Nicolas A. Hasse Exercise sneet 7 15.10. 2025

20. The only constant is change

Let $\lambda_{\varepsilon}: \mathbb{R}^n \to \mathbb{R}$ be the standard mollifier. Let $F \in \mathcal{D}(\Omega)$ be any distribution, not necessarily regular.

(a) For any point $a \in \Omega$, explain why $F(\lambda_{\varepsilon}(x-a))$ is well-defined for ε sufficiently small.

(1 point)

- **(b)** Expand the definitions to show $(\lambda_{\varepsilon} * F)(a) = F(\lambda_{\varepsilon}(x-a)).$ (2 points)
- (c) Suppose that F has the property that $F(\lambda_{\varepsilon}(x-a)) = 0$ for all a, ε (for which it is defined). Argue using Exercise 19 that F = 0.
- (d) Suppose that F has the following property: if a test function $\varphi \in \mathcal{D}(\Omega)$ has total integral zero,

$$\int_{\Omega} \varphi(x) \ dx = 0,$$

then $F(\varphi) = 0$. Prove that $F = F_c$ for $c \in \mathbb{R}$ the constant function. (3 points) Hint. Define $c = (\lambda_r * F)(a)$.

21. Twirling towards freedom

Let $u \in C^2(\mathbb{R}^n)$ be a harmonic function. Show that the following functions are also harmonic.

- (a) v(x) = u(x+b) for $b \in \mathbb{R}^n$.
- **(b)** v(x) = u(ax) for $a \in \mathbb{R}$.
- (c) v(x) = u(Rx) for $R(x_1, \dots, x_n) = (-x_1, x_2, \dots, x_n)$ the reflection operator.
- (d) v(x) = u(Ax) for any orthogonal matrix $A \in O(\mathbb{R}^n)$.

Together these show that the Laplacian is invariant under *similarities* (Euclidean motions, reflection and rescaling). (6 points)

22. Harmonic Polynomials in Two Variables

- (a) Let $u \in C^{\infty}(\mathbb{R}^n)$ be a smooth harmonic function. Prove that any derivative of u is also harmonic. (1 point)
- (b) Choose any positive degree n. Consider the complex valued function $f_n : \mathbb{R}^2 \to \mathbb{C}$ given by $f_n(x,y) = (x+\iota y)^n$ and let $u_n(x,y)$ and $v_n(x,y)$ be its real and imaginary parts respectively. Show that u_n and v_n are harmonic. (3 points)
- (c) A homogeneous polynomial of degree n in two variables is a polynomial of the form $p = \sum a_k x^k y^{n-k}$. Show that a homogeneous polynomial of degree n is harmonic if and only if it is a linear combination of u_n and v_n .

 (2 points + 2 bonus points)