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Exercise sheet 10

30. Special solutions of the heat equation

(a) Solutions of PDEs that are constant in the time variable are called “steady-state” solutions.

Describe steady-state solutions of the inhomogeneous heat equation. (1 point)

(b) Consider the heat equation u̇−∆u = 0 on Rn×R+ with smooth initial condition u(x, 0) =

h(x). Suppose that the Laplacian of h is a constant. Show that there is a solution whose

time derivative is constant. (1 point)

(c) Consider “translational solutions” to the heat equation on R × R+ (ie n = 1). These are

solutions of the form u(x, t) = F (x− bt). Find all such solutions. (2 points)

(d) If u is a solution to the heat equation, show for every λ ∈ R that uλ(x, t) := u(λx, λ2t) is

also a solution to the heat equation. (2 points)

31. The Fourier transform

In this question we expand on some details from Section 4.1. Recall that the Fourier transform

of a function h(x) : Rn → R is defined to be a function ĥ(k) : Rn → R given by

ĥ(k) =

∫
Rn

e−2πik·xh(x) dx.

Lemma 4.3 shows that it is well-defined for Schwartz functions.

(a) Give the definition of a Schwartz function. (1 point)

(b) Argue that f : R → R given by f(x) = exp(−x2) is a Schwartz function. (2 points)

(c) Consider

I2 =

(∫
R
e−x2

dx

)2

=

(∫
R
e−x2

dx

)(∫
R
e−y2 dy

)
=

∫
R2

e−x2−y2 dx dy.

By changing to polar coordinates, compute this integral. (1 point)

(d) Prove the rescaling law for Fourier transforms: if h(x) = g(ax) then (1 point)

ĥ(k) = |a|−nĝ(a−1k).

(e) Prove the shift law for Fourier transforms: if h(x) = g(x− a) then (1 point)

ĥ(k) = e−2πia·kĝ(k).

(f) Show that δ is a tempered distribution. (2 points)

(g) Compute the Fourier transform of δ. (2 points)

(h) Try to compute the Fourier transform of 1. What is the difficulty?

(2 points)
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32. One step at a time

Prove the following identity for the fundamental solution in one dimension (n = 1):

Φ(x, s+ t) =

∫
R
Φ(x− y, t)Φ(y, s) dy.

(2 points)

Hint. You may use without proof that∫
R
exp(−A+By − Cy2) dy =

√
π

C
exp

(
B2

4C
−A

)
.
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