Martin Schmidt

Nicolas A. Hasse

Analysis III 3. Exercise: Smooth Maps

Preparation Exercises

14. Stereographic projection is compatible with regular projection.

Consider the sphere from Example 1.18(iii) in the lecture script. We take n = 1 to get the circle $\mathbb{S}^1 = \{x_0^2 + x_1^2 = 1\}$. We defined two charts $\phi_N : \mathbb{S}^1 \setminus \{e_0\} \to \mathbb{R}$ and $\phi_S : \mathbb{S}^1 \setminus \{-e_0\} \to \mathbb{R}$, showed they were compatible, and that they form an atlas $\mathcal{A}_{\text{stereo}}$.

On the other hand, we can use the usual projections to get charts for \mathbb{S}^1 . Let

 $\phi_1 := \Pi_0|_{\mathbb{S}^1 \cap \{x_1 > 0\}}, \ \phi_2 := \Pi_0|_{\mathbb{S}^1 \cap \{x_1 < 0\}}, \ \phi_3 := \Pi_1|_{\mathbb{S}^1 \cap \{x_0 > 0\}}, \ \phi_4 := \Pi_1|_{\mathbb{S}^1 \cap \{x_0 < 0\}},$

(a) Write out the vector formulae from the script in the case n = 1 in coordinates to get

$$\phi_N(x_0, x_1) = \frac{x_1}{1 - x_0}, \qquad \phi_S(x_0, x_1) = \frac{x_1}{1 + x_0}$$

$$\phi_N^{-1}(y) = \left(\frac{\|y\|^2 - 1}{\|y\|^2 + 1}, \frac{2y}{\|y\|^2 + 1}\right), \qquad \phi_S^{-1}(y) = \left(-\frac{\|y\|^2 - 1}{\|y\|^2 + 1}, \frac{2y}{\|y\|^2 + 1}\right).$$

- (b) Show that ϕ_1 is a chart of \mathbb{S}^1 .
- (c) Show that ϕ_3 is compatible with ϕ_1 .
- (d) Is ϕ_2 compatible with ϕ_1 ?
- (e) Show that ϕ_1 is compatible with ϕ_s .

15. Properties of Smooth Maps.

- (a) Let $x \in X$ be a point that is in the domain of two charts $\phi_1 : U_1 \to \phi[U_1]$ and $\phi_2 : U_2 \to \phi[U_2]$. Let $f : X \to Y$ be a map. Show that whether f is smooth at x does not depend on the chart.
- (b) Let $f: X \to Y$ and $g: Y \to Z$ be smooth maps. Prove that $g \circ f$ is a smooth map.
- (c) Show that a map $f : \mathbb{R}^n \to \mathbb{R}^m$ is smooth in the sense of Definition 1.22 (as a map between manifolds), exactly if it is smooth in the Euclidean sense.
- (d) Let X be a manifold and $\phi: U \to \phi[U] \subset \mathbb{R}^n$ a chart. Explain why $\phi: U \to \mathbb{R}^n$ is a smooth map in the sense of manifolds.
- (e) Let $f: X \to \mathbb{R}$ be a smooth function (we often use the word function for maps to \mathbb{R} , though they are interchangable). Choose a chart $\phi: U \to \phi[U] \subset \mathbb{R}^n$. Define for $1 \le i \le n$ the *i*th-partial derivative of f with respect to ϕ as

$$\frac{\partial f}{\partial \phi_i}: U \to \mathbb{R}, \ x \mapsto \frac{\partial (f \circ \phi^{-1})}{\partial y_i}(\phi(x)).$$

Show that this is a smooth function on U. It is sometimes written as $\partial f/\partial \phi_{,i}$ (especially in physics) to make clear that the index refers to the coordinate and not which chart from the atlas.

16. Diffeomorphism.

Let X, Y be differential manifolds. Show that X and Y are diffeomorphic (Def 1.21) exactly when there is a bijective smooth map $f: X \to Y$ whose inverse is also smooth.

In Class Exercises

17. Smooth maps on \mathbb{S}^1 .

- (a) Consider the function $f(x_1, x_2) = 2x_2 x_1^2$. Using the stereographic projections ϕ_N and ϕ_S show that it is a smooth map $\mathbb{S}^1 \to \mathbb{R}$. Visualise this function.
- (b) Visualise the function $g(x_1, x_2) = (x_2 + 1)^2 2$ on \mathbb{S}^1 . Explain the connection to the previous function.
- (c) Consider the antipodal map $A : \mathbb{S}^1 \to \mathbb{S}^1$ defined by $x \mapsto -x$. Show it is smooth. Interpret this map geometrically.
- (d) Let $F : \mathbb{R}^2 \to \mathbb{R}$ be a smooth function. Argue that $f = F|_{\mathbb{S}^1}$ is a smooth function. Hint. Consider $F = \prod_i$ first.
- (e) Are there any smooth functions on \mathbb{S}^1 that aren't of this form?

18. Smooth maps on \mathbb{R}/\mathbb{Z} .

- (a) Show that $f : \mathbb{R}/\mathbb{Z} \to \mathbb{R}, [x] \mapsto \sin 2\pi x$ is a well defined function. Show further that it is a smooth function.
- (b) Prove that functions $f : \mathbb{R}/\mathbb{Z} \to \mathbb{R}$ are equivalent to functions $F : \mathbb{R} \to \mathbb{R}$ with F(x+1) = F(x) for all $x \in \mathbb{R}$.
- (c) Prove further that a function on \mathbb{R}/\mathbb{Z} is smooth if and only if its periodic version is smooth.
- (d) Generalise this result to maps $\mathbb{R}/\mathbb{Z} \to Y$.

19. A partition of unity for the interval (0, 4).

We consider the open interval M = (0, 4) as a 1-dimensional manifold. Take an open cover of M:

 $U_1 := (0, 2)$, $U_2 := (1, 3)$, and $U_3 := (2, 4)$.

(a) Give an example of three functions $f_1, f_2, f_3 \in C^{\infty}(M)$ with these properties:

$$0 \le f_k \le 1$$
, $\operatorname{supp}(f_k) \subset U_k$, $f_1 + f_2 + f_3 = 1$.

(The support of a function is defined to be the closure of the points on which it is non-zero, $\operatorname{supp}(f_k) := \overline{\{x \in M \mid f_k(x) \neq 0\}} \subset M$.) These functions form a partition of unity for M (Definition 1.26).

- (b) Theorem 1.27 is even stronger! What additional property does the partition of unity given by Theorem 1.27 have, which our example does not have?
- (c) Is it possible to have a partition of unity of M with this additional property and which has only finitely many functions (f_k) ?

Additional Exercises

20. Diffeomorphism as an equivalence.

In Exercise 13 you gave two incompatible atlases on the topological space \mathbb{R} . Therefore we have two manifolds: the standard one $(\mathbb{R}, \mathcal{A})$ and your example $(\mathbb{R}, \tilde{\mathcal{A}})$. Show these two manifolds are diffeomorphic.

Why is diffeomorphism an equivalence relation on manifolds?

This leads to the question: on a topological space X how many manifold structures exist that are mutually non-diffeomorphic? Often these are called 'exotic' manifold structures.

Terminology

glatt = smooth. Zerlegung der Eins = partition of unity. Träger = support (symbol is supp).