
Ross Ogilvie 11th November, 2024

Introduction to Partial Differential Equations

Exercise sheet 11

33. The distribution of heat

Consider the fundamental solution of the heat equation Φ(x, t) given in Definition 4.5.

(a) Show that this extends to a smooth function on Rn × R \ {(0, 0)}. (2 points)

(b) Verify that this obeys the heat equation on Rn × R \ {(0, 0)}. (2 points)

We want to show that φ 7→ H(φ) =
∫
Rn×RΦ(x, t)φ(x, t) dx dt is a distribution. Clearly it is

linear. Fix a set K ⊂ Rn × R and let φ ∈ C∞
0 (K).

(c) Why must there be a constant T > 0 with

H(φ) =

∫ T

0

∫
Rn

Φ(x, t)φ(x, t) dx dt ?

(1 point)

(d) Conclude with the help of Lemma 4.6 and Theorem 4.7 that

|H(φ)| ≤ T ∥φ∥K,0.

Hence H is a continuous linear functional. (2 points)

Finally, we want to show that (in the sense of distributions) (∂t −∆)H = δ.

(e) Extend Theorem 4.7 to show that∫
Rn

Φ(x− y, t)h(y, s) dy → h(x, s)

as t → 0, uniformly in s. (1 point)

(f) Hence show that ∫ ∞

ε

∫
Rn

Φ(−∂tφ−∆φ) dy dt → φ(0, 0)

as ε → 0. (3 points)

(g) Prove that as ε → 0 ∫ ε

0

∫
Rn

Φ(y, t)h(y, t) dy dt → 0

(2 points)

Together these integrals show that

(∂t −∆)H(φ) =

(∫ ε

0
+

∫ ∞

ε

)∫
Rn

Φ(−∂tφ−∆φ) dy dt = φ(0, 0) = δ(φ)

for all test functions φ. Therefore (∂t −∆)H = δ as claimed.

Solution.

1



(a) For t > 0, Φ(x, t) and all its derivatives have the form t−kq(x, t) exp(−x2/4t) for k ∈ 1
2N0

and q a polynomial. As t → 0+ for x ̸= 0, the exponential terms is dominant and forces the

expression to zero. For t < 0 the heat kernel is identically zero, and so all its derivatives

are zero and the limits as t → 0− is zero. Thus we have the smooth extension Φ(x, 0) = 0

for x ̸= 0.

(b) By direct calculation, for t > 0

(4π)n/2∂tΦ = −n

2
t−n/2−1e−

|x|2
4t +

|x|2

4
t−n/2−2e−

|x|2
4t

(4π)n/2∂jΦ = −xj
2
t−n/2−1e−

|x|2
4t

(4π)n/2∂2
jΦ = −1

2
t−n/2−1e−

|x|2
4t +

x2j
4
t−n/2−2e−

|x|2
4t .

The appropriate sum gives zero. We see that all derivatives of the function are zero for

t = 0, x ̸= 0. Therefore the heat equation holds there too.

(c) Because φ has compact support, it is zero outside B(0, R) × [−T, T ] for some positive

constants R and T . Additionally, we know that Φ is zero for t < 0. Therefore the integrand

is zero outside B(0, R)× [0, T ] and can be discarded.

(d) First just apply the estimate that bounds φ:

|H(φ)| ≤
∫ T

0

∫
Rn

Φ(x, t)∥φ(x, t)∥K,0 dx dt = ∥φ(x, t)∥K,0

∫ T

0

∫
Rn

Φ(x, t) dx dt.

So it remains to bound the integral of Φ over this region. Consider the function g(t) :=∫
Rn Φ(x, t) dx. Lemma 4.6 says that g(t) = 1 for t > 0. Theorem 4.7(iii) says that g(0) = 1.

This gives ∫ T

0

∫
Rn

Φ(x, t) dx dt =

∫ T

0
1 dt = T

as the constant.

(e) One only needs to modify one step in the proof of Theorem 4.7: |h(y, s)−h(x, s)| is bounded
by twice the supremum of h over space and time variables.

(f) We should try to apply integration by parts, in order to move the derivatives from φ to Φ,

because we know what Φ is. However the boundary term does not necessarily vanish on

the t = ε plane.

−
∫ ∞

ε

∫
Rn

Φ∂tφ−
∫ ∞

ε

∫
Rn

Φ∆φ = −
[∫

Rn

Φφ
∣∣∣t=∞

t=ε
−
∫ ∞

ε

∫
Rn

∂tΦφ

]
−
∫ ∞

ε

∫
Rn

∆Φφ

=

∫
Rn

Φ(x, ε)φ(x, ε) +

∫ ∞

ε

∫
Rn

(∂tΦ−∆Φ)φ

=

∫
Rn

Φ(x, ε)φ(x, ε)

=

∫
Rn

Φ(0− x, ε)φ(x, ε).

The second integral on the second line vanishes due to part (b). We can now apply the pre-

vious part to conclude that this limits to φ(0, 0). Notice the need for uniform convergence,

because the second parameter of φ is also being changed by the limit ε → 0.
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(g) We can estimate the norm of h out∣∣∣∣∫ ε

0

∫
Rn

Φ(x, t)h(x, t) dx dt

∣∣∣∣ ≤ ∥h∥∞
∫ ε

0

∫
Rn

Φ(x, t) dx dt. = ∥h∥∞
∫ ε

0
dt = ∥h∥∞ε.

Clearly this tends to zero.

34. Heat death of the universe

First a corollary to Theorem 4.7:

(a) Suppose that h ∈ Cb(Rn) ∩ L1(Rn) and u is defined as in Theorem 4.7. Show

sup
x∈Rn

|u(x, t)| ≤ 1

(4πt)n/2
∥h∥L1 .

(2 points)

The above corollary shows how solutions to the heat equation on Rn × R+ with such initial

conditions behave: they tend to zero as t → ∞. Physically this is because if h ∈ L1 then there

is a finite amount of total heat, which over time becomes evenly spread across the space.

On open and bounded domains Ω ⊂ Rn we can have different behaviour, due to the boundary

conditions holding the temperature steady. In this question we determine the long time behaviour

of solutions u to the heat equation on open and bounded sets Ω with u(x, t) = 0 on ∂Ω × R+

and u(x, 0) = h(x).We claim u → 0 as t → ∞.

(b) Let lm be the function from Theorem 4.7 that solves heat equation on Rn with lm(x, 0) =

mk(x) for m a constant and k : Rn → [0, 1] a smooth function of compact support such

that k|Ω ≡ 1. Why must k exist? Why does lm → 0 as t → ∞? What boundary conditions

on Ω does it obey? (3 points)

(c) Use the monotonicity property to show that u tends to zero. (2 points)

Hint. Consider a = supx∈Ω |u(x, 0)|.

Solution.

(a) From the formula in Theorem 4.7 and the definition of the heat kernel

|u(x, t)| ≤ 1

(4πt)n/2

∫
Rn

e−
|x−y|2

4t |h(y)| dy ≤ 1

(4πt)n/2

∫
Rn

|h(y)| dy =
1

(4πt)n/2
∥h∥L1 .

(b) Since Ω is bounded, it is contained in a ball B(0, R). Choose k to be a hat function that is

identically 1 on B(0, R) and zero outside B(0, 2R). We have shown how to construct such

hat function in the tutorials.

mk(x) is a smooth function of compact support, so it is continuous, bounded, and has finite

L1 norm. Therefore Part (a) applies to it.

We can see directly from the integral that lm is non-negative, in particular on ∂Ω × R+.

And at time zero, we know from Theorem 4.7 that lm(x, 0) = mk(x) ≡ m on x ∈ Ω.
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(c) Let a = supx∈Ω |u(x, 0)| = supx∈Ω |h(x)|. By definition then l−a(x, 0) ≤ u(x, 0) ≤ la(x, 0)

on Ω× {0}. On the parabolic boundary (x, t) ∈ ∂Ω× R+ we see that l−a(x, t) ≤ u(x, t) =

0 ≤ la(x, t). By the monotonicity property it follows that l−a(x, t) ≤ u(x, t) ≤ la(x, t) for

all points. The squeeze theorem then shows that u → 0 as t → ∞.
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