Kapitel 1

Differenzierbare Mannigfaltigkeiten

In diesem Abschnitt fithren wir den Begriff der Mannigfaltigkeit ein. Dieser Begriff er-
laubt es die Differential- und Integralrechnung auf viele Fragestellungen anzuwenden.
Er beschreibt geometrische Gebilde, die lokal wie offene Teilmengen des R™ aussehen,
aber global auf sehr vielfiltige Weise verklebt sein kénnen. Entsprechend werden wir
einerseits die lokale Differential- und Integrationsrechnung anwenden und weiterent-
wickeln und andererseits auf neue globale Fragestellungen stoflen.

1.1 Zusammenhingende Komponenten

Zunéchst wiederholen wir die Begriffsbildung von metrischen Rdumen.

Definition 1.1. (Metrik auf einer Menge X) FEine Metrik (oder Abstandsfunktion) ist
eine Abbildung d: X x X = R, (z,y) — d(x,y) mit drei Eigenschaften

(1) d(z,y) >0 fir alle z,y € X und d(z,y) =0<= x =y (Positivitit).
(i1) d(z,y) = d(y,x) (Symmetrie).
(111) d(z,y) < d(z,z) +d(z,y) fir alle z,y,z € X (Dreiecksungleichung).

0 firx=y

Beispiel 1.2. (i) auf jeder Menge X definiert d(x,y) = )
1 firxz#y

die sogenannte diskrete Metrik.
(i1) Auf R definiert d(z,y) = |z — y| eine Metrik.

(111) Auf C definiert d(x,y) = |z — y| eine Metrik.

bt
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(iv) Auf jeder nicht leeren Teilmenge A C X eines metrischen Raumes (X, d) definiert
die Einschrdinkung von d auf A x A — R eine Metrik.

(v) Auf dem kartesischen Produkt zweier metrischer Rdume definiert die Summe
beider Metriken eine Metrik. Sie heifit Metrik des kartesischen Produktes.

(vi) Die Einschrinkung der Metrik (ii) auf die Vereinigung der inversen der natiirli-
chen Zahlen mit {0} definiert eine Metrik auf N = NU{oo} ~ {2 | n € N}U{0}:

[n —m|

1
d(co,n) = d(n,00) == d(co,00) =0 fir alle n,m € N.

d —
(n,m) — -

Definition 1.3. (offener Ball, Umgebung, offene Menge) FEin offener Ball in (X, d)
mit Zentrum x € X und Radius r > 0 ist die Menge B(z,r) ={y € X | d(z,y) < r}.
Eine Umgebung eines Punktes x € X st eine Menge O C X, die fiir ein v > 0 einen
Ball B(z,r) enthdlt. Eine offene Menge O C X ist eine Teilmenge, die eine Umgebung
aller ihrer Punkte ist, d.h. fir alle x € O gibt es ein € > 0 mit B(x,¢) C O.

Beispiel 1.4. In R besteht der Ball B(x,r) aus (x —r,z+1). Im R" besteht der Ball
B(xz,r) aus allen Punkten, deren euklidischer Abstand zu x kleiner ist als r.

Alle offenen Bélle B(z,r) sind offenbar Umgebungen von z. Fir y € B(x,r) ist
d(xz,y) < r.Sei z € B(y,r — d(z,y)). Dann gilt d(z,2) < d(z,y) + d(y,z) < r, also
auch B(y,r — d(z,y)) C B(z,r). Deshalb sind die offenen Bille tatséchlich offen.

Offenbar ist die beliebige Vereinigung von offenen Mengen wieder offen. Fiir zwei
offene Mengen O und O’ und x € ONO’ gibt es r > 0 und v’ > 0 mit B(x,r) C O und
B(z,r") C O'. Also ist B(z, min{r,r'}) C B(z,r)NB(x,r") C ONO’, und ONO’ offen.
Damit ist auch die Schnittmenge von endlich vielen offenen Mengen wieder offen.

Definition 1.5. (abgeschlossene Mengen, Absc_hluss) Die Komplemente von offenen
Mengen heiflen abgeschlossen. Der Abschluss A eine Menge A ist die Schnittmenge
aller abgeschlossenen Mengen, die A enthalten.

Wegen der Regel von de Morgan, sind beliebige Schnitte und endliche Vereinigungen
von abgeschlossenen Mengen wieder abgeschlossen. Deshalb ist eine Menge genau dann
abgeschlossen, wenn sie mit ihrem Abschluss iibereinstimmt.

Definition 1.6. Ein topologischer Raum X 1ist eine Menge X zusammen mit einer
Topologie auf X, d.h. einer Teilmenge T der Potenzmenge P(X) aller Teilmengen von
X, deren Elemente wir offene Mengen von X nennen. Sie erfillt drei Bedingungen:

(i) Die Schnittmenge von endlich vielen offenen Mengen ist offen.
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(i1) Die Vereinigung von beliebig vielen offenen Mengen ist offen.
(iii) X und 0 sind offen.

FEin topologischer Raum heiffit Hausdorffraum, wenn je zwei unterschiedliche Punkte in
zwei disjunkten offenen Mengen enthalten sind. Er heifit kompakt bzw. Lindeldfraum,
wenn jede offene Uberdueckung eine endliche bzw. abdhlbare Teiliiberdeckung besitzt.

In einem topologischen Raum X konvergiert eine Folge (z,,),en genau dann gegen
einen Grenzwert x € X, wenn jede Umgebung von z, d.h. jede Menge die eine offene
Menge enthélt, die x enthélt, alle bis auf endlich viele Folgenglieder enthélt. In einem
topologischen Hausdorffraum ist ein solcher Grenzwert eindeutig. In einem allgemeinen
topologischen Raum kann eine Folge mehrere Grenzwerte haben. Die Topologie 7 =
P(X) heifit diskrete Topologie. In einem metrischen Raum (X, d) ist eine Teilmenge
genau dann offen, wenn sie eine Vereinigung von offenen Béllen ist. Eine Abbildung
f X — Y von einem topologischen Raum X in einen topologischen Raum Y heifit
stetig, wenn das Urbild jeder offenen Menge offen ist.

Ubungsaufgabe 1.7. Zeige, dass fiir metrische Riume diese Definition von Stetigkeit
mit der € — d—Definition tibereinstimmdt.

Die Schnittmengen von den offenen Teilmengen eines topologischen Raumes X mit
einer Teilmenge A C X bilden die offenen Mengen des topologischen Unterraumes A,
und die Schnittmengen von abgeschlossenen Teilmengen von X mit A die abgeschloes-
sene Mengen. Das kartesische Produkt zweier topologischer Rdume besitzt als offene
Mengen beliebige Vereinigungen von kartesischen Produkten von offenen Mengen.

Definition 1.8. Ein topologischer Raum X heifit zusammenhdngend, wenn die einzi-
gen Teilmengen von X, die sowohl abgeschlossen als auch offen sind, die leere Menge
und der ganze Raum X sind. Er heifit lokal zusammenhdngend, wenn fir jedes v € X
jede Umgebung von x eine zusammenhdingende Umgebung von x enthdlt.

Satz 1.9. Eine nicht leere Teilmenge der reellen Zahlen R ist genau dann zusam-
menhdngend, wenn sie ein (beschrinktes oder unbeschrinktes) Intervall ist. Insbeson-
dere ist also R sowohl zusammenhdngend als auch lokal zusammenhdngend.

Beweis: Sei X C R eine zusammenhéngende nicht leere Teilmenge. Wenn a < b zwei
Elemente sind, aber x ¢ X fiir ein x € (a,b), dann sind

(—o0,2) N X = (—o0,z] N X und (z,00) N X = [z,00) N X

jeweils offen und abgeschlossen, was der Annahme widerspricht. Also ist [a,b] in X
enthalten. Wir setzten inf A = —oo bzw. sup A = oo, falls A nach unten bzw. oben
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unbeschrénkt ist. Weil jedes Element von (inf X, sup X) zwischen zwei Elementen von
X enthalten ist, gilt dann (inf X, sup X) € X C [inf X,sup X| und X ist eine der
Mengen (inf X sup X), [inf X, sup X), (inf X, sup X] oder [inf X sup X].

Offenbar ist umgekehrt das Intervall I genau dann zusammenhingend, wenn fiir
jede disjunkte Zerlegung I = A U B in nicht leere Teilmengen mindestes eine nicht
offen ist. Sei also A 3 @ < b € B und ¢ := inf B N [a,b]. Wenn A offen ist, folgt c € B
und [a,c) C A. Wegen ¢ ¢ A ist B nicht offen. Also ist I zusammenhingend. q.e.d.

Satz 1.10. (i) Sei X ein topologischer Raum und A C X ein zusammenhdngender
Unterraum. Dann ist jede Menge B mit A C B C A zusammenhdngend.

(ii) Eine beliebige Vereinigung von zusammenhdngenden Teilmengen eines topologis-
hcen Raumes X, deren Schnitt nicht leer ist, ist zusammenhdngend.

(#ii) Fiir eine Folge (Ay)nen von zusammenhdngenden Teilmengen eines topologischen
Raumes X mit Api1 N A, # 0 fir alle n € N ist | J77 | A, zusammenhingend.

(iv) Das Bild eines zusammenhdingenden topologischen Raumes unter einer stetigen
Abbildung ist zusammenhdngend.

(v) Das kartesische Produkt zweier topologischer Raume ist genau dann (lokal) zu-
sammenhdngend, wenn beide (lokal) zusammenhdingend sind.

Beweis (i): Wenn B eine Vereinigung von zwei abgeschlossenen disjunkten Teilmengen
C' und D ist, dann ist auch A eine disjunkte Vereinigung von (ANC)U (AN D). Wenn
C' und D abgeschlossen in B sind, dann sind auch (ANC') und (AN D) abgeschlossen in
A. Weil B die einzige abgeschlossene Teilmenge von B ist, die A enthilt, sind (AN C)
bzw. (AN D) genau dann gleich A, wenn C' bzw. D gleich B ist. Also ist A nicht
zusammenhéngend, wenn B nicht zusammenhéngend ist. Daraus folgt (i).

(ii): Sei € X im Schnitt einer Familie von zusammenhéngenden Teilmengen und AUB
eine disjunkte Vereinigung der Vereinigung der Familie durch offene und abgeschlossene
nichtleere Teilmengen. Wir konnen z € A annehmen. Dann gibt es mindestens eine
zusammenhédngende Menge C' der Familie, so dass B N C nicht leer ist. Dann ist auch
C = (CnNA)U(CN B) eine disjunkte Vereinigung durch offene und abgeschlossene
Mengen. C'N A enthélt x und C' N B ist nicht leer. Das steht im Widerspruch dazu,
dass C' zusammenhéngend ist. Daraus folgt (ii).

(iii): Induktiv folgt aus (ii), dass A; U...UA,, zusammenhéngend sind, und dann (iii).
(iv): Fiir eine stetige Abbildung f : X — Y und eine offene Teilmenge O von f[X]
gibt es eine offene Teilmenge U von Y mit O = U N f[X]. Dann ist f~'[0] = f~'[U]
offen und f : X — f[X] stetig. Das Urbild einer offenen und abgeschlossenen Menge ist
wieder offen und abgeschlossen. Daraus folgt, dass das Bild einer zusammenhéngenden
Menge unter einer stetigen Abbildung zusammenhéangend ist.
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(v): Weil die Projektionen p; : X XY — X und py : X X Y — Y stetig und surjektiv
sind, sind wegen (iv) auch X und Y zusammenhéngend, wenn X XY zusammenhéngend
sind. Fiir alle (z,y) € X xY bilden die Bilder der Umgebungen von (z,y) unter p; bzw.
po die Umgebung von x bzw. y. Deshalb sind X und Y auch lokal zusammenhéngend,
wenn X X Y lokal zusammenhéngend ist. Wenn umgekehrt X und Y (lokal) zusam-
menhéngend sind, dann sind fiir alle (z,y) € X x Y auch

X x{y} und {z} x Y
(lokal) zusammenhéngend. Wegen (ii) ist dann

(X x{y}) U ({z} xY)

zusammenhéngend und enthélt alle Punkte (z,y) mit z € X. Wegen (ii) ist dann auch

X <Y = [J(X x {yhu({z} xY))

zeX

zusammenhéngend. Fiir lokal zusammenhéngende X und Y folgt, dass jede Umgebung
von (z,y) € X x Y das kartesische Produkt von zusammenhéngenden Umgebungen
von x und y enthélt, und damit auch eine zusammenhéingende Umgebung. q.e.d.

Korollar 1.11. Fir alle n € N ist R™ (lokal) zusammenhdngend. q.e.d.

Definition 1.12. Sei X ein topologischer Raum und © € X. Wegen Satz (1)
ist dann die Vereinigung aller zusammenhdngenden Teilmengen von X, die x enthal-
ten, zusammenhdngend und heifst zusammenhdngende Komponente von x in X. Wegen
Satz[1.10 (i) sind diese zusammenhdingenden Komponenten abgeschlossen. Zwei zusam-
menhdngende Komponenten sind entweder gleich oder disjunkt. Also ist jeder topologi-
sche Raum X eine disjunkte Vereinigung seiner zusammenhdngenden Komponenten.

Satz 1.13. Fin topologischer Raum X ist genau dann lokal zusammenhdngend, wenn
die zusammenhdngenden Komponenten von allen offenen Teilmengen wieder offen sind.

Beweis: Sei X ein topologischer Raum, dessen zusammenhéngende Komponenten von
allen offenen Mengen offen sind. Dann enthélt jede offene Umgebung von = € X eine
offene zusammenhéngende Komponente von x. Also ist X lokal zusammenhéngend.
Sei jetzt X lokal zusammenhéngend. Dann ist fiir jedes x € X die zusammenhéngen-
de Komponente von x in einer offenen Menge eine Umgebung von z. Also sind alle
zusammenhéngenden Komponenten in offenen Mengen offene, abgeschlossene und zu-
sammenhéngende Mengen. q.e.d.
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Korollar 1.14. Jeder lokal zusammenhdngende Lindeldfraum X hat hochstens abzdihl-
bar viele Zusammenhangskomponenten. Sie sind alle offen und abgeschlossen.

Beweis: Die zusammenhdngenden Komponenten eines lokal zusammenhéngenden to-
pologischen Raumes X sind offen, paarweise disjunkt und iiberdecken den Raum. Diese
Uberdeckung besitzt keine echte Teiliiberdeckung, und ein lokalzusammenhéngender
Lindel6fraum hat héchstens abzahlbar viele Zusammenhangskomponenten. q.e.d.

Ein topologischer Raum X heifit wegzusammenhéngend, wenn es fiir je zwei Punkte
x,y € X einen stetigen Weg v : [0, 1] — X von = = 7(0) nach y = (1) gibt. Dann ist
7(]0, 1]) zusammenhéngend und damit auch die Vereinigung X der Bilder aller solchen
Wege, bei denen z festgehalten wird und y ganz X durchlauft. Im Allgemeinen ist aber
nicht jeder zusammenhéingende Raum auch wegzusammenhingend. Die Wegzusam-
menhangskomponenten eines Punktes x ist die Menge aller Punkte y € X, fiir die ein
stetiger Weg von x nach y existiert. Sie ist im allgemeinen kleiner als die entsprechende
Zusammenhangskomponente.

Fiir alle n € N und alle » > 0 ist die Abbildung

X

B(0,r) > R", x>
r— |l

eine stetige Abbildung von B(0,r) nach R™. Die Umkehrabbildung ist gegeben durch

Ty

R" — B(0,7), yr—» ———
1+ lyll

und damit auch stetig. Also sind B(0,r) und R™ hom6éomorph (d.h. durch eine bi-
jektive stetige Abbildung und stetige Umkehrabbildung verbunden). Deshalb ist im
R" jeder offene Ball zusammenhédngend. Daraus wird folgen, dass alle differenzier-
baren Mannigfaltigkeiten lokal zusammenhéngende Lindel6fraume sind, und deshalb
hochstens abzéhlbare disjunkte Vereinigungen von offenen und abgeschlossenen zu-
sammenhéngenden Komponenten sind.

1.2 Karten und Atlanten

Definition 1.15. (Karte) Sei X ein topologischer Raum, dann heifst ein Homdéomor-
phismus ¢ (also eine bijektive stetige Abbildung, deren Umkehrabbildung auch stetig
ist) von einer offenen Teilmenge U von X auf eine offene Teilmenge von R™ Karte. U
heifst der Definitionsbereich und n die Dimension der Karte.

Wegen dem Gebietsinvarianzsatz von Brouwer [3.36] ist das Bild einer offenen Teil-
menge des R™ unter einer injektiven stetigen Abbildung nach R™ wieder offen. Deshalb
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ist eine stetige Abbildung f : R™ — R™ mit n > m nicht injektiv. Andernfalls ist
die Verkettung von f mit der Einbettung i : R™ — R", z — (x,0) auf die ersten m
Komponenten von R™ ebenfalls stetig und injektiv. Das Bild einer offenen Menge unter
1o f ist als Teilmenge des Bildes von ¢ nicht offen, im Widerspruch zu der Invarianz
des Gebietes. Insbesondere existiert nur dann ein Homéomorphismus von einer offe-
nen Teilmenge des R™ auf eine offene Teilmenge des R™, wenn n = m ist. Deshalb
stimmen die Dimensionen zweier Karten, deren Definitionsbereiche nicht schnittfremd
sind, iiberein. Das werden wir aber nicht benutzen. Zwei Karten ¢; und ¢o mit dem
gleichen Definitionsbereich U werden vertriglich genannt, wenn die Ubergangsfunktio-
nen ¢, 0 ¢7 und ¢1 0 o5t = (¢g 0 ;)" unendlich oft differenzierbare Abbildungen
sind. Weil die zweite Abbildung die Umkehrabbildung der ersten ist, sind dann fiir alle
x € U die Ableitungen dieser Abbildungen bei ¢1(x) bzw. ¢o(x) als lineare Abbildun-
gen zwischen R™ und R™ invers zueinander sind. Also stimmen die Dimensionen von
zwei vertraglichen Karten mit gleichem Definitionsbereich iiberein.

Zwei Karten ¢ und ¢, mit verschiedenen Definitionsbereichen U; bzw. U, heiflen
vertriaglich, wenn die beiden Einschrankungen von ¢; und ¢, auf U; N U,, die offenbar
zwei Karten mit gleichem Definitionsbereich sind, miteinander vertréglich sind.

Definition 1.16. (Atlas) Eine Familie von paarweise vertraglichen Karten, deren De-
finitionsbereiche den topologischen Raum X tberdecken, heifst Atlas.

Eine Karte heiffit mit einem Atlas vertriglich, wenn sie mit allen Karten des At-
lasses vertréglich ist. Das ist dquivalent dazu, dass die Vereinigung des Atlasses mit
der Karte wieder ein Atlas ist. Zwei Atlanten heiflen miteinander vertriglich, wenn
die Vereinigung der Karten beider Atlanten wieder ein Atlas ist, also alle Karten zu-
sammen paarweise miteinander vertréglich sind. Sei jetzt eine Karte ¢ : U — R™ und
x € U gegeben. Weil die Verkettung von zwei glatten Abbildungen zwischen offenen
Teilmengen des R™ wieder glatt ist, ist die Bedingung an eine Karte ¢ : V. — R™,
deren Definitionsbereich x enthélt (dann ist natiirlich m = n), dass die Abbildung
Blvru o (Y]yar) ™t bei ¢(z) und die Abbildung ¥|yvay o ¢|lvnr bei ¢(z) glatt ist, fiir alle
miteinander vertrédglichen Karten ¢ : V' — R™ &dquivalent, deren Definitionsbreiche
x enthalten. Also ist die gegebene Karte ¢ : U — R"™ genau dann mit einem Atlas
vertriaglich, wenn es fiir jedes x € U eine solche Karte ¢ : V' — R™ im Atlas gibt, die
die Bedingung erfiillt. Dann ist eine mit einem Atlas vertriagliche Karte auch mit einem
mit dem Atlas vertréglichen Atlas vertraglich. Insbesondere stimmen die mit jeweils
einem von zwei gegebenen Atlanten vertriaglichen Karten genau dann iiberein, wenn die
beiden Atlanten vertriglich sind, und die Vertriglichkeit von Atlanten ist eine Aqui-
valenzrelation. Ein geséttigter Atlas ist ein maximaler Atlas, der also alle mit diesem
Atlas vertriglichen Karten enthélt. Jede Aquivalenzklasse von vertréiglichen Atlanten
enthélt offenbar genau einen geséttigten Atlas und jeder geséttigte Atlas definiert ge-
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nau eine Aquivalenzklasse von vertréglichen Atlanten, niamlich alle Atlanten, die in
dem geséttigten Atlas enthalten sind.

Obwohl jeder metrische Raum ein Haudorffraum ist, ist nicht jeder topologische
Raum mit einem Atlas ein Hausdorffraum. Sei X = R U {0*} der topologische Raum
dessen offene Mengen aus den offenen Teilmengen von R bestehen und Mengen der
Form {0*} U O bzw. {0*} U (O \ {0}), wobei O eine offene Umgebung von 0 € R ist.
Dann ist Ig eine Karte mit Definitionsbereich X \ {0*} und 1\ o3 mit 0¥ — 0 eine
Karte mit Definitionsbereich X \ {0}. Zusammen bilden sie einen Atlas. Die beiden
Punte 0 und 0* besitzen allerdings keine schnittfremden Umgebungen und X ist kein
Haudorffraum. Um solche Beispiele auszuschlieen definieren wir

Definition 1.17. (Mannigfaltigkeit) Ein topologischer Hausdorff- und Lindeléfraum
X zusammen mit einem Atlas heifst differenzierbare Mannigfaltigkeit.

Unter einer Karte einer differnzierbaren Mannigfaltigkeite verstehen wir im folgen-
den immer eine mit dem Atlas vertrigliche Karte. Nicht jeder topologische Raum be-
sitzt einen Atlas. Offenbar besitzt jeder Punkt einer differenzierbaren Mannigfaltigkeit,
(oder eines topologischen Raumes mit einem Atlas) eine Umgebung, die homéomorph
zu einer offenen Teilmenge des R™ ist. So ist

{(z,y) eR* |2y =0} ={(2,0) |2 e R}U{(0,9) | y € R}

keine Mannigfaltigkeit, weil der Punkt (0, 0) keine Umgebung besitzt, die homomorph
zu einer offenen Teilmenge von R™ ist. Das sieht man daran, dass alle e-Bélle um (0, 0)
ohne den Punkt (0,0) 4 zusammenhéngende Komponenten besitzen, also vier offene
und abgeschlossene zusammenhéngende Teilmengen. Fiir jeden Punkt x € R™ und alle
e > 0 hat aber B(x,¢€) \ {x} genau eine zusammenhingende Komponente, wenn n > 1
ist und zwei, wenn n = 1. Wie wir gesehen haben, stimmen die Dimensionen von zwei
vertrédglichen Karten, deren Definitionsbereiche beide einen Punkt x € X enthalten
iiberein. Die Dimension einer differenzierbare Mannigfaltigkeit X ist die Funktion, die
jedem Punkt z € X die Dimension einer Karte aus dem Atlas zuordnet, deren Defi-
nitionsbereich z enthélt. Jeder Punkt x € X besitzt eine offene Umgebung, auf der
die Dimension der Mannigfaltigkeit konstant ist. Deshalb sind die Teilmengen von X,
auf denen die Dimension gleich einer Zahl n € N ist, offen. Wenn (z,,)men eine in X
konvergente Folge ist, dann stimmen die Dimensionen von X an den Punkten (z,,)men
fiir groe m mit der Dimension von X am Grenzwert von (,,)men iiberein. Deshalb
sind die Teilmengen von X, auf denen die Dimension gleich einer Zahl n € N ist, auch
abgeschlossen, und deshalb Vereinigungen von zusammenhéngenden Komponenten von
X. Insbesondere hat eine zusammenhéngende differenzierbare Mannigfaltigkeit nur ei-
ne Dimension. Eine nicht zusammenhéngende differenzierbare Mannigafitigkeit kann
mehrere Dimensionen haben.
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Beispiel 1.18. (i) Jeder hichstens abzihlbare diskrete Raum ist eine differenzierba-

(i)

(iii)

re Mannigfaltigkeit der Dimension 0. Umgekehrt ist jede differenzierbare Man-
nigfaltigkeit der Dimension 0 ein hdchstens abzdhlbarer diskreter Raum.

Jeder endlichdimensionale R—Vektorraum V st fir ein n € N isomorph zu R"
und besizt einen Atlas mit nur einer linearen Karte. Alle linearen Karten sind
miteinander vertraglich. Damit wird V' zu einer differenzierbaren Mannigfaltigkeit
von der gleichen Dimension wie V. Die Topologien aller Normen von V' stimmen
alle tberein, und die entsprechenden Atlanten sind alle miteinander vertrdglich.

Sei R der (n+ 1)-dimensionale Euklidische Raum mit dem Fuklidischen Ska-
larprodukt und der entsprechenden Norm. Seien eq,...,e, die natirliche Basis
vom R"* L. Unter der n—dimensionalen Sphdre verstehen wir die Teilmenge

S" = {z e R | ||zf| = 1}

Im folgenden machen wir S™ auf natirliche Weise zu einer differenzierbaren Man-
nigfaltigkeit. Dafiir definieren wir eine Variante der stereographische Projektion:

S*™\ {eo} = R"
Zundchst identifizieren wir den R™ mit der Teilmenge
{z e R" | (z,e0) = 0} = {0ep + z161 + ... + e, € R"| (21,...,2,) € R"}.

Dann bildet die Variante stereographische Projektion S"\{eo} (ohne den Nordpol)
auf den Schnittpunkt der Geraden durch den Nordpol und den Punkt von S™\ {eg}
mit der Ebene R" C R™™! ab. Sei x € S™\ {eg}. Dann besteht die Gerade durch
den Nordpol und der Punkt x aus den Punkten {eq + t(x — eg) | t € R}. Sie
schneidet die Hyperebene R™ = {z € R"*! | (z,e0) = 0} in dem Punkt mit

(e +t(x —eg),e0) =1 —t+t{x,e9) =0,

T — €

lso ¢ 1 d n
atso = — un = € _—
YO T T e

1— <LU, €0>
Die Linge des Bildvektors ist dann gegeben durch

_ \/(93 — (7, e0)e0, 7 — (T, €p)eo)

x — eg(z.€0)
1 — (z,ep)

(x — eg)

(x,ep)
_ \/1 —2(w,e0)? + (x,€0)® |1+ (7, e0)

lyll = |leo +

1 (1 — (x,eg))?

(1 — (z,eq))? 1—(z,e)
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Also ist (x,eq) gegeben durch

Iyl — 1
<£L’,€0> =
oI+ 1
und x 1st gegeben durch
Iyl —1 2y (lyll* = 1)eo + 2y
= (z,e0)e0+ (1 — (z,e0))y = F—€0+—17— = ,
lyllP+1 7 lyl>+1 [yl +1

wobei wir R™ als Teilmenge von R™™ auffassen. Also ist die Variante der stereo-
graphische Projektion ein Homdéomorphismus von S™ \ {eq} nach R™. Wenn wir
diese Variante der stereographischen Projektion an der Hyperebene R™ spiegeln,
also ey durch —eq ersetzt, dann erhalten wir den Homdomorphismus

T+ eg

S\ {— — R", =Yy =—€ +———.
\{ 60} x Yy €o 1+<$’€0>

Die Verkettung der Finschrankung der obigen Abbildung y — x aufy € R™\ {0}
mit der dieser Abbildung auf S™ \ {eg, —eo} ergibt die analytische Abbildung

(lyll* = 1)eo + 2y 0) Iyl +1
Iyl +1 20yl Myl

Wegen Satz 1104 (i1) ist S™ als eine nicht disjunkte Vereinigung zweier zusam-
menhdngender Mengen zusammenhdngend. Dadurch wird S™ zu einer zusam-
menhdngenden differenzierbaren kompakten Mannigfaltigkeit.

R™"\ {0} — R™\ {0}, y|—>—eo+<

Sei f: R — R eine glatte Funktion, deren Gradient V f keine gemeinsamen
Nullstellen mat f hat. Dann gibt es aufgrund der Voraussetzung an f fir jedes
Element v € R™ der Nullstellenmenge ein i € {0,...,n}, so dass g—i(:c) # 0.
Wegen dem Satz der impliziten Funktion gibt es dann eine genauso oft wie f stetig
differenzierbare Funktion g von der Schnittmenge von {y € R™™ | y; = 0} mit
einer Umgebung von x nach R, so dass die Schnittmenge der Nullstellenmenge
von f mit der Umgebung von x gleich dem Graphen von g auf der Umgebung
von x ist, also gleich der Menge z(y) = y + g(y)e; wobei y die Schnittmenge
von {y € R"™ | y; = 0} mit der Umgebung von x durchliuft. Die natiirliche
Projektion von der Umgebung von x auf diese Schnittmenge, die jedem z das y
mit den gleichen Koordinaten, bis auf die i—te Koordinate, zuordnet (also y =
z — (z,€;)e;) ist offenbar glatt und die Umkehrabbildung von der Abbildung y —
y + g(y)e;. Deshalb ist die Schnittmenge der Nullstellenmenge von f mit der
Umgebung von x diffeomorph zu einer offenen Teilmenge von R™. Offenbar ist
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die Nullstellenmenge als Teilmenge des R ein metrischer Raum und damit
auch ein Hausdorffraum. Mit R"*! ist auch die Nullstellenmenge eine abzihlbare
Vereinigung von kompakten Mengen, also wegen Satz[1.29 ein Lindeldfraum und
damit eine n—dimensionale differenzierbare Mannigfaltigkeit.

Mit der Funktion f:R"™ — R, x — f(x) = ||z||* — 1 erhalten wir wieder, dass
die n—dimensionale Sphdare eine differenzierbare Mannigfaltigkeit ist.

Bemerkung 1.19. Anstatt von den Ubergangsfunktionen zu fordern, dass sie unend-
lich oft differenzierbar sind, kann man auch r mal-stetig differenzierbar, oder analytisch
oder (fiir kompleze Mannigfaltigkeiten, bei denen wir R™ durch C" ersetzen) holomor-
phe Ubergangsfunktionen fordern. Dann entstehen C” bzw. analytische, bzw. kompleze
Mannigfaltigkeiten. Wenn wir nur stetige Ubergangsfunktionen fordern, sprechen wir
von topologischen Mannigfaltigkeiten. Ein gesdttigter Atlas (bzw. eine Aquivalenzklasse
von vertraglichen Atlanten) wird auch differenzierbare Struktur genannt. Es gibt im All-
gemeinen viele verschiedene Aquivalenzklassen von Atlanten. Aber die meisten dieser
differenzierbaren Strukturen werden durch Homdomorphismen aufeinander abgebildet.

Ubungsaufgabe 1.20. Gebe einen Homéomorphismus von R nach R an, der die dif-
ferenzierbare Struktur von dem Vektorraum R mit Norm |-| auf eine nicht vertragliche
differenzierbare Struktur abbildet.

Definition 1.21. Zwei differenzierbare Mannigfaltigkeiten X und Y heiflen diffeo-
morph, wenn es einen Homdomorphismus ® : X — Y gibt, dessen Verkettung mit
allen Karten des Atlas von Y mait dem Atlas von X vertrdgliche Karten von X bilden.

Die meisten nicht miteinander vertréglichen differenzierbaren Strukturen einer dif-
ferenzierbaren Mannigfaltigkeit sind also diffeomorph. Diese Relation auf dem Raum
aller differenzierbaren Strukturen ist offenbar eine weitere Aquivalenzrelation, neben
der Vertraglichkeit von Atlanten. Fiir eine gegebene differenzierbare Mannigfaltigkeit
stellt sich dann die Frage, wieviel verschiedene nicht zueinander diffeomorphe differen-
zierbare Strukturen sie besitzt. Fiir den Fall von eindimensionalen Mannigfaltigkeiten
ldsst sich leicht zeigen, dass alle verschiedenen differenzierbaren Strukturen zueinander
diffeomorph sind. Allgemein gilt, dass auf niedrigdimensionalen Mannigfaltigkeiten alle
differenzierbaren Strukturen diffeomorph sind. Wenn die Dimension grofler als vier ist,
kann es verschiedene differenzierbare Strukturen geben. Im besonders schweren Fall
der Dimension vier (z.B. R*) wurde durch eine von der Physik inspirierte Theorie von
Donaldson in den achtziger Jahren gezeigt, dass es auch unendlich viele verschiedene
nicht zueinander diffeomorphe differenzierbare Strukturen geben kann.
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1.3 Differenzierbare Abbildungen

Definition 1.22. Seien X und Y zwei differenzierbare Mannigfaltigkeiten, p € Ny und
x € X. Dann heif§t eine Abbildung f : X — Y in x p mal (stetig) differenzierbar (bzw.
glatt), wenn fir zwei mit den Atlanten von X bzw. Y wvertrdgliche Karten ¢ : U — R™
und Y V. — R™ mit x € U, f(x) € V und U C f7LV] folgende Abbildung von
o[U] C R™ auf ¢[V] C R™ bei ¢p(x) p mal (stetig) differenzierbar bzw. glatt ist:

Yo flyo¢™ : g[U] = ¥[V],y = v(f(67 (1))

Diese Bedingung ist offenbar unabhéngig von der Wahl der Karten. Fiir jedes z € X
gibt es immer zwei Karten ¢ : U — R™ und ¢ : V — R™ im Atlas von X bzw. Y mit
x € U und f(z) € V. Den Definitionsbreich U kann man dann immer so einschrénken,
dass z € U C f1[V] gilt.

Damit kénnen wir die Differentialrechnung von dem R™ auf differenzierbare Man-
nigfaltigkeiten tibertragen. Wir benutzen dabei immer lokal Karten und erhalten so
Abbildungen von offenen Teilmengen des R™ auf offene Teilmengen des R™. Im Folgen-
den werden wir noch viele weitere Strukturen der Differentialrechnung auf dem R™ bzw.
R™ weiterentwickeln und mit Hilfe der Karten auf differenzierbare Mannigfaltigkeiten
iibertragen. Wichtig dabei ist, dass die entsprechenden Aussagen so formuliert werden,
dass sie nicht von der Wahl der Karte aus dem Atlas abhéngen.

Beispiel 1.23. Im Folgenden werden wir R oder auch jeden endlichdimensionalen
Vektorraum mit der differenzierbaren Struktur aus dem Beispiel (i1) ausstatten und als
differenzierbare Mannigfaltigkeit ansehen. Also sind alle p mal stetig differenzierbaren
Funktionen von X nach R wohldefiniert. Wir wollen diesen Raum CP(X,R) nennen.
Weil die p mal differenzierbare Funktion von einer offenen Teilmenge U C R™ nach R
eine Algebra bilden, ist auch CP(X,R) bzw. C(X,R) eine Algebra.

Ubungsaufgabe 1.24. Zeige, dass zwei differenzierbare Mannigfaltigkeiten X und Y
genau dann diffeomorph sind, wenn es eine glatte Abbildung f : X — Y gibt, die
bijektiv ist, und deren Umkehrabbildung auch glatt ist.

Beispiel 1.25. (i) Sei R" der Euklidische n—dimensionale Raum mit dem Euklidi-
schen Skalarprodukt. Dann ist die Abbildung

2z
frxm fl)= ———
1 — [
ein Diffeomorphismus von B(0,1) C R™ nach R"™. Sei namlich y = 1_2”—”;”2 Dann

gilt fiir ||z|| < 1 auch ||z||* > 0. Also folgt ||y|| = IE||||Z||||2 oder auch ||yl|||z||* +
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2||z|| — [lyll = 0. Also gilt

—24 A+Afyl? -1+ yl?

)l =
2|l [yl

Wegen 0 < ||z|| < 1 folgt

VIitHyl? -1

el ===
Dann gilt
_0—fe®) gl 2 TP 1 - P
2 2 Pk

VIitlylP -1 y
= ’y =
(VI+lylP+ D1+ lyl? = 1) VIFyllP+1
Diese Abbildung ist fir alle y € R™ wohldefiniert und das Bild liegt in B(0,1).

Die Abbildungen f und ihre Umkehrabbildung sind sogar analytische Abbildungen,
also auch Diffeomorphismen von B(0,1) auf R™ bzw. R™ nach B(0,1).

(ii) Die Abbildung g : v — e ist offenbar eine Involution:

X
EE_ @zt
Iel? )Pl

g ist also ein analytischer Diffeomorphismus von R"\{0} nach R™"\{0}. Sie bildet
das Auflere {x € R"|||z|| > 1} der Einheitskugel auf B(0,1)\ {0} ab. Zusammen

mit der Abbildung f aus (i) ergibt sie einen analytischen Diffeomorphismus des
AujfSeren der Einheitskugel nach R™\ {0}.

1.4 Zerlegung der Eins

In diesem Abschnitt fithren wir eine sogenannte Zerlegung der Eins ein. Das ist eine
abzdhlbare Familie ( f,,),en von nicht negativen glatten Funktionen mit Werten in dem
Intervall [0,1], deren Summe >~ f, = 1 gleich Eins ist. Diese Summe soll dabei
immer lokal endlich sein, d.h. fiir jedes = einer gegebenen Mannigfaltigkeit, soll es eine
Umgebung geben, auf der nur endlich viele der Funktionen ( f,,),en nicht verschwinden.
Dadurch ist die Summe immer eine endliche Summe und deshalb auch ohne Konvergenz
wohldefiniert. Mithilfe einer solchen Zerlegung der Eins wollen wir die Funktionen bzw.
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Vektorfelder bzw. Differentialformen (diese werden spéter eingefiihrt) in Summen von
Funktionen bzw. Vektorfeldern bzw. Differentialformen zerlegen, die nur innerhalb einer
kleinen offenen Menge nicht verschwinden. Also sollen die einzelnen Funktionen der
Zerlegung der Eins nur innerhalb von (kleinen) offenen Mengen nicht verschwinden.

Definition 1.26. Eine Folge (f,)nen von reellen [0, 1]-wertigen Funktionen auf einem
topologischen Raum X heifst Zerleqgung der Eins, wenn sie folgende Bedingungen erfiillt:

(i) (Lokale Endlichkeit) Fiir jedes x € X gibt es eine offene Umgebung U, auf der
alle bis auf endlich viele Funktionen der Folge (f,)nen verschwinden.

(i) Fiir alle v € X gilt Y fo(x) = 1. Wegen (i) ist diese Summe immer endlich.

n=1

In diesem Abschnitt beweisen wir den folgenden Satz.

Satz 1.27. (Ezistenz einer glatten Zerlegung der Eins) Sei X eine differenzierbare
Mannigfaltigkeit und U eine offene Uberdeckung von X. Dann gibt es eine glatte Zer-
legung der Eins (fn)nen auf X, so dass alle Funktionen f, auferhalb einer kompakten
Teilmenge einer der offenen Mengen U, € U der Ubereckung verschwinden.

Wenn zu jeder offenen Uberdeckung U eine solche Zerlegung der Eins (f,)nen exi-
stiert, dann gibt es offenbar eine Folge (U, )nen von offenen Mengen in U, so dass jedes
fn auBerhalb von U, verschwindet. Wegen der Bedingung (ii) ist die Folge (U, )nen eine
abzahlbare offene Teiliiberdeckung von U sein. Insbesondere ist X ein Lindelofraum.
Wir zeigen zuniichst ein paar Aquivalenzen fiir topologische Rdume mit einem Atlas.

Definition 1.28. FEin topologischer (X, 1) Raum heifit lokalkompakt, wenn jeder Punkt
eine kompakte Umgebung besitzt. Er erfillt das sogenannnte zweiteAbzdhlbarkeitsaziom,
wenn T eine abzdihlbare Basis B besitzt, d.h. eine abzdhlbare Teilmenge 5 C T, so dass
jedes O € T die Vereinigung der offenen Mengen in {U € g |U C O} ist.

Wegen Heine-Borel sind alle endlichdimensionalen euklidischen Rdume R™ lokal
kompakt. Deshalb ist ein topologischer Raum mit einem Atlas lokal kompakt. Also
sind differenzierbare Mannigfaltigkeiten lokal kompakte topologische Hausdorffraume.

Fiir einen topologischen Raum (X, 7), der das zweite Abzdhlbarkeitsaxiom erfiillt,
bilden die Schnittmengen der Elemente von einer abzédhlbaren Basis mit einem Unter-
raum eine abzidhlbare Basis des Unterraums. Deshalb erfiillt jeder solche Unterraum
auch das zweite Abzéhlbarkeitsaxiom. Im R ist 8 = {B(z,r) | z € Q™,r € Q*} eine
abzahlbare Basis, so dass jeder Unterraum des R™ eine abzidhlbare Basis besitzt.

Satz 1.29. Fiir einen topologischen Raum X mit einem Atlas ist folgendes dquivalent:
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(i) Es gibt Folgen offener und kompakter Teilmengen (O, )nen und (K, )pen von X,
so dass Op, C Ky, C Opy1 C Ky fiirn € N und |, ey On = U,en I = X gilt.

(1) X erfillt das zweite Abzihlbarkeitsaxiom.
(111) X ist ein Lindeldfraum

Beweis: (i) = (ii): Jeder topologische Raum (X, 7) mit einem Atlas wird durch offene
Teilmengen iiberdeckt, die durch Karten homéomorph auf Teilmenge eines R™ abgebil-
det werden, und damit abzidhlbare Basen besitzen. Fiir jedes n € N {iberdecken dann
endlich viele dieser Mengen die kompakte Teilmenge K, aus (i). Deren Vereinigung ist
eine abzihlbare Uberdeckung von X durch offene Teilmengen, mit abzihlbaren Basen.
Die abzdhlbare Vereinigung aller dieser Basen ist dann eine abzihlbare Basis von 7.
(ii) = (iii): Fiir eine offene Uberdeckung U eines topologischen Raumes (X, 7) mit
einer abzéhlbaren Basis f ist f/ = {V € g | V C Uy fiir ein Uy € U} hochstens
abzéhlbar und (Uy)veg eine abzihlbare Teiliiberdeckung, weil jedes z € X in einem
U € U, also in einem V € ' und damit auch in einem Uy liegt. Also ist jeder topolo-
gische Raum, der das zweite Abzdhlbarkeitsaxiom erfiillt, auch ein Lindel6fraum.
(iii) = (i): Jeder Punkt x € X eines topologischen Raum (X, 7) mit einem Atlas
besitzt eine kompakte Umgebung K., die dann eine in X offenen Umgebung O, von
x enthilt. Wenn X ein Lindelofraum ist, dann besitzt die Uberdeckung U,ex Oz eine
abzéhlbare Teiliiberdeckung, die wir durch n € N durchnummerieren. Wir definieren
induktiv die O,, und die K,, als Vereinigungen von endlich vielen dieser durchnumme-
rierten O, bzw. der entsprechenden K,. Dabei wird O; als das erste der durchnumme-
rierten O, und O,; jeweils als die Vereinigung von O,, mit dem n-ten Element und
endlich vielen dieser O, definiert, die K, iiberdecken. Diese Folgen erfiillen (i). q.e.d.
Man kann zeige, dass jeder Hausdorffraum X mit einem Atlas, der eine dieser
Bedingungen erfiillt, metrisierbar ist, d.h. es gibt eine Metrik auf X mit den gleichen of-
fenen Mengen wie X . Auflerdem ist ein metrischer Raum genau dann ein Lindel6fraum,
wenn er eine abzéhlbare dichte Teilmenge enthélt, also separabel ist. Insbesondere sind
alle differenzierbaren Mannigfaltigkeiten separabel und metrisierbar.

Lemma 1.30. Zu jeder offenen UberdeckungU einer differenzierbaren Mannigfaltigkeit
X gibt es eine Folge (¢n)nen von Karten mit Definitionsbereichen (Uy)nen, S0 dass

IMit folgenden Aussagen aus J.M. Munkres: Topology, Chapter 4, folgt die Metrisierbarkeit von X
aus dem Theorem 4.1, wenn zuvor gezeigt wird, dass jeder lokal kompakte Hausdorffraum regulér ist:
d.h. fiir einem Punkt 2 und eine abgeschlossene Menge A mit « ¢ A sind {z} und A in zwei disjunkten
offenen Mengen enthalten. Wenn K eine kompakte Umgebung von z ist, die die in X offene Umgebung
O enthilt, dann ist K wegen Theorem 2.4 normal und wegen J.M. Munkres: Topology, Chapter 3,
Theorem 5.3 abgeschlossen. Wegen Lemma 2.1 (b) gibt es eine in K offene Umgebung U von 2, deren
Abschluss in K disjunkt ist zu A. Dann sind U N'O und X \ U solche disjunkte offene Mengen.
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(i) Fiir allen € N ist ¢,, ein Diffeomorphismus von U, auf einen Ball B(0,2) C R™.
(ii) Jedes U, ist in einer offenen Menge von U enthalten.
(i4i) (7' [B(0,1)])nen ist eine offene Uberdeckung von X .

(iv) Jedes U, ist mit hiochstens endlich vielen der (Uy,)men nicht schnittfremd.

Beweis: Jeder Punkt = € X ist im Definitionsbreich einer mit dem Atlas der diffe-
renzierbaren Mannigfaltigkeit X vertriglichen Karte ¢, enthalten. Auflerdem ist = in
einer der offenen Mengen in U enthalten. Indem wir die Karten (¢, ).cx translatieren,
auf Urbilder von offenen Billen einschrinken, und gegebenfalls um einen geeigneten
positiven Faktor strecken, erhalten wir Karten, die ¢,(z) = 0 und sowohl (i) als auch
(ii) erfiillen. Also gibt es fiir jede Uberdeckung ¢ von X eine Uberdeckung von X durch
Definitionsbreiche von Karten (¢, ).cx, die ¢,(x) = 0 und (i)—(ii) erfiillen.

Die differenzierbare Mannigfaltigkeit X ist ein Lindel6fraum mit einem Atlas. Seien
(On)nen und (K, )nen die entsprechenden Folgen von offenen bzw. kompakten Mengen
in Satz (i). Wir ergidnzen K_; = Og = Ky = (). Fiir jedes n € N liegt jedes x €
K, \O,_1 im Definitionsbreich U, einer solchen Karte ¢, von X, die ¢, (x) = 0 und (i)—
(ii) erfiillt. Zusétzlich kénnen wir U, C O,41 \ K,_2 annehmen. Die kompakte Menge
K, \ O, besitzt eine endliche Teiliiberdeckung durch die Urbilder der offenen Bélle
B(0,1) beziiglich dieser Karten. Insbesondere besitzt K eine endliche Uberdeckung
durch die Urbilder von B(0, 1) beziiglich solcher Karten, deren Definitionsbereiche in
O, enthalten sind. Alle diese abzdhlbar vielen Karte erfiillen zusammen (i)—(iii). Jeder
der endlich vielen Definitionsbereiche der Karten der Uberdeckung von K, \ O,_1 ist
in O,41 \ K,,_o enthalten, und jeder der Uberdeckung von K, \ Opm—1in Oppi1 \ Koo
Fiir |n —m| > 2 sind sie miteinander schnittfremd und es gilt auch (iv). q.e.d.

Beweis der Existenz der Zerlegung der Eins (Satz [1.27]): Seien a < b zwei reelle
Zahlen. Dann ist die reelle Funktion f,, : R — [0,1], 2 — fu(x) mit

1 firzx<a
fap(z) = Sexp(=Lexp(sL)) fira<z <b
0 fir b <z

eine glatte Funktion. Fiir alle r > 0 ist dann die Funktion g(z) = fi3/2(]|z]) eine
glatte Funktion auf dem R", die auf B(0, 1) gleich 1 ist und auerhalb von B(0,3/2)
verschwindet. Sei fiir alle n € N ¢,, : U, — B(0,2) die Folge von Karten, die (i)—(iv)
aus dem vorangehenden Lemma erfiillt. Dann setzen wir die Funktion h, = g o ¢,, zu
einer glatten Funktion auf X fort, indem wir sie aulerhalb des Definitionsbereichs U,
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der Karte ¢,, gleich Null setzen. Wir definieren jetzt eine Zerlegung der Eins (f,,)nen:
n—1
fo=ho JJ(1 = ) fiir alle n € N,
I=1

Dann folgt induktiv fiir alle n € N:

n n+1

f1+---+fn+fn+1:1—H(1—hl)+hn+1H(1—hl):1—H(1—hl)-

=1 =1 =1

Wegen der Bedingung (ii) ist jedes x € X fiir ein n € N in ¢, '[B(0,1)] C U, enthalten.
Wegen der Bedingung (iv) sind auf U, = ¢;'[B(0,2)] nur endlich viele Funktionen
(A )men ungleich Null. Deshalb erfiillt diese Folge die Bedingung der lokalen Endlich-
keit. Auf ¢~'[B(0,1)] ist (1 — h,) gleich Null. Deshalb ist die Summe Y_ f, aller f,
tiberall gleich Eins. Wegen der Bedingung (iii) verschwindet jedes f, auBlerhalb der
kompakten Teilmenge ¢~*[B(0,3/2)] einer der offenen Mengen von U. q.e.d.

Zum Abschluss kénnen wir wegen der lokalen Endlichkeit noch alle Elemente einer
solchen Zerlegung der Eins, die auflierhalb derselben offenen Menge in U verschwinden,
zu einer Funktion aufsummieren. Dadurch erreichen wir, dass die abzédhlbare Familie
(hn)nen durch eine hochstens abzéhlbare Teilitberdeckung (U, )nen von U durchnum-
meriert wird. Allerdings kénnen wir dann im Allgemeinen — wenn z.B. die Uberdeckung
nur aus einer nicht kompakten Menge besteht — nicht mehr erreichen, dass die Funk-
tionen h,, auBerhalb eine kompakten Teilmenge eines Elementes von U verschwinden.

Korollar 1.31. Sei X eine differenzierbare Mannigfaltigkeit und A C X eine Teilmen-
ge und g eine reelle Funktion auf A. Gibt es fir jedes x € A im Abschluss von A eine
offene Umgebung V, von x in X und eine glatte Funktion f, auf V., die auf V, N A
mit g tibereinstimmt, dann gibt es fiir jede offene Menge U, die A enthilt eine glatte
Funktion f auf X, die auf A mit g ibereinstimmt, und auferhalb von U verschwindet.

Beweis: Die offene Uberdeckung V' = (J,.5(Ve N U) einer offenen Teilmenge, die
A enthélt, besitzt eine abzéhlbare Teilitberdeckung (V},),en und eine entsprechenden
Zerlegung der Eins (hy,)nen. Sei (fr)nen Folge der Einschréankungen der entsprechenden

fo auf V,, N U. Dann leistet die Funktion f = ZneN h, fn das Gewiinschte. q.e.d.

Wir nennen Funktionen g, die die Bedingungen des Korollars erfiillen auf A un-
endlich oft differenzierbar. Analog werden r mal stetig differenzierbare Funktionen auf
abgeschlossenen Teilmengen von differenzierbaren Mannigfaltigkeiten definiert.
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1.5 Tangentialraum

In diesem Abschnitt wollen wir den Begriff der Tangentialvektoren auf differenzierbare
Mannigfaltigkeiten verallgemeinern. In jedem Punkt des R™ konnen wir den Raum aller
infinitesimalen Richtungen von differenzierbaren Funktionen von reellen Intervallen in
den R™ mit dem R™ identifizieren. Durch die Karten des Atlases kénnen wir das auch
fiir differenzierbare Mannigfaltigkeiten. Um diese Tangentialvektoren, die die infinite-
simalen Richtungen auf einer differenzierbaren Mannigfaltigkeit beschreiben, aber so
einzufithren, dass ihre Definition nicht von der Wahl der Karte abhéingen, definieren
wir zunichst eine Aquivalenzrelation auf dem Raum der Abbildungen zwischen zwei
differenzierbaren Mannigfaltigkeiten.

Definition 1.32. Seien X und Y zwei differenzierbare Mannigfaltigkeiten und x €
X. Auflerdem seien fi und fy zwei auf offenen Umgebungen von x stetige und in x
differenzierbare Abbildungen nach Y. Wir sagen, dass sich die beiden Abbildungen f,
und fy in dem Punkt x berihren, wenn fi(x) = fo(x) =y und beziiglich einer Karte ¢
von X im Punkt x und einer Karte 1) von'Y im Punkt y die Ableitung von o fio¢~*
und 1 o fo o ¢~ im Punkt ¢(x) als lineare Abbildung iibereinstimmen.

Wegen der Kettenregel ist diese Aussage unabhéngig von den Karten ¢ und v von
X bzw. Y in den Punkten z bzw. y. Aus der Definition folgt auch sofort, dass diese
Relation eine Aquivalenzration zwischen solchen Abbildungen ist.

Definition 1.33. Sei X eine differenzierbare Mannigfaltigkeit und x € X. Die Men-
ge der Aquivalenzklassen aller stetigen im Punkt O differenzierbaren und sich dort
beriihrenden Abbildungen von (—e,€) nach X, die 0 auf x abbilden, heifit Tangenti-
alraum von X im Punkt x und wird mit T, X bezeichnet. Seine Elemente heiffen Tan-
gentialvektoren im Punkt x.

Fiir alle v, w € R™ ist die Abbildung ¢ — w+tv unendlich oft differenzierbar und hat
bei t = 0 die Ableitung ¢t — tv. Umgekehrt beriihrt jede in 0 differenzierbare Abbildung
x: (—€,€) — R™ mit x(0) = w, die Abbildung ¢t — w + tv mit v = #(0) im Punkt
t = 0. Dadurch wird der Tangentialraum 7;, W von einer offenen Teilmenge W C R™ im
Punkt w € W auf eindeutige Art und Weise mit dem Vektorraum v € R™ identifiziert.
Fiir jede in 0 differenzierbaren Abbildungen (—e¢, €) — W, die 0 auf w € W abbildet,
ist die Verkettung mit einer in w € W differenzierbare Abbildung f : W — R" eine
in 0 differenzierbare Abbildung (—e¢,€) — R™, die 0 auf f(w) abbildet. Die Verkettung
mit f bildet dabei sich beriihrende Abbildungen auf sich beriihrende Abbildungen ab
und induziert ein Abbildung T,(f) : T,W — T R". Wenn wir dabei T, W mit R™,
und T'y(;)R" mit R" identifizieren, dann wird T;,(f) mit v — L], _o f (w +tv) = f'(w)(v)
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idenifiziert. Insgesamt entspricht also T,(f) der Ableitung
F(w) : R™ ~ T, W — R ~ Ty R™.

WEeil die Ableitung eine lineare Abbildung ist, ist diese Abbildung eine lineare Abbil-
dung von dem Vektorraum R™ in den Vektorraum R". Das wollen wir auf differenzier-
bare Abbildungen zwischen differenzierbaren Mannigfaltigkeiten iibertragen.

Beispiel 1.34. Wir haben gerade gesehen, dass sich fiir alle w € R™ der Tangenti-
alraum T,R™ auf natiirliche Weise mit R™ identifizieren lisst. Wenn allgemeiner V
ein normierter Vektorraum ist, dann ist fir alle w,v € V die Abbildung t — w + tv
unendlich oft differenzierbar, und die Ableitung ist gegeben durch t — tv. Jede differen-
zierbare Abbildung (—e,€) =V, t — v(t), die 0 auf w abbildet, berihrt offenbar genau
die den Vektoren w und v = dzg) li=o entsprechende obige Abbildung. Dadurch wird der
Tangentialraum T,V auf natiirliche Weise mit V' identifiziert.

Definition 1.35. Sei f : X — Y eine in x € X differenzierbare Abbildung zwischen
differenzierbaren Mannigfaltigkeiten und seien ¢ : U — R™ und ¢ : V. — R"™ Karten
von X undY mitx € U und f(x) € V. Dann ist o fodt eine in ¢(x) differenzierbare
Abbildung von W = ¢[fHV]NU] C R™ nach R™. Die Verkettung mit o fop™! bildet
sich in 0 berihrende Abbildungen (—e,e) — W, die 0 auf ¢(x) abbilden, auf sich in 0
berihrende Abbildungen (—e,e) — R" ab, die 0 auf(f(z)) abbilden. Deshalb induziert
die Verkettung mit f eine Abbildung vom Tangentialraum T, X von X bei x € X in den
Tangentialraum Ty ,)Y von'Y bei f(x) € Y. Diese Abbildung wird mit T,(f) bezeichnet.
Fiir differenzierbare f bezeichnet T(f) die Vereinigung aller dieser Abbildungen:

T(f):TX = | T.X - TY = T,V

reX yey

Satz 1.36. (i) Sei X eine differenzierbare Mannigfaltigkeit und x € X. Dann indu-
ziert jede Karte ¢ um v € X eine bijektive Abbildung T,(¢p) von T, X auf den
Vektorraum Ty R™. Dieser Isomorphismus induziert auf T, X eine Vektorraum-
struktur iiber R, die nicht von der Karte ¢ abhdngt.

(i) Sei f : X — Y eine im Punkt x € X differenzierbare Abbildung zwischen den
differenzierbaren Mannigfaltigkeit X und Y. Dann ist die folgende Abbildung li-
near:

Tm(f) : TmX — Tf(x)}/.

(i1i) Seien f: X =Y inz € X und g:Y — Z in f(zx) differenzierbare Abbildungen
zwischen differenzierbaren Mannigfaltigkeiten. Dann ist go f in x differenzierbar
und es gilt
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(iv) Eine differenzierbare Abbildung f : X — Y zwischen differenzierbaren Mannig-
faltigkeiten ist genau dann lokal konstant, wenn T,(f) =0 fir alle z € X.

(v) Zwei differenzierbare Abbildungen f: X —Y und g : X — Y zwischen differen-
zierbaren Mannigfaltigkeiten beriihren sich genau dann im Punkt x € X, wenn

f(x) = g(x) und To(f) = T.(g) gilt.

Beweis: Wir zeigen zuerst (iii): Seien also f : X - YV inz € X und g: Y — Z in
f(x) differenzierbar, und seien ¢ : U — R™ ¢ : V — R" und £ : W — R’ Karten
von X, Y und Z mit x € U, f(z) € V und g(f(z)) € W. Sei V' = g~ {W]NV und
U' = f7YV]NU. Dann ist £ o go¢~! eine in ¢(f(x)) differenzierbare Abbildung
von ¢/[V'] C R™ nach R! und v o f o ¢! eine in ¢(x) differenzierbare Abbildung von
¢[U’'] € R™ nach ¢ [V'] C R™. Thre Verkettung ist die in ¢(x) differenzierbare Abbildung
£ogo fop~! von ¢[U'] C R™ nach R!. Das zeigt, dass g o f in z differenzierbar ist,
wenn f in z und g in f(x) differenzierbar sind.

Fiir jede in 0 differenzierbare Abbildung y : (—¢,¢) — X, die 0 auf = abbildet,
ist f oy eine in 0 differenzierbare Abbildung (¢,¢) — Y, die 0 auf f(z) abbildet. Die
Verkettung g o (f o y) von f oy mit g ist dann eine in 0 differenzierbare Abbildung,
die 0 auf g(f(z)) abbildet. Wegen go (f oy) = (go f) oy ist diese Abbildung auch die
Verkettung von y mit g o f. Dann folgt T,(g o f) = Ty (g) o T:(f) aus der Definition
von Ty (f), T (g) und Ty (g o f). Das zeigt (iii).

Offenbar gilt T, (1x) = 17, x fiir jede differenzierbare Mannigfaltigkeit X und x € X.
Dann folgt aus (iii), dass fiir jede Karte ¢ : U — R™ und jedes x € U die Abbildung
Ty (¢~ 1) die inverse von T,(¢) ist. Also sind alle diese Abbildungen bijektiv.

Als néchstes wéhlen wir in der Situation von (ii) zwei Karten ¢ : U — R™ von X
und ¢ : V — R" von Y mit x € U und f(z) € V. Dann ist ¢ o f o ¢~! eine in ¢(x)
differenzierbare Abbildung von ¢[f~![V]NU] C R™ nach R™. Thre Tangentialabbildung
Ty (Yo fo¢™t) ist dann die lineare Abbildung

(o fod ) (p(x)): R™ ~ TyyR™ = R" =~ Ty(s()R™.

Fiir den Fall Y = X and f = 1y folgt, dass die Karten ¢ und ¢ auf T, X die gleiche
Vektorraumstruktur definieren, also (i). Danach folgt (ii).

Die beiden Aussagen (iv) und (v) sind fiir offene Teilmengen X C R™ und Y C R”
klar. Der allgemeine Fall folgt dann aus (i)-(iii). q.e.d.

Wir konnen jetzt den Satz der inversen Funktion umformulieren.

Satz 1.37. Seir € NU{oo} und f : X — Y eine r mal stetig differenzierbare
Abbildung zwischen differenzierbaren Mannigfaltigkeiten. Wenn T,(f) fir ein x € X
invertierbar ist, dann gibt es offene Umgebungen U > x und V' > f(x), so dass f|y ein
Homdomorphismus von U auf V ist und (f|g)™' v mal stetig differenzierbar ist.
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Beweis: Wihle Karten @ : U — R™ von X und ¢ : V — R" mit x € U und f(z) € V
und wende den Satz der inversen Funktion auf ¢ o f o ¢~ sp-1p/)n0) bel ¢(z) an.q.e.d.

Definition 1.38. Der Rang einer differenzierbaren Abbildung f : X — Y zwischen

differenzierbaren Mannigfaltigkeiten bei v € X ist der Rang von T, (f) : T, X — Tym)Y .
Fine glatte Abbildung f heifft Immersion, wenn T,(f) fir alle x € X injektiv ist.
FEine glatte Abbildung f heifft Submersion, wenn T,(f) fir alle x € X surjektiv ist.

Aus der Linearen Algebra wissen wir, dass fiir eine lineare Abbildung A : V — W
zwischen endlich dimensionalen Vektorrdaumen folgendes gilt:

Rang(A) = dimV <= A ist injektiv .

Rang(A) = dim W <= A ist surjektiv .
Deshalb sind die Immersionen die Abbildungen, deren Rang der Ableitungen 7. ( f) fiir
alle z € X gleich dim T, X ist, und die Submersionen die Abbildungen, deren Rang der
Ableitungen T,(f) fiir alle x € X gleich dimj,) TY ist. Insbesondere sind Diffeomor-

phismen sowohl Immersionen als auch Submersionen. Aber glatte Abbildungen f, die
sowohl Immersionen als auch Submersionen sind, sind nicht immer Diffeomorphismen.

Beispiel 1.39. Sei
f:R—=S' 2 (cos(x),sin(x)).

Dann ist f offenbar unendlich oft differenzierbar. Fir x ¢ 2nZ ist f(x) # (1,0). Die
Verkettung von f mit der Variante der stereographischen Projektion ist also gleich

z —y mit (0,y) = (1,0) + —fl(zlf_) C_oigsjcg)) also y = T cos(a) iuzgzzx)
Die Ableitung dieser Abbildung ist
, cos(z)(1 —cos(z)) —sin*(z)  cos(z)—1 1
B (1 — cos(x))? ~ (1 —cos(z))?  cos(z)—1

Also ist diese Abbildung fiir x € 217 sowohl eine Immersion als auch eine Submersion.
Firx & n+2nZ qgilt f(x) # (—1,0). Dann ist die Verkettung von f mit der gespiegelten
Variante der stereographischen Projektion gleich

x =y mit (0,y) =—(1,0) + %02(1;)0) also y = %.
Fiir die Ableitung gilt
,cos(x)(1+ cos(x)) +sin*(z)  cos(z)+1 1
4= (1 + cos(x))? ~ (1+4cos(x))? 1+ cos(x)

Also ist f eine Immersion und eine Submersion, aber kein Diffeomorphismus, weil f
nicht injektiv ist. Lokal ist f zwar ein Diffeomorphismus, aber nicht immer global.
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Wegen dem Satz der inversen Funktion kénnen wir fiir jede Immersion f: X — Y
und jedes z € X Umgebungen U von x und V von f(x) finden, so dass V diffeomorph
ist zu dem kartesischen Produkt von U mit einer offenen Teilmenge des R" mit n =
dim T'f()Y —dim T, X. Dadurch wird f mit einer Einbettung von U nach V' identifiziert.
Lokal ist also jede Immersion injektiv, aber nicht immer global.

Analog kénnen wir auch mit dem Satz der impliziten Funktion fiir jede Submersion
f: X — Y und jedes z € X Umgebungen U von z und V von f(z) finden, so dass
U diffeomorph ist zu dem kartesischen Produkt von V' mit einer offenen Teilmenge des
R"™ mit n = dim 7, X — dim T,)Y". Dabei wird f mit der natiirlichen Projektion von U
nach V identifiziert. Lokal ist also jede Submersion surjektiv, aber nicht immer global.

Wir nennen glatte Abbildungen, die sowohl Immersionen als auch Submersionen
sind, lokale Diffeomorphismen. Dann sind alle bijektiven lokalen Diffeomorphismen
auch globale Diffeomorphismen. Insbesondere sind vertriagliche Karten Diffeomorphis-
men von offenen Teilmengen der Mannigfaltigkeit auf offene Teilmengen des R”.

Wir konnen weitere Begriffe der Differentialrechnung mehrerer Verédnderlicher auf
differenzierbare Mannigfaltigkeiten iibertragen. So heifit ein Punkt = € X einer differen-
zierbaren Funktion f : X — Y zwischen differenzierbaren Mannigfaltigkeiten kritischer
Punkt, wenn T,,(f) = 0 gilt. Lokale Extremwerte von reellen Funktionen sind entwe-
der lokale Minima oder lokale Maxima. Alle lokalen Extremwerte von differenzierbaren
reellen Funktionen sind auch kritische Punkte.

Wir fithren jetzt eine zweite Charakterisierung der Elemente des Tangentialraumes
ein. Fiir s € R sei 1p € TR die Aquivalenzklasse von (—¢,€) — R, t +— t + s. Fiir
eine differenzierbare Mannigfaltigkeit X, z € X und v € T, X definieren wir

D,:C'(X,R) = R, mit To(f)(v) = Do(f)1ry0, -
Wenn y : (—¢,¢) — R ein Reprisentat von v € T, X ist, dann ist v = Ty(y)(1lzr) und

To(f)(v) = To(f) © To(y) (Amr) = To(f 0 y)(Imr) = Gl fy(O) 11y, 2.

Also ist D,(f) = %} o f(y(t)) und D, R-linear und erfiillt die Leibnizregel:

Dy(fg) = f()Du(g) + Du(f)g(x) fiir alle f,g € C'(X,R).

Satz 1.40. (von Hadamard und Bohnenblust) Sei D : C*°(X,R) — R, f — D(f) eine
R-lineare Abbildung die D(fg) = f(z)D(g) + D(f)g(x) fir alle f,g € C*(X,R) und
ein x € X erfillt. Dann gibt es genau ein v € T, X mit D = D,,.

Beweis: Wegen der Leibnizregel definiert jedes v € T, X eine solche Derivation D,,.
Sei jetzt umgekehrt D eine beliebige Derivation, die obige Eigenschaften hat. Aus
D(1) = D(1-1) = 2D(1) folgt, D(1) = 0. Deshalb stimmen fiir alle f € C*(X,R)
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die Werte D(f) mit D(f — f(z)1) iiberein. Die Funktion f — f(z)1 € C*°(X,R) ver-
schwindet bei z. Umgekehrt folgt D(fg) = 0 aus f(z) = 0 = g(x). Also verschwindet
D auf allen Produkten von glatten Funktionen, die bei x verschwinden.

Sei ¢ : U — R" eine vertragliche Karte, mit x € U, ¢(z) = 0 und B(0,7) = ¢[U].
Dann verschwinden ¢y, ..., ¢, € C®°(U,R) bei z = 0. Die glatte Funktion

h:X =R,z h(z)= {fr/g,gr/g(lqﬁ(:):)l) ﬁ?r rel

0 firx €U
(mit f,/392,/3 aus dem letzten Abschnitt) ist 1 auf ¢~![B(0,7/3)] und verschwindet
auBerhalb von ¢~1[B(0,2r/3)]. Wegen 1 =1 — (1 —h)?+ (1 —h)?> = 2h — h* + (1 — h)?
gilt dann D(f) = D((2h — h?)f) + D((1 — h)*f) = D((2h — h?)f) fiir f € C>(X,R).
WEeil das fiir alle hinreichend kleinen r > 0 gilt, stimmt D auf allen solchen Funktionen
iiberein, die auf einer beliebig kleinen Umgebung von z iibereinstimmen (man spricht
dann auch von dem Funktionskeim in z), also auch D(f) = D(hf). Dann definiert

y:(=r,r) =X, t— ¢ (t(D(hér),...,D(hdy,)))

eine glatte Abbildung mit y(0) = z. Die entsprechende Aquivalenzklasse wollen wir v €
T, X nennen. Aufgrund der Definition von y gilt poy(t) = t(D(h¢1), ..., D(hy)). Ins-
besondere ist Dy (he;) = L|_o(he;)(y(t)) = L]—otD(h¢;) = D(h¢;) fir i =1,...,n.
Zuletzt zerlegen wir f — f(z) auf einer Umgebung von z in eine Summe von Pro-
dukten von ¢y, ..., ¢, mit glatten Funktionen. Fiir jedes g € C*°(B(0,7),R) gilt

1d 1 1 )
s)-90) = | Sotodt = [ oVoltoyit= g | Tolto)at tir alle o € B(0.1),
0 0 0

Deshalb ist g(¢) —g(0) = w191 +. . . +@ngy fiir alle ¢ € B(0,7) mit g; € C>*(B(0,7),R)
und ¢;(0) = g—i(O). Dann ist auch h?(f — f(z)) = (héy)(hfi) + ...+ (hoy)(hf,) mit
fi € C=(U,R). Wegen der Derivationseigenschaft und wegen ¢(z) = 0 gilt dann
D(f) = D(W*(f = f(2))) = filx)D(hén) + ... + fu(z)D(h¢y)
= fi(@)Dy(h¢n) + ... + fulx)Dy(hdy) = Do(R*(f — f(2)) = Do(f).  aq.ed.

Zum Abschluss fassen wir die Definition des Tangentialraumes nochmal zusammen.
Fiir jeden Vektorraum V ist der Tangentialraum an jedem Punkt v € V' auf natiirliche
Weise isomorph zu dem Vektorraum V. Insbesondere ist der Tangentialraum von je-
dem reellen Intervall in jedem Punkt des Intervalls isomorph zu R. Weil differenzierbare
Abbildungen sich hochheben lassen zu Abbildungen zwischen den Tangentialrdumen,
konnten wir den Tangentialraum dadurch unabhéngig von den Karten einfithren, indem
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wir die Tangentialvektoren als die Bilder von Tangentialvektoren von offenen Interval-
len (—e¢, €) unter differenzierbaren Abbildungen von den offenen Intervallen in die dif-
ferenzierbare Mannigfaltigkeit definiert haben. Jeder solche Tangentialvektor definiert
durch die Richtungsableitung eine Derivation auf den glatten Funktionen. Umgekehrt
ist jede Derivation auf den glatten Funktionen von dieser Form, so dass wir die Deri-
vationen mit den Tangentialvektoren identifizieren kénnen.

Im iibernéchsten Abschnitt werden wir auch T'X = |J, .y 7% zu einer differenzier-
baren Mannigfaltigkeit machen, so dass fiir glatte Abbildungen f zwischen differenzier-
baren Mannigfaltigkeiten auch 7T'(f) eine glatte Abbildung ist.

1.6 Produkte von Mannigfaltigkeiten und Unter-
mannigfaltigkeiten

Nachdem wir die Objekte und die Abbildungen von differenzierbaren Mannigfaltig-
keiten eingefithrt haben, werden wir jetzt zwei Moglichkeiten kennenlernen, wie wir
aus differenzierbaren Mannigfaltigkeiten neue differenzierbare Mannigfaltigkeiten bil-
den konnen: ndmlich einerseits das kartesische Produkt von zwei Mannigfaltigkei-
ten, und andererseits Untermannigfaltigkeiten von differenzierbaren Mannigfaltigkei-
ten. Das kartesische Produkt erhilt man ohne weitere Schwierigkeiten, indem wir erst
die topologischen Réume, dann die Karten und schliefllich die Atlanten des kartesi-
schen Produktes aus den entsprechenden topologischen Rdumen, Karten und Atlanten
der beiden differenzierbaren Mannigfaltigkeiten bilden. Dagegen ist die Einfithrung von
Untermannigfaltigkeiten relativ kompliziert. Natiirlich ist jede offene Teilmenge einer
differenzierbaren Mannigfaltigkeit wieder eine differenzierbare Mannigfaltigkeit. Aber
Untermannigfaltigkeiten von niederer Dimension sind nicht so einfach zu beschreiben.
Hier benutzen wir den Satz der inversen Funktion.

Das kartesische Produkt X x Y zweier differenzierbarer Mannigfaltigkeiten ist ein
Hausdorffraum. Fiir Karten ¢ : U — R™ von X und ¢ : V. — R” von Y ist

oxp:UxV =R" xR, (z,y) = (6(x),9(y))

eine Karte von X xY. Wenn diese Karten Atlanten von X bzw. Y durchlaufen, erhalten
wir einen Atlas von X x Y. Zuletzt ist X X Y ein Lindelofraum, weil die kartesischen
Produkte der im Beweis von (iii) = (i) des Satzes konstruierenten Folgen (O,,)nen
und (K, )nen auch die Bedingung (i) dieses Satzes erfiillen. Wegen Heine-Borel ist
ndmlich das kartesische Produkt zweier kompakter Teilmengen in R™ x R" kompak.

2Wegen dem Satz von Tychonoff (siehe Chapter 3 Theorem 5.7 und Chapter 5 Theorem 1.1 von
J.M. Munkres: Topology) ist sogar das kartesische Produkt kompakter topologischer Riume kompakt.
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Definition 1.41. Das kartesische Produkt von zwei differenzierbaren Mannigfaltigkei-
ten X und Y st auf natirliche Weise wieder eine differenzierbare Mannigfaltigkeit
X XY, so dass die beiden folgenden natiirlichen Projektionen glatte Abbildungen sind:

X XY =5 X (,y)—z p: X XY =Y (x,y)—y

Diese beiden Projektionen sind dann offenbar beide surjektive Submersionen. Um-
gekehrt ist fir jedes y € Y die Abbildung X — X x Y, x — (z,y) eine injektive
Immersion. Analog ist fiir jedes € X die Abbildung Y — X x Y, y+— (z,y) eine
injektive Immersion. Durch diese beiden Abbildungen kénnen wir sowohl X als auch
Y als abgeschlossenen topologischen Unterraum von X x Y auffassen. Wir wollen jetzt
X bzw. Y als differenzierbare Untermannigfaltigkeit von X x Y auffassen.

Definition 1.42. Seien X und Y differenzierbare Mannigfaltigkeiten und f : X — 'Y
eine Immersion. Ist f ein Homéomorphismus auf den topologischen Unterraum f[X]
von'Y, dann heifit f Einbettung und f[X] Untermannigfaltigkeit von Y .

Auf einer kompakten Mannigfaltigkeit X ist eine injektive Immersion f: X — Y
immer eine Einbettung auf das Bild. Im allgemeinen ist eine injektive Immersion f :
X — Y nicht mal dann eine Einbettung, wenn das Bild f[X] in Y abgeschlossen ist.

Beispiel 1.43. Das Bild der injektiven Immersion

t2—1 t(t* - 1))

241" 241

f:(=00,1) = R?, t—><

ist abgeschlossen in R?. Wegen lim;_,1 f(t) = f(=1) ist f aber kein Homéomorphismus

auf das Bild als topologischenr Unterraum vom R%. Fiir grofe |t| ist f(t) ungefihr

gleich (1,t) und f(0) ist (—1,0). Der Graph von f schneidet (0,0) bei t = —1 wegen
(2t +1 - +1), -1+ 1)+ 222+ 1—t2+1)) (4, t* + 42 - 1)

f't) = (2 +1)2 - (124 1)2

lings der Tangenten y = —x und bei t = 1 ldngs der Tangenten y = x.

Um die topologischen Unterrdume X C Y einer differenzierbaren Mannigfaltigkeit
Y zu charakterisieren, die differenzierbare Untermannigfaltigkeiten sind, zeigen wir
zunéchst den sogenannten Rangsatz.

Satz 1.44 (Rangsatz). Seil € NU{oo} und f : X — 'Y eine [-mal stetig differenzier-
bare Abbildung zwischen den offenen Teilmengen X C R™ und Y C R"™. Dann ist fir
jedes xy € X der Rang von ' auf einer Umgebung von xy nicht kleiner als bei x.

Ist xy ein lokales Mazimum des Ranges, dann gibt es auf offenen Umgebungen U
von xo und V von f(xg) l-mal stetig differenzierbare Karten ¢ und v mit ¢p(xg) =0 =
U(f(z0)) und l-mal stetig differenzierbaren Umkehrabbildungen, so dass o fo¢™t mit
der Einschrinkung der linearen Abbildung f'(xo) auf ¢[U] dbereinstimmdt.
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Beweis: Sei r der Rang von f'(zg). Wir wéhlen fiir die hinteren m — r Spalten der
m x m-Matrix B eine Basis vom Kern von f’(z), und ergénzen die ersten r Spalten
zu einer Basis vom R". Wir definieren die ersten r Spalten der n x n Matrix C' als die
linear unabhéngigen ersten r Spalten der n x m Matrix f'(x¢) o B und ergénzen die
restlichen n — r Spalten zu einer Basis vom R™. Dann beschreibt C~! o f'(z¢) o B die
Abbildung R” x R™™" — R" x R"", (y,2) — (y,0). Indem wir x — f(x) durch = —
C~lo(f(xo+Bx)— f(x0)) ersetzen, wird zg = 0, f(z) = 0 und f'(zo) zu (y, 2) — (y,0).
Die ersten r Komponenten von f fassen wir zu f_ und die letzten n — r Komponenten

zu f, zusammen. Wegen der Stetigkeit von % und wegen af,ai(yo,o) = lg- kénnen wir
R,, R, > 0 so klein wahlen, dass (y, z) — det(af?ai(j’z)) auf B(0, R,) x B(0, R,) keine

Nullstellen hat. Dort ist der Rang von f’ mindestens r, was die erste Aussage zeigt.
Fiir gegebenfalls kleinere R,, R, > 0 hat die [-mal stetig differenzierbare Abbildung

¢:B(0,R,) x B(0,R,) > W C R" x R™™", (y,2) — (f-(y,2),2)

wegen dem Satz der inversen Funktion auf dem Bild W eine [-mal stetig differenzierbare
Umkehrabbildung ¢~!. Sie definiert implizit die [-mal stetig differenzierbare Funktion

g: W — B(0,Ry) mit ¢~ (y,2) = (9(y,2),2) und f_(¢~"(y,2)) =y fiir (y,2) € W.

Wenn 0 ein lokales Maximum von Rang ist, hat f'(x) auf B(0, R,) x B(0, R,) wegen der
ersten Aussage den Rang r, und V f,.1(z), ...,V f.(x) sind Linearkombinationen der
linear unabédngigen V fi(x),...,Vf,(z). Fir alle y € B(0, R,) ist also f; zusammen
mit f_ auf ¢~ [W N ({y} x R™")] konstant und damit gleich fi(¢(y,0)). Die beiden
[-mal stetig differenzierbaren Selbstabbildungen von {y | (y,0) € W} x R*"

b (y2) = (g2 = f1(97H(%,0))  und @7 (y,2) = (y,2 4+ fr (671 (1,0)))
sind die Umkehrabbildungen von einander. Fiir alle (y, z) € W gilt dann

D07y, 2))) = Y(f=(7 (Y, 2), fo (07 (4. 2))) = Uy, fo(¢7 (4, 0))) = (y.0). q.e.d.

Satz 1.45. Sei X C Y ein topologischer Unterraum einer differenzierbaren Mannigfal-
tigkeit Y. Dann besitzt X genau dann die Struktur einer differenzierbaren Unterman-
nigfaltigkeit von Y, wenn es fir jedes x € X eine mit dem Atlas von Y wvertrdgliche
Karte ¢ : U — R™ von Y bei x € U gibt, die x auf 0 € R™ abbildet, und deren Ein-
schrankung ¢|lynx auf die offene Umgebung U N X wvon x in X ein Homdomorphismus
auf die Schnittmenge von dem Bild ¢[U| mit einem linearen Unterraum vom R™ ist.

Beweis: Wir zeigen zunéchst, dass die angegebene Bedingung hinreichend dafiir ist,
dass X eine differenzierbare Untermannigfaltigkeit ist. Die Einschrankung einer sol-
chen Karte ¢ um x € X auf U N X ist eine Karte von X um den Punkt z, weil die
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Schnittmenge einer offenen Teilmenge des R™ mit einem Unterraum vom R"™ eine offene
Teilmenge des linearen Unterraumes ist. Zwei solche Karten, deren Definitionsbereiche
beide den Punkt x enthalten, bilden beide eine offene Umgebung von x in X jeweils
auf eine offene Teilmenge eines linearen Unterraum des R™ ab. Die entsprechenden
Ubergangsfunktionen sind Homéomorphismen von einer offenen Teilmenge des einen
Unterraumes auf eine offene Teilmenge des anderen Unterraumes. Sie sind sogar Dif-
feomorphismen, weil die Karten von Y miteinander vertraglich sind. Dann sind auch
die Karten von X miteinander vertriglich. Deshalb besitzt X einen Atlas.

Wegen Satz[[29 erfiillt jede differenzierbare Mannigfaltigkeit das zweite Abz&hlbar-
keitsaxiom. Dann erfiillt auch die Teilmenge X C Y dieses Axiom, und ist wegen
Satz ein Hausdorff- und Lindel6fraum und eine Untermannigfaltigkeit von Y.

Wenn umgekehrt f : Z — Y eine Immersion und ein Homéomorphismus auf einen
topologischen Unterraum X = f[Z] C Y ist, dann hat f auf jeder Zusammenhangskom-
ponente von Z konstanten Rang. Wegen Satz [[.44] liegt dann jedes x € X im Definiti-
onsbereich U einer mit dem Atlas von Y vertriglichen Karte ¢ von Y der Dimension n
mit ¢(x) = 0, die die Schnittmenge UNX auf ¢p[U|NT(po f)[T-1()Z] C TyzR™ =R
abbildet. Also wird jede Untermannigfaltigkeit X von Y durch die Definitionsbereiche
solcher mit dem Atlas von Y vertrédglicher Karten von Y iiberdeckt. q.e.d.

Zum Abschluss wollen wir noch den Satz der impliziten Funktion umformulieren.
Korollar 1.46. Sei f : X — Y eine glatte Abbildung zwischen differenzierbaren
Mannigfaltigkeiten mit lokal konstantem Rang. Dann ist fir jedes y € f[X] das Ur-

bild f~1[{y}] eine Untermannigfaltigkeit von X . Ihr Tangentialraum ist in dem Punkt
r € f[{y}] der Kern von T,(f). Dort hat sie die Dimension dim T, X —Rang(T,(f)).

Beweis: Wegen Satz [[L44] liegt jedes x € X im Definitionsbereich einer mit dem Atlas
von X vertriglichen Karte ¢ : U — R™ von X mit ¢(z) = 0, die U N f~{f(z)}] in
einen linearen Unterrraum ¢[U] N T,(¢)[Kern(7,(f))] € R™ abbildet. Dieser Kern hat
die Dimension dim 7, X — Rang(7,(f)). Die Aussage folgt aus Satz [[.45 q.e.d.

Insbesondere sind die Niveaumengen von Submersionen Untermannigfaltigkeiten.

Korollar 1.47. Seien X, Y und Z differenzierbare Mannigfaltigkeiten und f : X — Z
und g - Y — Z zwei glatte Abbildungen, von denen mindestens eine eine Submersion
ist. Dann ist das Faserprodukt

X xzY ={(z,y) € X xY [ f(z) = g(y)}

eine Untermannigfaltigkeiten von X XY der Dimension

dim T ) X x 7Y = dim T, X +dim T,)Y —dim T,y Z = dim T, X +dim T, Y —dim Ty, Z.
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Beweis: Seien (z,y) € X Xz Y und ¢ : U — R" eine Karte von Z auf einer offenen
Umgebung U von z = f(z) = ¢g(y). Dann ist die Abbildung

pofopi—gogop: [THU] x g7 Ul = R", (2,9) = ¢(f(x)) — d(g(y))

eine Submersion, weil entweder ¢ o f oder ¢ o g eine Submersion ist. Das Urbild der 0 €
R"™ dieser Abbildung ist wegen Korollar eine Untermannigfaltigkeit von f~1[U] x
g U]. Weil ¢ injektiv ist, ist ¢(f(x)) = ¢(g(y)) dquivalent zu f(z) = g(y). Also ist
diese Untermannigfaltigkeit gleich f~!'[U] X ¢~ ![U]. Damit sind auf diesem Teilraum
fHU] xp g7 U] € f7YU] x g7 U] € X x Y die Bedingungen im Satz erfiillt.
Weil dies fiir alle (z,y) € X xzY gilt, sind diese Bedingungen auf ganz X x Y erfiillt.
Daraus folgt die Behauptung. q.e.d.

Beispiel 1.48. (i) Sei X eine differenzierbare Mannigfaltigkeit. Dann ist die Diago-
nale von X x X das Faserprodukt X X x X beziiglich zwei Kopien der Abbildungen
1x : X — X. Diese Abbildungen sind Diffeomorphismen, so dass die Diagonale
X xx X eine differenzierbare Untermannigfaltigkeit von X x X ist. Die Abbildung
X = X x X, z— (x,z) ist offenbar ein Diffeomorphismus von X auf X X x X.

(ii) Seien X und Y zwei differenzierbare Mannigfaltigkeiten und f : X — Y eine
glatte Abbildung. Dann ist der Graph von f das Faserprodukt X xyv'Y der beiden
Abbildungen f: X — Y und 1y : Y — Y. Weil die zweite ein Diffeomorphis-
mus ist, ist X Xy Y eine differenzierbare Untermannigfaltigkeit von X XY . Die

Abbildung 1x x f induziert offenbar einen Diffeomorphismus von X Xx X auf
X Xy Y.

1.7 Tangentialbiindel

Ziel dieses Abschnittes ist es, die Vereinigung aller Tangentialrdume 7'X =, 7, X
wieder zu einer differenzierbaren Mannigfaltigkeit mit der Vektorraumstruktur zu ma-
chen. Dazu fiithren wir zundchst den Begriff des Faserbiindels ein.

Definition 1.49. FEin differenzierbares Faserbiindel ist ein Tripel (X, B, ), wobei X
und B differenzierbare Mannigfaltigkeiten sind und 7 eine surjektive glatte Abbildung
von X nach B, die die folgende Bedingung (der sogenannten lokalen Trivialitit) erfillt.

Lokale Trivialitit: Es gibt eine Uberdeckung von B durch offene Teilmengen U C B
mit Diffeomorphismen ¢ : F'xU — n=[U] fiir differenzierbare Mannigfaltigkeiten
F| so dass m o ¢ mit der Projektion py : ' x U — U dibereinstimmdt.
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Weil die natiirliche Projektion p, : F' x U — U immer eine Submersion ist, ist
dann auch 7 eine Submersion. Man nennt X den Faserraum, B seine Basis und 7 die
Projektion des Faserbiindels. Wegen der lokalen Trivialitit sind alle Urbilder 7= [{b}]
fiir alle b in einer Umgebung eines by € B zueinander diffeomorph. Diese Urbilder
werden Fasern genannt. Sind alle Fasern zu einer differenzierbaren Mannigfaltigkeit F’
diffeomorph, so wird das Faserbiindel auch Faserbiindel vom Fasertyp F' genannt. Aus
der lokalen Trivialitit folgt, dass die Menge aller b € B mit Fasern 7 [{b}], die zu einer
Faser m~1[{by}] diffeomorph sind, offen sind. Aus der lokalen Trivialitiit folgt auch, dass
sie auch den Grenzwert von konvergenten Folgen in ihnen enthalten. Deshalb sind diese
Mengen offen und abgeschlossen. Also sind die Einschrinkungen eines Faserbiindels auf
das entsprechende Faserbiindel (77'[C],C,7|-1¢]) iiber einer zusammenhéngenden
Komponente C von B Faserbiindel von einem bestimmten Fasertyp F'.

Definition 1.50. Sei K der Kdrper der reellen oder komplexen Zahlen. Ein K—Vektor-
raumbiindel ist ein Faserbiindel (E, B, ), so dass jede Faser n='[{b}] ein K-Vekto-
raum ist, und in der lokalen Trivialitdt F' ein K—Vektorraum ist, und ¢ fiir jedes b € B
Vektorraumisomorphismen von F x {b} nach 7= *[{b}] sind.

Beispiel 1.51. Sei V' ein normierter K—Vektorraum und X eine differenzierbare Man-
nigfaltigkeit und m die natirliche Projektion von V x X auf X. Dann ist (V x X, X, )
ein Vektorraumbiindel iiber X . Dieses Vektorraumbiindel wird trivial genannt.

Die lokale Trivialitdt besagt genau, dass jedes Vektorraumbiindel lokal ein triviales
Vektorraumbiindel ist. Wir wollen jetzt umgekehrt ein Vektorraumbiindel aus lokalen
trivialen Vektorraumbiindeln konstruieren. Sei also X eine differenzierbare Mannigfal-
tigkeit, F' ein normierter endlichdimensionaler K—Vektorraum, und £(F') der normierte
Vektorraum aller stetigen linearen Abbildungen von F' nach F. Er enthélt als offene
Teilmenge die Gruppe GL(F') der invertierbaren linearen Abbildungen. Sei i/ eine offene
Uberdeckung von X . Wir werden die trivialen Vektorraumbiindel (F x U)yey zu einem
Vektorraumbiindel tiber X verkleben. Fiir nicht schnittfremde Paare (U, V) € U x U
sei ¢y : UNV — GL(F) eine glatte Funktion. Sie definiert folgende glatte Abbildung:

¢V,U:FX (Uﬂv) — F' X (UﬁV), (.fax) = (QSV,U(x)fax)‘
Weil ¢y (x) fur jedes x € U NV invertierbar ist, ist die Umkehrabbildung gleich
dpy Fx(UNV)=FxUNV), (fz)~ (¢yy(z)f ).

Also sind diese Abbildungen Diffeomorphismen. Weil ¢y /(z) und qﬁ;b(x) fiir alle
x € UNV linear sind, sind diese Diffeomorphismen sogar Isomorphismen von Vektor-
raumbiindeln. Damit diese Isomorphismen die trivialen Vektorraumbiindel (F' X U)yey
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auf eindeutige Weise zu einem Vektorraumbiindel iiber X verkleben, miissen fiir alle
(U, V,W) € U? die drei trivialen Vektorraumbiindel F' x U, F x V und F x W auf
UNV NW eindeutig miteinander identifiziert werden. Deshalb fordern wir:

Kozykelbedingung: Fiir alle nicht schnittfremden Tripel (U, V, W) € U3 gilt

dwv()dvu(z) = dwy(r) firallex e UNV NW.

Wenn wir U =V = W setzen erhalten wir

dvu(z) = puy(x) o dypy(z) = 1 fiir alle x € U

Wenn wir U = W setzen erhalten wir

duv(x)ovy(x) = 1p = duv(z) = (b;lU(x) fir allex e UNV.
Auf dem Raum J;,o,(F x U) fithren wir folgende Relation ein:

(e,z) e FxU~(f,y) e FxXV — y =2 in X und ¢y y(z)e = f.

Wir zeigen jetzt, dass diese Relation wegen der Kozykelbedingung eine Aquivalenzre-
lation ist. Wegen ¢y p(x) = 1y ist die Relation reflexiv. Wegen ¢y (x) = ¢‘_/71U(:L') ist
dvu(x)e = f dquivalent zu ¢y (x)f = e. Deshalb ist die Relation ~ symmetrisch.
Well fiir alle z € UNV NW gilt owu () = dwyv(z)pvu(z), folgt aus (e,x) € F x U ~
(f,y) e FxVund (f,y) e Fxv~(g,z) e FxWauchz=y=2c€UNVNW und
owu(x)e = dwy(x)dvu(z)e = dwy(z)f = g. Also ist die Relation ~ auch transitiv.
Sei E die Menge aller Aquivalenzklassen dieser Aquivalenzrelation. Weil nur Paare
iiber demselben Basispunkt miteinander identifiziert werden, induzieren die Projektio-
nen py : F'x U — U der trivialen Vektorraumbiindel F' x U eine Abbildung 7 : £ — X.
Fiir jedes U € U definiert die Abbildung, die jedem (f,z) € F'xU die entsprechende
Aquivalenzklasse zuordnet eine Abbildung F x U — E. Weil ¢uu = 1p aut U gilt, sind
alle diese Abbildung injektiv, und weil ¢y (z) : FF — F fir alle z € U NV bijektiv
ist, sind sie auch surjektiv nach 7=!'[U]. Wir versehen E mit der grébsten Topologie,
so dass F' x U — F fiir alle U € U stetig ist. Dann ist O C F genau dann offen ist,
wenn fiir alle U € U, das Urbild von O unter F' x U — FE offen ist. Fiir jede offene
Teilmenge O C X und U € U ist F x (ONU) offen in FF x U. Alsoist 7 : B — X
stetig. Fiir U, V € U und eine offene Teilmenge O C F' x U ist die Schnittmenge mit den
Elementen von F x U, deren Aquivalenzklassen in 71[V] liegen, die offene Teilmenge
ONFx (VNU) C F x U, die durch den Diffeomorphismus ¢y, auf eine offene
Teilmenge von F' x V' abgebildet wird. Also bildet die stetige und bijektive Abbildung
F x U — 77 '[U] auf die Aquivalenzklassen offene Mengen auf offene Mengen ab,
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und ist ein Homéomorphismus. Fiir x,y € E mit n(z) # 7(y) liegen n(z) und 7(y)
in disjunkten offenen Umgebungen in X. Thre Urbilder unter 7 sind disjunkte offene
Umgebungen von x und y. Fir  # y € E mit w(z) = 7(y) gibt es ein U € U mit
m(x) = n(y) € U. Die Urbilder von z und y unter F' x U — 7 ![U] sind verschieden
und besitzen disjunkte Umgebungen in F' x U. Thre Bilder unter F' x U — 7 [U]
sind disjunkte Umgebungen von z und y. Also ist £ ein Hausdorffraum. Weil X ein
Lindel6fraum ist, besitzt U eine abzdhlbare Teilitberdeckung V C U. Fiir jedes V € V
besitzt jede offene Uberdeckung von E eine abzihlbare Teiliiberdeckung von der zu dem
Lindeléfraum F x V homdomorphen Teilmenge 7~ '[V]. Die abzihlbare Vereinigung
aller dieser Teiliiberdeckungen ist eine abzéhlbare Teiliiberdeckung von E, und E ist ein
Lindel6fraum. Wegen Lemma [[.30 besitzt X einen Atlas, dessen Definitionsbereiche U
jeweils in einem Element von U enthalten sind. Die entsprechenden Karten ¢ : U — R"
induzieren mit einem Vektorraumisomorphismus F ~ R™ Karten 7 '[{U] ~ F x U —
R™ x ¢[U] von E. Weil (f,x) — (¢vy(x)f,z) fiir U,V € U Diffeomorphismen von
F x (UNV) auf sich selber sind, bilden diese Karten einen Atlas. Das zeigt den

Satz 1.52. Sei X eine differenzierbare Mannigfaltigkeit mit einer offenen Uberdeckung
U und F ein endlichdimensionaler normierter K—Vektorraum. Dann definieren glatte
Funktionen ¢y : UNV — GL(F) fiir nicht schnittfremde Paare (U, V) € U x U, die
die Kozykelbedingung erfiillen, ein Vektorraumbiindel (E, X, ) vom Fasertyp F.q.e.d.

Satz 1.53. (i) Auf einer zusammenhdingenden differenzierbaren Mannigfaltigkeit B
sind alle Fasern (77 [{b}]) eines Vektorraumbiindels (E, B, ) iiber B als topolo-
gische Vektorrdaume isomorph, d.h. (E, B, ) ist von einem bestimmten Fasertyp.

(i1) Sei F' ein normierter Vektorraum und (E, B, ) ein Vektorraumbiindel vom Fa-
sertyp F. Dann gibt es eine Uberdeckung U von B und Kozykel ¢, d.h. fir alle
(U, V) € U? glatte Abbildungen ¢y : UNV — GL(F), die die Kozykelbedingung
erfillen, so dass das entsprechende Vektorraumbiindel isomorph ist zu (E, B, ).

Beweis: (i) Wegen der lokalen Trivialitéit gibt es fiir jedes b € B eine offene Umgebung
U von b, auf der alle Fasern (77 [{0'}])ycr als topologische Vektorrdume isomorph sind
zu 7 [{b}]. Also sind die Teilmengen von B, auf denen die Fasern als topologische Vek-
torrdume isomorph sind, offen. Wenn (b,,),en eine konvergente Folge in einer solchen
Teilmenge ist, dann gibt es eine Umgebung von dem Grenzwert, auf der die Fasern als
topologische Vektorrdume isomorph sind. Deshalb sind diese Teilmengen auch abge-
schlossen. Wenn B zusammenhéngend ist, dann ist fiir alle b € B die Teilmenge, auf
denen alle Fasern als topologische Vektorrdume isomorph zu 7~ [{b}] sind, gleich B.

(ii)) Wegen der lokalen Trivialitdt gibt es fiir jedes Vektorraumbiindel (£, B,m) vom
Fasertyp F eine Uberdeckung U/, und fiir alle U € U Diffeomorphismen ¢y : F x U —
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771[U], so dass folgendes Diagramm kommutiert:

FxU % #[U] - E
p2 Tl Tl
U % U < B
Dabei ist ¢y iiber b € U faserweise ein Isomorphismus der normierten Vektorrdume F

und 7' [{b}] sind. Fiir alle (U, V) € U? definieren die Einschréinkungen der Diffeomor-
phismen ¢y und ¢y auf F' x (U N V) folgenden Diffeomorphismus

¢‘71‘rl[UnV] o ‘f’U‘Fx(UnV) Fx(UNV)—=Fx(UNV).
Dieser Diffeomorphismus ist faserweise linear und definiert eine glatte Abbildung
vy UNV — GL(F) mit (¢pvu(z)f, ) = ¢y (ou(f, ) fiir alle (f,x) € Fx (UNV).
Weil fiir alle U, V,W €U ¢y} [x-1juavaw) © dul pxwnvow) =

1 —1
= Oy =1 unvaw] © Ov|pxwavow) © Oy lx-1uavaw] © dulpxwnvaw)

gilt, erfiillen diese Abbildungen die Kozykelbedingung. Dieser Kozykel (¢v,)w,v)euz ist
so definiert, dass die Trivialisierungen (¢ )vey dquivalente Elemente von (o, F' x U
auf gleiche Elemente von E abbilden: Fiir U,V € Y und z € U NV gilt ndmlich

¢U|Fx{x} = ¢V|Fx{x} o (¢V,U(I) X ]l{:c})-

Deshalb induzieren die Abbildungen (¢y)yey eine bijektive Abbildung von dem durch
den Kozykel definierten Vektorraumbiindel nach E, die faserweise ein Isomorphismus
von Vektorraumen ist. Weil ¢y lokalen Trivialisierungen von F sind, ist die induzierte
Abbildung ein Diffeomorphismus. q.e.d.

Satz 1.54. (i) Auf einer differenzierbaren Mannigfaltigheit X ist TX = J,cx ToX
ein reelles Vektorraumbiindel iber X. Es heifst Tangentialbiindel von X .

(ii) Sei f: X — Y eine r mal (stetig) differenzierbare Abbildung von der differen-
zierbaren MannigfaltigkeitX auf die differenzierbare Mannigfaltigkeit Y. Dann
definiert T(f) : TX — TY eine (r — 1) mal (stetig) differenzierbare Abbildung
von der differenzierbaren Mannigfaltigkeit T X auf die differenzierbare Mannig-
faltigkeit TY , so dass folgendes Diagramm kommutiert:

rx O 7y
Tl ml
x L vy
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(i1i) Seien X, Y und Z differenzierbare Mannigfaltigkeiten und f : X — Y und
g:Y — Z differenzierbare Abbildungen. Dann gilt T(go f) =T(g) o T(f).

(iv) Die Tangentiale Abbildung T (1x) der identischen Abbildung 1x von der differen-
zierbaren Mannigfaltigkeit X ist die identische Abbildung von T X .

Beweis: Auf allen zusammenhéngenden Komponenten sind die Dimensionen der Tan-

gentialriume gleich einer natiirlichen Zahl. Wegen Korollar [[.14]ist jede differenzierbare

Mannigfaltigkeit eine hochstens abzéhlbare Vereinigung von offenen zusammenhéngen-

den Komponenten. Deshalb kénnen wir uns im folgenden Beweis von (i) auf zusam-

menhéngende differenzierbare Mannigfaltigkeiten X der Dimension n beschrénken.
Die Tangentialriume vom R” bilden ein triviales Vektorraumbiindel:

TR" =R"xR" mit 7:R*"xR*"—>R" (v,w)— w.

Dies folgt aus der Identifikation des Tangentialraumes 7T;,R™ von R"™ im Punkt w € R"
mit dem Raum aller infinitesimalen Richtungen v € R", die wir schon zur Einfiihrung
der Vektorraumstruktur auf 7, X benutzt haben. Sei (¢y)yey ein Atlas von X mit den
Definitionsbereichen (U € U). Diese Karten (¢y)yey induzieren bijektive Abbildungen

zeU zelU zelU

die faserweise, also fiir alle x € U Vektorraumisomorphismen
To(¢v) : ToU — Ty @R ~ R"
induzieren. Indem wir die Tangentialbiindel von ¢y [U] mit dem trivialen Biindel
Toy[U] =R" x ¢y[U] C TR" =R" x R"
identifizieren, und dann die Kartenwechsel
oy ou[UNV] = ¢y[UNV]

benutzen, kénnen wir diese trivialen Vektorraumbiindel zu einem Vektorraumbiindel
iiber X verkleben. Die entsprechenden Abbildungen

UNV — GL(R")
sind dann gegeben durch die Ableitungen der Ubergangsfunktionen

(pv o ¢p') oy : UNV — GL(R™).
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Fiir nicht schnittfremde Definitionsbereiche U und V' zweier Karten ¢y und ¢y nimmt
(¢pv o ¢y;")" Werte in GL(R™) an. Fiir U, V,W € U gilt

(¢w 0 o) (y) = (dw 0 dy') o (¢ 0 ¢y )(y) fitr alle y € pu[UNV NW].

Daraus folgt mit der Kettenregel

(6w o o) (Pu () = (dw o &) (dv(x)) - (v 0 ¢y ) (¢u(2)) fiir alle z € UNV N W.

Also ist die Kozykelbedingung erfiillt und alle trivialen Vektorraumbiindel (R"™ x U )y ey
definieren durch diese Kozykel ein Vektorraumbiindel iiber X. Fiir jede Karte

(bU U—>¢U[ ]CR”

erhalten wir bijektive Abbildungen
(g x ") o | Tulov) : | TwU — Tou[U] 2 R" x ¢y[U] = R" x U.
zeU zeU

Wir zeigen jetzt, dass diese Abbildungen mit den durch die Kozykel auf dem Raum
Upey R" < U definierten Aquivalenzrelationen vertraglich ist: Auf 7'(UNV') gilt ndmlich

((pv 0 ¢p") 0 ¢y x lyay) o (Ixn x ¢5') 0 T(¢y) = (Irn X ¢y') 0 T(¢v)
well firallex e UNV

Ty () (Pv o ¢U ) o Tu(¢v) = Ti(dv)
gilt, und Ty, @) (v © ¢y;") durch die Identifikation von
T¢U(I)Rn ~R" und T¢V(x)Rn ~ R"

mit der Abbildung (¢y o ¢;") (¢u(z)) € GL(R") identifiziert wird. Das zeigt, dass
die obigen bijektiven Abbildungen die Teilmenge |J, ., T.U von (J,cy T X mit der
Einschrinkung 7~ '[U] C TX idenitifizieren. Das zeigt (i).

Aufgrund der Konstruktion des Tangentialbiindels in (i) geniigt es (ii) beziiglich
zweier Karten nachzupriifen. Sei also ¢ eine Karte von X um z € X und v eine Karte
von Y in f(x). Dann ist die Tangentialabbildung 7..(f) als Abbildung von

Ts@)R™ nach Ty;nR™  gegeben durch (¢ o fo o™ ') (¢p(z)).

Hierbei ist n die Dimension von ¢ und m die Dimension von . Weil also T'(f) durch
die Ableitung von f bestimmt ist, ist 7'(f) einmal weniger als f differenzierbar.

(iii) folgt aus Satz (iii).

(iv) folgt daraus, dass die Ableitung von g an jeder Stelle gleich 1. ist. q.e.d.
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1.8 Operationen auf Vektorraumbiindeln

Definition 1.55. Seien (E, B, ) und (E', B', ') zwei Vektorraumbindel iber K. Dann
ist ein Morphismus zwischen diesen beiden Vektorraumbiindeln definiert als zwei glatte
Abbildungen f: B — B und g : E — E’, so dass folgendes Diagramm kommutiert:

E % F
Tl b
B L B

und die Abbildung g faserweise linear ist, d.h. fir alle b € B ist die Einschrinkun-
gen von g auf ©[{b}] eine lineare Abbildung nach =~ [{f(b)}]. Sind f und g Dif-
feomorphismen, so heifit der Morphismus auch Isomorphismus der Vektorraumbiindel
(E, B, ) und (E', B', ). Dann bilden die Umkehrabbildungen auch einen Morphismus,
weil die Umkehrabbildung einer bijektiven linearen Abbildung linear ist.

Beispiel 1.56. (i) Jede Karte ¢ : U — R™ einer differenzierbaren Mannigfaltigkeit
X induziert einen Isomorphismus T'(¢) : TU — T'¢[U| der Tangentialbiindel.

(i1) Jede glatte Abbildung f : X — Y zwischen differenzierbaren Mannigfaltigkeiten
induziert mit T(f) : TX — TY einen Morphismus der Tangentialbiindel.

(111) In Satz[L.53 (ii) haben wir gezeigt, dass jedes Vektorraumbiindel von einem Fa-
sertyp isomorph ist zu dem durch ein Kozykel induzierten Vektrorraumbiindel.

Definition 1.57. Sei (X, B, ) ein differenzierbares Faserbiindel iber der differenzier-
baren Mannigfaltigkeit B. Sei U C B eine offene Teilmenge von B. Dann heif§t eine p
mal (stetig) differenzierbare Abbildung f : U — X, so dass die Verkettung von f mit w
gleich der identischen Abbildung von U ist, ein p mal (stetig) differenzierbarer Schnitt
von dem Faserbindel (X, B, m) diber U. Wenn U = B wird f globaler Schnitt genannt.

Nicht jedes Faserbiindel besitzt auch globale Schnitte, aber wegen der lokalen Tri-
vialitét besitzt jedes Faserbiindel lokale Schnitte. Jedes Vektorraumbiindel (E, B, )
besitzt immer den globalen Nullschnitt, der jedem b € B die eindeutige Null aus der
Faser m~1[{b}] zuordnet. Die Menge aller dieser Nullen bildet wegen der lokalen Tri-
vialitdt eine Untermannigfaltigkeit von F, die offenbar diffeomorph ist zu B.

Lemma 1.58. Sei F' ein normierter K—Vektorraum der Dimension n und (E, B, )
ein Vektorraumbiindel vom Fasertyp F'. Dann ist E genau dann als Vektorraumbiindel
isomorph zu dem trivialen Biindel (F x B, B,7), wenn E n globale glatte Schnitte
f1, -+, fn besitzt, deren Werte in allen Fasern (77 [{b}])sep linear unabhingig sind.
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Beweis: Wenn ¢ : F' x B — E ein Diffeomorphismus ist, so dass das Diagramm

FxB % E
P2 b
B 5 B

kommutiert, und ¢ faserweise ein Vektorraumisomorphismus ist, dann definiert jedes
e € I folgenden globalen Schnitt von E':

FiB—{eyxBSE, b f(b)=dleb).

Insbesondere induziert jede Basis (ey, ..., e,) von F' durch ¢ globale glatte holomorphe
Schnitte f1,..., f,, die faserweise alle linear unabhéngig sind.

Wir zeigen jetzt umgekehrt, dass globale glatte Schnitte fi,...,f, von E, die
faserweise linear unabhéngig sind, einen Isomorphismus von dem trivialen Vektor-
raumbiindel K” x B ~ F' x B mit E induzieren. Weil die Werte von den Schnitten
fi,-- -, fn in allen Fasern 7'[{b}] mit b € B eine Basis der Faser bilden, ist

FiK'x BB, (Ab) = fFONb) = AMfib) + ...+ AfalD),

eine bijektive, faserweise lineare Abbildung, so dass folgendes Diagramm kommutiert:

K'xB L E < 7U] & K'xU
p2 Tl 7l Dol
B % B U & U

Im Bild einer Trivialisierung mit der Faser F' ~ K" auf der rechten Seite wird ¢;;' o f zu
einer glatten Abbildung von U in die invertierbaren n x n-Matrizen. Mit den inversen
Matrizen ist dann (¢;' o f)~! glatt und damit f ein Diffeomorphismus und damit auch
ein Isomorphismus zwischen dem trivialen Vektorraumbiindel K* x B und E. q.e.d.

Mithilfe der linearen Algebra und der Analysis konnen wir aus zwei (endlichdi-
mensionalen) normierten Vektorrdumen V' und W die normierten Vektorrdume des
kartesischen Produktes V' x W und der linearen stetigen Abbildungen von V nach
W : L(V,W) bilden. Wir werden jetzt diese Operationen auf alle Fasern 7—*[{b}] und
7'~ {b}] zweier Vektorraumbiindel (E, B, 7) und (E’, B, «') iiber der gleichen Basis B
anwenden und dadurch zwei neue Vektorraumbiindel

(E@FE, B, bzw. (Hom(E, E'), B, ")

einfithren. Wir errinnern daran, dass die direkte Summe @ von Vektorrdumen mit dem
kartesischen Produkt iibereinstimmt.
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Satz 1.59. Seien (E, B, ) und (E', B;7") zwei Vektorraumbiindel iber der differen-
zierbaren Mannigfaltigkeit B. Dann gibt es zwei Vektorraumbiindel

(E®@FE,B,n®7') und (Hom(E,E'),B,n"),

deren Fasern
(ror) [{z}] und 7"'[{z}]

fiir alle x € B als topologische Vektorrdaume isomorph sind zu
E,x E. bxw.  L(E,E) mit E,=r"'{2}] und FE, =7""{z}]

Beweis: Es geniigt die Aussage auf jeder zusammenhéngenden Komponente von B zu
zeigen. Wegen Satz geniigt es dann die Aussage fiir Vektorraumbiindel zu zeigen,
die durch Kozykel induziert werden. Seien F' und F’ zwei normierte Vektorraume. Dann
sind die beiden folgenden Abbildungen analytische Gruppenhomomorphismen:

x:  GL(F)x GL(F') = GL(F x F"), (A, B) — A x B mit

AX B: FXF —FxF|, (f, f)— (Af,Bf").
II: GL(F)x GL(F') = GL(L(F,F")), (A, B)w II(A, B) mit
(A, B) : L(F, F') — L(F,F'), C+ BoCoA™!

Dabei wird Af durch II(A, B)(C) auf Bf’ abgebildet, wenn f durch C auf f’ abge-
bildet wird. Seien jetzt (E, B, ) und (E’, B, ) zwei Vektorraumbiindel vom Fasertyp
F bzw. F’ mit normierten Vektorrdumen I’ und F”’. Die Schnittmengen zweier offener
Uberdeckungen von B auf denen jeweils die Urbilder von 7 bzw. 7’ triviale Biindle sind
bilden eine Uberdeckung U durch offene Mengen U, auf denen die Vektorraumbiindel
77 U] und 7'~U] isomorph zu F x U bzw. F’ x U sind. Wegen Satz werden
dann die beiden Vektorraumbiindel (£, B, 7) und (E’, B, ) induziert durch Kozykel

vy UNV — GL(F) fiir alle (U, V) € U?
Yy : UNV — GL(F') fiir alle (U, V) € U

WEeil diese beiden Kozykel die Kozykelbedingung erfiillen, erfiillen auch die Kozykel

dvu X Yyy :UNV — GL(F x F') fiir alle (U, V) € U?
(pyu, vy) : UNV — GL(L(F, F')) fiir alle (U, V) € U*

die Kozykelbedingung und induzieren zwei Vektorraumbiindel & E’ bzw. Hom(E, E')
vom Fasertyp F' x F' bzw. L(F, F’) auf B. Wir zeigen jetzt, dass die Fasern dieser
Vektorraumbiindel £ @ E’ bzw. Hom(FE, E') iiber allen Punkten x € B isomorph sind
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wu B, X E! bzw. L(E,, E!). Seien also fiir alle U € U die lokalen Trivialisierungen von
E und E' gegeben durch Isomorphismen von Vektorraumbiindeln

¢y FxU — 7 U] und ¢y : F' x U — 7'~ HU|

so dass folgende Diagramme kommutieren:

FxU % 77U -+ E FxU 2 71U - E
P2 Tl Tl und P2 Tl us
v U < B v % U < B

Fiir alle U € U ist die Abbildung

FxF xU— JEx By, (f.f50) = (00lpeg (12, Yulpey (f2)

zelU

eine bijektive Abbildung von dem trivialen Vektorraumbiindel F' x F’ x U iiber U mit
Faser F' x F' auf die disjunkte Vereinigung J, ., £, x E., der kartesischen Produkte
der Fasern von E und E’ iiber x € U. Fiir alle U,V € Y und x € UNV gilt

<¢U\Fx{m}><¢U|fo{x})((f, x),(f )= <¢V\Fx{m}><1/1v\F'x{x})<(¢V,U($)X¢V,U($))(fa f')@)-

Also sind diese Abbildungen vertriiglich mit der Aquivalenzrelation des von den Kozy-
keln (¢v,r X Yvu)w,vyeu definierten Vektorraumbiindels £ @ E’. Dann sind die Fasern
des Vektorraumbiindels F & E’ isomorph zu E, x E/.

Analog ist fiir alle U € U die Abbildung

LIF,FYxU—= | L(EnE,), (C.x) = tulp a0 (Cx Iy o ¢,

zeU

eine bijektive Abbildung von dem trivialen Vektorraumbiindel L(F x F")x U iiber U mit
Faser £(F, F’) in die disjunkte Vereinigung J,..; £(&,, E,,) aller linearen Abbildungen
von der Faser £, von E in die Faser E/ von E'. Fir UV e Y und z € UNV gilt

Ul prgay © (C X 1ay) 0 05t | o = Wyl gy © (Vv (@) 0 Codpp(x) X 1ay) 0 o3t
= wV|F/><{x} o (H(¢V,U(x)>wV,U(x))C X ]l{:c}) o ¢;1‘Ex

Deshalb sind diese Abbildungen vertréglich mit der Aquivalenzrelation des von dem
Kozykel (I(¢v,v, Yvv))w,vyewz induzierten Vektorraumbiindels Hom(£, E'). Also be-
stehen die Fasern von Hom(FE, E') fiir alle © € B aus L(FE,, E.). q.e.d.
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Das Vektorraumbiindel E® E’ wird Withney Summe der beiden Vektorraumbiindel
(E,B,m) und (F', B,7’) genannt. Diese Whitney Summe konnen wir auch definieren
durch das Faserprodukt E xp E’ als die Einschrankung des Vektorraumbiindels (E X
E' B x B,m x 7') auf die Diagonale von B x B. Wegen der lokalen Trivialitéit ist
die Projektion jedes Faserbiindels eine Submersion. Also ist wegen Korollar [.47 das
Faserprodukt E x g E’ eine differenzierbare Untermannigfaltigkeit von E x E'.

Beispiel 1.60. (i) Das duale Biindel E' eines K—Vektorraumbiindels (E, B, ) ist
das Biindel der Homomorphismen von (E, B, ) in das triviale K-Linienbiindel
(Kx B, B, ps) tiber B. So ist z.B. fiir jede differenzierbare Mannigfaltigkeit X das
Kotangentialbindel das duale Bindel T'X des Tangentialbiindels (T' X, X, ).

(11) Seien V und W zwei endlichdimensionale normierte Vektorrdume diber K. Weil
alle endlichdimensionalen Vektorriume auf natiirliche Weise isomorph sind zu ih-
ren Bidualrdumen, identifizieren wir das Tensorprodukt VW mait L(V', W'). Wir
definieren das Tensorprodukt zweier Vektorraumbindel (E, B, m) und (F, B, )
vom Fasertyp V' bzw. W als das Vektorraumbiindel E @ F = Hom(E', F), der
Homomorphismen von dem dualen Biindel E' von E in das Vektorraumiindel F.

Definition 1.61. Seien X und B differenzierbare Mannigfaltigkeiten und (E, B, )
ein Vektorraumbiindel und f : X — B glatt. Wegen Korollar[1.47 ist das Faserprodukt
E xp X der beiden Abbildungen m: E — B und f : X — B eine differenzierbare Un-
termannigfaltigkeit von E x X und das Faserprodukt B xg X der beiden Abbildungen
1 : B— B und f : X — B eine differenzierbare Untermannigfaltigkeit von B x X.
Die Einschrinkung des Vektorraumbiindels (E x X, B x X, 7 X 1x) auf die Unterman-
nigfaltigkeit B x g X definiert das Vektorraumbiindel f*(E) = (E xp X, B xp X, 7).
Es wird inverses Bild des Vektorraumbiindels (E, B, ) unter der Abbildung f genannt.

Die lokalen Trivialisierungen von E induzieren lokale Trivialisierungen von (FE X
X,Bx X,mx 1x) und (F xp X, B xg X, 7). Die Einschrinkung von f x 1y : X X
X — B x X auf die Diagonale X ~ X xx X ist ein natiirlicher Diffeomorphismus
X ~ B xp X. Dadaurch wird das Biindel f*(E) zu einem Biindel iiber X.

Beispiel 1.62. Sei (E, B, 7) ein Vektorraumbiindel und f : X — B auf der diffe-
renzierbaren Mannigfaltigkeit X die konstante Abbildung auf ein by € B. Dann ist
Exg X =7n"1{bp}] x X und B xp X ={bo} x X, und f*E ~ 77 [{bo}] x X trivial.

Satz 1.63. Seien (E,B,w) und (E', B',7") zwei Vektorraumbiindel. Dann induziert
jeder Morphismus (g, f) mit g : E' — E und f : B'— B von (FE', B',7’") auf (E, B, )
einen Morphismus (h, 1g/) mit h : E' — f*(E) von (E', B',7'") auf das inverse Bild
f*(E) des Vektorraumbiindels (E, B, ) unter der Abbildung f.
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Beweis: Offenbar ist (g x 1/, f X 1p/) ein Morphismus des Vektorraumbiindels (£’ x
B', B'x B', 7’ x 1) auf das Vektorraumbiindel (E x B’, B x B’, 7w x 1p/). Das Faserpro-
dukt £’ x g B’ beziiglich der glatten Abbildungen 7’ : E' — B’ und 1 : B’ — B’ ist die
Einschrankung des Vektorraumbiindels (E' x B’, B’ x B, ' x 1g/) auf das Faserprodukt
B’ xp B’ beziiglich zweier glatter Abbildungen 1z : B’ — B’ als Untermannigfaltig-
keit von B’ x B’. Die zweite Untermannigfaltigkeit ist die Diagonale von B’ x B’, und
die erste Untermannigfaltigkeit ist das inverse Bild 13 (E’) des Vektorraumbiindels
(E', B',n’") unter der Abbildung 1p : B — B’. Seien pp : E' x B' — E’' und pp :
B’ x B" — B’ die beiden Projektionen auf den ersten Faktor der kartesischen Produkte.
Dann ist (pgs, ppr) ein Morphismus des Vektorraumbiindels (E'x B', B'x B', 7’ x 1p/) auf
das Vektorraumbiindel (E’, B, 7). Er induziert einen Isomorphismus des inversen Bil-
des 1%, (E') des Vektorraumbiindels (£, B, 7') mit dem Vektorraumbiindel (E’, B', 7’).

Das Faserprodukt E xp B’ beziiglich der glatten Abbildungen 7 : £ — B und
f : B" — B ist die Einschrédnkung des Vektorraumbiindels (E x B', B x B', 7 x 1p/)
auf das Faserprodukt B xp B’ beziiglich der glatten Abbildungen 1z : B — B und
f: B' — B als Untermannigfaltigkeit von B x B’. Es ist das inverse Bild f*(E) des Vek-
torraumbiindels (£, B, 7) beziiglich der glatten Abbildung f. Weil die Abbildung fx 15
offenbar die Diagonale B’ x g B’ von B’ x B’ auf die Untermannigfaltigkeit B x g B’
abbildet, wird durch den Morphismus (g x 1g/, f x 1p/) das Vektorraumbiindel 17, (E")
auf das Vektorraumbiindel f*(E) abgebildet. Weil 1, (E") als Vektorraumbiindel iso-
morph ist zu (£, B, ) erhalten wir einen Morphismus von (E’, B’, 7’) auf des inverse
Bild f*(E) des Vektorraumbiindels (F, B, w) unter der Abbildung f. q.e.d.



