13. Oktober 2025

6.1. Quantorendschungel.

Es sei $(a_n)_{n\in\mathbb{N}}$ eine reelle Zahlenfolge und $a\in\mathbb{R}$. Welche der folgenden Aussagen sind äquivalent dazu, dass $(a_n)_{n\in\mathbb{N}}$ gegen a konvergiert? Begründe deine Antwort mit Beweis oder Gegenbeispiel.

(a)
$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \ge N : |a_n - a| < \frac{1}{\varepsilon}.$$
 (2 Punkte)

(b)
$$\exists c > 0 \ \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \ge N : |a_n - a| < c\varepsilon.$$
 (2 Punkte)

(c)
$$\forall \varepsilon > 0 \ \exists c > 0 \ \exists N \in \mathbb{N} \ \forall n \ge N : |a_n - a| < c\varepsilon.$$
 (2 Punkte)

(d)
$$\forall \varepsilon > 0 \ \forall N \in \mathbb{N} \ \forall n > N : |a_n - a| < \varepsilon.$$
 (2 Punkte)

6.2. Auf die Plätze.

Seien $k \in \mathbb{N}$ und c > 1 fest. Für $n \in \mathbb{N}$ betrachten wir die Folge

$$a_n := \frac{n^k}{c^n}.$$

Ziel der Aufgabe ist es zu zeigen, dass $(a_n)_{n\in\mathbb{N}}$ eine Nullfolge ist.

(a) Betrachte zuerst den Fall k = 1. Zeige, dass $\frac{n}{c^n}$ gegen 0 konvergiert. (3 Punkte) [Hinweis: $c^n = \sqrt{c^n} \cdot \sqrt{c^n}$ und Aufgabe 5.3(d)].

(b) Beweise nun, dass
$$(a_n)_{n\in\mathbb{N}}$$
 eine Nullfolge ist. (1 Punkt)

6.3. In einem Land vor unserer Zeit.

Bereits vor 4000 Jahren war den Sumerern ein Iterationsprozess bekannt, der bei Eingabe einer Zahl a>0 eine Näherung für \sqrt{a} liefert. Wir formulieren diesen hier speziell für a=5 (also zur Näherung an $\sqrt{5}$): Dazu definieren wir eine Zahlenfolge $(x_n)_{n\in\mathbb{N}_0}$ rekursiv wie folgt:

$$x_1 := \frac{9}{4}$$
 und $\forall n \in \mathbb{N} : x_{n+1} := \frac{1}{2} \cdot \left(x_n + \frac{5}{x_n}\right)$.

(a) Mithilfe eines (Taschen-)Rechners berechne man x_2, x_3 und x_4 . Sieht man daran schon, wie sich die x_n an $\sqrt{5}$ annähern? (1 Punkt)

Wir schreiben im Folgenden die x_n als Brüche, d.h. wir schreiben $x_n = \frac{p_n}{q_n}$ mit $p_n, q_n \in \mathbb{N}$ und den Startwerten $p_0 := 9$ und $q_0 := 4$.

(b) Zeige, dass für
$$n \in \mathbb{N}$$
 gilt: $p_{n+1} = p_n^2 + 5q_n^2$ und $q_{n+1} = 2p_nq_n$. (1 Punkt)

(c) Zeige, dass $p_{n+1} - \sqrt{5}q_{n+1} = (p_n - \sqrt{5}q_n)^2$ und somit $x_n \ge \sqrt{5}$ für alle $n \in \mathbb{N}_0$ gilt.

(1 Punkt)

- (d) Warum kann in der letzten Ungleichung keine Gleichheit gelten? (1 Punkt)
- (e) Zeige, dass $(x_n)_{n\in\mathbb{N}}$ eine streng monoton fallende Folge ist. Warum muss sie konvergieren? (2 Punkte)
- (f) Zeige, dass die Folge $(x_n)_{n\in\mathbb{N}}$ gegen $\sqrt{5}$ konvergiert. (2 Punkte)
- (g) Man zeige $p_{n+1}^2 5q_{n+1}^2 = (p_n^2 5q_n^2)^2$ und folgere hieraus durch vollständige Induktion, dass $p_n^2 5q_n^2 = 1$ für alle $n \in \mathbb{N}$ gilt. (1 Zusatzpunkte)
- (h) Man folgere aus (c) und (g), dass für jedes $n \in \mathbb{N}$ gilt:

$$\left| \frac{p_n}{q_n} - \sqrt{5} \right| < \frac{1}{2\sqrt{5}} \cdot \frac{1}{q_n^2}$$
 (1 Zusatzpunkte)

(i) Zeigen Sie mit Hilfe von (g) und (f), dass

$$\lim_{n \to \infty} q_n^2 \left(\frac{p_n}{q_n} - \sqrt{5} \right) = \frac{1}{2\sqrt{5}}$$

gilt und folgern Sie mit (h), dass $c:=\frac{1}{2\sqrt{5}}$ die kleinste (und somit bestmögliche) Zahl $c\in\mathbb{R}$ ist, so dass

$$\left| \frac{p_n}{q_n} - \sqrt{5} \right| < c \cdot \frac{1}{q_n^2}$$

für alle $n \in \mathbb{N}$ gilt.

(2 Zusatzpunkte)