
Kapitel 1

Differenzierbare Mannigfaltigkeiten

In diesem Abschnitt führen wir den Begriff der Mannigfaltigkeit ein. Dieser Begriff er-
laubt es die Differential– und Integralrechnung auf viele Fragestellungen anzuwenden.
Er beschreibt geometrische Gebilde, die lokal wie offene Teilmengen des Rn aussehen,
aber global auf sehr vielfältige Weise verklebt sein können. Entsprechend werden wir
einerseits die lokale Differential– und Integrationsrechnung anwenden und weiterent-
wickeln und andererseits auf neue globale Fragestellungen stoßen.

1.1 Zusammenhängende Komponenten

Zunächst wiederholen wir die Begriffsbildung von metrischen Räumen.

Definition 1.1. (Metrik auf einer Menge X) Eine Metrik (oder Abstandsfunktion) ist
eine Abbildung d : X ×X → R, (x, y) 7→ d(x, y) mit drei Eigenschaften

(i) d(x, y) ≥ 0 für alle x, y ∈ X und d(x, y) = 0⇐⇒ x = y (Positivität).

(ii) d(x, y) = d(y, x) (Symmetrie).

(iii) d(x, y) ≤ d(x, z) + d(z, y) für alle x, y, z ∈ X (Dreiecksungleichung).

Beispiel 1.2. (i) auf jeder Menge X definiert d(x, y) =

{

0 für x = y

1 für x 6= y

die sogenannte diskrete Metrik.

(ii) Auf R definiert d(x, y) = |x− y| eine Metrik.

(iii) Auf C definiert d(x, y) = |x− y| eine Metrik.
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(iv) Auf jeder nicht leeren Teilmenge A ⊂ X eines metrischen Raumes (X, d) definiert
die Einschränkung von d auf A× A→ R eine Metrik.

(v) Auf dem kartesischen Produkt zweier metrischer Räume definiert die Summe
beider Metriken eine Metrik. Sie heißt Metrik des kartesischen Produktes.

(vi) Die Einschränkung der Metrik (ii) auf die Vereinigung der inversen der natürli-
chen Zahlen mit {0} definiert eine Metrik auf N̄ = N∪{∞} ≃ { 1

n
| n ∈ N}∪{0}:

d(n,m) =
|n−m|

nm
d(∞, n) = d(n,∞) =

1

n
d(∞,∞) = 0 für alle n,m ∈ N.

Definition 1.3. (offener Ball, Umgebung, offene Menge) Ein offener Ball in (X, d)
mit Zentrum x ∈ X und Radius r > 0 ist die Menge B(x, r) = {y ∈ X | d(x, y) < r}.
Eine Umgebung eines Punktes x ∈ X ist eine Menge O ⊂ X, die für ein r > 0 einen
Ball B(x, r) enthält. Eine offene Menge O ⊂ X ist eine Teilmenge, die eine Umgebung
aller ihrer Punkte ist, d.h. für alle x ∈ O gibt es ein ǫ > 0 mit B(x, ǫ) ⊂ O.

Beispiel 1.4. In R besteht der Ball B(x, r) aus (x− r, x+ r). Im Rn besteht der Ball
B(x, r) aus allen Punkten, deren euklidischer Abstand zu x kleiner ist als r.

Alle offenen Bälle B(x, r) sind offenbar Umgebungen von x. Für y ∈ B(x, r) ist
d(x, y) < r. Sei z ∈ B(y, r − d(x, y)). Dann gilt d(x, z) ≤ d(x, y) + d(y, z) < r, also
auch B(y, r− d(x, y)) ⊂ B(x, r). Deshalb sind die offenen Bälle tatsächlich offen.

Offenbar ist die beliebige Vereinigung von offenen Mengen wieder offen. Für zwei
offene Mengen O und O′ und x ∈ O∩O′ gibt es r > 0 und r′ > 0 mit B(x, r) ⊂ O und
B(x, r′) ⊂ O′. Also ist B(x,min{r, r′}) ⊂ B(x, r)∩B(x, r′) ⊂ O∩O′, und O∩O′ offen.
Damit ist auch die Schnittmenge von endlich vielen offenen Mengen wieder offen.

Definition 1.5. (abgeschlossene Mengen, Abschluss) Die Komplemente von offenen
Mengen heißen abgeschlossen. Der Abschluss Ā eine Menge A ist die Schnittmenge
aller abgeschlossenen Mengen, die A enthalten.

Wegen der Regel von de Morgan, sind beliebige Schnitte und endliche Vereinigungen
von abgeschlossenen Mengen wieder abgeschlossen. Deshalb ist eine Menge genau dann
abgeschlossen, wenn sie mit ihrem Abschluss übereinstimmt.

Definition 1.6. Ein topologischer Raum X ist eine Menge X zusammen mit einer
Topologie auf X, d.h. einer Teilmenge τ der Potenzmenge P(X) aller Teilmengen von
X, deren Elemente wir offene Mengen von X nennen. Sie erfüllt drei Bedingungen:

(i) Die Schnittmenge von endlich vielen offenen Mengen ist offen.
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(ii) Die Vereinigung von beliebig vielen offenen Mengen ist offen.

(iii) X und ∅ sind offen.

Ein topologischer Raum heißt Hausdorffraum, wenn je zwei unterschiedliche Punkte in
zwei disjunkten offenen Mengen enthalten sind. Er heißt kompakt bzw. Lindelöfraum,
wenn jede offene Überdueckung eine endliche bzw. abählbare Teilüberdeckung besitzt.

In einem topologischen Raum X konvergiert eine Folge (xn)n∈N genau dann gegen
einen Grenzwert x ∈ X , wenn jede Umgebung von x, d.h. jede Menge die eine offene
Menge enthält, die x enthält, alle bis auf endlich viele Folgenglieder enthält. In einem
topologischen Hausdorffraum ist ein solcher Grenzwert eindeutig. In einem allgemeinen
topologischen Raum kann eine Folge mehrere Grenzwerte haben. Die Topologie τ =
P(X) heißt diskrete Topologie. In einem metrischen Raum (X, d) ist eine Teilmenge
genau dann offen, wenn sie eine Vereinigung von offenen Bällen ist. Eine Abbildung
f : X → Y von einem topologischen Raum X in einen topologischen Raum Y heißt
stetig, wenn das Urbild jeder offenen Menge offen ist.

Übungsaufgabe 1.7. Zeige, dass für metrische Räume diese Definition von Stetigkeit
mit der ǫ− δ–Definition übereinstimmt.

Die Schnittmengen von den offenen Teilmengen eines topologischen Raumes X mit
einer Teilmenge A ⊂ X bilden die offenen Mengen des topologischen Unterraumes A,
und die Schnittmengen von abgeschlossenen Teilmengen von X mit A die abgeschloes-
sene Mengen. Das kartesische Produkt zweier topologischer Räume besitzt als offene
Mengen beliebige Vereinigungen von kartesischen Produkten von offenen Mengen.

Definition 1.8. Ein topologischer Raum X heißt zusammenhängend, wenn die einzi-
gen Teilmengen von X, die sowohl abgeschlossen als auch offen sind, die leere Menge
und der ganze Raum X sind. Er heißt lokal zusammenhängend, wenn für jedes x ∈ X
jede Umgebung von x eine zusammenhängende Umgebung von x enthält.

Satz 1.9. Eine nicht leere Teilmenge der reellen Zahlen R ist genau dann zusam-
menhängend, wenn sie ein (beschränktes oder unbeschränktes) Intervall ist. Insbeson-
dere ist also R sowohl zusammenhängend als auch lokal zusammenhängend.

Beweis: Sei X ⊂ R eine zusammenhängende nicht leere Teilmenge. Wenn a < b zwei
Elemente sind, aber x 6∈ X für ein x ∈ (a, b), dann sind

(−∞, x) ∩X = (−∞, x] ∩X und (x,∞) ∩X = [x,∞) ∩X

jeweils offen und abgeschlossen, was der Annahme widerspricht. Also ist [a, b] in X
enthalten. Wir setzten inf A = −∞ bzw. supA = ∞, falls A nach unten bzw. oben
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unbeschränkt ist. Weil jedes Element von (infX, supX) zwischen zwei Elementen von
X enthalten ist, gilt dann (infX, supX) ⊂ X ⊂ [infX, supX ] und X ist eine der
Mengen (infX, supX), [infX, supX), (infX, supX ] oder [infX, supX ].

Offenbar ist umgekehrt das Intervall I genau dann zusammenhängend, wenn für
jede disjunkte Zerlegung I = A ∪ B in nicht leere Teilmengen mindestes eine nicht
offen ist. Sei also A ∋ a < b ∈ B und c := inf B ∩ [a, b]. Wenn A offen ist, folgt c ∈ B
und [a, c) ⊂ A. Wegen c 6∈ A ist B nicht offen. Also ist I zusammenhängend. q.e.d.

Satz 1.10. (i) Sei X ein topologischer Raum und A ⊂ X ein zusammenhängender
Unterraum. Dann ist jede Menge B mit A ⊂ B ⊂ Ā zusammenhängend.

(ii) Eine beliebige Vereinigung von zusammenhängenden Teilmengen eines topologis-
hcen Raumes X, deren Schnitt nicht leer ist, ist zusammenhängend.

(iii) Für eine Folge (An)n∈N von zusammenhängenden Teilmengen eines topologischen
Raumes X mit An+1 ∩An 6= ∅ für alle n ∈ N ist

⋃∞
n=1An zusammenhängend.

(iv) Das Bild eines zusammenhängenden topologischen Raumes unter einer stetigen
Abbildung ist zusammenhängend.

(v) Das kartesische Produkt zweier topologischer Räume ist genau dann (lokal) zu-
sammenhängend, wenn beide (lokal) zusammenhängend sind.

Beweis (i):Wenn B eine Vereinigung von zwei abgeschlossenen disjunkten Teilmengen
C und D ist, dann ist auch A eine disjunkte Vereinigung von (A∩C)∪ (A∩D). Wenn
C und D abgeschlossen in B sind, dann sind auch (A∩C) und (A∩D) abgeschlossen in
A. Weil B die einzige abgeschlossene Teilmenge von B ist, die A enthält, sind (A∩C)
bzw. (A ∩ D) genau dann gleich A, wenn C bzw. D gleich B ist. Also ist A nicht
zusammenhängend, wenn B nicht zusammenhängend ist. Daraus folgt (i).
(ii): Sei x ∈ X im Schnitt einer Familie von zusammenhängenden Teilmengen undA∪B
eine disjunkte Vereinigung der Vereinigung der Familie durch offene und abgeschlossene
nichtleere Teilmengen. Wir können x ∈ A annehmen. Dann gibt es mindestens eine
zusammenhängende Menge C der Familie, so dass B ∩ C nicht leer ist. Dann ist auch
C = (C ∩ A) ∪ (C ∩ B) eine disjunkte Vereinigung durch offene und abgeschlossene
Mengen. C ∩ A enthält x und C ∩ B ist nicht leer. Das steht im Widerspruch dazu,
dass C zusammenhängend ist. Daraus folgt (ii).
(iii): Induktiv folgt aus (ii), dass A1∪ . . .∪An zusammenhängend sind, und dann (iii).
(iv): Für eine stetige Abbildung f : X → Y und eine offene Teilmenge O von f [X ]
gibt es eine offene Teilmenge U von Y mit O = U ∩ f [X ]. Dann ist f−1[O] = f−1[U ]
offen und f : X → f [X ] stetig. Das Urbild einer offenen und abgeschlossenen Menge ist
wieder offen und abgeschlossen. Daraus folgt, dass das Bild einer zusammenhängenden
Menge unter einer stetigen Abbildung zusammenhängend ist.
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(v): Weil die Projektionen p1 : X × Y → X und p2 : X × Y → Y stetig und surjektiv
sind, sind wegen (iv) auchX und Y zusammenhängend, wennX×Y zusammenhängend
sind. Für alle (x, y) ∈ X×Y bilden die Bilder der Umgebungen von (x, y) unter p1 bzw.
p2 die Umgebung von x bzw. y. Deshalb sind X und Y auch lokal zusammenhängend,
wenn X × Y lokal zusammenhängend ist. Wenn umgekehrt X und Y (lokal) zusam-
menhängend sind, dann sind für alle (x, y) ∈ X × Y auch

X × {y} und {x} × Y

(lokal) zusammenhängend. Wegen (ii) ist dann

(X × {y}) ∪ ({x} × Y )

zusammenhängend und enthält alle Punkte (z, y) mit z ∈ X . Wegen (ii) ist dann auch

X × Y =
⋃

x∈X

((X × {y}) ∪ ({x} × Y ))

zusammenhängend. Für lokal zusammenhängende X und Y folgt, dass jede Umgebung
von (x, y) ∈ X × Y das kartesische Produkt von zusammenhängenden Umgebungen
von x und y enthält, und damit auch eine zusammenhängende Umgebung. q.e.d.

Korollar 1.11. Für alle n ∈ N ist Rn (lokal) zusammenhängend. q.e.d.

Definition 1.12. Sei X ein topologischer Raum und x ∈ X. Wegen Satz 1.10 (ii)
ist dann die Vereinigung aller zusammenhängenden Teilmengen von X, die x enthal-
ten, zusammenhängend und heißt zusammenhängende Komponente von x in X. Wegen
Satz 1.10 (i) sind diese zusammenhängenden Komponenten abgeschlossen. Zwei zusam-
menhängende Komponenten sind entweder gleich oder disjunkt. Also ist jeder topologi-
sche Raum X eine disjunkte Vereinigung seiner zusammenhängenden Komponenten.

Satz 1.13. Ein topologischer Raum X ist genau dann lokal zusammenhängend, wenn
die zusammenhängenden Komponenten von allen offenen Teilmengen wieder offen sind.

Beweis: Sei X ein topologischer Raum, dessen zusammenhängende Komponenten von
allen offenen Mengen offen sind. Dann enthält jede offene Umgebung von x ∈ X eine
offene zusammenhängende Komponente von x. Also ist X lokal zusammenhängend.

Sei jetztX lokal zusammenhängend. Dann ist für jedes x ∈ X die zusammenhängen-
de Komponente von x in einer offenen Menge eine Umgebung von x. Also sind alle
zusammenhängenden Komponenten in offenen Mengen offene, abgeschlossene und zu-
sammenhängende Mengen. q.e.d.
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Korollar 1.14. Jeder lokal zusammenhängende Lindelöfraum X hat höchstens abzähl-
bar viele Zusammenhangskomponenten. Sie sind alle offen und abgeschlossen.

Beweis: Die zusammenhängenden Komponenten eines lokal zusammenhängenden to-
pologischen Raumes X sind offen, paarweise disjunkt und überdecken den Raum. Diese
Überdeckung besitzt keine echte Teilüberdeckung, und ein lokalzusammenhängender
Lindelöfraum hat höchstens abzählbar viele Zusammenhangskomponenten. q.e.d.

Ein topologischer Raum X heißt wegzusammenhängend, wenn es für je zwei Punkte
x, y ∈ X einen stetigen Weg γ : [0, 1]→ X von x = γ(0) nach y = γ(1) gibt. Dann ist
γ([0, 1]) zusammenhängend und damit auch die Vereinigung X der Bilder aller solchen
Wege, bei denen x festgehalten wird und y ganz X durchläuft. Im Allgemeinen ist aber
nicht jeder zusammenhängende Raum auch wegzusammenhängend. Die Wegzusam-
menhangskomponenten eines Punktes x ist die Menge aller Punkte y ∈ X , für die ein
stetiger Weg von x nach y existiert. Sie ist im allgemeinen kleiner als die entsprechende
Zusammenhangskomponente.

Für alle n ∈ N und alle r > 0 ist die Abbildung

B(0, r)→ Rn, x 7→
x

r − ‖x‖

eine stetige Abbildung von B(0, r) nach Rn. Die Umkehrabbildung ist gegeben durch

Rn → B(0, r), y 7→
ry

1 + ‖y‖

und damit auch stetig. Also sind B(0, r) und Rn homöomorph (d.h. durch eine bi-
jektive stetige Abbildung und stetige Umkehrabbildung verbunden). Deshalb ist im
Rn jeder offene Ball zusammenhängend. Daraus wird folgen, dass alle differenzier-
baren Mannigfaltigkeiten lokal zusammenhängende Lindelöfräume sind, und deshalb
höchstens abzählbare disjunkte Vereinigungen von offenen und abgeschlossenen zu-
sammenhängenden Komponenten sind.

1.2 Karten und Atlanten

Definition 1.15. (Karte) Sei X ein topologischer Raum, dann heißt ein Homöomor-
phismus φ (also eine bijektive stetige Abbildung, deren Umkehrabbildung auch stetig
ist) von einer offenen Teilmenge U von X auf eine offene Teilmenge von Rn Karte. U
heißt der Definitionsbereich und n die Dimension der Karte.

Wegen dem Gebietsinvarianzsatz von Brouwer 3.36 ist das Bild einer offenen Teil-
menge des Rn unter einer injektiven stetigen Abbildung nach Rn wieder offen. Deshalb
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ist eine stetige Abbildung f : Rn → Rm mit n > m nicht injektiv. Andernfalls ist
die Verkettung von f mit der Einbettung i : Rm → Rn, x 7→ (x, 0) auf die ersten m
Komponenten von Rn ebenfalls stetig und injektiv. Das Bild einer offenen Menge unter
i ◦ f ist als Teilmenge des Bildes von i nicht offen, im Widerspruch zu der Invarianz
des Gebietes. Insbesondere existiert nur dann ein Homöomorphismus von einer offe-
nen Teilmenge des Rn auf eine offene Teilmenge des Rm, wenn n = m ist. Deshalb
stimmen die Dimensionen zweier Karten, deren Definitionsbereiche nicht schnittfremd
sind, überein. Das werden wir aber nicht benutzen. Zwei Karten φ1 und φ2 mit dem
gleichen Definitionsbereich U werden verträglich genannt, wenn die Übergangsfunktio-
nen φ2 ◦ φ

−1
1 und φ1 ◦ φ

−1
2 = (φ2 ◦ φ

−1
1 )−1 unendlich oft differenzierbare Abbildungen

sind. Weil die zweite Abbildung die Umkehrabbildung der ersten ist, sind dann für alle
x ∈ U die Ableitungen dieser Abbildungen bei φ1(x) bzw. φ2(x) als lineare Abbildun-
gen zwischen Rn1 und Rn2 invers zueinander sind. Also stimmen die Dimensionen von
zwei verträglichen Karten mit gleichem Definitionsbereich überein.

Zwei Karten φ1 und φ2 mit verschiedenen Definitionsbereichen U1 bzw. U2 heißen
verträglich, wenn die beiden Einschränkungen von φ1 und φ2 auf U1 ∩ U2, die offenbar
zwei Karten mit gleichem Definitionsbereich sind, miteinander verträglich sind.

Definition 1.16. (Atlas) Eine Familie von paarweise verträglichen Karten, deren De-
finitionsbereiche den topologischen Raum X überdecken, heißt Atlas.

Eine Karte heißt mit einem Atlas verträglich, wenn sie mit allen Karten des At-
lasses verträglich ist. Das ist äquivalent dazu, dass die Vereinigung des Atlasses mit
der Karte wieder ein Atlas ist. Zwei Atlanten heißen miteinander verträglich, wenn
die Vereinigung der Karten beider Atlanten wieder ein Atlas ist, also alle Karten zu-
sammen paarweise miteinander verträglich sind. Sei jetzt eine Karte φ : U → Rn und
x ∈ U gegeben. Weil die Verkettung von zwei glatten Abbildungen zwischen offenen
Teilmengen des Rn wieder glatt ist, ist die Bedingung an eine Karte ψ : V → Rm,
deren Definitionsbereich x enthält (dann ist natürlich m = n), dass die Abbildung
φ|V ∩U ◦ (ψ|V ∩U)

−1 bei ψ(x) und die Abbildung ψ|V ∩U ◦φ|V ∩U bei φ(x) glatt ist, für alle
miteinander verträglichen Karten ψ : V → Rm äquivalent, deren Definitionsbreiche
x enthalten. Also ist die gegebene Karte φ : U → Rn genau dann mit einem Atlas
verträglich, wenn es für jedes x ∈ U eine solche Karte ψ : V → Rm im Atlas gibt, die
die Bedingung erfüllt. Dann ist eine mit einem Atlas verträgliche Karte auch mit einem
mit dem Atlas verträglichen Atlas verträglich. Insbesondere stimmen die mit jeweils
einem von zwei gegebenen Atlanten verträglichen Karten genau dann überein, wenn die
beiden Atlanten verträglich sind, und die Verträglichkeit von Atlanten ist eine Äqui-
valenzrelation. Ein gesättigter Atlas ist ein maximaler Atlas, der also alle mit diesem
Atlas verträglichen Karten enthält. Jede Äquivalenzklasse von verträglichen Atlanten
enthält offenbar genau einen gesättigten Atlas und jeder gesättigte Atlas definiert ge-
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nau eine Äquivalenzklasse von verträglichen Atlanten, nämlich alle Atlanten, die in
dem gesättigten Atlas enthalten sind.

Obwohl jeder metrische Raum ein Haudorffraum ist, ist nicht jeder topologische
Raum mit einem Atlas ein Hausdorffraum. Sei X = R ∪ {0∗} der topologische Raum
dessen offene Mengen aus den offenen Teilmengen von R bestehen und Mengen der
Form {0∗} ∪ O bzw. {0∗} ∪ (O \ {0}), wobei O eine offene Umgebung von 0 ∈ R ist.
Dann ist 1lR eine Karte mit Definitionsbereich X \ {0∗} und 1lR\{0} mit 0∗ 7→ 0 eine
Karte mit Definitionsbereich X \ {0}. Zusammen bilden sie einen Atlas. Die beiden
Punte 0 und 0∗ besitzen allerdings keine schnittfremden Umgebungen und X ist kein
Haudorffraum. Um solche Beispiele auszuschließen definieren wir

Definition 1.17. (Mannigfaltigkeit) Ein topologischer Hausdorff– und Lindelöfraum
X zusammen mit einem Atlas heißt differenzierbare Mannigfaltigkeit.

Unter einer Karte einer differnzierbaren Mannigfaltigkeite verstehen wir im folgen-
den immer eine mit dem Atlas verträgliche Karte. Nicht jeder topologische Raum be-
sitzt einen Atlas. Offenbar besitzt jeder Punkt einer differenzierbaren Mannigfaltigkeit,
(oder eines topologischen Raumes mit einem Atlas) eine Umgebung, die homöomorph
zu einer offenen Teilmenge des Rn ist. So ist

{(x, y) ∈ R2 | x · y = 0} = {(x, 0) | x ∈ R} ∪ {(0, y) | y ∈ R}

keine Mannigfaltigkeit, weil der Punkt (0, 0) keine Umgebung besitzt, die homöomorph
zu einer offenen Teilmenge von Rn ist. Das sieht man daran, dass alle ǫ–Bälle um (0, 0)
ohne den Punkt (0, 0) 4 zusammenhängende Komponenten besitzen, also vier offene
und abgeschlossene zusammenhängende Teilmengen. Für jeden Punkt x ∈ Rn und alle
ǫ > 0 hat aber B(x, ǫ) \ {x} genau eine zusammenhängende Komponente, wenn n > 1
ist und zwei, wenn n = 1. Wie wir gesehen haben, stimmen die Dimensionen von zwei
verträglichen Karten, deren Definitionsbereiche beide einen Punkt x ∈ X enthalten
überein. Die Dimension einer differenzierbare Mannigfaltigkeit X ist die Funktion, die
jedem Punkt x ∈ X die Dimension einer Karte aus dem Atlas zuordnet, deren Defi-
nitionsbereich x enthält. Jeder Punkt x ∈ X besitzt eine offene Umgebung, auf der
die Dimension der Mannigfaltigkeit konstant ist. Deshalb sind die Teilmengen von X ,
auf denen die Dimension gleich einer Zahl n ∈ N ist, offen. Wenn (xm)m∈N eine in X
konvergente Folge ist, dann stimmen die Dimensionen von X an den Punkten (xm)m∈N

für große m mit der Dimension von X am Grenzwert von (xm)m∈N überein. Deshalb
sind die Teilmengen von X , auf denen die Dimension gleich einer Zahl n ∈ N ist, auch
abgeschlossen, und deshalb Vereinigungen von zusammenhängenden Komponenten von
X . Insbesondere hat eine zusammenhängende differenzierbare Mannigfaltigkeit nur ei-
ne Dimension. Eine nicht zusammenhängende differenzierbare Mannigafltigkeit kann
mehrere Dimensionen haben.
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Beispiel 1.18. (i) Jeder höchstens abzählbare diskrete Raum ist eine differenzierba-
re Mannigfaltigkeit der Dimension 0. Umgekehrt ist jede differenzierbare Man-
nigfaltigkeit der Dimension 0 ein höchstens abzählbarer diskreter Raum.

(ii) Jeder endlichdimensionale R–Vektorraum V ist für ein n ∈ N isomorph zu Rn

und besizt einen Atlas mit nur einer linearen Karte. Alle linearen Karten sind
miteinander verträglich. Damit wird V zu einer differenzierbaren Mannigfaltigkeit
von der gleichen Dimension wie V . Die Topologien aller Normen von V stimmen
alle überein, und die entsprechenden Atlanten sind alle miteinander verträglich.

(iii) Sei Rn+1 der (n+1)–dimensionale Euklidische Raum mit dem Euklidischen Ska-
larprodukt und der entsprechenden Norm. Seien e0, . . . , en die natürliche Basis
vom Rn+1. Unter der n–dimensionalen Sphäre verstehen wir die Teilmenge

Sn = {x ∈ Rn+1 | ‖x‖ = 1}

Im folgenden machen wir Sn auf natürliche Weise zu einer differenzierbaren Man-
nigfaltigkeit. Dafür definieren wir eine Variante der stereographische Projektion:

Sn \ {e0} → Rn

Zunächst identifizieren wir den Rn mit der Teilmenge

{x ∈ Rn+1 | 〈x, e0〉 = 0} = {0e0 + x1e1 + . . .+ xnen ∈ Rn | (x1, . . . , xn) ∈ Rn}.

Dann bildet die Variante stereographische Projektion Sn\{e0} (ohne den Nordpol)
auf den Schnittpunkt der Geraden durch den Nordpol und den Punkt von Sn\{e0}
mit der Ebene Rn ⊂ Rn+1 ab. Sei x ∈ Sn \ {e0}. Dann besteht die Gerade durch
den Nordpol und der Punkt x aus den Punkten {e0 + t(x − e0) | t ∈ R}. Sie
schneidet die Hyperebene Rn = {x ∈ Rn+1 | 〈x, e0〉 = 0} in dem Punkt mit

〈e0 + t(x− e0), e0〉 = 1− t+ t〈x, e0〉 = 0,

also t =
1

1− 〈x, e0〉
und y = e0 +

x− e0
1− 〈x, e0〉

.

Die Länge des Bildvektors ist dann gegeben durch

‖y‖ =

∥

∥

∥

∥

e0 +
(x− e0)

1− 〈x, e0〉

∥

∥

∥

∥

=

∥

∥

∥

∥

x− e0〈x.e0〉

1− 〈x, e0〉

∥

∥

∥

∥

=

√

〈x− 〈x, e0〉e0, x− 〈x, e0〉e0〉

(1− 〈x, e0〉)2

=

√

1− 2〈x, e0〉2 + 〈x, e0〉2

(1− 〈x, e0〉)2
=

√

1 + 〈x, e0〉

1− 〈x, e0〉
.
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Also ist 〈x, e0〉 gegeben durch

〈x, e0〉 =
‖y‖2 − 1

‖y‖2 + 1

und x ist gegeben durch

x = 〈x, e0〉e0 + (1− 〈x, e0〉)y =
‖y‖2 − 1

‖y‖2 + 1
e0 +

2y

‖y‖2 + 1
=

(‖y‖2 − 1)e0 + 2y

‖y‖2 + 1
,

wobei wir Rn als Teilmenge von Rn+1 auffassen. Also ist die Variante der stereo-
graphische Projektion ein Homöomorphismus von Sn \ {e0} nach Rn. Wenn wir
diese Variante der stereographischen Projektion an der Hyperebene Rn spiegeln,
also e0 durch −e0 ersetzt, dann erhalten wir den Homöomorphismus

Sn \ {−e0} → Rn, x 7→ y = −e0 +
x+ e0

1 + 〈x, e0〉
.

Die Verkettung der Einschränkung der obigen Abbildung y 7→ x auf y ∈ Rn \ {0}
mit der dieser Abbildung auf Sn \ {e0,−e0} ergibt die analytische Abbildung

Rn \ {0} → Rn \ {0}, y 7→ −e0 +

(

(‖y‖2 − 1)e0 + 2y

‖y‖2 + 1
+ e0

)

‖y‖2 + 1

2‖y‖2
=

y

‖y‖2

Wegen Satz 1.10 (ii) ist Sn als eine nicht disjunkte Vereinigung zweier zusam-
menhängender Mengen zusammenhängend. Dadurch wird Sn zu einer zusam-
menhängenden differenzierbaren kompakten Mannigfaltigkeit.

(iv) Sei f : Rn+1 → R eine glatte Funktion, deren Gradient ∇f keine gemeinsamen
Nullstellen mit f hat. Dann gibt es aufgrund der Voraussetzung an f für jedes
Element x ∈ Rn+1 der Nullstellenmenge ein i ∈ {0, . . . , n}, so dass ∂f

∂xi
(x) 6= 0.

Wegen dem Satz der impliziten Funktion gibt es dann eine genauso oft wie f stetig
differenzierbare Funktion g von der Schnittmenge von {y ∈ Rn+1 | yi = 0} mit
einer Umgebung von x nach R, so dass die Schnittmenge der Nullstellenmenge
von f mit der Umgebung von x gleich dem Graphen von g auf der Umgebung
von x ist, also gleich der Menge z(y) = y + g(y)ei wobei y die Schnittmenge
von {y ∈ Rn+1 | yi = 0} mit der Umgebung von x durchläuft. Die natürliche
Projektion von der Umgebung von x auf diese Schnittmenge, die jedem z das y
mit den gleichen Koordinaten, bis auf die i–te Koordinate, zuordnet (also y =
z − 〈z, ei〉ei) ist offenbar glatt und die Umkehrabbildung von der Abbildung y 7→
y + g(y)ei. Deshalb ist die Schnittmenge der Nullstellenmenge von f mit der
Umgebung von x diffeomorph zu einer offenen Teilmenge von Rn. Offenbar ist
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die Nullstellenmenge als Teilmenge des Rn+1 ein metrischer Raum und damit
auch ein Hausdorffraum. Mit Rn+1 ist auch die Nullstellenmenge eine abzählbare
Vereinigung von kompakten Mengen, also wegen Satz 1.29 ein Lindelöfraum und
damit eine n–dimensionale differenzierbare Mannigfaltigkeit.

Mit der Funktion f : Rn+1 → R, x 7→ f(x) = ‖x‖2 − 1 erhalten wir wieder, dass
die n–dimensionale Sphäre eine differenzierbare Mannigfaltigkeit ist.

Bemerkung 1.19. Anstatt von den Übergangsfunktionen zu fordern, dass sie unend-
lich oft differenzierbar sind, kann man auch r mal–stetig differenzierbar, oder analytisch
oder (für komplexe Mannigfaltigkeiten, bei denen wir Rn durch Cn ersetzen) holomor-
phe Übergangsfunktionen fordern. Dann entstehen Cr bzw. analytische, bzw. komplexe
Mannigfaltigkeiten. Wenn wir nur stetige Übergangsfunktionen fordern, sprechen wir
von topologischen Mannigfaltigkeiten. Ein gesättigter Atlas (bzw. eine Äquivalenzklasse
von verträglichen Atlanten) wird auch differenzierbare Struktur genannt. Es gibt im All-
gemeinen viele verschiedene Äquivalenzklassen von Atlanten. Aber die meisten dieser
differenzierbaren Strukturen werden durch Homöomorphismen aufeinander abgebildet.

Übungsaufgabe 1.20. Gebe einen Homöomorphismus von R nach R an, der die dif-
ferenzierbare Struktur von dem Vektorraum R mit Norm | · | auf eine nicht verträgliche
differenzierbare Struktur abbildet.

Definition 1.21. Zwei differenzierbare Mannigfaltigkeiten X und Y heißen diffeo-
morph, wenn es einen Homöomorphismus Φ : X → Y gibt, dessen Verkettung mit
allen Karten des Atlas von Y mit dem Atlas von X verträgliche Karten von X bilden.

Die meisten nicht miteinander verträglichen differenzierbaren Strukturen einer dif-
ferenzierbaren Mannigfaltigkeit sind also diffeomorph. Diese Relation auf dem Raum
aller differenzierbaren Strukturen ist offenbar eine weitere Äquivalenzrelation, neben
der Verträglichkeit von Atlanten. Für eine gegebene differenzierbare Mannigfaltigkeit
stellt sich dann die Frage, wieviel verschiedene nicht zueinander diffeomorphe differen-
zierbare Strukturen sie besitzt. Für den Fall von eindimensionalen Mannigfaltigkeiten
lässt sich leicht zeigen, dass alle verschiedenen differenzierbaren Strukturen zueinander
diffeomorph sind. Allgemein gilt, dass auf niedrigdimensionalen Mannigfaltigkeiten alle
differenzierbaren Strukturen diffeomorph sind. Wenn die Dimension größer als vier ist,
kann es verschiedene differenzierbare Strukturen geben. Im besonders schweren Fall
der Dimension vier (z.B. R4) wurde durch eine von der Physik inspirierte Theorie von
Donaldson in den achtziger Jahren gezeigt, dass es auch unendlich viele verschiedene
nicht zueinander diffeomorphe differenzierbare Strukturen geben kann.
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1.3 Differenzierbare Abbildungen

Definition 1.22. Seien X und Y zwei differenzierbare Mannigfaltigkeiten, p ∈ N0 und
x ∈ X. Dann heißt eine Abbildung f : X → Y in x p mal (stetig) differenzierbar (bzw.
glatt), wenn für zwei mit den Atlanten von X bzw. Y verträgliche Karten φ : U → Rn

und ψ : V → Rm mit x ∈ U , f(x) ∈ V und U ⊂ f−1[V ] folgende Abbildung von
φ[U ] ⊂ Rn auf ψ[V ] ⊂ Rm bei φ(x) p mal (stetig) differenzierbar bzw. glatt ist:

ψ ◦ f |U ◦ φ
−1 : φ[U ]→ ψ[V ], y 7→ ψ(f(φ−1(y))).

Diese Bedingung ist offenbar unabhängig von der Wahl der Karten. Für jedes x ∈ X
gibt es immer zwei Karten φ : U → Rn und ψ : V → RM im Atlas von X bzw. Y mit
x ∈ U und f(x) ∈ V . Den Definitionsbreich U kann man dann immer so einschränken,
dass x ∈ U ⊂ f−1[V ] gilt.

Damit können wir die Differentialrechnung von dem Rn auf differenzierbare Man-
nigfaltigkeiten übertragen. Wir benutzen dabei immer lokal Karten und erhalten so
Abbildungen von offenen Teilmengen des Rn auf offene Teilmengen des Rm. Im Folgen-
den werden wir noch viele weitere Strukturen der Differentialrechnung auf dem Rn bzw.
Rm weiterentwickeln und mit Hilfe der Karten auf differenzierbare Mannigfaltigkeiten
übertragen. Wichtig dabei ist, dass die entsprechenden Aussagen so formuliert werden,
dass sie nicht von der Wahl der Karte aus dem Atlas abhängen.

Beispiel 1.23. Im Folgenden werden wir R oder auch jeden endlichdimensionalen
Vektorraum mit der differenzierbaren Struktur aus dem Beispiel (ii) ausstatten und als
differenzierbare Mannigfaltigkeit ansehen. Also sind alle p mal stetig differenzierbaren
Funktionen von X nach R wohldefiniert. Wir wollen diesen Raum Cp(X,R) nennen.
Weil die p mal differenzierbare Funktion von einer offenen Teilmenge U ⊂ Rn nach R

eine Algebra bilden, ist auch Cp(X,R) bzw. C∞(X,R) eine Algebra.

Übungsaufgabe 1.24. Zeige, dass zwei differenzierbare Mannigfaltigkeiten X und Y
genau dann diffeomorph sind, wenn es eine glatte Abbildung f : X → Y gibt, die
bijektiv ist, und deren Umkehrabbildung auch glatt ist.

Beispiel 1.25. (i) Sei Rn der Euklidische n–dimensionale Raum mit dem Euklidi-
schen Skalarprodukt. Dann ist die Abbildung

f : x 7→ f(x) =
2x

1− ‖x‖2

ein Diffeomorphismus von B(0, 1) ⊂ Rn nach Rn. Sei nämlich y = 2x
1−‖x‖2

. Dann

gilt für ‖x‖ < 1 auch ‖x‖2 > 0. Also folgt ‖y‖ = 2‖x‖
1−‖x‖2

oder auch ‖y‖‖x‖2 +
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2‖x‖ − ‖y‖ = 0. Also gilt

‖x‖ =
−2±

√

4 + 4‖y‖2

2‖y‖
=
−1 ±

√

1 + ‖y‖2

‖y‖
.

Wegen 0 ≤ ‖x‖ < 1 folgt

‖x‖ =

√

1 + ‖y‖2 − 1

‖y‖

Dann gilt

x =
y(1− ‖x‖2)

2
=
y

2

‖y‖2 − 1 + 2
√

1 + ‖y‖2 − 1− ‖y‖2

‖y‖2

= y

√

1 + ‖y‖2 − 1

(
√

1 + ‖y‖2 + 1)(
√

1 + ‖y‖2 − 1)
=

y
√

1 + ‖y‖2 + 1

Diese Abbildung ist für alle y ∈ Rn wohldefiniert und das Bild liegt in B(0, 1).
Die Abbildungen f und ihre Umkehrabbildung sind sogar analytische Abbildungen,
also auch Diffeomorphismen von B(0, 1) auf Rn bzw. Rn nach B(0, 1).

(ii) Die Abbildung g : x→ x
‖x‖2

ist offenbar eine Involution:

x
‖x‖2

‖ x
‖x‖2
‖2

=
x‖x‖4

‖x‖2‖x‖2
= x.

g ist also ein analytischer Diffeomorphismus von Rn\{0} nach Rn\{0}. Sie bildet
das Äußere {x ∈ Rn|‖x‖ > 1} der Einheitskugel auf B(0, 1) \ {0} ab. Zusammen
mit der Abbildung f aus (i) ergibt sie einen analytischen Diffeomorphismus des
Äußeren der Einheitskugel nach Rn \ {0}.

1.4 Zerlegung der Eins

In diesem Abschnitt führen wir eine sogenannte Zerlegung der Eins ein. Das ist eine
abzählbare Familie (fn)n∈N von nicht negativen glatten Funktionen mit Werten in dem
Intervall [0, 1], deren Summe

∑∞
n=1 fn = 1 gleich Eins ist. Diese Summe soll dabei

immer lokal endlich sein, d.h. für jedes x einer gegebenen Mannigfaltigkeit, soll es eine
Umgebung geben, auf der nur endlich viele der Funktionen (fn)n∈N nicht verschwinden.
Dadurch ist die Summe immer eine endliche Summe und deshalb auch ohne Konvergenz
wohldefiniert. Mithilfe einer solchen Zerlegung der Eins wollen wir die Funktionen bzw.
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Vektorfelder bzw. Differentialformen (diese werden später eingeführt) in Summen von
Funktionen bzw. Vektorfeldern bzw. Differentialformen zerlegen, die nur innerhalb einer
kleinen offenen Menge nicht verschwinden. Also sollen die einzelnen Funktionen der
Zerlegung der Eins nur innerhalb von (kleinen) offenen Mengen nicht verschwinden.

Definition 1.26. Eine Folge (fn)n∈N von reellen [0, 1]–wertigen Funktionen auf einem
topologischen Raum X heißt Zerlegung der Eins, wenn sie folgende Bedingungen erfüllt:

(i) (Lokale Endlichkeit) Für jedes x ∈ X gibt es eine offene Umgebung U , auf der
alle bis auf endlich viele Funktionen der Folge (fn)n∈N verschwinden.

(ii) Für alle x ∈ X gilt
∞
∑

n=1

fn(x) = 1. Wegen (i) ist diese Summe immer endlich.

In diesem Abschnitt beweisen wir den folgenden Satz.

Satz 1.27. (Existenz einer glatten Zerlegung der Eins) Sei X eine differenzierbare
Mannigfaltigkeit und U eine offene Überdeckung von X. Dann gibt es eine glatte Zer-
legung der Eins (fn)n∈N auf X, so dass alle Funktionen fn außerhalb einer kompakten
Teilmenge einer der offenen Mengen Un ∈ U der Übereckung verschwinden.

Wenn zu jeder offenen Überdeckung U eine solche Zerlegung der Eins (fn)n∈N exi-
stiert, dann gibt es offenbar eine Folge (Un)n∈N von offenen Mengen in U , so dass jedes
fn außerhalb von Un verschwindet. Wegen der Bedingung (ii) ist die Folge (Un)n∈N eine
abzählbare offene Teilüberdeckung von U sein. Insbesondere ist X ein Lindelöfraum.
Wir zeigen zunächst ein paar Äquivalenzen für topologische Räume mit einem Atlas.

Definition 1.28. Ein topologischer (X, τ) Raum heißt lokalkompakt, wenn jeder Punkt
eine kompakte Umgebung besitzt. Er erfüllt das sogenannnte zweiteAbzählbarkeitsaxiom,
wenn τ eine abzählbare Basis β besitzt, d.h. eine abzählbare Teilmenge β ⊂ τ , so dass
jedes O ∈ τ die Vereinigung der offenen Mengen in {U ∈ β | U ⊂ O} ist.

Wegen Heine-Borel sind alle endlichdimensionalen euklidischen Räume Rn lokal
kompakt. Deshalb ist ein topologischer Raum mit einem Atlas lokal kompakt. Also
sind differenzierbare Mannigfaltigkeiten lokal kompakte topologische Hausdorffräume.

Für einen topologischen Raum (X, τ), der das zweite Abzählbarkeitsaxiom erfüllt,
bilden die Schnittmengen der Elemente von einer abzählbaren Basis mit einem Unter-
raum eine abzählbare Basis des Unterraums. Deshalb erfüllt jeder solche Unterraum
auch das zweite Abzählbarkeitsaxiom. Im Rn ist β = {B(x, r) | x ∈ Qm, r ∈ Q+} eine
abzählbare Basis, so dass jeder Unterraum des Rn eine abzählbare Basis besitzt.

Satz 1.29. Für einen topologischen Raum X mit einem Atlas ist folgendes äquivalent:
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(i) Es gibt Folgen offener und kompakter Teilmengen (On)n∈N und (Kn)n∈N von X,
so dass On ⊂ Kn ⊂ On+1 ⊂ Kn+1 für n ∈ N und

⋃

n∈NOn =
⋃

n∈NKn = X gilt.

(ii) X erfüllt das zweite Abzählbarkeitsaxiom.

(iii) X ist ein Lindelöfraum

Beweis: (i)⇒ (ii): Jeder topologische Raum (X, τ) mit einem Atlas wird durch offene
Teilmengen überdeckt, die durch Karten homöomorph auf Teilmenge eines Rn abgebil-
det werden, und damit abzählbare Basen besitzen. Für jedes n ∈ N überdecken dann
endlich viele dieser Mengen die kompakte Teilmenge Kn aus (i). Deren Vereinigung ist
eine abzählbare Überdeckung von X durch offene Teilmengen, mit abzählbaren Basen.
Die abzählbare Vereinigung aller dieser Basen ist dann eine abzählbare Basis von τ .
(ii) ⇒ (iii): Für eine offene Überdeckung U eines topologischen Raumes (X, τ) mit
einer abzählbaren Basis β ist β ′ = {V ∈ β | V ⊂ UV für ein UV ∈ U} höchstens
abzählbar und (UV )V ∈β′ eine abzählbare Teilüberdeckung, weil jedes x ∈ X in einem
U ∈ U , also in einem V ∈ β ′ und damit auch in einem UV liegt. Also ist jeder topolo-
gische Raum, der das zweite Abzählbarkeitsaxiom erfüllt, auch ein Lindelöfraum.
(iii) ⇒ (i): Jeder Punkt x ∈ X eines topologischen Raum (X, τ) mit einem Atlas
besitzt eine kompakte Umgebung Kx, die dann eine in X offenen Umgebung Ox von
x enthält. Wenn X ein Lindelöfraum ist, dann besitzt die Überdeckung

⋃

x∈X Ox eine
abzählbare Teilüberdeckung, die wir durch n ∈ N durchnummerieren. Wir definieren
induktiv die On und die Kn als Vereinigungen von endlich vielen dieser durchnumme-
rierten Ox bzw. der entsprechenden Kx. Dabei wird O1 als das erste der durchnumme-
rierten Ox und On+1 jeweils als die Vereinigung von On mit dem n-ten Element und
endlich vielen dieser Ox definiert, die Kn überdecken. Diese Folgen erfüllen (i). q.e.d.

Man kann zeigen1, dass jeder Hausdorffraum X mit einem Atlas, der eine dieser
Bedingungen erfüllt, metrisierbar ist, d.h. es gibt eine Metrik aufX mit den gleichen of-
fenen Mengen wie X . Außerdem ist ein metrischer Raum genau dann ein Lindelöfraum,
wenn er eine abzählbare dichte Teilmenge enthält, also separabel ist. Insbesondere sind
alle differenzierbaren Mannigfaltigkeiten separabel und metrisierbar.

Lemma 1.30. Zu jeder offenen Überdeckung U einer differenzierbaren Mannigfaltigkeit
X gibt es eine Folge (φn)n∈N von Karten mit Definitionsbereichen (Un)n∈N, so dass

1Mit folgenden Aussagen aus J.M. Munkres: Topology, Chapter 4, folgt die Metrisierbarkeit von X

aus dem Theorem 4.1, wenn zuvor gezeigt wird, dass jeder lokal kompakte Hausdorffraum regulär ist:
d.h. für einem Punkt x und eine abgeschlossene Menge A mit x 6∈ A sind {x} und A in zwei disjunkten
offenen Mengen enthalten. Wenn K eine kompakte Umgebung von x ist, die die in X offene Umgebung
O enthält, dann ist K wegen Theorem 2.4 normal und wegen J.M. Munkres: Topology, Chapter 3,
Theorem 5.3 abgeschlossen. Wegen Lemma 2.1 (b) gibt es eine in K offene Umgebung U von x, deren
Abschluss in K disjunkt ist zu A. Dann sind U ∩O und X \ Ū solche disjunkte offene Mengen.
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(i) Für alle n ∈ N ist φn ein Diffeomorphismus von Un auf einen Ball B(0, 2) ⊂ Rm.

(ii) Jedes Un ist in einer offenen Menge von U enthalten.

(iii) (φ−1
n [B(0, 1)])n∈N ist eine offene Überdeckung von X.

(iv) Jedes Un ist mit höchstens endlich vielen der (Um)m∈N nicht schnittfremd.

Beweis: Jeder Punkt x ∈ X ist im Definitionsbreich einer mit dem Atlas der diffe-
renzierbaren Mannigfaltigkeit X verträglichen Karte φx enthalten. Außerdem ist x in
einer der offenen Mengen in U enthalten. Indem wir die Karten (φx)x∈X translatieren,
auf Urbilder von offenen Bällen einschränken, und gegebenfalls um einen geeigneten
positiven Faktor strecken, erhalten wir Karten, die φx(x) = 0 und sowohl (i) als auch
(ii) erfüllen. Also gibt es für jede Überdeckung U von X eine Überdeckung von X durch
Definitionsbreiche von Karten (φx)x∈X , die φx(x) = 0 und (i)–(ii) erfüllen.

Die differenzierbare Mannigfaltigkeit X ist ein Lindelöfraum mit einem Atlas. Seien
(On)n∈N und (Kn)n∈N die entsprechenden Folgen von offenen bzw. kompakten Mengen
in Satz 1.29 (i). Wir ergänzen K−1 = O0 = K0 = ∅. Für jedes n ∈ N liegt jedes x ∈
Kn\On−1 im Definitionsbreich Ux einer solchen Karte φx von X , die φx(x) = 0 und (i)–
(ii) erfüllt. Zusätzlich können wir Ux ⊂ On+1 \Kn−2 annehmen. Die kompakte Menge
Kn \ On−1 besitzt eine endliche Teilüberdeckung durch die Urbilder der offenen Bälle
B(0, 1) bezüglich dieser Karten. Insbesondere besitzt K1 eine endliche Überdeckung
durch die Urbilder von B(0, 1) bezüglich solcher Karten, deren Definitionsbereiche in
O2 enthalten sind. Alle diese abzählbar vielen Karte erfüllen zusammen (i)–(iii). Jeder
der endlich vielen Definitionsbereiche der Karten der Überdeckung von Kn \ On−1 ist
in On+1 \Kn−2 enthalten, und jeder der Überdeckung von Km \Om−1 in Om+1 \Km−2.
Für |n−m| > 2 sind sie miteinander schnittfremd und es gilt auch (iv). q.e.d.

Beweis der Existenz der Zerlegung der Eins (Satz 1.27): Seien a < b zwei reelle
Zahlen. Dann ist die reelle Funktion fa,b : R→ [0, 1], x 7→ fa,b(x) mit

fa,b(x) =











1 für x ≤ a

exp( 1
x−b

exp( 1
a−x

)) für a < x < b

0 für b ≤ x

eine glatte Funktion. Für alle r > 0 ist dann die Funktion g(x) = f1,3/2(‖x‖) eine
glatte Funktion auf dem Rn, die auf B(0, 1) gleich 1 ist und außerhalb von B(0, 3/2)
verschwindet. Sei für alle n ∈ N φn : Un → B(0, 2) die Folge von Karten, die (i)–(iv)
aus dem vorangehenden Lemma erfüllt. Dann setzen wir die Funktion hn = g ◦ φn zu
einer glatten Funktion auf X fort, indem wir sie außerhalb des Definitionsbereichs Un
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der Karte φn gleich Null setzen. Wir definieren jetzt eine Zerlegung der Eins (fn)n∈N:

fn = hn

n−1
∏

l=1

(1− hl) für alle n ∈ N.

Dann folgt induktiv für alle n ∈ N:

f1 + . . .+ fn + fn+1 = 1−
n
∏

l=1

(1− hl) + hn+1

n
∏

l=1

(1− hl) = 1−
n+1
∏

l=1

(1− hl).

Wegen der Bedingung (ii) ist jedes x ∈ X für ein n ∈ N in φ−1
n [B(0, 1)] ⊂ Un enthalten.

Wegen der Bedingung (iv) sind auf Un = φ−1
n [B(0, 2)] nur endlich viele Funktionen

(hm)m∈N ungleich Null. Deshalb erfüllt diese Folge die Bedingung der lokalen Endlich-
keit. Auf φ−1[B(0, 1)] ist (1 − hn) gleich Null. Deshalb ist die Summe

∑

fn aller fn
überall gleich Eins. Wegen der Bedingung (iii) verschwindet jedes fn außerhalb der
kompakten Teilmenge φ−1[B(0, 3/2)] einer der offenen Mengen von U . q.e.d.

Zum Abschluss können wir wegen der lokalen Endlichkeit noch alle Elemente einer
solchen Zerlegung der Eins, die außerhalb derselben offenen Menge in U verschwinden,
zu einer Funktion aufsummieren. Dadurch erreichen wir, dass die abzählbare Familie
(hn)n∈N durch eine höchstens abzählbare Teilüberdeckung (Un)n∈N von U durchnum-
meriert wird. Allerdings können wir dann im Allgemeinen – wenn z.B. die Überdeckung
nur aus einer nicht kompakten Menge besteht – nicht mehr erreichen, dass die Funk-
tionen hn außerhalb eine kompakten Teilmenge eines Elementes von U verschwinden.

Korollar 1.31. Sei X eine differenzierbare Mannigfaltigkeit und A ⊂ X eine Teilmen-
ge und g eine reelle Funktion auf A. Gibt es für jedes x ∈ Ā im Abschluss von A eine
offene Umgebung Vx von x in X und eine glatte Funktion fx auf Vx, die auf Vx ∩ A
mit g übereinstimmt, dann gibt es für jede offene Menge U , die Ā enthält eine glatte
Funktion f auf X, die auf A mit g übereinstimmt, und außerhalb von U verschwindet.

Beweis: Die offene Überdeckung V =
⋃

x∈Ā(Vx ∩ U) einer offenen Teilmenge, die
Ā enthält, besitzt eine abzählbare Teilüberdeckung (Vn)n∈N und eine entsprechenden
Zerlegung der Eins (hn)n∈N. Sei (fn)n∈N Folge der Einschränkungen der entsprechenden
fx auf Vn ∩ U . Dann leistet die Funktion f =

∑

n∈N hnfn das Gewünschte. q.e.d.

Wir nennen Funktionen g, die die Bedingungen des Korollars erfüllen auf Ā un-
endlich oft differenzierbar. Analog werden r mal stetig differenzierbare Funktionen auf
abgeschlossenen Teilmengen von differenzierbaren Mannigfaltigkeiten definiert.
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1.5 Tangentialraum

In diesem Abschnitt wollen wir den Begriff der Tangentialvektoren auf differenzierbare
Mannigfaltigkeiten verallgemeinern. In jedem Punkt des Rn können wir den Raum aller
infinitesimalen Richtungen von differenzierbaren Funktionen von reellen Intervallen in
den Rn mit dem Rn identifizieren. Durch die Karten des Atlases können wir das auch
für differenzierbare Mannigfaltigkeiten. Um diese Tangentialvektoren, die die infinite-
simalen Richtungen auf einer differenzierbaren Mannigfaltigkeit beschreiben, aber so
einzuführen, dass ihre Definition nicht von der Wahl der Karte abhängen, definieren
wir zunächst eine Äquivalenzrelation auf dem Raum der Abbildungen zwischen zwei
differenzierbaren Mannigfaltigkeiten.

Definition 1.32. Seien X und Y zwei differenzierbare Mannigfaltigkeiten und x ∈
X. Außerdem seien f1 und f2 zwei auf offenen Umgebungen von x stetige und in x
differenzierbare Abbildungen nach Y . Wir sagen, dass sich die beiden Abbildungen f1
und f2 in dem Punkt x berühren, wenn f1(x) = f2(x) = y und bezüglich einer Karte φ
von X im Punkt x und einer Karte ψ von Y im Punkt y die Ableitung von ψ ◦ f1 ◦φ

−1

und ψ ◦ f2 ◦ φ
−1 im Punkt φ(x) als lineare Abbildung übereinstimmen.

Wegen der Kettenregel ist diese Aussage unabhängig von den Karten φ und ψ von
X bzw. Y in den Punkten x bzw. y. Aus der Definition folgt auch sofort, dass diese
Relation eine Äquivalenzration zwischen solchen Abbildungen ist.

Definition 1.33. Sei X eine differenzierbare Mannigfaltigkeit und x ∈ X. Die Men-
ge der Äquivalenzklassen aller stetigen im Punkt 0 differenzierbaren und sich dort
berührenden Abbildungen von (−ǫ, ǫ) nach X, die 0 auf x abbilden, heißt Tangenti-
alraum von X im Punkt x und wird mit TxX bezeichnet. Seine Elemente heißen Tan-
gentialvektoren im Punkt x.

Für alle v, w ∈ Rm ist die Abbildung t 7→ w+tv unendlich oft differenzierbar und hat
bei t = 0 die Ableitung t 7→ tv. Umgekehrt berührt jede in 0 differenzierbare Abbildung
x : (−ǫ, ǫ) → Rm, mit x(0) = w, die Abbildung t 7→ w + tv mit v = ẋ(0) im Punkt
t = 0. Dadurch wird der Tangentialraum TwW von einer offenen TeilmengeW ⊂ Rm im
Punkt w ∈ W auf eindeutige Art und Weise mit dem Vektorraum v ∈ Rm identifiziert.
Für jede in 0 differenzierbaren Abbildungen (−ǫ, ǫ) → W , die 0 auf w ∈ W abbildet,
ist die Verkettung mit einer in w ∈ W differenzierbare Abbildung f : W → Rn eine
in 0 differenzierbare Abbildung (−ǫ, ǫ)→ Rn, die 0 auf f(w) abbildet. Die Verkettung
mit f bildet dabei sich berührende Abbildungen auf sich berührende Abbildungen ab
und induziert ein Abbildung Tx(f) : TxW → Tf(x)R

n. Wenn wir dabei TxW mit Rm,
und Tf(x)R

n mit Rn identifizieren, dann wird Tx(f) mit v 7→ d
dt
|t=0f(w+ tv) = f ′(w)(v)
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idenifiziert. Insgesamt entspricht also Tx(f) der Ableitung

f ′(w) : Rm ≃ TwW → Rn ≃ Tf(w)R
n.

Weil die Ableitung eine lineare Abbildung ist, ist diese Abbildung eine lineare Abbil-
dung von dem Vektorraum Rm in den Vektorraum Rn. Das wollen wir auf differenzier-
bare Abbildungen zwischen differenzierbaren Mannigfaltigkeiten übertragen.

Beispiel 1.34. Wir haben gerade gesehen, dass sich für alle w ∈ Rm der Tangenti-
alraum TwR

m auf natürliche Weise mit Rm identifizieren lässt. Wenn allgemeiner V
ein normierter Vektorraum ist, dann ist für alle w, v ∈ V die Abbildung t 7→ w + tv
unendlich oft differenzierbar, und die Ableitung ist gegeben durch t 7→ tv. Jede differen-
zierbare Abbildung (−ǫ, ǫ)→ V , t 7→ v(t), die 0 auf w abbildet, berührt offenbar genau

die den Vektoren w und v = dv(t)
dt
|t=0 entsprechende obige Abbildung. Dadurch wird der

Tangentialraum TwV auf natürliche Weise mit V identifiziert.

Definition 1.35. Sei f : X → Y eine in x ∈ X differenzierbare Abbildung zwischen
differenzierbaren Mannigfaltigkeiten und seien φ : U → Rm und ψ : V → Rn Karten
von X und Y mit x ∈ U und f(x) ∈ V . Dann ist ψ◦f ◦φ−1 eine in φ(x) differenzierbare
Abbildung von W = φ[f−1[V ]∩U ] ⊂ Rm nach Rn. Die Verkettung mit ψ ◦f ◦φ−1 bildet
sich in 0 berührende Abbildungen (−ǫ, ǫ) → W , die 0 auf φ(x) abbilden, auf sich in 0
berührende Abbildungen (−ǫ, ǫ)→ Rn ab, die 0 auf ψ(f(x)) abbilden. Deshalb induziert
die Verkettung mit f eine Abbildung vom Tangentialraum TxX von X bei x ∈ X in den
Tangentialraum Tf(x)Y von Y bei f(x) ∈ Y . Diese Abbildung wird mit Tx(f) bezeichnet.
Für differenzierbare f bezeichnet T (f) die Vereinigung aller dieser Abbildungen:

T (f) : TX =
⋃

x∈X

TxX → TY =
⋃

y∈Y

TyY.

Satz 1.36. (i) Sei X eine differenzierbare Mannigfaltigkeit und x ∈ X. Dann indu-
ziert jede Karte φ um x ∈ X eine bijektive Abbildung Tx(φ) von TxX auf den
Vektorraum Tφ(x)R

m. Dieser Isomorphismus induziert auf TxX eine Vektorraum-
struktur über R, die nicht von der Karte φ abhängt.

(ii) Sei f : X → Y eine im Punkt x ∈ X differenzierbare Abbildung zwischen den
differenzierbaren Mannigfaltigkeit X und Y . Dann ist die folgende Abbildung li-
near:

Tx(f) : TxX → Tf(x)Y.

(iii) Seien f : X → Y in x ∈ X und g : Y → Z in f(x) differenzierbare Abbildungen
zwischen differenzierbaren Mannigfaltigkeiten. Dann ist g ◦ f in x differenzierbar
und es gilt

Tx(g ◦ f) = Tf(x)(g) ◦ Tx(f).
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(iv) Eine differenzierbare Abbildung f : X → Y zwischen differenzierbaren Mannig-
faltigkeiten ist genau dann lokal konstant, wenn Tx(f) = 0 für alle x ∈ X.

(v) Zwei differenzierbare Abbildungen f : X → Y und g : X → Y zwischen differen-
zierbaren Mannigfaltigkeiten berühren sich genau dann im Punkt x ∈ X, wenn
f(x) = g(x) und Tx(f) = Tx(g) gilt.

Beweis: Wir zeigen zuerst (iii): Seien also f : X → Y in x ∈ X und g : Y → Z in
f(x) differenzierbar, und seien φ : U → Rm, ψ : V → Rn und ξ : W → Rl Karten
von X , Y und Z mit x ∈ U , f(x) ∈ V und g(f(x)) ∈ W . Sei V ′ = g−1[W ] ∩ V und
U ′ = f−1[V ′] ∩ U . Dann ist ξ ◦ g ◦ ψ−1 eine in ψ(f(x)) differenzierbare Abbildung
von ψ′[V ′] ⊂ Rn nach Rl und ψ ◦ f ◦ φ−1 eine in φ(x) differenzierbare Abbildung von
φ[U ′] ⊂ Rm nach ψ[V ′] ⊂ Rn. Ihre Verkettung ist die in φ(x) differenzierbare Abbildung
ξ ◦ g ◦ f ◦ φ−1 von φ[U ′] ⊂ Rm nach Rl. Das zeigt, dass g ◦ f in x differenzierbar ist,
wenn f in x und g in f(x) differenzierbar sind.

Für jede in 0 differenzierbare Abbildung y : (−ǫ, ǫ) → X , die 0 auf x abbildet,
ist f ◦ y eine in 0 differenzierbare Abbildung (ǫ, ǫ) → Y , die 0 auf f(x) abbildet. Die
Verkettung g ◦ (f ◦ y) von f ◦ y mit g ist dann eine in 0 differenzierbare Abbildung,
die 0 auf g(f(x)) abbildet. Wegen g ◦ (f ◦ y) = (g ◦ f) ◦ y ist diese Abbildung auch die
Verkettung von y mit g ◦ f . Dann folgt Tx(g ◦ f) = Tf(x)(g) ◦ Tx(f) aus der Definition
von Tx(f), Tf(x)(g) und Tx(g ◦ f). Das zeigt (iii).

Offenbar gilt Tx(1lX) = 1lTxX für jede differenzierbare MannigfaltigkeitX und x ∈ X .
Dann folgt aus (iii), dass für jede Karte φ : U → Rm und jedes x ∈ U die Abbildung
Tφ(x)(φ

−1) die inverse von Tx(φ) ist. Also sind alle diese Abbildungen bijektiv.
Als nächstes wählen wir in der Situation von (ii) zwei Karten φ : U → Rm von X

und ψ : V → Rn von Y mit x ∈ U und f(x) ∈ V . Dann ist ψ ◦ f ◦ φ−1 eine in φ(x)
differenzierbare Abbildung von φ[f−1[V ]∩U ] ⊂ Rm nach Rn. Ihre Tangentialabbildung
Tφ(x)(ψ ◦ f ◦ φ

−1) ist dann die lineare Abbildung

(ψ ◦ f ◦ φ−1)′(φ(x)) : Rm ≃ Tφ(x)R
m → Rn ≃ Tψ(f(x))R

n.

Für den Fall Y = X and f = 1lX folgt, dass die Karten φ und ψ auf TxX die gleiche
Vektorraumstruktur definieren, also (i). Danach folgt (ii).

Die beiden Aussagen (iv) und (v) sind für offene Teilmengen X ⊂ Rm und Y ⊂ Rn

klar. Der allgemeine Fall folgt dann aus (i)-(iii). q.e.d.

Wir können jetzt den Satz der inversen Funktion umformulieren.

Satz 1.37. Sei r ∈ N ∪ {∞} und f : X → Y eine r mal stetig differenzierbare
Abbildung zwischen differenzierbaren Mannigfaltigkeiten. Wenn Tx(f) für ein x ∈ X
invertierbar ist, dann gibt es offene Umgebungen U ∋ x und V ∋ f(x), so dass f |U ein
Homöomorphismus von U auf V ist und (f |U)

−1 r mal stetig differenzierbar ist.
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Beweis: Wähle Karten Φ : U → Rm von X und ψ : V → Rn mit x ∈ U und f(x) ∈ V
und wende den Satz der inversen Funktion auf ψ ◦ f ◦φ−1|φ[f−1[V ]∩U ] bei φ(x) an.q.e.d.

Definition 1.38. Der Rang einer differenzierbaren Abbildung f : X → Y zwischen
differenzierbaren Mannigfaltigkeiten bei x ∈ X ist der Rang von Tx(f) : TxX → Tf(x)Y .

Eine glatte Abbildung f heißt Immersion, wenn Tx(f) für alle x ∈ X injektiv ist.
Eine glatte Abbildung f heißt Submersion, wenn Tx(f) für alle x ∈ X surjektiv ist.

Aus der Linearen Algebra wissen wir, dass für eine lineare Abbildung A : V → W
zwischen endlich dimensionalen Vektorräumen folgendes gilt:

Rang(A) = dimV ⇐⇒ A ist injektiv .

Rang(A) = dimW ⇐⇒ A ist surjektiv .

Deshalb sind die Immersionen die Abbildungen, deren Rang der Ableitungen Tx(f) für
alle x ∈ X gleich dimTxX ist, und die Submersionen die Abbildungen, deren Rang der
Ableitungen Tx(f) für alle x ∈ X gleich dimf(x) TY ist. Insbesondere sind Diffeomor-
phismen sowohl Immersionen als auch Submersionen. Aber glatte Abbildungen f , die
sowohl Immersionen als auch Submersionen sind, sind nicht immer Diffeomorphismen.

Beispiel 1.39. Sei
f : R→ S1, x 7→ (cos(x), sin(x)).

Dann ist f offenbar unendlich oft differenzierbar. Für x 6∈ 2πZ ist f(x) 6= (1, 0). Die
Verkettung von f mit der Variante der stereographischen Projektion ist also gleich

x 7→ y mit (0, y) = (1, 0) +
f(x)− (1, 0)

1− cos(x)
also y =

sin(x)

1− cos(x)
.

Die Ableitung dieser Abbildung ist

y′ =
cos(x)(1− cos(x))− sin2(x)

(1− cos(x))2
=

cos(x)− 1

(1− cos(x))2
=

1

cos(x)− 1
.

Also ist diese Abbildung für x 6∈ 2πZ sowohl eine Immersion als auch eine Submersion.
Für x 6∈ π+2πZ gilt f(x) 6= (−1, 0). Dann ist die Verkettung von f mit der gespiegelten
Variante der stereographischen Projektion gleich

x 7→ y mit (0, y) = −(1, 0) +
f(x) + (1, 0)

1 + cos(x)
also y =

sin(x)

1 + cos(x)
.

Für die Ableitung gilt

y′ =
cos(x)(1 + cos(x)) + sin2(x)

(1 + cos(x))2
=

cos(x) + 1

(1 + cos(x))2
=

1

1 + cos(x)

Also ist f eine Immersion und eine Submersion, aber kein Diffeomorphismus, weil f
nicht injektiv ist. Lokal ist f zwar ein Diffeomorphismus, aber nicht immer global.
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Wegen dem Satz der inversen Funktion können wir für jede Immersion f : X → Y
und jedes x ∈ X Umgebungen U von x und V von f(x) finden, so dass V diffeomorph
ist zu dem kartesischen Produkt von U mit einer offenen Teilmenge des Rn mit n =
dim Tf(x)Y −dimTxX . Dadurch wird f mit einer Einbettung von U nach V identifiziert.
Lokal ist also jede Immersion injektiv, aber nicht immer global.

Analog können wir auch mit dem Satz der impliziten Funktion für jede Submersion
f : X → Y und jedes x ∈ X Umgebungen U von x und V von f(x) finden, so dass
U diffeomorph ist zu dem kartesischen Produkt von V mit einer offenen Teilmenge des
Rn mit n = dimTxX−dimTf(x)Y . Dabei wird f mit der natürlichen Projektion von U
nach V identifiziert. Lokal ist also jede Submersion surjektiv, aber nicht immer global.

Wir nennen glatte Abbildungen, die sowohl Immersionen als auch Submersionen
sind, lokale Diffeomorphismen. Dann sind alle bijektiven lokalen Diffeomorphismen
auch globale Diffeomorphismen. Insbesondere sind verträgliche Karten Diffeomorphis-
men von offenen Teilmengen der Mannigfaltigkeit auf offene Teilmengen des Rn.

Wir können weitere Begriffe der Differentialrechnung mehrerer Veränderlicher auf
differenzierbare Mannigfaltigkeiten übertragen. So heißt ein Punkt x ∈ X einer differen-
zierbaren Funktion f : X → Y zwischen differenzierbaren Mannigfaltigkeiten kritischer
Punkt, wenn Tx(f) = 0 gilt. Lokale Extremwerte von reellen Funktionen sind entwe-
der lokale Minima oder lokale Maxima. Alle lokalen Extremwerte von differenzierbaren
reellen Funktionen sind auch kritische Punkte.

Wir führen jetzt eine zweite Charakterisierung der Elemente des Tangentialraumes
ein. Für s ∈ R sei 1TsR ∈ TsR die Äquivalenzklasse von (−ǫ, ǫ) → R, t 7→ t + s. Für
eine differenzierbare Mannigfaltigkeit X , x ∈ X und v ∈ TxX definieren wir

Dv : C
1(X,R)→ R, mit Tx(f)(v) = Dv(f)1Tf(x)R.

Wenn y : (−ǫ, ǫ)→ R ein Repräsentat von v ∈ TxX ist, dann ist v = T0(y)(1T0R) und

Tx(f)(v) = Tx(f) ◦ T0(y)(1T0R) = T0(f ◦ y)(1T0R) =
d
dt

∣

∣

t=0
f(y(t))1Tf(x)R.

Also ist Dv(f) =
d
dt

∣

∣

t=0
f(y(t)) und Dv R–linear und erfüllt die Leibnizregel:

Dv(fg) = f(x)Dv(g) +Dv(f)g(x) für alle f, g ∈ C1(X,R).

Satz 1.40. (von Hadamard und Bohnenblust) Sei D : C∞(X,R)→ R, f 7→ D(f) eine
R–lineare Abbildung die D(fg) = f(x)D(g) +D(f)g(x) für alle f, g ∈ C∞(X,R) und
ein x ∈ X erfüllt. Dann gibt es genau ein v ∈ TxX mit D = Dv.

Beweis: Wegen der Leibnizregel definiert jedes v ∈ TxX eine solche Derivation Dv.
Sei jetzt umgekehrt D eine beliebige Derivation, die obige Eigenschaften hat. Aus

D(1) = D(1 · 1) = 2D(1) folgt, D(1) = 0. Deshalb stimmen für alle f ∈ C∞(X,R)
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die Werte D(f) mit D(f − f(x)1) überein. Die Funktion f − f(x)1 ∈ C∞(X,R) ver-
schwindet bei x. Umgekehrt folgt D(fg) = 0 aus f(x) = 0 = g(x). Also verschwindet
D auf allen Produkten von glatten Funktionen, die bei x verschwinden.

Sei φ : U → Rn eine verträgliche Karte, mit x ∈ U , φ(x) = 0 und B(0, r) = φ[U ].
Dann verschwinden φ1, . . . , φn ∈ C

∞(U,R) bei x = 0. Die glatte Funktion

h : X → R, x 7→ h(x) =

{

fr/3,2r/3(|φ(x)|) für x ∈ U

0 für x 6∈ U

(mit fr/3,2r/3 aus dem letzten Abschnitt) ist 1 auf φ−1[B(0, r/3)] und verschwindet
außerhalb von φ−1[B(0, 2r/3)]. Wegen 1 = 1− (1− h)2 + (1− h)2 = 2h− h2 + (1− h)2

gilt dann D(f) = D((2h− h2)f) +D((1− h)2f) = D((2h− h2)f) für f ∈ C∞(X,R).
Weil das für alle hinreichend kleinen r > 0 gilt, stimmt D auf allen solchen Funktionen
überein, die auf einer beliebig kleinen Umgebung von x übereinstimmen (man spricht
dann auch von dem Funktionskeim in x), also auch D(f) = D(hf). Dann definiert

y : (−r, r)→ X, t→ φ−1(t(D(hφ1), . . . , D(hφn)))

eine glatte Abbildung mit y(0) = x. Die entsprechende Äquivalenzklasse wollen wir v ∈
TxX nennen. Aufgrund der Definition von y gilt φ◦y(t) = t(D(hφ1), . . . , D(hφn)). Ins-
besondere ist Dv(hφi) =

d
dt
|t=0(hφi)(y(t)) =

d
dt
|t=0tD(hφi) = D(hφi) für i = 1, . . . , n.

Zuletzt zerlegen wir f − f(x) auf einer Umgebung von x in eine Summe von Pro-
dukten von φ1, . . . , φn mit glatten Funktionen. Für jedes g ∈ C∞(B(0, r),R) gilt

g(ϕ)−g(0) =

∫ 1

0

d

dt
g(tϕ)dt =

∫ 1

0

ϕ·∇g(tϕ)dt = ϕ·

∫ 1

0

∇g(tϕ)dt für alle ϕ ∈ B(0, r).

Deshalb ist g(ϕ)−g(0) = ϕ1g1+ . . .+ϕngn für alle ϕ ∈ B(0, r) mit gi ∈ C
∞(B(0, r),R)

und gi(0) =
∂g
∂ϕi

(0). Dann ist auch h2(f − f(x)) = (hφ1)(hf1) + . . . + (hφn)(hfn) mit

fi ∈ C
∞(U,R). Wegen der Derivationseigenschaft und wegen φ(x) = 0 gilt dann

D(f) = D(h2(f − f(x))) = f1(x)D(hφ1) + . . .+ fn(x)D(hφn)

= f1(x)Dv(hφ1) + . . .+ fn(x)Dv(hφn) = Dv(h
2(f − f(x)) = Dv(f). q.e.d.

Zum Abschluss fassen wir die Definition des Tangentialraumes nochmal zusammen.
Für jeden Vektorraum V ist der Tangentialraum an jedem Punkt v ∈ V auf natürliche
Weise isomorph zu dem Vektorraum V . Insbesondere ist der Tangentialraum von je-
dem reellen Intervall in jedem Punkt des Intervalls isomorph zu R. Weil differenzierbare
Abbildungen sich hochheben lassen zu Abbildungen zwischen den Tangentialräumen,
konnten wir den Tangentialraum dadurch unabhängig von den Karten einführen, indem
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wir die Tangentialvektoren als die Bilder von Tangentialvektoren von offenen Interval-
len (−ǫ, ǫ) unter differenzierbaren Abbildungen von den offenen Intervallen in die dif-
ferenzierbare Mannigfaltigkeit definiert haben. Jeder solche Tangentialvektor definiert
durch die Richtungsableitung eine Derivation auf den glatten Funktionen. Umgekehrt
ist jede Derivation auf den glatten Funktionen von dieser Form, so dass wir die Deri-
vationen mit den Tangentialvektoren identifizieren können.

Im übernächsten Abschnitt werden wir auch TX =
⋃

x∈X Tx zu einer differenzier-
baren Mannigfaltigkeit machen, so dass für glatte Abbildungen f zwischen differenzier-
baren Mannigfaltigkeiten auch T (f) eine glatte Abbildung ist.

1.6 Produkte von Mannigfaltigkeiten und Unter-

mannigfaltigkeiten

Nachdem wir die Objekte und die Abbildungen von differenzierbaren Mannigfaltig-
keiten eingeführt haben, werden wir jetzt zwei Möglichkeiten kennenlernen, wie wir
aus differenzierbaren Mannigfaltigkeiten neue differenzierbare Mannigfaltigkeiten bil-
den können: nämlich einerseits das kartesische Produkt von zwei Mannigfaltigkei-
ten, und andererseits Untermannigfaltigkeiten von differenzierbaren Mannigfaltigkei-
ten. Das kartesische Produkt erhält man ohne weitere Schwierigkeiten, indem wir erst
die topologischen Räume, dann die Karten und schließlich die Atlanten des kartesi-
schen Produktes aus den entsprechenden topologischen Räumen, Karten und Atlanten
der beiden differenzierbaren Mannigfaltigkeiten bilden. Dagegen ist die Einführung von
Untermannigfaltigkeiten relativ kompliziert. Natürlich ist jede offene Teilmenge einer
differenzierbaren Mannigfaltigkeit wieder eine differenzierbare Mannigfaltigkeit. Aber
Untermannigfaltigkeiten von niederer Dimension sind nicht so einfach zu beschreiben.
Hier benutzen wir den Satz der inversen Funktion.

Das kartesische Produkt X × Y zweier differenzierbarer Mannigfaltigkeiten ist ein
Hausdorffraum. Für Karten φ : U → Rm von X und ψ : V → Rn von Y ist

φ× ψ : U × V → Rm × Rn, (x, y)→ (φ(x), ψ(y))

eine Karte von X×Y . Wenn diese Karten Atlanten vonX bzw. Y durchlaufen, erhalten
wir einen Atlas von X × Y . Zuletzt ist X × Y ein Lindelöfraum, weil die kartesischen
Produkte der im Beweis von (iii)⇒ (i) des Satzes 1.29 konstruierenten Folgen (On)n∈N
und (Kn)n∈N auch die Bedingung (i) dieses Satzes erfüllen. Wegen Heine-Borel ist
nämlich das kartesische Produkt zweier kompakter Teilmengen in Rm ×Rn kompakt2.

2Wegen dem Satz von Tychonoff (siehe Chapter 3 Theorem 5.7 und Chapter 5 Theorem 1.1 von
J.M. Munkres: Topology) ist sogar das kartesische Produkt kompakter topologischer Räume kompakt.
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Definition 1.41. Das kartesische Produkt von zwei differenzierbaren Mannigfaltigkei-
ten X und Y ist auf natürliche Weise wieder eine differenzierbare Mannigfaltigkeit
X × Y , so dass die beiden folgenden natürlichen Projektionen glatte Abbildungen sind:

p1 : X × Y → X, (x, y) 7→ x p2 : X × Y → Y, (x, y) 7→ y

Diese beiden Projektionen sind dann offenbar beide surjektive Submersionen. Um-
gekehrt ist für jedes y ∈ Y die Abbildung X → X × Y, x 7→ (x, y) eine injektive
Immersion. Analog ist für jedes x ∈ X die Abbildung Y → X × Y, y 7→ (x, y) eine
injektive Immersion. Durch diese beiden Abbildungen können wir sowohl X als auch
Y als abgeschlossenen topologischen Unterraum von X×Y auffassen. Wir wollen jetzt
X bzw. Y als differenzierbare Untermannigfaltigkeit von X × Y auffassen.

Definition 1.42. Seien X und Y differenzierbare Mannigfaltigkeiten und f : X → Y
eine Immersion. Ist f ein Homöomorphismus auf den topologischen Unterraum f [X ]
von Y , dann heißt f Einbettung und f [X ] Untermannigfaltigkeit von Y .

Auf einer kompakten Mannigfaltigkeit X ist eine injektive Immersion f : X → Y
immer eine Einbettung auf das Bild. Im allgemeinen ist eine injektive Immersion f :
X → Y nicht mal dann eine Einbettung, wenn das Bild f [X ] in Y abgeschlossen ist.

Beispiel 1.43. Das Bild der injektiven Immersion

f : (−∞, 1)→ R2, t→

(

t2 − 1

t2 + 1
,
t(t2 − 1)

t2 + 1

)

ist abgeschlossen in R2. Wegen limt→1 f(t) = f(−1) ist f aber kein Homöomorphismus
auf das Bild als topologischenr Unterraum vom R2. Für große |t| ist f(t) ungefähr
gleich (1, t) und f(0) ist (−1, 0). Der Graph von f schneidet (0, 0) bei t = −1 wegen

f ′(t) =

(

2t(t2 + 1− t2 + 1), (t2 − 1)(t2 + 1) + 2t2(t2 + 1− t2 + 1)
)

(t2 + 1)2
=

(4t, t4 + 4t2 − 1)

(t2 + 1)2

längs der Tangenten y = −x und bei t = 1 längs der Tangenten y = x.

Um die topologischen Unterräume X ⊂ Y einer differenzierbaren Mannigfaltigkeit
Y zu charakterisieren, die differenzierbare Untermannigfaltigkeiten sind, zeigen wir
zunächst den sogenannten Rangsatz.

Satz 1.44 (Rangsatz). Sei l ∈ N∪{∞} und f : X → Y eine l–mal stetig differenzier-
bare Abbildung zwischen den offenen Teilmengen X ⊂ Rm und Y ⊂ Rn. Dann ist für
jedes x0 ∈ X der Rang von f ′ auf einer Umgebung von x0 nicht kleiner als bei x0.

Ist x0 ein lokales Maximum des Ranges, dann gibt es auf offenen Umgebungen U
von x0 und V von f(x0) l–mal stetig differenzierbare Karten φ und ψ mit φ(x0) = 0 =
ψ(f(x0)) und l–mal stetig differenzierbaren Umkehrabbildungen, so dass ψ ◦f ◦φ−1 mit
der Einschränkung der linearen Abbildung f ′(x0) auf φ[U ] übereinstimmt.
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Beweis: Sei r der Rang von f ′(x0). Wir wählen für die hinteren m − r Spalten der
m ×m–Matrix B eine Basis vom Kern von f ′(x0), und ergänzen die ersten r Spalten
zu einer Basis vom Rm. Wir definieren die ersten r Spalten der n× n Matrix C als die
linear unabhängigen ersten r Spalten der n × m Matrix f ′(x0) ◦ B und ergänzen die
restlichen n− r Spalten zu einer Basis vom Rn. Dann beschreibt C−1 ◦ f ′(x0) ◦ B die
Abbildung Rr × Rm−r → Rr × Rn−r, (y, z) 7→ (y, 0). Indem wir x 7→ f(x) durch x 7→
C−1◦(f(x0+Bx)−f(x0)) ersetzen, wird x0 = 0, f(x0) = 0 und f ′(x0) zu (y, z) 7→ (y, 0).
Die ersten r Komponenten von f fassen wir zu f− und die letzten n− r Komponenten
zu f+ zusammen. Wegen der Stetigkeit von ∂f−

∂y
und wegen ∂f−(0,0)

∂y
= 1lRr können wir

Ry, Rz > 0 so klein wählen, dass (y, z) 7→ det(∂f−(y,z)
∂y

) auf B(0, Ry) × B(0, Rz) keine
Nullstellen hat. Dort ist der Rang von f ′ mindestens r, was die erste Aussage zeigt.

Für gegebenfalls kleinere Ry, Rz > 0 hat die l–mal stetig differenzierbare Abbildung

φ : B(0, Ry)×B(0, Rz)→ W ⊂ Rr × Rm−r, (y, z) 7→ (f−(y, z), z)

wegen dem Satz der inversen Funktion auf dem BildW eine l–mal stetig differenzierbare
Umkehrabbildung φ−1. Sie definiert implizit die l–mal stetig differenzierbare Funktion

g :W → B(0, Ry) mit φ−1(y, z) = (g(y, z), z) und f−(φ
−1(y, z)) = y für (y, z) ∈ W.

Wenn 0 ein lokales Maximum von Rang ist, hat f ′(x) auf B(0, Ry)×B(0, Rz) wegen der
ersten Aussage den Rang r, und ∇fr+1(x), . . . ,∇fn(x) sind Linearkombinationen der
linear unabängigen ∇f1(x), . . . ,∇fr(x). Für alle y ∈ B(0, Ry) ist also f+ zusammen
mit f− auf φ−1

[

W ∩ ({y} × Rm−r)] konstant und damit gleich f+(φ(y, 0)). Die beiden
l–mal stetig differenzierbaren Selbstabbildungen von {y | (y, 0) ∈ W} × Rn−r

ψ : (y, z) 7→ (y, z − f+(φ
−1(y, 0))) und ψ−1 : (y, z) 7→ (y, z + f+(φ

−1(y, 0)))

sind die Umkehrabbildungen von einander. Für alle (y, z) ∈ W gilt dann

ψ(f(φ−1(y, z))) = ψ(f−(φ
−1(y, z), f+(φ

−1(y, z))) = ψ(y, f+(φ
−1(y, 0))) = (y, 0). q.e.d.

Satz 1.45. Sei X ⊂ Y ein topologischer Unterraum einer differenzierbaren Mannigfal-
tigkeit Y . Dann besitzt X genau dann die Struktur einer differenzierbaren Unterman-
nigfaltigkeit von Y , wenn es für jedes x ∈ X eine mit dem Atlas von Y verträgliche
Karte φ : U → Rn von Y bei x ∈ U gibt, die x auf 0 ∈ Rn abbildet, und deren Ein-
schränkung φ|U∩X auf die offene Umgebung U ∩X von x in X ein Homöomorphismus
auf die Schnittmenge von dem Bild φ[U ] mit einem linearen Unterraum vom Rn ist.

Beweis: Wir zeigen zunächst, dass die angegebene Bedingung hinreichend dafür ist,
dass X eine differenzierbare Untermannigfaltigkeit ist. Die Einschränkung einer sol-
chen Karte φ um x ∈ X auf U ∩ X ist eine Karte von X um den Punkt x, weil die
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Schnittmenge einer offenen Teilmenge des Rn mit einem Unterraum vom Rn eine offene
Teilmenge des linearen Unterraumes ist. Zwei solche Karten, deren Definitionsbereiche
beide den Punkt x enthalten, bilden beide eine offene Umgebung von x in X jeweils
auf eine offene Teilmenge eines linearen Unterraum des Rn ab. Die entsprechenden
Übergangsfunktionen sind Homöomorphismen von einer offenen Teilmenge des einen
Unterraumes auf eine offene Teilmenge des anderen Unterraumes. Sie sind sogar Dif-
feomorphismen, weil die Karten von Y miteinander verträglich sind. Dann sind auch
die Karten von X miteinander verträglich. Deshalb besitzt X einen Atlas.

Wegen Satz 1.29 erfüllt jede differenzierbare Mannigfaltigkeit das zweite Abzählbar-
keitsaxiom. Dann erfüllt auch die Teilmenge X ⊂ Y dieses Axiom, und ist wegen
Satz 1.29 ein Hausdorff– und Lindelöfraum und eine Untermannigfaltigkeit von Y .

Wenn umgekehrt f : Z → Y eine Immersion und ein Homöomorphismus auf einen
topologischen UnterraumX = f [Z] ⊂ Y ist, dann hat f auf jeder Zusammenhangskom-
ponente von Z konstanten Rang. Wegen Satz 1.44 liegt dann jedes x ∈ X im Definiti-
onsbereich U einer mit dem Atlas von Y verträglichen Karte φ von Y der Dimension n
mit φ(x) = 0, die die Schnittmenge U ∩X auf φ[U ]∩T (φ◦f)[Tf−1(x)Z] ⊂ Tφ(x)R

n = Rn

abbildet. Also wird jede Untermannigfaltigkeit X von Y durch die Definitionsbereiche
solcher mit dem Atlas von Y verträglicher Karten von Y überdeckt. q.e.d.

Zum Abschluss wollen wir noch den Satz der impliziten Funktion umformulieren.

Korollar 1.46. Sei f : X → Y eine glatte Abbildung zwischen differenzierbaren
Mannigfaltigkeiten mit lokal konstantem Rang. Dann ist für jedes y ∈ f [X ] das Ur-
bild f−1[{y}] eine Untermannigfaltigkeit von X. Ihr Tangentialraum ist in dem Punkt
x ∈ f−1[{y}] der Kern von Tx(f). Dort hat sie die Dimension dim TxX−Rang(Tx(f)).

Beweis: Wegen Satz 1.44 liegt jedes x ∈ X im Definitionsbereich einer mit dem Atlas
von X verträglichen Karte φ : U → Rn von X mit φ(x) = 0, die U ∩ f−1[{f(x)}] in
einen linearen Unterrraum φ[U ] ∩ Tx(φ)[Kern(Tx(f))] ⊂ Rn abbildet. Dieser Kern hat
die Dimension dimTxX − Rang(Tx(f)). Die Aussage folgt aus Satz 1.45. q.e.d.

Insbesondere sind die Niveaumengen von Submersionen Untermannigfaltigkeiten.

Korollar 1.47. Seien X, Y und Z differenzierbare Mannigfaltigkeiten und f : X → Z
und g : Y → Z zwei glatte Abbildungen, von denen mindestens eine eine Submersion
ist. Dann ist das Faserprodukt

X ×Z Y = {(x, y) ∈ X × Y | f(x) = g(y)}

eine Untermannigfaltigkeiten von X × Y der Dimension

dimT(x,y)X×ZY = dim TxX+dimTyY −dim Tf(x)Z = dimTxX+dim TyY −dim Tg(y)Z.
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Beweis: Seien (x, y) ∈ X ×Z Y und φ : U → Rn eine Karte von Z auf einer offenen
Umgebung U von z = f(x) = g(y). Dann ist die Abbildung

φ ◦ f ◦ p1 − φ ◦ g ◦ p2 : f
−1[U ]× g−1[U ]→ Rn, (x, y) 7→ φ(f(x))− φ(g(y))

eine Submersion, weil entweder φ◦f oder φ◦g eine Submersion ist. Das Urbild der 0 ∈
Rn dieser Abbildung ist wegen Korollar 1.46 eine Untermannigfaltigkeit von f−1[U ]×
g−1[U ]. Weil φ injektiv ist, ist φ(f(x)) = φ(g(y)) äquivalent zu f(x) = g(y). Also ist
diese Untermannigfaltigkeit gleich f−1[U ] ×U g

−1[U ]. Damit sind auf diesem Teilraum
f−1[U ] ×U g

−1[U ] ⊂ f−1[U ] × g−1[U ] ⊂ X × Y die Bedingungen im Satz 1.45 erfüllt.
Weil dies für alle (x, y) ∈ X×Z Y gilt, sind diese Bedingungen auf ganz X×Z Y erfüllt.
Daraus folgt die Behauptung. q.e.d.

Beispiel 1.48. (i) Sei X eine differenzierbare Mannigfaltigkeit. Dann ist die Diago-
nale von X×X das Faserprodukt X×XX bezüglich zwei Kopien der Abbildungen
1lX : X → X. Diese Abbildungen sind Diffeomorphismen, so dass die Diagonale
X×XX eine differenzierbare Untermannigfaltigkeit von X×X ist. Die Abbildung
X → X ×X, x 7→ (x, x) ist offenbar ein Diffeomorphismus von X auf X ×X X.

(ii) Seien X und Y zwei differenzierbare Mannigfaltigkeiten und f : X → Y eine
glatte Abbildung. Dann ist der Graph von f das Faserprodukt X ×Y Y der beiden
Abbildungen f : X → Y und 1lY : Y → Y . Weil die zweite ein Diffeomorphis-
mus ist, ist X ×Y Y eine differenzierbare Untermannigfaltigkeit von X × Y . Die
Abbildung 1lX × f induziert offenbar einen Diffeomorphismus von X ×X X auf
X ×Y Y .

1.7 Tangentialbündel

Ziel dieses Abschnittes ist es, die Vereinigung aller Tangentialräume TX =
⋃

x∈X TxX
wieder zu einer differenzierbaren Mannigfaltigkeit mit der Vektorraumstruktur zu ma-
chen. Dazu führen wir zunächst den Begriff des Faserbündels ein.

Definition 1.49. Ein differenzierbares Faserbündel ist ein Tripel (X,B, π), wobei X
und B differenzierbare Mannigfaltigkeiten sind und π eine surjektive glatte Abbildung
von X nach B, die die folgende Bedingung (der sogenannten lokalen Trivialität) erfüllt.

Lokale Trivialität: Es gibt eine Überdeckung von B durch offene Teilmengen U ⊂ B
mit Diffeomorphismen φ : F×U → π−1[U ] für differenzierbare Mannigfaltigkeiten
F , so dass π ◦ φ mit der Projektion p2 : F × U → U übereinstimmt.
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Weil die natürliche Projektion p2 : F × U → U immer eine Submersion ist, ist
dann auch π eine Submersion. Man nennt X den Faserraum, B seine Basis und π die
Projektion des Faserbündels. Wegen der lokalen Trivialität sind alle Urbilder π−1[{b}]
für alle b in einer Umgebung eines b0 ∈ B zueinander diffeomorph. Diese Urbilder
werden Fasern genannt. Sind alle Fasern zu einer differenzierbaren Mannigfaltigkeit F
diffeomorph, so wird das Faserbündel auch Faserbündel vom Fasertyp F genannt. Aus
der lokalen Trivialität folgt, dass die Menge aller b ∈ B mit Fasern π−1[{b}], die zu einer
Faser π−1[{b0}] diffeomorph sind, offen sind. Aus der lokalen Trivialität folgt auch, dass
sie auch den Grenzwert von konvergenten Folgen in ihnen enthalten. Deshalb sind diese
Mengen offen und abgeschlossen. Also sind die Einschränkungen eines Faserbündels auf
das entsprechende Faserbündel (π−1[C], C, π|π−1[C]) über einer zusammenhängenden
Komponente C von B Faserbündel von einem bestimmten Fasertyp F .

Definition 1.50. Sei K der Körper der reellen oder komplexen Zahlen. Ein K–Vektor-
raumbündel ist ein Faserbündel (E,B, π), so dass jede Faser π−1[{b}] ein K–Vekto-
raum ist, und in der lokalen Trivialität F ein K–Vektorraum ist, und φ für jedes b ∈ B
Vektorraumisomorphismen von F × {b} nach π−1[{b}] sind.

Beispiel 1.51. Sei V ein normierter K–Vektorraum und X eine differenzierbare Man-
nigfaltigkeit und π die natürliche Projektion von V ×X auf X. Dann ist (V ×X,X, π)
ein Vektorraumbündel über X. Dieses Vektorraumbündel wird trivial genannt.

Die lokale Trivialität besagt genau, dass jedes Vektorraumbündel lokal ein triviales
Vektorraumbündel ist. Wir wollen jetzt umgekehrt ein Vektorraumbündel aus lokalen
trivialen Vektorraumbündeln konstruieren. Sei also X eine differenzierbare Mannigfal-
tigkeit, F ein normierter endlichdimensionaler K–Vektorraum, und L(F ) der normierte
Vektorraum aller stetigen linearen Abbildungen von F nach F . Er enthält als offene
Teilmenge die GruppeGL(F ) der invertierbaren linearen Abbildungen. Sei U eine offene
Überdeckung von X . Wir werden die trivialen Vektorraumbündel (F ×U)U∈U zu einem
Vektorraumbündel über X verkleben. Für nicht schnittfremde Paare (U, V ) ∈ U × U
sei φV,U : U∩V → GL(F ) eine glatte Funktion. Sie definiert folgende glatte Abbildung:

φV,U : F × (U ∩ V )→ F × (U ∩ V ), (f, x) 7→ (φV,U(x)f, x).

Weil φV,U(x) für jedes x ∈ U ∩ V invertierbar ist, ist die Umkehrabbildung gleich

φ−1
V,U : F × (U ∩ V )→ F × (U ∩ V ), (f, x) 7→ (φ−1

V,U(x)f, x).

Also sind diese Abbildungen Diffeomorphismen. Weil φV,U(x) und φ−1
V,U(x) für alle

x ∈ U ∩ V linear sind, sind diese Diffeomorphismen sogar Isomorphismen von Vektor-
raumbündeln. Damit diese Isomorphismen die trivialen Vektorraumbündel (F ×U)U∈U
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auf eindeutige Weise zu einem Vektorraumbündel über X verkleben, müssen für alle
(U, V,W ) ∈ U3 die drei trivialen Vektorraumbündel F × U, F × V und F × W auf
U ∩ V ∩W eindeutig miteinander identifiziert werden. Deshalb fordern wir:

Kozykelbedingung: Für alle nicht schnittfremden Tripel (U, V,W ) ∈ U3 gilt

φW,V (x)φV,U(x) = φW,U(x) für alle x ∈ U ∩ V ∩W.

Wenn wir U = V =W setzen erhalten wir

φU,U(x) = φU,U(x) ◦ φU,U(x) = 1lF für alle x ∈ U

Wenn wir U = W setzen erhalten wir

φU,V (x)φV,U(x) = 1lF ⇐⇒ φU,V (x) = φ−1
V,U(x) für alle x ∈ U ∩ V.

Auf dem Raum
⋃

U∈U(F × U) führen wir folgende Relation ein:

(e, x) ∈ F × U ∼ (f, y) ∈ F × V ⇐⇒ y = x in X und φV,U(x)e = f.

Wir zeigen jetzt, dass diese Relation wegen der Kozykelbedingung eine Äquivalenzre-
lation ist. Wegen φU,U(x) = 1lU ist die Relation reflexiv. Wegen φU,V (x) = φ−1

V,U(x) ist
φV,U(x)e = f äquivalent zu φU,V (x)f = e. Deshalb ist die Relation ∼ symmetrisch.
Weil für alle x ∈ U ∩ V ∩W gilt φW,U(x) = φW,V (x)φV,U(x), folgt aus (e, x) ∈ F ×U ∼
(f, y) ∈ F × V und (f, y) ∈ F × v ∼ (g, z) ∈ F ×W auch z = y = x ∈ U ∩ V ∩W und
φW,U(x)e = φW,V (x)φV,U(x)e = φW,V (x)f = g. Also ist die Relation ∼ auch transitiv.

Sei E die Menge aller Äquivalenzklassen dieser Äquivalenzrelation. Weil nur Paare
über demselben Basispunkt miteinander identifiziert werden, induzieren die Projektio-
nen p2 : F ×U → U der trivialen Vektorraumbündel F ×U eine Abbildung π : E → X .

Für jedes U ∈ U definiert die Abbildung, die jedem (f, x) ∈ F×U die entsprechende
Äquivalenzklasse zuordnet eine Abbildung F ×U → E. Weil φU,U = 1lF auf U gilt, sind
alle diese Abbildung injektiv, und weil φV,U(x) : F → F für alle x ∈ U ∩ V bijektiv
ist, sind sie auch surjektiv nach π−1[U ]. Wir versehen E mit der gröbsten Topologie,
so dass F × U → E für alle U ∈ U stetig ist. Dann ist O ⊂ E genau dann offen ist,
wenn für alle U ∈ U , das Urbild von O unter F × U → E offen ist. Für jede offene
Teilmenge O ⊂ X und U ∈ U ist F × (O ∩ U) offen in F × U . Also ist π : E → X
stetig. Für U, V ∈ U und eine offene Teilmenge O ⊂ F×U ist die Schnittmenge mit den
Elementen von F × U , deren Äquivalenzklassen in π−1[V ] liegen, die offene Teilmenge
O ∩ F × (V ∩ U) ⊂ F × U , die durch den Diffeomorphismus φV,U auf eine offene
Teilmenge von F × V abgebildet wird. Also bildet die stetige und bijektive Abbildung
F × U → π−1[U ] auf die Äquivalenzklassen offene Mengen auf offene Mengen ab,
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und ist ein Homöomorphismus. Für x, y ∈ E mit π(x) 6= π(y) liegen π(x) und π(y)
in disjunkten offenen Umgebungen in X . Ihre Urbilder unter π sind disjunkte offene
Umgebungen von x und y. Für x 6= y ∈ E mit π(x) = π(y) gibt es ein U ∈ U mit
π(x) = π(y) ∈ U . Die Urbilder von x und y unter F × U → π−1[U ] sind verschieden
und besitzen disjunkte Umgebungen in F × U . Ihre Bilder unter F × U → π−1[U ]
sind disjunkte Umgebungen von x und y. Also ist E ein Hausdorffraum. Weil X ein
Lindelöfraum ist, besitzt U eine abzählbare Teilüberdeckung V ⊂ U . Für jedes V ∈ V
besitzt jede offene Überdeckung von E eine abzählbare Teilüberdeckung von der zu dem
Lindelöfraum F × V homöomorphen Teilmenge π−1[V ]. Die abzählbare Vereinigung
aller dieser Teilüberdeckungen ist eine abzählbare Teilüberdeckung von E, und E ist ein
Lindelöfraum. Wegen Lemma 1.30 besitzt X einen Atlas, dessen Definitionsbereiche U
jeweils in einem Element von U enthalten sind. Die entsprechenden Karten φ : U → Rn

induzieren mit einem Vektorraumisomorphismus F ≃ Rn Karten π−1[U ] ≃ F × U →
Rn × φ[U ] von E. Weil (f, x) 7→ (φV,U(x)f, x) für U, V ∈ U Diffeomorphismen von
F × (U ∩ V ) auf sich selber sind, bilden diese Karten einen Atlas. Das zeigt den

Satz 1.52. Sei X eine differenzierbare Mannigfaltigkeit mit einer offenen Überdeckung
U und F ein endlichdimensionaler normierter K–Vektorraum. Dann definieren glatte
Funktionen φV,U : U ∩ V → GL(F ) für nicht schnittfremde Paare (U, V ) ∈ U × U , die
die Kozykelbedingung erfüllen, ein Vektorraumbündel (E,X, π) vom Fasertyp F .q.e.d.

Satz 1.53. (i) Auf einer zusammenhängenden differenzierbaren Mannigfaltigkeit B
sind alle Fasern (π−1[{b}]) eines Vektorraumbündels (E,B, π) über B als topolo-
gische Vektorräume isomorph, d.h. (E,B, π) ist von einem bestimmten Fasertyp.

(ii) Sei F ein normierter Vektorraum und (E,B, π) ein Vektorraumbündel vom Fa-
sertyp F . Dann gibt es eine Überdeckung U von B und Kozykel φ, d.h. für alle
(U, V ) ∈ U2 glatte Abbildungen φV.U : U ∩V → GL(F ), die die Kozykelbedingung
erfüllen, so dass das entsprechende Vektorraumbündel isomorph ist zu (E,B, π).

Beweis: (i) Wegen der lokalen Trivialität gibt es für jedes b ∈ B eine offene Umgebung
U von b, auf der alle Fasern (π−1[{b′}])b′∈U als topologische Vektorräume isomorph sind
zu π−1[{b}]. Also sind die Teilmengen von B, auf denen die Fasern als topologische Vek-
torräume isomorph sind, offen. Wenn (bn)n∈N eine konvergente Folge in einer solchen
Teilmenge ist, dann gibt es eine Umgebung von dem Grenzwert, auf der die Fasern als
topologische Vektorräume isomorph sind. Deshalb sind diese Teilmengen auch abge-
schlossen. Wenn B zusammenhängend ist, dann ist für alle b ∈ B die Teilmenge, auf
denen alle Fasern als topologische Vektorräume isomorph zu π−1[{b}] sind, gleich B.
(ii) Wegen der lokalen Trivialität gibt es für jedes Vektorraumbündel (E,B, π) vom
Fasertyp F eine Überdeckung U , und für alle U ∈ U Diffeomorphismen φU : F × U →
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π−1[U ], so dass folgendes Diagramm kommutiert:

F × U
φU−→ π−1[U ] →֒ E

p2 ↓ π ↓ π ↓

U
1lU−→ U →֒ B

.

Dabei ist φU über b ∈ U faserweise ein Isomorphismus der normierten Vektorräume F
und π−1[{b}] sind. Für alle (U, V ) ∈ U2 definieren die Einschränkungen der Diffeomor-
phismen φU und φV auf F × (U ∩ V ) folgenden Diffeomorphismus

φ−1
V

∣

∣

π−1[U∩V ]
◦ φU |F×(U∩V ) : F × (U ∩ V )→ F × (U ∩ V ).

Dieser Diffeomorphismus ist faserweise linear und definiert eine glatte Abbildung

φV,U : U ∩V → GL(F ) mit (φV,U(x)f, x) = φ−1
V (φU(f, x)) für alle (f, x) ∈ F × (U ∩V ).

Weil für alle U, V,W ∈ U φ−1
W |π−1[U∩V ∩W ] ◦ φU |F×(U∩V ∩W ) =

= φ−1
W |π−1[U∩V ∩W ] ◦ φV |F×(U∩V ∩W ) ◦ φ

−1
V |π−1[U∩V ∩W ] ◦ φU |F×(U∩V ∩W )

gilt, erfüllen diese Abbildungen die Kozykelbedingung. Dieser Kozykel (φV,U)(U,V )∈U2 ist
so definiert, dass die Trivialisierungen (φU)U∈U äquivalente Elemente von

⋃

U∈U F ×U
auf gleiche Elemente von E abbilden: Für U, V ∈ U und x ∈ U ∩ V gilt nämlich

φU |F×{x} = φV |F×{x} ◦ (φV,U(x)× 1l{x}).

Deshalb induzieren die Abbildungen (φU)U∈U eine bijektive Abbildung von dem durch
den Kozykel definierten Vektorraumbündel nach E, die faserweise ein Isomorphismus
von Vektorräumen ist. Weil φU lokalen Trivialisierungen von E sind, ist die induzierte
Abbildung ein Diffeomorphismus. q.e.d.

Satz 1.54. (i) Auf einer differenzierbaren Mannigfaltigkeit X ist TX =
⋃

x∈X TxX
ein reelles Vektorraumbündel über X. Es heißt Tangentialbündel von X.

(ii) Sei f : X → Y eine r mal (stetig) differenzierbare Abbildung von der differen-
zierbaren MannigfaltigkeitX auf die differenzierbare Mannigfaltigkeit Y . Dann
definiert T (f) : TX → TY eine (r − 1) mal (stetig) differenzierbare Abbildung
von der differenzierbaren Mannigfaltigkeit TX auf die differenzierbare Mannig-
faltigkeit TY , so dass folgendes Diagramm kommutiert:

TX
T (f)
−−→ TY

π ↓ π ↓

X
f
−→ Y
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(iii) Seien X, Y und Z differenzierbare Mannigfaltigkeiten und f : X → Y und
g : Y → Z differenzierbare Abbildungen. Dann gilt T (g ◦ f) = T (g) ◦ T (f).

(iv) Die Tangentiale Abbildung T (1lX) der identischen Abbildung 1lX von der differen-
zierbaren Mannigfaltigkeit X ist die identische Abbildung von TX.

Beweis: Auf allen zusammenhängenden Komponenten sind die Dimensionen der Tan-
gentialräume gleich einer natürlichen Zahl. Wegen Korollar 1.14 ist jede differenzierbare
Mannigfaltigkeit eine höchstens abzählbare Vereinigung von offenen zusammenhängen-
den Komponenten. Deshalb können wir uns im folgenden Beweis von (i) auf zusam-
menhängende differenzierbare Mannigfaltigkeiten X der Dimension n beschränken.

Die Tangentialräume vom Rn bilden ein triviales Vektorraumbündel:

TRn = Rn × Rn mit π : Rn × Rn → Rn, (v, w) 7→ w.

Dies folgt aus der Identifikation des Tangentialraumes TwR
n von Rn im Punkt w ∈ Rn

mit dem Raum aller infinitesimalen Richtungen v ∈ Rn, die wir schon zur Einführung
der Vektorraumstruktur auf TxX benutzt haben. Sei (φU)U∈U ein Atlas von X mit den
Definitionsbereichen (U ∈ U). Diese Karten (φU)U∈U induzieren bijektive Abbildungen

⋃

x∈U

Tx(φU) :
⋃

x∈U

TxU →
⋃

x∈U

Tφ(x)φU [U ] ⊂ TRn,

die faserweise, also für alle x ∈ U Vektorraumisomorphismen

Tx(φU) : TxU → TφU (x)R
n ≃ Rn

induzieren. Indem wir die Tangentialbündel von φU [U ] mit dem trivialen Bündel

TφU [U ] = Rn × φU [U ] ⊂ TRn = Rn × Rn

identifizieren, und dann die Kartenwechsel

φV φ
−1
U : φU [U ∩ V ]→ φV [U ∩ V ]

benutzen, können wir diese trivialen Vektorraumbündel zu einem Vektorraumbündel
über X verkleben. Die entsprechenden Abbildungen

U ∩ V → GL(Rn)

sind dann gegeben durch die Ableitungen der Übergangsfunktionen

(φV ◦ φ
−1
U )′ ◦ φU : U ∩ V → GL(Rn).
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Für nicht schnittfremde Definitionsbereiche U und V zweier Karten φU und φV nimmt
(φV ◦ φ

−1
U )′ Werte in GL(Rn) an. Für U, V,W ∈ U gilt

(φW ◦ φ
−1
U )(y) = (φW ◦ φ

−1
V ) ◦ (φV ◦ φ

−1
U )(y) für alle y ∈ φU [U ∩ V ∩W ].

Daraus folgt mit der Kettenregel

(φW ◦ φ
−1
U )′(φU(x)) = (φW ◦ φ

−1
V )′(φV (x)) · (φV ◦ φ

−1
U )′(φU(x)) für alle x ∈ U ∩ V ∩W.

Also ist die Kozykelbedingung erfüllt und alle trivialen Vektorraumbündel (Rn×U)U∈U

definieren durch diese Kozykel ein Vektorraumbündel über X . Für jede Karte

φU : U → φU [U ] ⊂ Rn

erhalten wir bijektive Abbildungen

(1lRn × φ−1
U ) ◦

⋃

x∈U

Tx(φU) :
⋃

x∈U

TxU → TφU [U ] ≃ Rn × φU [U ]→ Rn × U.

Wir zeigen jetzt, dass diese Abbildungen mit den durch die Kozykel auf dem Raum
⋃

U∈U Rn×U definierten Äquivalenzrelationen verträglich ist: Auf T (U∩V ) gilt nämlich

((φV ◦ φ
−1
U )′ ◦ φU × 1lU∩V ) ◦ (1lRn × φ−1

U ) ◦ T (φU) = (1lRn × φ−1
V ) ◦ T (φV )

weil für alle x ∈ U ∩ V

TφU (x)(φV ◦ φ
−1
U ) ◦ Tx(φU) = Tx(φV )

gilt, und TφU (x)(φV ◦ φ
−1
U ) durch die Identifikation von

TφU (x)R
n ≃ Rn und TφV (x)R

n ≃ Rn

mit der Abbildung (φV ◦ φ
−1
U )′(φU(x)) ∈ GL(Rn) identifiziert wird. Das zeigt, dass

die obigen bijektiven Abbildungen die Teilmenge
⋃

x∈U TxU von
⋃

x∈X TxX mit der
Einschränkung π−1[U ] ⊂ TX idenitifizieren. Das zeigt (i).

Aufgrund der Konstruktion des Tangentialbündels in (i) genügt es (ii) bezüglich
zweier Karten nachzuprüfen. Sei also φ eine Karte von X um x ∈ X und ψ eine Karte
von Y in f(x). Dann ist die Tangentialabbildung Tx(f) als Abbildung von

Tφ(x)R
n nach Tψ(f(x))R

n gegeben durch (ψ ◦ f ◦ φ−1)′(φ(x)).

Hierbei ist n die Dimension von φ und m die Dimension von ψ. Weil also T (f) durch
die Ableitung von f bestimmt ist, ist T (f) einmal weniger als f differenzierbar.

(iii) folgt aus Satz 1.36 (iii).
(iv) folgt daraus, dass die Ableitung von 1lRn an jeder Stelle gleich 1lRn ist. q.e.d.



1.8. OPERATIONEN AUF VEKTORRAUMBÜNDELN 39

1.8 Operationen auf Vektorraumbündeln

Definition 1.55. Seien (E,B, π) und (E ′, B′, π′) zwei Vektorraumbündel über K. Dann
ist ein Morphismus zwischen diesen beiden Vektorraumbündeln definiert als zwei glatte
Abbildungen f : B → B′ und g : E → E ′, so dass folgendes Diagramm kommutiert:

E
g
−→ E ′

π ↓ ↓ π′

B
f
−→ B′

und die Abbildung g faserweise linear ist, d.h. für alle b ∈ B ist die Einschränkun-
gen von g auf π−1[{b}] eine lineare Abbildung nach π′−1[{f(b)}]. Sind f und g Dif-
feomorphismen, so heißt der Morphismus auch Isomorphismus der Vektorraumbündel
(E,B, π) und (E ′, B′, π′). Dann bilden die Umkehrabbildungen auch einen Morphismus,
weil die Umkehrabbildung einer bijektiven linearen Abbildung linear ist.

Beispiel 1.56. (i) Jede Karte φ : U → Rn einer differenzierbaren Mannigfaltigkeit
X induziert einen Isomorphismus T (φ) : TU → Tφ[U ] der Tangentialbündel.

(ii) Jede glatte Abbildung f : X → Y zwischen differenzierbaren Mannigfaltigkeiten
induziert mit T (f) : TX → TY einen Morphismus der Tangentialbündel.

(iii) In Satz 1.53 (ii) haben wir gezeigt, dass jedes Vektorraumbündel von einem Fa-
sertyp isomorph ist zu dem durch ein Kozykel induzierten Vektrorraumbündel.

Definition 1.57. Sei (X,B, π) ein differenzierbares Faserbündel über der differenzier-
baren Mannigfaltigkeit B. Sei U ⊂ B eine offene Teilmenge von B. Dann heißt eine p
mal (stetig) differenzierbare Abbildung f : U → X, so dass die Verkettung von f mit π
gleich der identischen Abbildung von U ist, ein p mal (stetig) differenzierbarer Schnitt
von dem Faserbündel (X,B, π) über U . Wenn U = B wird f globaler Schnitt genannt.

Nicht jedes Faserbündel besitzt auch globale Schnitte, aber wegen der lokalen Tri-
vialität besitzt jedes Faserbündel lokale Schnitte. Jedes Vektorraumbündel (E,B, π)
besitzt immer den globalen Nullschnitt, der jedem b ∈ B die eindeutige Null aus der
Faser π−1[{b}] zuordnet. Die Menge aller dieser Nullen bildet wegen der lokalen Tri-
vialität eine Untermannigfaltigkeit von E, die offenbar diffeomorph ist zu B.

Lemma 1.58. Sei F ein normierter K–Vektorraum der Dimension n und (E,B, π)
ein Vektorraumbündel vom Fasertyp F . Dann ist E genau dann als Vektorraumbündel
isomorph zu dem trivialen Bündel (F × B,B, π), wenn E n globale glatte Schnitte
f1, . . . , fn besitzt, deren Werte in allen Fasern (π−1[{b}])b∈B linear unabhängig sind.



40 KAPITEL 1. DIFFERENZIERBARE MANNIGFALTIGKEITEN

Beweis: Wenn φ : F ×B → E ein Diffeomorphismus ist, so dass das Diagramm

F × B
φ
−→ E

p2 ↓ ↓ π

B
1lB−→ B

kommutiert, und φ faserweise ein Vektorraumisomorphismus ist, dann definiert jedes
e ∈ F folgenden globalen Schnitt von E:

f : B → {e} × B
φ
−→ E, b 7→ f(b) = φ(e, b).

Insbesondere induziert jede Basis (e1, . . . , en) von F durch φ globale glatte holomorphe
Schnitte f1, . . . , fn, die faserweise alle linear unabhängig sind.

Wir zeigen jetzt umgekehrt, dass globale glatte Schnitte f1, . . . , fn von E, die
faserweise linear unabhängig sind, einen Isomorphismus von dem trivialen Vektor-
raumbündel Kn × B ≃ F × B mit E induzieren. Weil die Werte von den Schnitten
f1, . . . , fn in allen Fasern π−1[{b}] mit b ∈ B eine Basis der Faser bilden, ist

f : Kn × B → E, (λ, b) 7→ f(λ, b) = λ1f1(b) + . . .+ λnfn(b),

eine bijektive, faserweise lineare Abbildung, so dass folgendes Diagramm kommutiert:

Kn ×B
f
−→ E ←֓ π−1[U ]

φU←− Kn × U
p2 ↓ π ↓ π ↓ p2 ↓

B
1lB−→ B ←֓ U

1lU←− U

Im Bild einer Trivialisierung mit der Faser F ≃ Kn auf der rechten Seite wird φ−1
U ◦f zu

einer glatten Abbildung von U in die invertierbaren n× n-Matrizen. Mit den inversen
Matrizen ist dann (φ−1

U ◦f)
−1 glatt und damit f ein Diffeomorphismus und damit auch

ein Isomorphismus zwischen dem trivialen Vektorraumbündel Kn × B und E. q.e.d.

Mithilfe der linearen Algebra und der Analysis können wir aus zwei (endlichdi-
mensionalen) normierten Vektorräumen V und W die normierten Vektorräume des
kartesischen Produktes V × W und der linearen stetigen Abbildungen von V nach
W : L(V,W ) bilden. Wir werden jetzt diese Operationen auf alle Fasern π−1[{b}] und
π′−1[{b}] zweier Vektorraumbündel (E,B, π) und (E ′, B, π′) über der gleichen Basis B
anwenden und dadurch zwei neue Vektorraumbündel

(E ⊕ E ′, B, π ⊕ π′) bzw. (Hom(E,E ′), B, π′′)

einführen. Wir errinnern daran, dass die direkte Summe ⊕ von Vektorräumen mit dem
kartesischen Produkt übereinstimmt.
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Satz 1.59. Seien (E,B, π) und (E ′, B; π′) zwei Vektorraumbündel über der differen-
zierbaren Mannigfaltigkeit B. Dann gibt es zwei Vektorraumbündel

(E ⊕ E ′, B, π ⊕ π′) und (Hom(E,E ′), B, π′′),

deren Fasern
(π ⊕ π′)−1[{x}] und π′′−1[{x}]

für alle x ∈ B als topologische Vektorräume isomorph sind zu

Ex × E
′
x bzw. L(Ex, E

′
x) mit Ex = π−1[{x}] und E ′

x = π′−1[{x}].

Beweis: Es genügt die Aussage auf jeder zusammenhängenden Komponente von B zu
zeigen. Wegen Satz 1.53 genügt es dann die Aussage für Vektorraumbündel zu zeigen,
die durch Kozykel induziert werden. Seien F und F ′ zwei normierte Vektorräume. Dann
sind die beiden folgenden Abbildungen analytische Gruppenhomomorphismen:

× : GL(F )×GL(F ′)→ GL(F × F ′), (A,B) 7→ A× B mit

A× B : F × F ′ → F × F ′, (f, f ′) 7→ (Af,Bf ′).

Π : GL(F )×GL(F ′)→ GL(L(F, F ′)), (A,B) 7→ Π(A,B) mit

Π(A,B) : L(F, F ′)→ L(F, F ′), C 7→ B ◦ C ◦ A−1

Dabei wird Af durch Π(A,B)(C) auf Bf ′ abgebildet, wenn f durch C auf f ′ abge-
bildet wird. Seien jetzt (E,B, π) und (E ′, B, π) zwei Vektorraumbündel vom Fasertyp
F bzw. F ′ mit normierten Vektorräumen F und F ′. Die Schnittmengen zweier offener
Überdeckungen von B auf denen jeweils die Urbilder von π bzw. π′ triviale Bündle sind
bilden eine Überdeckung U durch offene Mengen U , auf denen die Vektorraumbündel
π−1[U ] und π′−1[U ] isomorph zu F × U bzw. F ′ × U sind. Wegen Satz 1.53 werden
dann die beiden Vektorraumbündel (E,B, π) und (E ′, B, π) induziert durch Kozykel

φV,U : U ∩ V → GL(F ) für alle (U, V ) ∈ U2

ψV,U : U ∩ V → GL(F ′) für alle (U, V ) ∈ U2.

Weil diese beiden Kozykel die Kozykelbedingung erfüllen, erfüllen auch die Kozykel

φV,U × ψV,U : U ∩ V → GL(F × F ′) für alle (U, V ) ∈ U2

Π(φV,U , ψV,U) : U ∩ V → GL(L(F, F ′)) für alle (U, V ) ∈ U2

die Kozykelbedingung und induzieren zwei Vektorraumbündel E⊕E ′ bzw. Hom(E,E ′)
vom Fasertyp F × F ′ bzw. L(F, F ′) auf B. Wir zeigen jetzt, dass die Fasern dieser
Vektorraumbündel E ⊕ E ′ bzw. Hom(E,E ′) über allen Punkten x ∈ B isomorph sind
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zu Ex×E
′
x bzw. L(Ex, E

′
x). Seien also für alle U ∈ U die lokalen Trivialisierungen von

E und E ′ gegeben durch Isomorphismen von Vektorraumbündeln

φU : F × U → π−1[U ] und ψU : F ′ × U → π′−1[U ]

so dass folgende Diagramme kommutieren:

F × U
φU−→ π−1[U ] →֒ E

p2 ↓ π ↓ π ↓

U
1lU−→ U →֒ B

und
F ′ × U

ψU−→ π′−1[U ] →֒ E ′

p2 ↓ π′ ↓ π′ ↓

U
1lU−→ U →֒ B

Für alle U ∈ U ist die Abbildung

F × F ′ × U →
⋃

x∈U

Ex × E
′
x, (f, f ′, x) 7→

(

φU |F×{x} (f, x), ψU |F ′×{x} (f
′, x)

)

eine bijektive Abbildung von dem trivialen Vektorraumbündel F × F ′×U über U mit
Faser F × F ′ auf die disjunkte Vereinigung

⋃

x∈U Ex × E
′
x der kartesischen Produkte

der Fasern von E und E ′ über x ∈ U . Für alle U, V ∈ U und x ∈ U ∩ V gilt

(

φU |F×{x}×ψU |F ′×{x}

)

(

(f, x),(f ′, x)
)

=
(

φV |F×{x}×ψV |F ′×{x}

)(

(

φV,U(x)×ψV,U (x)
)

(f, f ′),x
)

.

Also sind diese Abbildungen verträglich mit der Äquivalenzrelation des von den Kozy-
keln (φV,U ×ψV.U)(U,V )∈U definierten Vektorraumbündels E ⊕E ′. Dann sind die Fasern
des Vektorraumbündels E ⊕ E ′ isomorph zu Ex × E

′
x.

Analog ist für alle U ∈ U die Abbildung

L(F, F ′)× U →
⋃

x∈U

L(Ex, E
′
x), (C, x) 7→ ψU |F ′×{x} ◦ (C × 1l{x}) ◦ φ

−1
U

∣

∣

Ex

eine bijektive Abbildung von dem trivialen Vektorraumbündel L(F×F ′)×U über U mit
Faser L(F, F ′) in die disjunkte Vereinigung

⋃

x∈U L(Ex, E
′
x) aller linearen Abbildungen

von der Faser Ex von E in die Faser E ′
x von E ′. Für U, V ∈ U und x ∈ U ∩ V gilt

ψU |F ′×{x} ◦
(

C × 1l{x}
)

◦ φ−1
U

∣

∣

Ex
= ψV |F ′×{x} ◦

(

ψV,U(x) ◦ C ◦ φ
−1
V,U(x)× 1l{x}

)

◦ φ−1
V

∣

∣

Ex

= ψV |F ′×{x} ◦
(

Π(φV,U(x), ψV,U(x))C × 1l{x}
)

◦ φ−1
V

∣

∣

Ex
.

Deshalb sind diese Abbildungen verträglich mit der Äquivalenzrelation des von dem
Kozykel (Π(φV,U , ψV,U))(U,V )∈U2 induzierten Vektorraumbündels Hom(E,E ′). Also be-
stehen die Fasern von Hom(E,E ′) für alle x ∈ B aus L(Ex, E

′
x). q.e.d.
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Das Vektorraumbündel E⊕E ′ wird Withney Summe der beiden Vektorraumbündel
(E,B, π) und (E ′, B, π′) genannt. Diese Whitney Summe können wir auch definieren
durch das Faserprodukt E ×B E

′ als die Einschränkung des Vektorraumbündels (E ×
E ′, B × B, π × π′) auf die Diagonale von B × B. Wegen der lokalen Trivialität ist
die Projektion jedes Faserbündels eine Submersion. Also ist wegen Korollar 1.47 das
Faserprodukt E ×B E

′ eine differenzierbare Untermannigfaltigkeit von E × E ′.

Beispiel 1.60. (i) Das duale Bündel E ′ eines K–Vektorraumbündels (E,B, π) ist
das Bündel der Homomorphismen von (E,B, π) in das triviale K–Linienbündel
(K×B,B, p2) über B. So ist z.B. für jede differenzierbare Mannigfaltigkeit X das
Kotangentialbündel das duale Bündel T ′X des Tangentialbündels (TX,X, π).

(ii) Seien V und W zwei endlichdimensionale normierte Vektorräume über K. Weil
alle endlichdimensionalen Vektorräume auf natürliche Weise isomorph sind zu ih-
ren Bidualräumen, identifizieren wir das Tensorprodukt V⊗W mit L(V ′,W ). Wir
definieren das Tensorprodukt zweier Vektorraumbündel (E,B, π) und (F,B, π)
vom Fasertyp V bzw. W als das Vektorraumbündel E ⊗ F = Hom(E ′, F ), der
Homomorphismen von dem dualen Bündel E ′ von E in das Vektorraumündel F .

Definition 1.61. Seien X und B differenzierbare Mannigfaltigkeiten und (E,B, π)
ein Vektorraumbündel und f : X → B glatt. Wegen Korollar 1.47 ist das Faserprodukt
E ×B X der beiden Abbildungen π : E → B und f : X → B eine differenzierbare Un-
termannigfaltigkeit von E ×X und das Faserprodukt B ×B X der beiden Abbildungen
1lB : B → B und f : X → B eine differenzierbare Untermannigfaltigkeit von B × X.
Die Einschränkung des Vektorraumbündels (E×X,B×X, π× 1lX) auf die Unterman-
nigfaltigkeit B ×B X definiert das Vektorraumbündel f ∗(E) = (E ×B X,B ×B X, π

′).
Es wird inverses Bild des Vektorraumbündels (E,B, π) unter der Abbildung f genannt.

Die lokalen Trivialisierungen von E induzieren lokale Trivialisierungen von (E ×
X,B × X, π × 1lX) und (E ×B X,B ×B X, π

′). Die Einschränkung von f × 1lX : X ×
X → B × X auf die Diagonale X ≃ X ×X X ist ein natürlicher Diffeomorphismus
X ≃ B ×B X . Dadaurch wird das Bündel f ∗(E) zu einem Bündel über X .

Beispiel 1.62. Sei (E,B, π) ein Vektorraumbündel und f : X → B auf der diffe-
renzierbaren Mannigfaltigkeit X die konstante Abbildung auf ein b0 ∈ B. Dann ist
E ×B X = π−1[{b0}]×X und B ×B X = {b0} ×X, und f ∗E ≃ π−1[{b0}]×X trivial.

Satz 1.63. Seien (E,B, π) und (E ′, B′, π′) zwei Vektorraumbündel. Dann induziert
jeder Morphismus (g, f) mit g : E ′ → E und f : B′ → B von (E ′, B′, π′) auf (E,B, π)
einen Morphismus (h, 1lB′) mit h : E ′ → f ∗(E) von (E ′, B′, π′) auf das inverse Bild
f ∗(E) des Vektorraumbündels (E,B, π) unter der Abbildung f .
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Beweis: Offenbar ist (g× 1lB′ , f × 1lB′) ein Morphismus des Vektorraumbündels (E ′ ×
B′, B′×B′, π′×1lB′) auf das Vektorraumbündel (E×B′, B×B′, π×1lB′). Das Faserpro-
dukt E ′×B′B′ bezüglich der glatten Abbildungen π′ : E ′ → B′ und 1lB′ : B′ → B′ ist die
Einschränkung des Vektorraumbündels (E ′×B′, B′×B′, π′×1lB′) auf das Faserprodukt
B′ ×B′ B′ bezüglich zweier glatter Abbildungen 1lB′ : B′ → B′ als Untermannigfaltig-
keit von B′ ×B′. Die zweite Untermannigfaltigkeit ist die Diagonale von B′ ×B′, und
die erste Untermannigfaltigkeit ist das inverse Bild 1l∗B′(E ′) des Vektorraumbündels
(E ′, B′, π′) unter der Abbildung 1lB′ : B′ → B′. Seien pE′ : E ′ × B′ → E ′ und pB′ :
B′×B′ → B′ die beiden Projektionen auf den ersten Faktor der kartesischen Produkte.
Dann ist (pE′, pB′) ein Morphismus des Vektorraumbündels (E ′×B′, B′×B′, π′×1lB′) auf
das Vektorraumbündel (E ′, B′, π′). Er induziert einen Isomorphismus des inversen Bil-
des 1l∗B′(E ′) des Vektorraumbündels (E ′, B′, π′) mit dem Vektorraumbündel (E ′, B′, π′).

Das Faserprodukt E ×B B′ bezüglich der glatten Abbildungen π : E → B und
f : B′ → B ist die Einschränkung des Vektorraumbündels (E × B′, B × B′, π × 1lB′)
auf das Faserprodukt B ×B B

′ bezüglich der glatten Abbildungen 1lB : B → B und
f : B′ → B als Untermannigfaltigkeit von B×B′. Es ist das inverse Bild f ∗(E) des Vek-
torraumbündels (E,B, π) bezüglich der glatten Abbildung f . Weil die Abbildung f×1lB′

offenbar die Diagonale B′ ×B′ B′ von B′ × B′ auf die Untermannigfaltigkeit B ×B B
′

abbildet, wird durch den Morphismus (g× 1lB′ , f × 1lB′) das Vektorraumbündel 1l∗B′(E ′)
auf das Vektorraumbündel f ∗(E) abgebildet. Weil 1l∗B′(E ′) als Vektorraumbündel iso-
morph ist zu (E ′, B′, π′) erhalten wir einen Morphismus von (E ′, B′, π′) auf des inverse
Bild f ∗(E) des Vektorraumbündels (E,B, π) unter der Abbildung f . q.e.d.


