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33. The distribution of heat

Consider the fundamental solution of the heat equation ®(z,t) given in Definition 4.5.

(a) Show that this extends to a smooth function on R™ x R\ {(0,0)}. (2 points)
(b) Verify that this obeys the heat equation on R™ x R\ {(0,0)}. (2 points)

We want to show that ¢ — H(¢) = [pu, p ®(z,t)p(z,t) dedt is a distribution. Clearly it is
linear. Fix a set K C R"™ x R and let ¢ € C§°(K).

(c) Why must there be a constant 7" > 0 with

T
H(yp) —/0 /n O(z,t)p(x,t) dedt ?

(1 point)
(d) Conclude with the help of Lemma 4.6 and Theorem 4.7 that
[H (o)l <T[ellxo-
Hence H is a continuous linear functional. (2 points)
Finally, we want to show that (in the sense of distributions) (0 — A)H = 4.
(e) Extend Theorem 4.7 to show that
[ =y 0hly.5) dy = hias)
as t — 0, uniformly in s. (1 point)
(f) Hence show that
/ / (=0ip — Ap) dy dt — ¢(0,0)
15 n
as e — 0. (8 points)
(g) Prove that ase — 0
3
/ / ®(y,t)h(y,t) dydt — 0
O n
(2 points)

Together these integrals show that

@ - = [+ [7) [ @0 a0 dyar = p(0.0) = 6(e)

for all test functions ¢. Therefore (9, — A)H = ¢ as claimed.

Solution.



(a)

(b)

(d)

(e)

(f)

For t > 0, ®(z,t) and all its derivatives have the form ¢ ~*q(z,t) exp(—2?/4t) for k € 3Ny
and ¢ a polynomial. Ast — 07 for z # 0, the exponential terms is dominant and forces the
expression to zero. For ¢ < 0 the heat kernel is identically zero, and so all its derivatives

are zero and the limits as ¢t — 0~ is zero. Thus we have the smooth extension ®(z,0) =0
for z # 0.

By direct calculation, for ¢ > 0
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The appropriate sum gives zero. We see that all derivatives of the function are zero for
t = 0,2 # 0. Therefore the heat equation holds there too.

Because ¢ has compact support, it is zero outside B(0,R) x [—T,T] for some positive
constants R and T'. Additionally, we know that ® is zero for ¢ < 0. Therefore the integrand
is zero outside B(0, R) x [0,7] and can be discarded.

First just apply the estimate that bounds ¢:

T T
1@< [ ] @ 0leOllododt = [o@0llo [ [ .t daar

So it remains to bound the integral of ® over this region. Consider the function g¢(t) :=
Jgn ®(,t) dz. Lemma 4.6 says that g(t) = 1 for ¢ > 0. Theorem 4.7(iii) says that g(0) = 1.

This gives
T T
/ / @(x,t)dxdt:/ 1dt=T
0 n 0

One only needs to modify one step in the proof of Theorem 4.7: |h(y, s) —h(z, s)| is bounded

as the constant.

by twice the supremum of h over space and time variables.

We should try to apply integration by parts, in order to move the derivatives from ¢ to @,
because we know what ® is. However the boundary term does not necessarily vanish on

the t = € plane.
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:/nq)(()—x,e)gp(m,e).

The second integral on the second line vanishes due to part (b). We can now apply the pre-
vious part to conclude that this limits to ¢(0,0). Notice the need for uniform convergence,

because the second parameter of ¢ is also being changed by the limit ¢ — 0.



(g) We can estimate the norm of h out

€ g €
// Oz, t)h(z, t) dmdt'th]oo// O(z,t) da:dt.:Hh]oo/ dt = ||h]|sce.
0 n 0 n 0

Clearly this tends to zero.

34. Heat death of the universe

First a corollary to Theorem 4.7:

(a) Suppose that h € Cp(R™) N LY(R™) and u is defined as in Theorem 4.7. Show
1

< — = .

sup Ju(@, )l < ooyl

(2 points)

The above corollary shows how solutions to the heat equation on R™ x RT with such initial
conditions behave: they tend to zero as t — oco. Physically this is because if h € L' then there

is a finite amount of total heat, which over time becomes evenly spread across the space.

On open and bounded domains 2 C R™ we can have different behaviour, due to the boundary
conditions holding the temperature steady. In this question we determine the long time behaviour
of solutions u to the heat equation on open and bounded sets Q with u(z,t) = 0 on 9Q x R
and u(x,0) = h(x).We claim u — 0 as t — oc.

(b) Let ,;, be the function from Theorem 4.7 that solves heat equation on R™ with [,,,(x,0) =
mk(zx) for m a constant and k : R™ — [0, 1] a smooth function of compact support such
that k|q = 1. Why must k exist? Why does [,, — 0 as t — co? What boundary conditions
on (2 does it obey? (8 points)

(c) Use the monotonicity property to show that u tends to zero. (2 points)

Hint. Consider a = sup,cq |u(z,0)|.
Solution.

(a) From the formula in Theorem 4.7 and the definition of the heat kernel

1 lz—y|? 1 1
)< —5 - h dy < ——— h dy = ——=||h| 1
) € s [T Wy € s [ dy =

(b) Since €2 is bounded, it is contained in a ball B(0, R). Choose k to be a hat function that is
identically 1 on B(0, R) and zero outside B(0,2R). We have shown how to construct such
hat function in the tutorials.
mk(x) is a smooth function of compact support, so it is continuous, bounded, and has finite
L' norm. Therefore Part (a) applies to it.

We can see directly from the integral that [, is non-negative, in particular on 99 x RT.

And at time zero, we know from Theorem 4.7 that l,,(x,0) = mk(x) =m on = € Q.
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(c) Let a = sup,eq |u(z,0)| = sup,cq |h(x)|. By definition then I_,(z,0) < u(z,0) < l4(z,0)
on 2 x {0}. On the parabolic boundary (z,t) € 92 x RT we see that [_,(x,t) < u(z,t) =
0 < l4(x,t). By the monotonicity property it follows that [_,(x,t) < u(x,t) < l4(x,t) for

all points. The squeeze theorem then shows that u — 0 as ¢t — oco.



