Martin Schmidt, Ross Ogilvie

1. Dezember 2025

13.1. Integration und Differentiation.

Berechnen Sie die folgenden (auf geeigneten Definitionsbereichen definierten) Stammfunktionen und machen Sie bei (a) bis (c) jeweils die Probe durch Differentiation.

(a)
$$\int \frac{1}{2x-5} \, \mathrm{d}x$$
 (2 Punkte)

(b)
$$\int \frac{x}{\sqrt{1-x^2}} \, \mathrm{d}x$$
 (2 Punkte)

(c)
$$\int x^2 e^x \, \mathrm{d}x$$
 (2 Punkte)

(d)
$$\int \frac{\cos(x)}{\sin(x)} dx$$
 (2 Zusatzpunkte)

(e)
$$\int \cos^3(x) dx$$
 (3 Zusatzpunkte)

(f)
$$\int x \arccos(x) dx$$
 (3 Zusatzpunkte)

13.2. Bestimmte Integrale.

Berechnen Sie die folgenden bestimmten Integrale mit der Substitutionsmethode.

Desmos Demo: https://www.desmos.com/calculator/wx2joeqhpx

(a)
$$\int_{1/\pi}^{1} \frac{\sin(1/x)}{x^2} dx$$
 (2 Punkte)

(b)
$$\int_0^1 x^2 \sqrt{1 + 2x^3} \, dx$$
 (2 Punkte)

13.3. Partialbruchzerlegung I.

Wir berechnen $\int \frac{1}{x^2 - 5x + 6} dx$. Benutze die Faktorisierung $x^2 - 5x + 6 = (x - 2)(x - 3)$.

Desmos Demo: https://www.desmos.com/calculator/bzvbrooj80

(a) Wir verwenden den Ansatz $\frac{1}{x^2 - 5x + 6} = \frac{A}{x - 2} + \frac{B}{x - 3}$. Berechnen Sie A und B! (1 Punkt)

(b) Berechnen Sie
$$\int \frac{1}{x^2 - 5x + 6} dx = \int \left(\frac{A}{x - 2} + \frac{B}{x - 3}\right) dx.$$
 (2 Punkte)

Nun berechnen wir $\int \frac{2x-7}{x^2-5x+6} dx$.

- (c) Wir verwenden wieder den Ansatz $\frac{2x-7}{x^2-5x+6} = \frac{A}{x-2} + \frac{B}{x-3}$. Berechnen Sie A und B! (2 Punkte)
- (d) Berechnen Sie nun $\int \frac{2x-7}{x^2-5x+6} dx = \int \frac{A}{x-2} + \frac{B}{x-3} dx.$ (1 Punkt)

Hier ist ein Beispiel, wo der Grad des Zählers größer als der Grad des Nenners ist:

$$\int \frac{x^3}{x^2 - 5x + 6} \, \mathrm{d}x.$$

- (e) In diesem Fall ist $\frac{x^3}{x^2 5x + 6} = p(x) + \frac{A}{x 2} + \frac{B}{x 3}$ für ein Polynom p(x). Was ist der Grad von p(x)? Berechnen Sie A, B, und p(x)! (3 Zusatzpunkte)
- (f) Berechnen Sie das Integral. (1 Zusatzpunkt)

13.4. Ganz Normal.

Betrachte $f(x) = \frac{1}{\sqrt{2\pi}} \exp(-0.5x^2)$. Sie heißt die Normalverteilung oder Gauß-Verteilung, auch die Glockenkurve, und ist wichtig in der Wahrscheinlichkeitstheorie. Sie hat keine elementare Stammfunktion; also ist es schwer, die Fläche unter der Kurve zu rechnen. Nach Satz 8.26(a) ist f aber eine riemannintegrierbare Funktion und nach Korollar 8.24 können wir die Fläche approximieren.

Welche Portion liegt zwischen -1 Standardabweichung und +1 Standardabweichung vom Mittelwert? Laut der Normalverteilung ist dies $\int_{-1}^{1} f(x) dx$. Mit a = -1, b = 1, t = 0, sieht Korollar 8.24 so aus:

$$\int_{-1}^{1} f(x) \, dx = \lim_{n \to \infty} \frac{1 - (-1)}{n} \sum_{i=1}^{n} f(a + \frac{i}{n}(1 - (-1))) = \lim_{n \to \infty} \frac{2}{n} \sum_{i=1}^{n} f\left(\frac{2i - n}{n}\right).$$

Evaluiere die Summe mit n=6, um den Grenzwert und deshalb das Integral zu approximieren. Desmos Demo: https://www.desmos.com/calculator/spkttr8bs8 (4 Punkte)