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Nicolas A. Hasse
Analysis III

10. Exercise: Multilinear Maps and Tensors

In the exercises below, let V, V1, . . . , Vn,W be finite dimensional normed vector spaces over K.

We will ignore the norms though, because in finite dimensions all norms are equivalent and

linear maps are automatically continuous.

We will make use of the Kronecker notation

δi,j =

1 if i = j

0 otherwise.

Preparation Exercises

58. The difference between linear and multilinear.

Give an example of a multilinear map in L(R,R;R). Does it belong to L(R2;R)?

59. The dual space and matrices.

Recall that the dual of a vector space V is defined to be V ′ := L(V ;K). Consider a basis

{ei} of V . Show that the dual basis {Ai ∈ V ′} defined by Ai(ej) = δi,j is indeed a basis

for V ′. (Note, to define a linear map, it is enough to give its values on a basis of the

domain.)

Suppose further that {fi} is a basis of W . Define Bi,j ∈ L(V ;W ) by Bi,j(ek) = fiδj,k.

Argue that these elements form a basis of L(V ;W ). Explain this result in terms of

matrices.

In Class Exercises

60. An iterative definition of multilinear maps.

We know that the space of linear maps is itself a vector space. Explain why the space of

multilinear maps L(V1, V2;W ) is isomorphic to L(V1;L(V2;W )).

61. An isomorphism between L(V ;W ) and L(V,W ′;K).

Use the iterative definition of multilinear maps to give an isomorphism between L(V ;W )

and L(V,W ′;K).
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62. Dimension of L(V1, . . . , Vn;W ).

Show that

dimL(V1, . . . , Vn;W ) = dim(V1) · . . . · dim(Vn) · dim(W )

63. Tensor spaces.

Prove the following isomorphisms:

(a) L(V ;W ) ∼= V ′ ⊗W .

(b) V1 ⊗ V2 ⊗ V3
∼= V1 ⊗ (V2 ⊗ V3) ∼= (V1 ⊗ V2)⊗ V3

(c) L(V1, . . . , Vn;W ) ∼= L(V1 ⊗ . . .⊗ Vn;W )

64. The tensor product.

(a) Prove or disprove:

(i) the tensor product of vectors

V1 × . . .× Vn → V1 ⊗ . . .⊗ Vn, (v1, . . . , vn) 7→ v1 ⊗ . . .⊗ vn

is commutative in the case V1 = . . . = Vn.

(ii) every vector in V1 ⊗ . . .⊗ Vn is pure (coherent).

(b) Show that in V1 ⊗ . . . ⊗ Vn the linear span of the pure tensors is V1 ⊗ . . . ⊗ Vn, ie.

every element of V1 ⊗ . . .⊗ Vn is a finite linear combination of the pure tensors.

Additional Exercises

65. Riemannian metric.

Let X be a manifold. Let L(TX, TX;R) denote the vector bundle whose fibre over x ∈ X

is the R-vector space of bilinear forms TxX×TxX → R. A Riemannian metric (or simply

a metric) on X is a global smooth section G of this vector bundle, such that g(x) is a

scalar product on TxX for ever x ∈ X (it is symmetric and positive definite).

Show that every manifold has a Riemannian metric.

Hint. Choose a cover of X by coordinate charts. Construct a Riemannian metric in each

coordinate chart. ‘Glue’ them all together using a partition of unity.

Terminology

kohärent = coherent. In English, we called these tensors pure, simple, or elementary.
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