Analysis I 12. Übung

Martin Schmidt, Ross Ogilvie

24. November 2025

12.1. Die zwei Wertsätze.

(a) Sei $p: \mathbb{R} \to \mathbb{R}$ das Polynom $p(x) = x^3 - 6x^2 + 9x - 1$ und seien $I_1 = [0, 1], I_2 = [1, 3]$ und $I_3 = [3, 4]$ drei Intervalle.

Desmos Demo: https://www.desmos.com/calculator/z0srfut8cd

- (i) Berechne p'(x) und bestimme die lokalen Extrema von p. (1 Punkt)
- (ii) Erkläre mit Hilfe des Zwischenwertsatzes und Monotonie, warum p in jedem der drei Intervalle I_1 , I_2 und I_3 genau eine Nullstelle besitzt. (2 Punkte)
- (b) Ein Auto fährt für eine Zeit T>0 auf einer Strecke, wobei die Geschwindigkeit zu jedem Zeitpunkt die Höchstgeschwindigkeit V>0 nicht überschreitet. Beweise mit Hilfe des Mittelwertsatzes, dass die zurückgelegte Strecke höchstens $V\cdot T$ beträgt. (1 Punkt)
- (c) Sei $f : \mathbb{R} \to \mathbb{R}$ eine differenzierbare Funktion mit f(0) = 1 und f'(x) = f(x) für alle $x \in \mathbb{R}$. Beweise mit Hilfe des Mittelwertsatzes, dass $f(x) = e^x$ für alle $x \in \mathbb{R}$ gilt. (2 Punkte) [Hinweis: Betrachte die Funktion $g(x) = f(x) \cdot e^{-x}$.]

12.2. Achtung Die Kurve!

Wir betrachten die Funktion

$$f: \mathbb{R} \to \mathbb{R}, \quad x \mapsto \frac{x}{1+x^2}.$$

Es ist wahrscheinlich altmodisch, eine Kurve selbst zu skizzieren; es gibt Desmos. Die Aufgabe ist aber hilfreich, um die Bedeutungen der Ableitungen zu verstehen. Genauso müssen Kinder lernen zu addieren, auch wenn es Taschenrechnern gibt.

- (a) Berechne f'(x) für $x \in \mathbb{R}$ und zeige, dass -1 und 1 die kritischen Punkte von f sind. (2 Punkte)
- (b) Entscheide für die kritischen Punkte von f jeweils, ob es sich um ein lokales Maximum oder ein lokales Minimum oder keines von beidem handelt. (Benutze Korollar 7.17)

(2 Punkte)

- (c) Untersuche, ob f auf den Intervallen $(-\infty, -1], [-1, 1]$ und $[1, \infty)$ jeweils monoton wachsend, monoton fallend oder keines von beidem ist. (1 Punkt)
- (d) Untersuche, ob f auf den Intervallen $(-\infty, -\sqrt{3}], [-\sqrt{3}, 0], [0, \sqrt{3}]$ und $[\sqrt{3}, \infty)$ jeweils konvex oder konkav ist. (2 Punkte)
- (e) Bestimme die Grenzwerte $\lim_{x \to -\infty} f(x)$ und $\lim_{x \to \infty} f(x)$. (1 Punkt)
- (f) Skizziere den Graphen von f. (1 Punkt)

(g) Untersuche mit Hilfe der bisherigen Ergebnisse, ob die Funktion f ein globales Maximum und ein globales Minimum annimmt und bestimme gegebenenfalls, an welchen Stellen diese angenommen werden.

(1 Punkt)

12.3. Taylorreihen.

Die durch $f(x) := \sqrt{1+x}$ definierte Funktion f sei auf einer geeigneten Umgebung X von $x_0 := 0$ definiert.

Desmos Demo: https://www.desmos.com/calculator/fe6pah3gsm

- (a) Rechne die ersten drei Ableitungen von f in 0 aus. (1 Punkt)
- (b) Nutze das Taylorpolynom dritter Ordnung, um $\sqrt{2}$ zu approximieren. (1 Punkt)
- (c) Zeige durch Induktion, dass

$$f^{(k)}(0) = (-1)^{k+1} \frac{1 \times 3 \times \dots \times (2k-3)}{2^k},$$

für $k \ge 2$. (2 Punkte)

(d) Bestimme den Konvergenzradius der Taylorreihe. (2 Bonuspunkte)