
Ross Ogilvie 21st October, 2024

Introduction to Partial Differential Equations

Exercise sheet 8

23. Subharmonic Functions

Let Ω ⊂ Rn be an open and connected region. A continuous function v : Ω → R is called

subharmonic if for all x ∈ Ω and r > 0 with B(x, r) ⊂ Ω it lies below its spherical mean:

v(x) ≤ S[v](x, r).

(a) Let v1, v2 be two subharmonic functions. Show that v = max(v1, v2) is subharmonic.

(1 point)

(b) Suppose that v is twice continuous differentiable. Show that v is subharmonic if and only

if −∆v ≤ 0 in Ω. (3 points)

(c) Prove that every subharmonic function obeys the maximum principle: If the maximum of

v can be found inside Ω then v is constant. (2 points)

Solution.

(a) The inequality vi(x) ≤ v(x) for all points gives

1

nωnrn−1

∫
∂B(x,r)

vi(y) dσ(y) ≤
1

nωnrn−1

∫
∂B(x,r)

v(y) dσ(y)

and so vi(x) ≤ S[vi](x, r) ≤ S[v](x, r). It follows v(x) ≤ S[v](x, r).

(b) We know that
∂

∂r
S[v](x, r) = 1

nωn

∫
B(0,1)

∆v(x0 + rz) dz.

Suppose that ∆v ≥ 0. Then this shows that S(r) is a non-decreasing function. On the

other hand v(x) = S(0). Thus v(x) = S(0) ≤ S(r).
For the converse, we can not say from v(x) = S(0) ≤ S(r) directly that S is a non-decreasing

function of r. For example, S could initially increase, but then oscillate. But we do have

the intuition that it must increase initially. We use the following argument to prove this

rigorously.

Suppose that there is a point x0 with ∆v(x0) < 0. By continuity there is a ball B(x0, R)

on which ∆v(x) < 1
2∆v(x0). But then for all r ≤ R

∂

∂r
S[v](x0, r) =

1

nωn

∫
B(0,1)

∆v(x0 + rz) dz ≤ 1

nωn

∫
B(0,1)

1

2
∆v(x0) dz =

1

2
∆v(x0).

Integrating this from r = 0 to R gives

S(R) ≤ 1

2
∆v(x0)R+ S(0) = 1

2
∆v(x0)R+ v(x0) < v(x0).

This is similar to the proof in (a), in that we use the strict estimate 1
2∆v(x0) < 0 in the

final step. This shows that v(x0) lies above the spherical mean S(R) and so is not subhar-

monic. (Actually, it lies above all the spherical means S(r) for r ≤ R.) The contrapositive

statement is that if v is subharmonic then there are no points with ∆v < 0.
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(c) Suppose that v does indeed obtain a maximum at some x0 ∈ Ω, so that v(x0)− v(x) ≥ 0.

Let B(x0, R) ⊂ Ω. The mean of a constant is just the same constant S[v(x0)](y, r) = v(x0).

For r < R we have that

0 ≥ v(x0)− S[v](x0, r) =
1

nωnrn−1

∫
∂B(x0,r)

v(x0)− v(x) dσ(x) ≥ 0.

It follows that v(x0) − v(x) = 0 for all x ∈ B(x0, r) (we will show this below, if you are

unsure how to prove this). It follows that v(x) = v(x0) for all points x ∈ B(x0, R). Because

Ω is connected, this shows that v(x) = v(x0) on all of Ω. (The full version of this last step

is in the lecture script.)

Let us justify the claim made above. Suppose that f is continuous and non-negative, and∫
B(0,r)

f dσ = 0.

We want to show that f(x) = 0 for all x ∈ B(0, r). Suppose there is a point x1 where

f(x1) > 0. Then by continuity there is an open ball U = B(x1, ε) such that for all x ∈ U

it holds that f(x) ≥ 1
2f(x1). Then∫

∂B(0,r)
f(x) dσ(x) ≥

∫
∂B(0,r)∩U

f(x) dσ(x) ≥
∫
∂B(0,r)∩U

1

2
f(x1) dσ(x)

≥ 1

2
f(x1)σ(∂B(0, r) ∩ U)

> 0

because ∂B(x0, r) ∩ U is an open subset of the sphere and therefore has positive measure.

This is a contradiction. Therefore such x1 cannot exist; f(x) is zero on the sphere.

A note on the need for this proof. Notice it is not enough to use a neighbourhood U where

f(x) > 0 because integrals do not preserve strict inequalities. Hence we use this trick with

f(x) > 1
2f(x1) so in the last step we can apply a strict inequality. This is a common trick

in analysis when dealing with continuous functions and limits (remember, the integral is a

limit of a sum).

Indeed, if f < g are integrable functions we can’t say
∫
E f <

∫
E g. For example, take E to

be a null set, so that both integrals are zero. However this is the only counterexample. Try

to prove this yourself, and feel free to ask for a hint/help. The proof I give above though,

which only applies to continuous functions, is meant to be more intuitive and geometric.

It avoids using facts about the surface measure dσ other than ∂B(x0, r) ∩ U has positive

measure.

24. Liouville’s Theorem
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Liouville’s theorem (3.10 in the script) says that if u is bounded and harmonic, then u is constant.

In this question we give a geometric proof in R2 using ball means defined when B(x, r) ⊂ Ω

through

M[v](x, r) =
1

ωnrn

∫
B(x,r)

v(y) dy.

Theorem 3.5 states that if u is harmonic then it obeys u(x) = M[u](x, r). This beautiful proof

comes from the article Nelson, 1961.

(a) Consider two points a, b in the plane which are distance 2d apart. Now consider two balls,

both with radius r > d, centred on the two points respectively. Show that the area of the

intersection is (2 bonus points)

areaB(a, r) ∩B(b, r) = 2r2acos(dr−1)− 2d
√
r2 − d2

(b) Suppose that v is a bounded function on the plane: −C ≤ v(x) ≤ C for all x and some

constant C. Show that (2 points)∣∣M[v](a, r)−M[v](b, r)
∣∣ ≤ 2C

ω2

(
π − 2acos(dr−1)− 2d

r

√
1− d2r−2

)
(c) Let u ∈ C2(R2) be a bounded harmonic function. Complete the proof that u is constant.

(2 points)

Solution.

(a) Let the distance from the point where the two circles intersect to the line connecting a and b

be h. We have then that r2 = d2+h2. It has an angle of elevation from the centre of the balls

of cos θ = d/r. The area of the sector centred at b with angle 2θ is 1
2r

2(2θ) = r2acos(dr−1).

Subtracting off a triangle gives the area of the segment of B(b, r) as

r2acos(dr−1)− dh.

Twice this is the area of B(a, r) ∩B(b, r)

(b) The integrals have the same integrand, so their difference reduces to integrals on certain

domains:

ω2r
2
(
M[v](a, r)−M[v](b, r)

)
=

∫
B(a,r)\B(b,r)

v(y) dy −
∫
B(b,r)\B(a,r)

v(y) dy.

With the triangle inequalities

ω2r
2
∣∣M[v](a, r)−M[v](b, r)

∣∣ ≤ ∣∣∣∣∣
∫
B(a,r)\B(b,r)

v(y) dy

∣∣∣∣∣+
∣∣∣∣∣
∫
B(b,r)\B(a,r)

v(y) dy

∣∣∣∣∣
≤
∫
B(a,r)\B(b,r)

|v(y)| dy +
∫
B(b,r)\B(a,r)

|v(y)| dy

≤ C

∫
B(a,r)\B(b,r)

dy + C

∫
B(b,r)\B(a,r)

dy

= C
(
2πr2 − 2areaB(a, r) ∩B(b, r)

)
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(c) We know that a harmonic function is equal to its ball mean

|u(a)− u(b)| =
∣∣M(u, a, r)−M(u, b, r)

∣∣ ≤ 2C

ω2

(
π − 2acos(dr−1)− 2d

r

√
1− d2r−2

)
.

This must hold for all r > 1. But as r → ∞ the right hand side tends to 0. By the squeeze

rule, it must be that u(a) = u(b). Since this holds for all pairs of points, u is constant.

Note: As stated in the linked article, this proof holds in all dimensions. The key trick to

bound from below the volume of the lens (the overlap between the two balls) by the volume

of a ball of radius r − d. This avoids having to calculate the volume of the lens exactly.

25. Weak Tea

As in the script, for any test function ψ ∈ D((0, R)), define a test function ψ̃a ∈ B(a,R) by

ψ̃a(x) =
ψ(|x− a|)

nωn |x− a|n−1
.

(a) Describe the support of ψ̃ in terms of the support of ψ. (1 point)

(b) We have defined the spherical mean of a distribution using the formula Sa[F ](ψ) = F (ψ̃a)

for ψ ∈ D((0, R)). Compute Sa[δ] for a ̸= 0 and a = 0. Does it have weak mean value

property? (3 points)

(c) Take a function u ∈ C(Rn) and fix a radius r. Consider the function x 7→ S[u](x, r). Prove

FS[u](x,r)(φ) = Fu(x 7→ S[φ](x, r)).

(2 points)

(d) The spherical mean for distributions, as we have defined it, has the center point fixed and

takes a test function on (0,∞) instead of a radius. The formula in the previous part defines

a different sort of spherical mean of a distribution S̃r[F ] ∈ D′(Rn):

S̃r[F ](φ) = F (x 7→ S[φ](x, r))

What properties would you expect of this spherical mean applied to a harmonic distribu-

tion? What are the advantages and disadvantages of this spherical mean compared to the

one in the lecture script? What interesting observations can you make about this?

(Bonus points as deserved.)

Solution.

(a) The support of ψ̃a is the points x with |x−a| ∈ suppψ. Any compact subset of R is a finite

union of closed intervals, so the support of ψ̃a is the finite union of annuli, all centered at

a.
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(b) By definition

Sa[δ](ψ) = δ

(
ψ(|x− a|)

nωn |x− a|n−1

)
=

ψ(|a|)
nωn |a|n−1

.

We have explained in the lectures that ψ̃a(a) = 0, because ψ is identically zero near 0, and

so dividing by |x − a|n−1 doesn’t produce a singularity. It does not have the weak mean

value property, because if the integral of ψ is zero there is no reason this value should be

zero.

In the case a = 0, this means that S0[δ](ψ) = 0 for all distributions ψ. In other words

S0[δ] = 0 is the zero distribution.

In the case a ̸= 0, we might simplify this formula to

Sa[δ](ψ) =
1

nωn |a|n−1
δ|a|(ψ) ⇒ Sa[δ] =

1

nωn |a|n−1
δ|a|.

(c) We calculate, using Fubini and coordinate changes where necessary.

FS[u](x,r)(φ) =

∫
Rn

(
1

nωnrn−1

∫
∂B(x,r)

u(y) dσ(y)

)
φ(x) dx

=

∫
Rn

(
1

nωnrn−1

∫
∂B(0,r)

u(x+ z) dσ(z)

)
φ(x) dx

=
1

nωnrn−1

∫
∂B(0,r)

∫
Rn

u(x+ z)φ(x) dx dσ(z)

=
1

nωnrn−1

∫
∂B(0,r)

∫
Rn

u(w)φ(w − z) dw dσ(z)

=

∫
Rn

u(w)

(
1

nωnrn−1

∫
∂B(0,r)

φ(w − z) dσ(z)

)
dw

=

∫
Rn

u(w)

(
1

nωnrn−1

∫
∂B(w,r)

φ(y) dσ(y)

)
dw

=

∫
Rn

u(w)S[φ](w, r) dw

= Fu(w 7→ S[φ](w, r)).

(d) A harmonic function has the property that u(x) = S[u](x, r) (the mean value property).

We generalised this in the lecture script to the spherical mean of distributions, by saying

that Sa[F ] is a constant distribution for each a ∈ Rn. Specifically, we generalised that the

spherical mean is constant in r. In the situation of this question we could try to generalise

the fact that the spherical mean with fixed radius is equal to the function. We expect that

harmonic distributions have U(φ) = S̃r[U ](φ) for all φ ∈ D(Rn).

The disadvantage of this version is that we know something special about constant distri-

butions, namely that they correspond to constant functions. It is less clear (a priori) what

can be said about distributions that are unchanged by S̃.
The advantage is that this version is easier to understand in terms of distribution theory.

Recall from Exercise 17(d) the distribution G that comes from integrating on the unit circle.
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We can modify this to

Gr(φ) =
1

nωnrn−1

∫
∂B(0,r)

φ(y) dσ(y).

Observe that

φ ∗ PGr(x) = PGr(TxPφ) = Gr(PTxPφ)

=
1

nωnrn−1

∫
∂B(0,r)

PTxPφ(y) dσ(y)

=
1

nωnrn−1

∫
∂B(0,r)

φ(x+ y) dσ(y)

=
1

nωnrn−1

∫
∂B(x,r)

φ(y) dσ(y)

= S[φ](x, r),

and so

S̃r[F ](φ) = F (x 7→ S[φ](x, r)) = F (φ ∗ PGr) = Gr ∗ F (φ).

Therefore this version of spherical mean is nothing other than the convolution of distribu-

tions. Consider what transpires if we take a limit as r → 0

lim
r→0

Gr ∗ F (φ) = lim
r→0

F (S[φ](x, r)) = F (S[φ](x, 0)) = F (φ(x)).

In other words, the limit gives back the distribution F . This is the distribution version of

Lemma 3.3.

If we wanted to prove Weyl’s lemma using this approach, here are some steps we might

take. Suppose that U is a harmonic distribution. We should prove U = S̃[U ] = Gr ∗ U ,

as we mentioned above. The next hurdle is that Gr is not a smooth function. If it were,

then we have U as a convolution with a smooth function, implying that U is a smooth

function. Instead we approximate Gr by smooth functions. If λε is a mollifier then T̃rλε

is a suitable approximation. Note, this is the function we use to define u in Step 2 of

our proof of Weyl’s lemma. Finally, we know U is harmonic distribution that corresponds

to the smooth function u, so by the compatibility of distribution derivatives and classical

derivatives we conclude that u is harmonic.

26. Back in the saddle

Suppose that u ∈ C2(R2) is a harmonic function with a critical point at x0. Assume that the

Hessian of u has non-zero determinant. Show that x0 is a saddle point. Explain the connection

to the maximum principle. (4 points)

Solution. Let a = ∂2xu, b = ∂x∂yu, c = ∂2yu at x0. Because u is harmonic, a + d = 0. The

determinant of the Hessian of u at x0 is ad− b2 = −a2 − b2 ≤ 0. Since by assumption it is not

zero, it is negative. Therefore x0 is a saddle point.
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The maximum principle implies that any extrema must occur on the boundary. We know from

Analysis I or II that extrema can only occur on the boundary or at critical points. It follows

that harmonic functions can only have critical points that are saddle points.
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