Analysis I 5. Übung

Martin Schmidt, Ross Ogilvie

6. Oktober 2025

5.1. Das Eckige im Runden.

(a) Schreibe die folgenden komplexen Zahlen in der Form x+iy mit $x,y\in\mathbb{R}$:

(i)
$$\left(\frac{1-i}{\sqrt{2}}\right)^2$$

(ii)
$$\frac{4+i}{3-i}$$
 (1 Punkt)

(iii)
$$\sqrt{3-4i}$$
 (2 Punkte)

(b) Rechne
$$\left|\frac{4+i}{3-i}\right|$$
. (1 Punkt)

5.2. Kunstkurs.

Beschreibe die folgenden Teilmengen von \mathbb{C} und skizziere sie in der komplexen Zahlenebene, indem Sie die Mengen vorher geeignet umformen:

(a)
$$A := \{ z \in \mathbb{C} : |z - 1| \le 1 \}$$
 (2 Punkte)

(b)
$$B := \{ z \in \mathbb{C} : |z + 2i| < |z - 2| \}$$
 (2 Punkte)

5.3. Es hat alles ein Ende, nur die Wurst hat zwei.

Bestimme die Grenzwerte der folgenden Folgen durch die Verwendung der Rechenregeln (Satz 3.5).

(a)
$$a_n := \frac{1+2n^2}{5+n+n^2}$$
 (1 Punkt)

(b)
$$b_n := \frac{2^n + 3^n}{5^n}$$
 (1 Punkt)

(c)
$$c_n := \frac{(-1)^n}{n}$$
 (1 Punkt)

(d)
$$d_n := \frac{n}{4^n}$$
 [Hint. Bernoulli Ungleichung für 2^n .]

(e)
$$e_n = \sqrt{n^2 + 1} - n$$
 (2 Punkte)

[Ohne Beweis darf verwendet werden: Ist $(x_n)_{n\in\mathbb{N}}$ eine konvergente reelle Zahlenfolge mit $x_n>0$ für alle $n\in\mathbb{N}$, so gilt auch $\lim_{n\to\infty}\sqrt{x_n}=\sqrt{\lim_{n\to\infty}x_n}$.]

Passt deine Antworte zu Desmos?

Desmos Demo: https://www.desmos.com/calculator/50gazdc2rk

5.4. Unwahre Umkehrungen.

Finde jeweils ein Beispiel für reelle Zahlenfolgen $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ mit den folgenden Eigenschaften.

- (a) $(a_n)_{n\in\mathbb{N}}$ ist nach oben unbeschränkt, aber es gilt nicht $\lim_{n\to\infty} a_n = \infty$. (1 Punkt)
- (b) $\lim_{n\to\infty} a_n = +\infty$ und $\lim_{n\to\infty} b_n = -\infty$ und $\lim_{n\to\infty} (a_n + b_n) = c$, wobei $c \in \mathbb{R}$ eine vorgegebene Zahl ist. (1 Punkt)
- (c) $a_n < b_n$ für alle $n \in \mathbb{N}$, aber $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$. (1 Punkt)
- (d) Seien $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ beschränkt und divergieren (haben also keinen Grenzwert), aber die Summe $(a_n+b_n)_{n\in\mathbb{N}}$ konvergiert. (1 Punkt)