn = φ(x0). We say that the
boundary has been straighten at x0. Then by the chain rule the composition u = v ◦Φ of
a function v : Ω′ → R with Φ obeys

∇u(x) = ∇v(Φ(x)) · Φ′(x) = ∇v(y) · Φ′ Φ−1(y)
�
.

Here ∇v and ∇u are row vectors and Φ′(x) the Jacobi matrix. Hence u solves the PDE

F (∇u(x), u(x), x) = 0

if and only if v solves the PDE

G(∇v(y), v(y), y) := F

∇v(y) · Φ′ Φ−1(y)

�
, v(y),Φ−1(y)

�
= 0.

Thus we can indeed assume locally (the coordinate change is only guaranteed to exist in
a neighbourhood of x0) that the boundary is a hyperplane, at the cost of changing the
form of the PDE.

Next we ask the question: given the values of u on the hypersurface H is there anything
else we can determine about u on the hypersurface? Can we determine the value of its
derivatives for example, or can we see immediately that there is no possible u (like for
some situations of Burgers’ equation)?
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We can compute the partial derivatives in most directions at x0 ∈ H. Observe

∂u(x0)

∂x1

= lim
h→0

u(x0 + he1)− u(x0)

h
= lim

h→0

g(x0 + he1)− g(x0)

h
=

∂g(x0)

∂x1

.

This also works for the directions x2, . . . , xn−1 which lie in the hyperplane. This idea does
not determine ∂u(x0)

∂xn
, but we have not used the PDE yet. If we substitute all the values

we know, there is only one free variable in the PDE:

F (∇u(x0), u(x0), x0) = F

�
∂g(x0)

∂x1

, . . . ,
∂g(x0)

∂xn−1

, pn, g(x0), x0

�
= 0.

Whether or not this has a solution depends on both the PDE F and the initial condition
g. However, if there does exist a solution then there is a simple criterion depending only
on F that ensures further that it is solvable in a neighbourhood of x0.

Definition 1.11. Consider the PDE as a function of 2n+ 1 variables F (p, z, x) = 0 and
suppose that there is a solution (p0, z0, x0). The hyperplane H = {xn = x0,n} is called
noncharacteristic at x0 if

∂F

∂pn
(p0, z0, x0) ̸= 0.

To understand the name ‘noncharacteristic’ let us consider the example

∂u

∂x1

= 0, u(x1, 0) = g(x1).

The PDE in this case is F (p1, p2, z, x1, x2) = p1, which clearly does not enjoy the non-
characteristic property. We see that the initial condition is fighting against the PDE;
they are only compatible if g is constant. And even if they happen to be compatible then
the initial condition does not determine ∂u

∂x2
on H = {x2 = 0}. If we apply the method

of characteristics to this PDE, we must try to find a curve (x1(s), x2(s)) along which
z(s) = u(x1(s), x2(s)) is nicely behaved. Differentiating z gives

z′ =
∂u

∂x1

x′
1 +

∂u

∂x2

x′
2,

which ‘aligns’ with the PDE if we choose x′
1 = 1 and x′

2 = 0. However this choice
of characteristics gives x1(s) = x0,1 + s, xs(s) = x0,2, which lies in the hyperplane. The
method fails to be useful because no points in the domain can be reached by characteristics
starting on the hyperplane.

Lemma 1.12. Let F : W → R and g : H → R be continuously differentiable, x0 ∈ Ω∩H,
z0 = g(x0) and p0,1 =

∂g(x0)
∂x1

, . . . , p0,n−1 =
∂g(x0)
∂xn−1

. If there exists p0,n with F (p0, z0, x0) = 0
and H is noncharacteristic at x0 then in an open neighbourhood Ωx0 ⊂ Ω of x0 there exists
for x ∈ Ωx0 ∩H a unique solution q of

F (q(x), g(x), x) = 0, qi(x) =
∂g(x)
∂xi

for i = 1, . . . , n− 1 and q(x0) = p0.
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Proof. Consider the function (x, qn) 7→ F (q1(x), . . . , qn−1(x), qn, g(x), x). This takes the
value 0 at (x0, p0,n). The noncharacteristic assumption means that we can apply the
implicit function theorem to define qn as a unique function of x in a neighbourhood of
x0.

1.6 Method of Characteristics

In this section continue to consider the general first order PDE and try to formalise the
method of characteristics, which thus far we have developed only ad hoc. We try to obtain
the solution to the PDE by understanding the function u along a curve in the domain.
For a clever choice of the curve this reduces to the solution of an appropriate system of
first order ODEs. So let x(s) be a curve in the domain of the PDE and z(s) = u(x(s))
be the value of u along the curve. The new ingredient is that we must also consider
p(s) = ∇u(x(s)), the gradient of u along this curve. But how should be choose the curve
s 7→ x(s)? For this purpose we first differentiate

p′i(s) =
d

ds

∂u(x(s))

∂xi

=
nX

j=1

∂2u(x(s))

∂xj∂xi

x′
j(s).

The total derivative of F (∇u(x), u(x), x) = 0 with respect to xi gives

0 =
dF (∇u(x), u(x), x)

dxi

=

=
nX

j=1

∂F (∇u(x), u(x), x)

∂pj

∂2u(x)

∂xi∂xj

+
∂F (∇u(x), u(x), x)

∂z

∂u(x)

∂xi

+
∂F (∇u(x), u(x), x)

∂xi

.

Due to the commutativity ∂i∂ju = ∂j∂iu of the second partial derivatives we obtain

nX

j=1

∂F (p(s), z(s), x(s))

∂pj

∂2u(x(s))

∂xj∂xi

= −∂F (p(s), z(s), x(s))

∂z
pi(s)−

∂F (p(s), z(s), x(s))

∂xi

.

We want to eliminate the explicit dependence on u from all our equations. If we compare
this equation with the derivative of pi we see that we should choose the vector field for
the characteristic curves as

x′
j(s) =

∂F (p(s), z(s), x(s))

∂pj
.

This choice allows us to rewrite the equation above for p′ as

p′i(s) =
nX

j=1

∂2u(x(s))

∂xj∂xi

∂F (p(s), z(s), x(s))

∂pj

= −∂F (p(s), z(s), x(s))

∂z
pi(s)−

∂F (p(s), z(s), x(s))

∂xi

.
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Finally we differentiate

z′(s) =
d

ds
u(x(s)) =

nX

j=1

∂u(x(s))

∂xj

x′
j(s) =

hX

j=1

pj(s)
∂F (p(s), z(s), x(s))

∂pj
.

In this way we indeed obtain the following system of first order ODEs:

x′
i(s) =

∂F (p(s), z(s), x(s))

∂pi

p′i(s) = −∂F (p(s), z(s), x(s))

∂xi

− ∂F (p(s), z(s), x(s))

∂z
pi(s)

z′(s) =
nX

j=1

∂F (p(s), z(s), x(s))

∂pj
pj(s).

This is a system of first order ODEs with 2n + 1 unknown real functions. Importantly
this is a ‘closed’ system; it only depends on these 2n + 1 functions, not on any other
information from u. This is a little surprising, particularly that p′, which is effectively a
certain second derivative of u, only depends on the location x, the value z, and the first
derivatives p. The fact that this idea of characteristics leads to a finite system of ODEs is
what makes this an effective method. Let us summarise these calculations in the following
theorem:

Theorem 1.13. Let F be a real differentiable function on an open subset W ⊂ Rn×R×Rn

and u : Ω → R a twice differentiable solution on an open subset Ω ⊂ Rn of the first order
PDE F (∇u(x), u(x), x) = 0. For every solution s 7→ x(s) of the ODE

x′
i(s) =

∂F

∂pi
(∇u(x(s)), u(x(s)), x(s))

the functions p(s) = ∇u(x(s)) and z(s) = u(x(s)) solve the ODEs

p′i(s) = −∂F (p(s), z(s), x(s))

∂xi

− ∂F (p(s), z(s), x(s))

∂z
pi(s) and

z′(s) =
nX

j=1

∂F (p(s), z(s), x(s))

∂pj
pj(s).

This theorem can be used to address the uniqueness of the solution of PDE, reducing it to
the question of uniqueness of the solution of this system of ODEs. This is useful because
we have many theorems that tell us when a system of ODEs is unique. For example, the
Picard-Lindelöf theorem tells us the solution is uniquely determined by initial conditions
if the right hand side is Lipschitz.

We must also pay attention to the logical structure of this theorem. It says if a solution
to the PDE exists then it solves the ODE; it tells us where to look for potential solutions.
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But that was not the task we set for ourselves at the outset of this section. We want to
prove that a solution of the PDE does in fact exist. We have seen that global solutions may
not exist due to crossing characteristics, so the best we can hope for is a local existence
result. This takes a little work but is achieved in the following theorem.

Theorem 1.14. Let F : W → R and g : H → R be three times differentiable functions.
Suppose we have a point (p0, z0, x0) ∈ W with

F (p0, z0, x0) = 0, z0 = g(x0), p0,1 =
∂g(x0)
∂x1

, . . . , p0,n−1 =
∂g(x0)
∂xn−1

.

Furthermore, assume that H is noncharacteristic at x0. Then in a neighbourhood Ωx0 ⊂ Ω
of x0 there exists a unique solution of the boundary value problem

F (∇u(x), u(x), x) = 0 for x ∈ Ωx0 and u(y) = g(y) for y ∈ Ωx0 ∩H.

Proof. The strategy of this proof is to solve the system of ODEs given by the method
of characteristics and show that it does solve the PDE and the initial conditions. First
we need to translate the initial conditions of the PDE to initial conditions for the ODEs.
By Lemma 1.12 there exists a solution q on an open neighbourhood of x0 in H of the
following equations

F (q(y), g(y), y) = 0, qi(y) =
∂g(y)
∂xi

for i = 1, . . . , n− 1 and q(x0) = p0.

If F is twice and g are three times differentiable then the implicit function theorem yields
a twice differentiable solution. The Picard-Lindelöf theorem shows that the following
initial value problem has for all y in the intersection of an open neighbourhood of x0 with
H a unique solution:

x′
i(s) =

∂F

∂pi
(p(s), z(s), x(s)) with x(0) = y

p′i(s) = −∂F

∂xi

(p(s), z(s), x(s))− ∂F

∂z
(p(s), z(s), x(s))pi(s) with p(0) = q(y)

z′(s) =
nX

j=1

∂F

∂pj
(p(s), z(s), x(s))pj(s) with z(0) = g(y).

We denote the family of solutions by (x(y, s), p(y, s), z(y, s)). For a neighbourhood Ωx0 ∋
x0 there exists an ϵ > 0 such that these solutions are uniquely defined on (y, s) ∈ (Ω ∩
H) × (−ϵ, ϵ). This is a local proof so let us just write Ω instead of Ωx0 . Since F and
g are three times differentiable all coefficients and initial values are twice differentiable.
The theorem on the dependence of solutions of ODEs on the initial values gives that
(y, s) 7→ (x(y, s), p(y, s), z(y, s)) is on (Ω ∩H)× (−ϵ, ϵ) twice differentiable.
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Now let us examine the characteristic curves in more detail. The function (y, s) 7→ x(y, s)
on (Ω ∩H)× (−ϵ, ϵ) → Rn has at (y, s) = (x0, 0) the Jacobi matrix




1 0 . . . 0 ∂F (p0,z0,x0)
∂p1

...
...

0 0 . . . 1 ∂F (p0,z0,x0)
∂pn−1

0 0 . . . 0 ∂F (p0,z0,x0)
∂pn




.

Since ∂F (p0,z0,x0)
∂pn

̸= 0 this matrix is invertible. The inverse function theorem implies that on

the (possibly diminished) neighbourhood Ω of x0 and suitable ϵ > 0 this map is a twice
differentiable homeomorphism (Ω ∩ H) × (−ϵ, ϵ) → Ω with twice differentiable inverse
mapping. Because we know that the inverse mapping exists, the function u : Ω → R
defined in implicit form by

u(x(y, s)) = z(y, s) for all (y, s) ∈ (Ω ∩H)× (−ϵ, ϵ)

is well-defined.

This function u satisfies the initial conditions of the PDE: we have x(y, 0) = y and so

u(y) = u(x(y, 0)) = z(y, 0) = g(y)

for all y ∈ Ω ∩ H. It remains to show that u solves the PDE F (∇u(x), u(x), x) = 0.
Observe that the ODEs imply

d

ds
F (p(y, s), z(y, s), x(y, s)) = 0.

Since F (q(y), g(y), y) vanishes for all y ∈ Ω ∩H we conclude

F (p(y, s), z(y, s), x(y, s)) = 0 for all (y, s) ∈ (Ω ∩H)× (−ϵ, ϵ).

Hence to show that u solves the PDE it suffices to show p(y, s) = ∇u(x(y, s)) for all
(y, s) ∈ (Ω ∩H)× (−ϵ, ϵ).

To this end, we need to establish the following equalities

∂z(y, s)

∂s
=

nX

j=1

pj(y, s)
∂xj(y, s)

∂s
and

∂z(y, s)

∂yi
=

nX

j=1

pj(y, s)
∂xj(y, s)

∂yi

for all (y, s) ∈ (Ω ∩H)× (−ϵ, ϵ) and all i = 1, . . . , n− 1. The first equation follows from
the ODE for x(y, s) and z(y, s). For s = 0 the second equation follows from the initial
conditions for z(y, s), p(y, s) and x(y, s). For s ̸= 0, let us use v(y, s) for the difference
between the left and right hand sides of the second equation:

v(y, s) :=
∂z(y, s)

∂yi
−

nX

j=1

pj(y, s)
∂xj(y, s)

∂yi
.
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We need to show that v is always zero. The derivative of the first equation with respect
to yi yields

∂2z(y, s)

∂yi∂s
=

nX

j=1

�
∂pj(y, s)

∂yi

∂xj(y, s)

∂s
+ pj(y, s)

∂2xj(y, s)

∂yi∂s

�
.

By the commutativity of the second partial derivatives we obtain

∂

∂s
v(y, s) =

∂2z(y, s)

∂s∂yi
−

nX

j=1

∂pj(y, s)

∂s

∂xj(y, s)

∂yi
−

nX

j=1

pj(y, s)
∂2xj(y, s)

∂s∂yi

=
nX

j=1

�
∂pj(y, s)

∂yi

∂xj(y, s)

∂s
− ∂pj(y, s)

∂s

∂xj(y, s)

∂yi

�

=
nX

j=1

∂pj(y, s)

∂yi

∂F (p(y, s), z(y, s), x(y, s))

∂pj

+
nX

j=1

�
∂F (p(y, s), z(y, s), x(y, s))

∂xj

+
∂F (p(y, s), z(y, s), x(y, s))pj(y, s)

∂z

�
∂xj(y, s)

∂yi

=
∂

∂yi
F (p(y, s), z(y, s), x(y, s))

− ∂F (p(y, s), z(y, s), x(y, s))

∂z

 
∂z(y, s)

∂yi
−

nX

j=1

pj(y, s)
∂xj(y, s)

∂yi

!
.

Notice that the bracketed expression is exactly v. Inserting F (p(y, s), z(y, s), x(y, s)) = 0
we obtain

∂

∂s
v(y, s) = −∂F (p(y, s), z(y, s), x(y, s))

∂z
v(y, s).

For each y this is a linear homogeneous ODE for v(y, s) in the variable s with initial value
0 at s = 0. The unique solution is v(y, s) ≡ 0. This implies the second equation for all y
and s:

∂z(y, s)

∂yi
=

nX

j=1

pj(y, s)
∂xj(y, s)

∂yi
.

Now that we have established the two equalities, we demonstrate that they are not only
necessary but also sufficient for the conclusion p(y, s) = ∇u(x(y, s)) for all (y, s) ∈ (Ω ∩
H)×(−ϵ, ϵ). The solution u is defined as the composition of the inverse of (y, s) 7→ x(y, s)
with (y, s) 7→ z(y, s). The chain rule implies

∂u

∂xj

=
∂z

∂s

∂s

∂xj

+
n−1X

i=1

∂z

∂yi

∂yi
∂xj

=

 
nX

k=1

pk
∂xk

∂s

!
∂s

∂xj

+
n−1X

i=1

 
nX

k=1

pk
∂xk

∂yi

!
∂yi
∂xj

=
nX

k=1

pk

 
∂xk

∂s

∂s

∂xj

+
n−1X

i=1

∂xk

∂yi

∂yi
∂xj

!
=

nX

k=1

pk
∂xk

∂xj

= pj.
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Thus we have shown that the function u, which was constructed from the method of
characteristics, solves the PDE.

Theorem 1.13 and the theorem of Picard-Lindelöf imply the uniqueness of the solutions.

The relation between the method of characteristics as explained in this section and the
ad hoc versions we used in previous sections will be explored now. The important point is
they are really the same method, but in many cases the system decouples and the ODEs
for x′ and z′ do not depend on p. This is a nice simplification because it makes solving
the p′ equations redundant. We solved the Cauchy problem by solving a family of ODEs.
In the case of the inhomogeneous transport equation, we combine the coordinates x and
t to one coordinate (x, t) and calculate the corresponding function F . Consequently we
write

F (p, z, (x, t)) = F̃ (p, x, t) = b1p1 + . . .+ bnpn + pn+1 − f(x, t).

We use the equation F (p, z, (x, t)) = 0 and rewrite the ODE for z. Then the ODE becomes
independent of p and we can solve x(s), t(s) and z(s) separately:

x′(s) = b t′(s) = 1, z′(s) = F̃ (p(s), x(s), t(s)) + f(x(s), t(s)) = f(x(s), t(s)).

Whenever the function F is a first order polynomial with respect to p, then the functions

∂F (p, z, x)

∂pi
for i = 1, . . . , n, and

nX

j=1

∂F (p, z, x)

∂pj
pj − F (p, z, x)

do not depend on p. Therefore the ODE system for the functions x(s) and z(s) becomes
independent of p(s), and the components x(s) and z(s) can be solved independently
of p(s). This situation describes the transport equation with vector b depending on z,
x and t. For the solution of this equation we do not need to introduce the function
p(s) = ∇u(x(s)). Another example is the scalar conservation law in the general form for
unknown function u : Rn × R → R:

u̇(x, t) +∇f(u(x, t)) = u̇(x, t) + f ′(u(x, t)) ·∇u(x, t) = 0

with a continuously differentiable function f : R → Rn. Again we impose the initial
values u(x, 0) = g(x) for all x ∈ Rn and some given function g : Rn → R. If xn+1 = t
then the corresponding function F is indeed linear in p:

F (p, z, (x, t)) = f ′(z) · (p1, . . . , pn) + pn+1.

So the corresponding ODE is independent of p

x′(s) = f ′(z(s)) t′(s) = 1 z′(s) = F (p, z(s), (x(s), t(s))) = 0.

For any x ∈ Rn the unique solution is x(s) = x+ sf ′(g(x)), t(s) = s and z(s) = g(x). So
we recover in this more general situation the implicit equation from Section 1.3:

u(x+ tf ′(g(x)), t) = g(x) for all (x, t) ∈ Rn × R.


