Martin Schmidt Nicolas A. Hasse

Analysis III 6. Exercise: Vector Bundles

Preparation Exercises

34. Adapted charts for vector bundles.

Let (E, B, π) be a \mathbb{R} -vector bundle with fibre F. Let $U \subset B$ be an open set. By shrinking U if necessary, we can assume that U is the domain of chart ϕ of B and that E trivialises over U, in the sense that $\Phi: F \times U \to \pi^{-1}[U]$ is a local trivialisation.

- (a) Why is $\pi^{-1}[U]$ an open set of E?
- (b) Prove that $\psi = (\mathrm{id}_F \times \phi) \circ \Phi^{-1} : \pi^{-1}[U] \to F \times U \to F \times \phi[U]$ by which I mean

$$\psi: e \mapsto (\tilde{\Phi}(v), \pi(e)) = \Phi^{-1}(e) \mapsto (\tilde{\Phi}(v), \phi(\pi(e)))$$

is a compatible chart for E. We call these charts of E adapted to the bundle structure.

- (c) Recall the definition of a section of a vector bundle.
- (d) A local section s over U is a map $U \to \pi^{-1}[E]$ between manifolds. Show that

$$s(b) = \Phi(\tilde{s}(b), b)$$

for $\tilde{s}: U \to F$. This is called writing a section with respect to the trivialisation Φ .

(e) Prove that s is smooth if an only if \tilde{s} is smooth.

35. The tangent bundle.

Let's examine Theorem 1.54.

Let $f: X \to Y$. We have seen the tangent map $T_x(f): T_x X \to T_{f(x)} Y$ at a point x. The tangent map T(f) is a map from the tangent bundle of X

$$TX = \bigcup_{x \in X} T_x X = \{(v, x) \mid x \in X, v \in T_x X\}$$

to the tangent bundle of Y. Though technically unnecessary, it is often useful to write points of TX as pairs. The tangent map then acts as

$$(v, x) \mapsto (T_x(f)(v), f(x)).$$

In Theorem 1.54 we see how to use the tangent maps of charts $T(\phi)$ are charts for the tangent bundle.

Explain what π is for the tangent bundle.

What are the local trivialisations for a tangent bundle?

Show that the cocycles of a tangent bundle are the same as the change of coordinates for tangent vectors.

In Class Exercises

36. Non-vanishing sections and local trivialisations.

For a line bundle (a vector bundle with rank 1) there is a correspondence between non-vanishing sections and local trivialisations. What is it?

37. The tangent bundles of low dimensional spheres.

In this exercise we will examine the tangent bundle of the n-sphere

$$\mathbb{S}^{n} := \{ (x_{1}, \dots, x_{n+1}) \in \mathbb{R}^{n+1} | x_{1}^{2} + \dots + x_{n+1}^{2} = 1 \},\$$

for $n \leq 3$. We have seen previously that we can make the identification

$$T_x \mathbb{S}^n = \{ w \in \mathbb{R}^{n+1} \mid w \cdot x = 0 \}.$$

This means that we can describe a section of $T\mathbb{S}^n$ as a smooth function $s: \mathbb{S}^n \to \mathbb{R}^{n+1}$ such that $s(x) \cdot x = 0$ for all $x \in \mathbb{S}^n$.

- (a) Find a non-vanishing section of the tangent bundle $T\mathbb{S}^1$ (a section that never takes the value 0).
 - Hence $T\mathbb{S}^1$ is trivial. (3 Points)
- (b) Show that the vector bundle TS^3 is trivial. (2 Points) Hint. Use Lemma 1.58 and consider the following sections

$$f_1(x_1, x_2, x_3, x_4) := (-x_2, x_1, x_4, -x_3), \quad f_2(x_1, x_2, x_3, x_4) := (-x_3, -x_4, x_1, x_2)$$

and
$$f_3(x_1, x_2, x_3, x_4) := (-x_4, x_3, -x_2, x_1)$$

Remark. We can identify \mathbb{S}^3 with the unit sphere in the Quaternions \mathbb{H} . Then $f_1 = ix$, $f_2 = jx$ and $f_3 = kx$.

(c) Let $x_N := (1,0,0) \in \mathbb{S}^2$ and $x_S := (-1,0,0) \in \mathbb{S}^2$. With the aid of stereographic projection ϕ_N and ϕ_S , write down local trivialisations of $T\mathbb{S}^2$ over $U_N := \mathbb{S}^2 \setminus \{x_N\}$ and $U_S := \mathbb{S}^2 \setminus \{x_S\}$, and calculate the transition function $g_{U_N,U_S} : \mathbb{S}^2 \setminus \{x_N, x_S\} \to \operatorname{GL}(\mathbb{R}^2)$. (8 Points)

Remark. TS^2 is not trivial, but this require some more theory to prove. It is a consequence of the "hairy ball theorem": every global section of TS^2 has a zero.

Additional Exercises

38. Sections of vector bundles.

Let (E, B, π) be a \mathbb{R} -vector bundle with fibre $F, s, s_1, s_2 : B \to E$ smooth sections of (E, B, π) , and $f : B \to \mathbb{R}$ a smooth function. Prove:

- (a) The zero section $O: B \to E, b \mapsto 0_b$ is a smooth section. By 0_b we mean this: $F_b = \pi^{-1}[\{b\}]$ is a vector space, so it has a zero element $0_b \in F_b \subset E$. (2 Points)
- (b) $s_1 + s_2$ and $g \cdot s$ are smooth sections. (2 Points)
- (c) Interpret f as a global section of the trivial bundle $E = \mathbb{R} \times B$. (1 Point)
- (d) The image s[B] is a submanifold of E. (3 Points)

39. The tangent bundle of a product.

Why is $T(X \times Y) = TX \times TY$. Consult Definition 1.41 and try to write $T_{(x,y)}(X \times Y)$ as a product.

40. Line bundles over \mathbb{R} are trivial. Prove that every line bundle (a vector bundle whose fibre dimension is 1) over \mathbb{R} is trivial. (8 Points)

Hint. Let (E, \mathbb{R}, π) be a line bundle. Choose a point x_0 and show that there is an interval $(x_0 - \varepsilon, x_0 + \varepsilon)$ with a non-vanishing section s. Then consider

where the choice of $(x, x_0 + \varepsilon)$ or $(x_0 - \varepsilon, x)$ depends whether $x \le x_0$ or $x \ge x_0$ Show that J is non-empty, open. Argue further that $J = \mathbb{R}$.

Terminology

Schnitt = section nullstellenfreien = non-vanishing Geradenbündel = line bundle American spelling is fiber, British spelling is fibre.