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Analysis III
12. Exercise: Integration

Preparation Exercises

70. The pullback of differential forms.

(a) Let X, Y be manifolds of dimension n and f : X → Y a smooth map. Further take

the standard local set-up of charts ϕ = (ϕ1, . . . , ϕn) : U → Rn and ψ = (ψ1, . . . , ψn) :

V → Rn on open sets U ⊂ X and V ⊂ Y with f(U) ⊂ V .

Show the following local formula for the pullback holds for every smooth function

g ∈ C∞(V,R):

f ∗(g dψ1 ∧ · · · ∧ dψn) = (g ◦ f) · det
(
∂(ψj ◦ f ◦ ϕ−1)

∂xi

)
· dϕ1 ∧ · · · ∧ dϕn .

Hint. Make use of the determinant formula for the evaluation of forms ⟨A1 ∧ · · · ∧
Ap , v1 ⊗ . . .⊗ vp⟩ = det

(
Ai(vj)

)
i,j
, from page 71 of the script.

(b) Consider the canonical volume form on R3, namely ω := dx ∧ dy ∧ dz and spherical

coordinates

f : R+×[0, 2π)×[0, π] → R3, (r, ϑ, φ) 7→
(
r cos(ϑ) cos(φ) , r cos(ϑ) sin(φ) , r sin(ϑ)

)
.

Compute “ω in spherical coordinates”, by which we mean the pullback f ∗ω.

71. Integration on the unit circle.

Let ω be a 1-form on the unit circle S1 ⊂ R2 and

f : R → S1, t 7→ (cos t, sin t)

a paramterisation.

(a) Use the exercise “Null sets of manifolds” and Corollary 3.22 to calculate∫
S1
y dx

(b) Prove Stokes’ theorem for S1. Actually, show the stronger result that ω is exact if

and only if ∫
S1
ω = 0.

(S1 is a manifold whose boundary is empty, so the right side of Stokes’ theorem is

zero.)
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In Class Exercises

72. Null sets of manifolds.

Let M be an oriented manifold and Z a closed subset. Hence M \ Z is also a manifold.

We call Z a null set if for every coordinate chart ϕα : Uα → Rn the set ϕα[Z ∩ Uα] is a

null set of Rn. Prove that ∫
A

ω =

∫
A\Z

ω

73. The divergence theorem (aka Gauss’ theorem).

Let X ⊂ Rn be a compact subset of Rn with X0 = X that is an n-dimensional manifold

with boundary. It is know that X must be orientable and that ω := dx1 ∧ · · · ∧ dxn is a

volume form on X. Further, let a smooth (n− 1)-form η on X be given.

(a) Show that there is a unique vector field F ∈ Vec∞(X) with η = iFω.

(b) Write F = (F1, . . . , Fn) for functions F1, . . . , Fn ∈ C∞(X,R). Define the divergence

operator div(F ) ∈ C∞(X,R) as

div(F ) :=
n∑

k=1

∂Fk

∂xk
.

Prove the following connection between the divergence operator and the exterior

derivative:

d(iFω) = div(F ) · ω.

(c) Prove the divergence theorem:∫
∂X

η =

∫
X

div(F ) · ω.

74. A differential form which is closed but not exact.

Consider on the punctured plane R2 \ {0} the 1-form

ω := − y

x2 + y2
dx+

x

x2 + y2
dy.

(a) Show that ω is closed.

(b) Compute
∫
S1 ω .

(c) Why does it follow from that ω is not exact?
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Remark. Due to d(dη) = 0 we see that every exact form is closed. Poincaré’s Lemma

says that on star-shaped regions in Rn that the converse is also true: every closed form

is exact. The example in this exercise shows that such a converse result cannot hold for

general regions.

Additional Exercises

75. An integration.

Let ω = y dx+ z dy be a 1-form on R3. Consider the restriction of ω to the 2-sphere S2,

with the parametrisation

S2 = { (sin(φ) sin(ϑ), cos(φ) sin(ϑ), cos(ϑ)) ∈ R3 |φ ∈ [0, 2π), ϑ ∈ [0, π] }.

Verify through direct computation that Stokes’ theorem holds for this case:∫
S2

dω = 0.

76. Volume forms on compact connected manifolds.

Let X be a compact connected orientable n-dimensional manifold without boundary, and

suppose that ω is a non-vanishing n-form. Show that ω is not exact.

Hint. Calculate
∫
X
ω in two ways: with Stokes’ theorem and with Definition 3.21.
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