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Chapter 1

First Order PDEs

In this introductory chapter we first introduce partial differential equations and then
consider first order partial differential equations. We shall see that they are simpler than
higher order partial differential equations. In contrast to higher order partial differential
equations these first order partial differential equations are similar to ordinary differential
equations and can be solved by using the theory of ordinary differential equations. After
this introductory chapter we shall focus on second order partial differential equations.
Before we consider the three main examples of second order differential equations we
introduce some general concepts in the next chapter. These general concepts are partially
motivated by observations contained in the first chapter.

A partial differential equation is an equation on the partial derivatives of a function
depending on at least two variables.

Definition 1.1. A possibly vector valued equation of the following form

F
(
Dku(x), Dk−1u(x), . . . , Du(x), u(x), x

)
= 0

is called partial differential equation of order k. Here F is a given function and u an
unknown function. The expressions Dku denotes the vector of all partial derivatives of
the function u of order k. The function u is called a solution of the differential equation,
if u is k times differentiable and obeys the partial differential equation.

On open subsets Ω ⊂ Rn we denote the partial derivatives of higher order by ∂γ =∏
i ∂

γi
i =

∏
i(

∂
∂xi

)γi with multi-indices γ ∈ Nn
0 of length |γ| =

∑
i γi. The multi-indices are

ordered by δ ≤ γ ⇐⇒ δi ≤ γi for i = 1, . . . , n. The partial derivative acts only on the
immediately following function; they only act on a product of functions if the product is
grouped together in brackets.
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CHAPTER 1. FIRST ORDER PDES 2

1.1 Homogeneous Transport Equation

One of the simplest partial differential equations is the transport equation:

u̇+ b · ∇u = 0.

Here u̇ denotes the partial derivative ∂u
∂t

of the unknown function u : Rn×R → R, b ∈ Rn

is a vector, and the product b · ∇u denotes the scalar product of the vector b with the
vector of the first partial derivatives of u with respect to x:

b · ∇u(x, t) = b1
∂u(x, t)

∂x1
+ . . .+ bn

∂u(x, t)

∂xn
.

Let us first assume that u(x, t) is a differentiable solution of the transport equation. For
all fixed (x0, t0) ∈ Rn × R the function

z(s) = u(x0 + s · b, t0 + s)

is a differentiable function on s ∈ R, whose first derivative vanishes:

z′(s) = b∇u(x0 + s · b, t0 + s) + u̇(x0 + s · b, t0 + s) = 0.

Therefore u is constant along all parallel straight lines in direction of (b, 1). Furthermore,
u is completely determined by the values on all these parallel straight lines.

Initial Value Problem 1.2. We seek a solution u : Rn × R → R of the transport
equation u̇+ b · ∇u = 0 with given b ∈ Rn, which at t = 0 is equal to some given function
g : Rn → R. We call this the Cauchy problem (or initial value problem) for the transport
equation.

With the additional initial data, we can now uniquely determine a solution. All parallel
straight lines in direction of (b, 1) intersect Rn × {0} exactly once:

(x0 + sb, t0 + s) ∈ Rn × {0} ⇐⇒ s = −t0.

Thus the value of u on each straight line is determined by the initial condition. These
lines are in general called characteristic curves. The solution has to be equal to u(x, t) =
u(x − tb, 0) = g(x − tb). If g is differentiable on Rn, then this function indeed solves
the transport equation. In this case the initial value problem has a unique solution.
Otherwise, if g is not differentiable on Rn, then the initial value problem does not have a
solution. As we have seen above, whenever the initial value problem has a solution, then
the function u(x, t) = g(x− bt) is the unique solution. So it might be that this candidate
is a solution in a more general sense.
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1.2 Inhomogeneous Transport Equation

Now we consider the corresponding inhomogeneous transport equation:

u̇+ b · ∇u = f.

Again b ∈ Rn is a given vector, f : Rn × R → R is a given function and u : Rn × R → R
is the unknown function.

Initial Value Problem 1.3. Given a vector b ∈ R, a function f : Rn × R → R and an
initial value g : Rn → R, we seek a solution to the Cauchy problem for the inhomogeneous
transport equation: a function u : Rn × R → R that satisfies

u̇+ b · ∇u = f with u(x, 0) = g(x).

Similar to the homogeneous case, we define for each (x0, 0) ∈ Rn ×R the function z(s) =
u(x0 + sb, s) which solves

z′(s) = b · ∇u(x0 + sb, s) + u̇(x0 + sb, s) = f(x0 + sb, s).

Notice that the right hand side is only a function of s. Moreover z(0) = u(x0, 0) = g(x0)
is known. Thus we can integrate and determine z(s) completely. This tells us the value
of u and any point on the line (x0 + sb, s) ∈ Rn × R.

We can also gather this information into a formula for u. The point (x, t) lies on the line
(x0 + sb, s) with s = t and x0 = x− tb. Therefore

u(x, t) = z(t) = z(0) +

∫ t

0

z′(s) ds = g(x0) +

∫ t

0

f(x0 + sb, s) ds

= g(x− tb) +

∫ t

0

f(x+ (s− t)b, s) ds.

We observe that this formula is analogous to the formula for solutions of inhomogeneous
initial value problems of linear ODEs. The unique solution is the sum of the unique
solution of the corresponding homogeneous initial value problem and the integral over so-
lution of the homogeneous equation with the inhomogeneity as initial values. We obtained
these solutions of the first order homogeneous and inhomogeneous transport equation by
solving an ODE. We shall generalise this method in Section 1.5 and solve more general
first order PDEs by solving an appropriate chosen system of first order ODEs.

1.3 Scalar Conservation Laws

In this section we consider the following class of non-linear first order differential equations

u̇(x, t) +
∂f(u(x, t))

∂x
= u̇(x, t) + f ′(u(x, t)) · ∂u(x, t)

∂x
= 0
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for a smooth function f : R → R. Here u : R × R → R is the unknown function. This
equation is called a scalar conservation law and is a non-linear first order PDE. For any
compact interval [a, b] we calculate

d

dt

∫ b

a

u(x, t)dx =

∫ b

a

u̇(x, t)dx = −
∫ b

a

∂f(u(x, t))

∂x
dx = f(u(a, t))− f(u(b, t)).

This is the meaning of a conservation law: the change of the integral of u(·, t) over [a, b]
is equal to the ’flux’ of f(u(x, t)) through the ’boundary’ ∂[a, b] = {a, b}.

Thinking of t as time, the natural boundary condition to consider is u(x, 0) = g(x) for
all x ∈ R with some given function g : R → R. Let us try to apply the method of
characteristics to these equations, namely we assume that there exists a solution u try
to understand how the value of u changes along a curve (x(s), s) in its domain. The
difference to the transport equation is that we do not assume that the curves are straight
lines; it remains to be seen which curves we should choose. Let z(s) = u(x(s), s). The
derivative is

z′(s) =
∂u(x(s), s)

∂x
x′(s) + u̇(x(s), s)

Hence if we choose the curve x(s) with the property that x′(s) = f ′(u(x(s), s)) then

z′(s) =
∂u(x(s), s)

∂x
x′(s) + u̇(x(s), s) =

∂u(x(s), s)

∂x
f ′(u(x(s), s)) + u̇(x(s), s) = 0.

This shows that z is constant along these particular curves.

There remain two things to determine: what is the value of z and does there even exist a
curve x(s) with the required property? We make the assumption that the characteristic
curve begins at the point (x0, 0). In other words x(0) = x0. By the constancy of z and
the initial conditions we have z(s) = u(x(0), 0) = u(x0, 0) = g(x0). This answers the first
question. The second question is now answerable too: the derivative of x(s) is constant
equal to

x′(s) = f ′(u(x(s), s)) = f ′(z(s)) = f ′(g(x0)).

The characteristic curve is therefore x(s) = x0 + sf ′(g(x0)). Together this shows that the
solution of the PDE is uniquely determine from the initial condition, if it exists.

Instead of thinking about a single characteristic curve and initial point, let us think about
all characteristic curves. This point of view implies the solution obeys

u(x+ tf ′(g(x)), t) = g(x) for all (x, t) ∈ R2.

The characteristic curves with initial points x1, x2 ∈ Rn with g(x1) ̸= g(x2) might intersect
at t ∈ R+. In this case the method of characteristic implies g(x1) = u(x1+tf

′(g(x1)), t) =
u(x2 + tf ′(g(x2)), t) = g(x2), which is impossible. This situation is called crossing char-
acteristics. But otherwise the above implicit equation for u can be solved and defines a
solution to the PDE.
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Theorem 1.4. If f ∈ C2(R,R) and g ∈ C1(R,R) with f ′′(g(x))g′(x) > −α for all x ∈ R
and some α ≥ 0, then there is a unique C1-solution of the initial value problem for the
scalar conservation law

∂u(x, t)

∂t
+ f ′(u(x, t))

∂u(x, t)

∂x
= 0 with u(x, 0) = g(x)

on (x, t) ∈ R× [0, α−1) for α > 0 and on (x, t) ∈ R× [0,∞) for α = 0.

Proof. By the method of characteristic the solution u(x, t) is on the lines x + tf ′(g(x))
equal to g(x). For all t ≥ 0 with 1− tα > 0 the derivative of x 7→ x+ tf ′(g(x)) obeys

1 + tf ′′(g(x))g′(x) ≥ 1− tα > 0.

This implies limx→±∞ x+ tf ′(g(x)) = ±∞. So x 7→ x+ tf ′(g(x)) is a C1-diffeomorphism
from R onto R. Therefore there exists for any y ∈ R a unique x with x + tf ′(g(x)) = y.
Then u(y, t) = g(x) solves the initial value problem.

Example 1.5. For n = 1 and f(u) = 1
2
u2 we obtain Burgers equation:

u̇(x, t) + u(x, t)
∂u(x, t)

∂x
= 0.

The solutions of the corresponding characteristic equations are x(t) = x0+ g(x0)t. There-
fore the solutions of the corresponding initial value problem obey

u(x+ tg(x), t) = g(x).

If g is continuously differentiable and monotonic increasing, then for all t ∈ [0,∞) the
map x 7→ x + tg(x) is a C1-diffeomorphism from R onto R and there is a unique C1-
solution on R× [0,∞). More generally, if g′(x) > −α with α ≥ 0, then there is a unique
C1-solution on R× [0, α−1) for α > 0 and (x, t) ∈ R× [0,∞) for α = 0.

1.4 Noncharacteristic Hypersurfaces

Until now we have only considered specific PDEs where one variable was labelled ‘time’
and the initial conditions was t = 0. In this section we shall consider boundary conditions
for the general first order PDE:

F (∇u(x), u(x), x) = 0

on the domain Ω ⊆ Rn with the boundary condition u(y) = g(y) for all y ∈ Σ. Here
u is a real unknown function on an open domain Ω ⊂ Rn and F is a real function
on an open subset of W ⊂ Rn × R × Ω. For the boundary condition we assume that
Σ = {x ∈ Ω | φ(x) = φ(x0)} is the level-set of the function φ, which we call a hypersurface.
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We will first show that locally every Cauchy problem can be brought into the following
form:

u(y) = g(y) for all y ∈ Ω ∩H with H = {x ∈ Rn | x · en = x0 · en}.

Here en = (0, . . . , 0, 1) denotes the n-th element of the canonical basis and H the unique
hyperplane through x0 ∈ Ω orthogonal to en. If∇φ(x0) ̸= 0 we may assume without loss of
generality that ∂φ

∂xn
(x0) ̸= 0 (relabel the variables if necessary). Then we apply the inverse

function theorem to x 7→ Φ(x) = (x1, . . . , xn−1, φ(x)) to get a continuously differentiable
coordinate transformation x = Φ−1(y) in a neighbourhood of x0. This coordinate change
has the property that φ(x) = φ(x0) if and only if y · en = yn = φ(x0). We say that the
boundary has been straighten at x0. Then by the chain rule the composition u = v ◦Φ of
a function v : Ω′ → R with Φ obeys

∇u(x) = ∇v(Φ(x)) · Φ′(x) = ∇v(y) · Φ′ (Φ−1(y)
)
.

Here ∇v and ∇u are row vectors and Φ′(x) the Jacobi matrix. Hence u solves the PDE

F (∇u(x), u(x), x) = 0

if and only if v solves the PDE

G(∇v(y), v(y), y) := F
(
∇v(y) · Φ′ (Φ−1(y)

)
, v(y),Φ−1(y)

)
= 0.

Thus we can indeed assume locally (the coordinate change is only guaranteed to exist in
a neighbourhood of x0) that the boundary is a hyperplane, at the cost of changing the
form of the PDE.

Next we ask the question: given the values of u on the hypersurface H is there anything
else we can determine about u on the hypersurface? Can we determine the value of its
derivatives for example, or can we see immediately that there is no possible u (like for
some situations of Burgers’ equation)?

We can compute the partial derivatives in most directions at x0 ∈ H. Observe

∂u(x0)

∂x1
= lim

h→0

u(x0 + he1)− u(x0)

h
= lim

h→0

g(x0 + he1)− g(x0)

h
=
∂g(x0)

∂x1
.

This also works for the directions x2, . . . , xn−1 which lie in the hyperplane. This idea does
not determine ∂u(x0)

∂xn
, but we have not used the PDE yet. If we substitute all the values

we know, there is only one free variable in the PDE:

F (∇u(x0), u(x0), x0) = F

(
∂g(x0)

∂x1
, . . . ,

∂g(x0)

∂xn−1

, pn, g(x0), x0

)
= 0.

Whether or not this has a solution depends on both the PDE F and the initial condition
g. However, if there does exist a solution then there is a simple criterion depending only
on F that ensures that is solvable in a neighbourhood of x0.
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Definition 1.6. Consider the PDE as a function of 2n + 1 variables F (p, z, x) = 0 and
suppose that there is a solution (p0, z0, x0). The hyperplane H = {xn = 0} is called
noncharacteristic at x0 if

∂F

∂pn
(p0, z0, x0) ̸= 0.

To understand the name ‘noncharacteristic’ let us consider the example

∂u

∂x1
= 0, u(x1, 0) = g(x1).

The PDE in this case is F (p1, p2, z, x1, x2) = p1, which clearly does not enjoy the non-
characteristic property. We see that the initial condition is fighting against the PDE;
they are only compatible if g is constant. And even if they happen to be compatible then
the initial condition does not determine ∂u

∂x2
on H = {x2 = 0}. If we apply the method

of characteristics to this PDE, we must try to find a curve (x1(s), x2(s)) along which
z(s) = u(x1(s), x2(s)) is nicely behaved. Differentiating z gives

z′ =
∂u

∂x1
x′1 +

∂u

∂x2
x′2,

which ‘aligns’ with the PDE if we choose x′1 = 1 and x′2 = 0. However this choice
of characteristics gives x1(s) = x0,1 + s, xs(s) = x0,2, which lies in the hyperplane. The
method fails to be useful because no points in the domain can be reached by characteristics
starting on the hyperplane.

Lemma 1.7. Let F : W → R and g : H → R be continuously differentiable, x0 ∈ Ω ∩H,
z0 = g(x0) and p0,1 =

∂g(x0)
∂x1

, . . . , p0,n−1 =
∂g(x0)
∂xn−1

. If there exists p0,n with F (p0, z0, x0) = 0
and H is noncharacteristic at x0 then on an open neighbourhood of x0 ∈ Ω ∩ H there
exists a unique solution q of

F (q(x), g(x), x) = 0, qi(x) =
∂g(x)
∂xi

for i = 1, . . . , n− 1 and q(x0) = p0.

Proof. Consider the function (x, qn) 7→ F (q1(x), . . . , qn−1(x), qn, g(x), x). This takes the
value 0 at (x0, p0,n). The noncharacteristic assumption means that we can apply the
implicit function theorem to define qn as a unique function of x in a neighbourhood of
x0.

1.5 Method of Characteristics

In this section continue to consider the general first order PDE and try to formalise the
method of characteristics, which thus far we have developed only ad hoc. We try to obtain
the solution to the PDE by understanding the function u along a curve in the domain.
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For a clever choice of the curve this reduces to the solution of an appropriate system of
first order ODEs. So let x(s) be a curve in the domain of the PDE and z(s) = u(x(s))
be the value of u along the curve. The new ingredient is that we must also consider
p(s) = ∇u(x(s)), the gradient of u along this curve. But how should be choose the curve
s 7→ x(s)? For this purpose we first differentiate

p′i(s) =
d

ds

∂u(x(s))

∂xi
=

n∑
j=1

∂2u(x(s))

∂xj∂xi
x′j(s).

The total derivative of F (∇u(x), u(x), x) = 0 with respect to xi gives

0 =
dF (∇u(x), u(x), x)

dxi
=

=
n∑
j=1

∂F (∇u(x), u(x), x)
∂pj

∂2u(x)

∂xi∂xj
+
∂F (∇u(x), u(x), x)

∂z

∂u(x)

∂xi
+
∂F (∇u(x), u(x), x)

∂xi
.

Due to the commutativity ∂i∂ju = ∂j∂iu of the second partial derivatives we obtain
n∑
j=1

∂F (p(s), z(s), x(s))

∂pj

∂2u(x(s))

∂xj∂xi
+
∂F (p(s), z(s), x(s))

∂z
pi(s) +

∂F (p(s), z(s), x(s))

∂xi
= 0.

We want to eliminate the explicit dependence on u from all our equations. If we compare
this equation with the derivative of pi we see that we should choose the vector field for
the characteristic curves as

x′j(s) =
∂F (p(s), z(s), x(s))

∂pj
.

This choice allows us to rewrite the equation above for p′ as

p′i(s) =
n∑
j=1

∂2u(x(s))

∂xj∂xi

∂F (p(s), z(s), x(s))

∂pj

= −∂F (p(s), z(s), x(s))
∂z

pi(s)−
∂F (p(s), z(s), x(s))

∂xi
.

Finally we differentiate

z′(s) =
d

ds
u(x(s)) =

n∑
j=1

∂u(x(s))

∂xj
x′j(s) =

h∑
j=1

pj(s)
∂F (p(s), z(s), x(s))

∂pj
.

In this way we indeed obtain the following system of first order ODEs:

x′i(s) =
∂F (p(s), z(s), x(s))

∂pi

p′i(s) = −∂F (p(s), z(s), x(s))
∂xi

− ∂F (p(s), z(s), x(s))

∂z
pi(s)

z′(s) =
n∑
j=1

∂F (p(s), z(s), x(s))

∂pj
pj(s).
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This is a system of first order ODEs with 2n + 1 unknown real functions. Importantly
this is a ‘closed’ system; it only depends on these 2n + 1 functions, not on any other
information from u. This is a little surprising, particularly that p′, which is effectively a
certain second derivative of u, only depends on the location x, the value z, and the first
derivatives p. The fact that this idea of characteristics leads to a finite system of ODEs is
what makes this an effective method. Let us summarise these calculations in the following
theorem:

Theorem 1.8. Let F be a real differentiable function on an open subset W ⊂ Rn×R×Rn

and u : Ω → R a twice differentiable solution on an open subset Ω ⊂ Rn of the first order
PDE F (∇u(x), u(x), x) = 0. For every solution s 7→ x(s) of the ODE

x′i(s) =
∂F

∂pi
(∇u(x(s)), u(x(s)), x(s))

the functions p(s) = ∇u(x(s)) and z(s) = u(x(s)) solve the ODEs

p′i(s) = −∂F (p(s), z(s), x(s))
∂xi

− ∂F (p(s), z(s), x(s))

∂z
pi(s) and

z′(s) =
n∑
j=1

∂F (p(s), z(s), x(s))

∂pj
pj(s).

This theorem can be used to address the uniqueness of the solution of PDE, reducing it to
the question of uniqueness of the solution of this system of ODEs. This is useful because
we have many theorems that tell us when a system of ODEs is unique. For example, the
Picard-Lindelöf theorem tells us the solution is uniquely determined by initial conditions
if the right hand side is Lipschitz.

We must also pay attention to the logical structure of this theorem. It says if a solution
to the PDE exists then it solves the ODE; it tells us where to look for potential solutions.
But that was not the task we set for ourselves at the outset of this section. We want to
prove that a solution of the PDE does in fact exist. We have seen that global solutions may
not exist due to crossing characteristics, so the best we can hope for is a local existence
result. This takes a little work but is achieved in the following theorem.

Theorem 1.9. Let F : W → R and g : H → R be three times differentiable functions.
Suppose we have a point (p0, z0, x0) ∈ W with

F (p0, z0, x0) = 0, z0 = g(x0), p0,1 =
∂g(x0)
∂x1

, . . . , p0,n−1 =
∂g(x0)
∂xn−1

.

Furthermore, assume that H is noncharacteristic at x0. Then in a neighbourhood Ωx0 ⊂ Ω
of x0 there exists a unique solution of the Cauchy problem

F (∇u(x), u(x), x) = 0 for x ∈ Ωx0 and u(y) = g(y) for y ∈ Ωx0 ∩H.
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Proof. The strategy of this proof is to solve the system of ODEs given by the method of
characteristics and show that it does solve the PDE and the initial conditions. First we
need to translate the initial conditions of the PDE to initial conditions for the ODEs. By
Lemma 1.7 there exists a solution q on an open neighbourhood of x0 in H of the following
equations

F (q(y), g(y), y) = 0, qi(y) =
∂g(y)
∂xi

for i = 1, . . . , n− 1 and q(x0) = p0.

If F is twice and g are three times differentiable then the implicit function theorem yields
a twice differentiable solution. The Picard-Lindelöf theorem shows that the following
initial value problem has for all y in the intersection of an open neighbourhood of x0 with
H a unique solution:

x′i(s) =
∂F

∂pi
(p(s), z(s), x(s)) with x(0) = y

p′i(s) = −∂F
∂xi

(p(s), z(s), x(s))− ∂F

∂z
(p(s), z(s), x(s))pi(s) with p(0) = q(y)

z′(s) =
n∑
j=1

∂F

∂pj
(p(s), z(s), x(s))pj(s) with z(0) = g(y).

We denote the family of solutions by (x(y, s), p(y, s), z(y, s)). For a neighbourhood Ωx0 ∋
x0 there exists an ϵ > 0 such that these solutions are uniquely defined on (y, s) ∈ (Ω ∩
H) × (−ϵ, ϵ). This is a local proof so let us just write Ω instead of Ωx0 . Since F and
g are three times differentiable all coefficients and initial values are twice differentiable.
The theorem on the dependence of solutions of ODEs on the initial values gives that
(y, s) 7→ (x(y, s), p(y, s), z(y, s)) is on (Ω ∩H)× (−ϵ, ϵ) twice differentiable.

Now let us examine the characteristic curves in more detail. The function (y, s) 7→ x(y, s)
on (Ω ∩H)× (−ϵ, ϵ) → Rn has at (y, s) = (x0, 0) the Jacobi matrix

1 0 . . . 0 ∂F (p0,z0,x0)
∂p1

...
...

0 0 . . . 1 ∂F (p0,z0,x0)
∂pn−1

0 0 . . . 0 ∂F (p0,z0,x0)
∂pn

 .

Since ∂F (p0,z0,x0)
∂pn

̸= 0 this matrix is invertible. The inverse function theorem implies that on

the (possibly diminished) neighbourhood Ω of x0 and suitable ϵ > 0 this map is a twice
differentiable homeomorphism (Ω ∩ H) × (−ϵ, ϵ) → Ω with twice differentiable inverse
mapping. Because we know that the inverse mapping exists, the function u : Ω → R
defined in implicit form by

u(x(y, s)) = z(y, s) for all (y, s) ∈ (Ω ∩H)× (−ϵ, ϵ)

is well-defined.
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This function u satisfies the initial conditions of the PDE: we have x(y, 0) = y and so

u(y) = u(x(y, 0)) = z(y, 0) = g(y)

for all y ∈ Ω ∩ H. It remains to show that u solves the PDE F (∇u(x), u(x), x) = 0.
Observe that the ODEs imply

d

ds
F (p(y, s), z(y, s), x(y, s)) = 0.

Since F (q(y), g(y), y) vanishes for all y ∈ Ω ∩H we conclude

F (p(y, s), z(y, s), x(y, s)) = 0 for all (y, s) ∈ (Ω ∩H)× (−ϵ, ϵ).

Hence to show that u solves the PDE it suffices to show p(y, s) = ∇u(x(y, s)) for all
(y, s) ∈ (Ω ∩H)× (−ϵ, ϵ).

To this end, we need to establish the following equalities

∂z(y, s)

∂s
=

n∑
j=1

pj(y, s)
∂xj(y, s)

∂s
and

∂z(y, s)

∂yi
=

n∑
j=1

pj(y, s)
∂xj(y, s)

∂yi

for all (y, s) ∈ (Ω ∩H)× (−ϵ, ϵ) and all i = 1, . . . , n− 1. The first equation follows from
the ODE for x(y, s) and z(y, s). For s = 0 the second equation follows from the initial
conditions for z(y, s), p(y, s) and x(y, s). For s ̸= 0, let us use v(y, s) for the difference
between the left and right hand sides of the second equation:

v(y, s) :=
∂z(y, s)

∂yi
−

n∑
j=1

pj(y, s)
∂xj(y, s)

∂yi
.

We need to show that v is always zero. The derivative of the first equation with respect
to yi yields

∂2z(y, s)

∂yi∂s
=

n∑
j=1

(
∂pj(y, s)

∂yi

∂xj(y, s)

∂s
+ pj(y, s)

∂2xj(y, s)

∂yi∂s

)
.
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By the commutativity of the second partial derivatives we obtain

∂

∂s
v(y, s) =

∂2z(y, s)

∂s∂yi
−

n∑
j=1

∂pj(y, s)

∂s

∂xj(y, s)

∂yi
−

n∑
j=1

pj(y, s)
∂2xj(y, s)

∂s∂yi

=
n∑
j=1

(
∂pj(y, s)

∂yi

∂xj(y, s)

∂s
− ∂pj(y, s)

∂s

∂xj(y, s)

∂yi

)

=
n∑
j=1

∂pj(y, s)

∂yi

∂F (p(y, s), z(y, s), x(y, s))

∂pj

+
n∑
j=1

(
∂F (p(y, s), z(y, s), x(y, s))

∂xj
+
∂F (p(y, s), z(y, s), x(y, s))pj(y, s)

∂z

)
∂xj(y, s)

∂yi

=
∂

∂yi
F (p(y, s), z(y, s), x(y, s))

− ∂F (p(y, s), z(y, s), x(y, s))

∂z

(
∂z(y, s)

∂yi
−

n∑
j=1

pj(y, s)
∂xj(y, s)

∂yi

)
.

Notice that the bracketed expression is exactly v. Inserting F (p(y, s), z(y, s), x(y, s)) = 0
we obtain

∂

∂s
v(y, s) = −∂F (p(y, s), z(y, s), x(y, s))

∂z
v(y, s).

For each y this is a linear homogeneous ODE for v(y, s) in the variable s with initial value
0 at s = 0. The unique solution is v(y, s) ≡ 0. This implies the second equation for all y
and s:

∂z(y, s)

∂yi
=

n∑
j=1

pj(y, s)
∂xj(y, s)

∂yi
.

Now that we have established the two equalities, we demonstrate that they are not only
necessary but also sufficient for the conclusion p(y, s) = ∇u(x(y, s)) for all (y, s) ∈ (Ω ∩
H)×(−ϵ, ϵ). The solution u is defined as the composition of the inverse of (y, s) 7→ x(y, s)
with (y, s) 7→ z(y, s). The chain rule implies

∂u

∂xj
=
∂z

∂s

∂s

∂xj
+

n−1∑
i=1

∂z

∂yi

∂yi
∂xj

=

(
n∑
k=1

pk
∂xk
∂s

)
∂s

∂xj
+

n−1∑
i=1

(
n∑
k=1

pk
∂xk
∂yi

)
∂yi
∂xj

=
n∑
k=1

pk

(
∂xk
∂s

∂s

∂xj
+

n−1∑
i=1

∂xk
∂yi

∂yi
∂xj

)
=

n∑
k=1

pk
∂xk
∂xj

= pj.

Thus we have shown that the function u, which was constructed from the method of
characteristics, solves the PDE.

Theorem 1.8 and the theorem of Picard-Lindelöf imply the uniqueness of the solutions.



CHAPTER 1. FIRST ORDER PDES 13

The relation between the method of characteristics as explained in this section and the ad
hoc versions we used in previous sections will be explored in the exercises. The important
point is they are really the same method, but in many cases the system decouples and
the ODEs for x′ and z′ do not depend on p. This is a nice simplification because it makes
solving the p′ equations redundant.

1.6 Weak Solutions

In the first few sections situations where there were no solutions, or the method of char-
acteristics gave a ‘solution’ that was not differentiable. In this section we take a scalar
conservation law and look for more general notions of solutions which allow us to ex-
tend solutions across the crossing characteristics by allowing a limited amount of non-
differentiability. But if we don’t have differentiability, what does it meant to satisfy a
PDE? For this purpose we use the conserved integrals. Since we will restrict ourselves to
the one-dimensional situation for the moment, the natural domains are intervals Ω = [a, b]
with a < b ∈ R. In this case the conservation law implies

d

dt

∫ b

a

u(x, t)dx = f(u(a, t))− f(u(b, t)).

Now we look for functions u with discontinuities along the graph {(x, t) | x = y(t)} of a
C1-function y. In the case that y(t) belongs to [a, b], we split the integral over [a, b] into
the integrals over [a, b] = [a, y(t)] ∪ [y(t), b]. In such a case let us calculate the derivative
of the integral over [a, b]:

d

dt

∫ b

a

(u(x, t)dx =
d

dt

∫ y(t)

a

u(x, t)dx+
d

dt

∫ b

y(t)

u(x, t)dx =

= ẏ(t) lim
x↑y(t)

u(x, t) +

∫ y(t)

a

u̇(x, t)dx− ẏ(t) lim
x↓y(t)

u(x, t) +

∫ b

y(t)

u̇(x, t)dx.

We abbreviate limx↑y(t) u(x, t) as u
l(y(t), t) and limx↓y(t) u(x, t) as u

r(y(t), t) and assume
that on both sides of the graph of y the function u is a classical solution of the conservation
law:

d

dt

∫ b

a

u(x, t)dx

= ẏ(t)(ul(y(t), t)− ur(y(t), t))−
∫ y(t)

a

d

dx
f(u(x, t))dx−

∫ b

y(t)

d

dx
f(u(x, t))dx

= ẏ(t)(ul(y(t), t)− ur(y(t), t)) + f(u(a, t))− f(u(b, t)) + fur(y(t), t)− ful(y(t), t).
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Hence the integrated version of the conservation law still holds, if the following Rankine-
Hugonoit condition is fulfilled:

ẏ(t) =
f(ur(y, t))− f(ul(y, t)

ur(y, t)− ul(y, t)
.

Example 1.10. We consider Burgers equation u̇(x, t) + u(x, t)∂u
∂x
(x, t) = 0 for (x, t) ∈

R× R+ with the following continuous initial values u(x, 0) = g(x) and

g(x) =


1 for x ≤ 0,

1− x for 0 ≤ x < 1

0 for 1 ≤ x.

The first crossing of characteristics happens for t = 1:

x+ tg(x) =


x+ t for x ≤ 0,

x+ t(1− x) for 0 < x < 1,

x for 1 ≤ x.

For t < 1 the evaluation at t is a homeomorphism from R onto itself with inverse

x 7→


x− t for x ≤ t,
x−t
1−t for t < x < 1,

x for 1 ≤ x.

Therefore the solution is for 0 < t < 1 equal to

u(x, t) =


1 for x < t,
x−1
t−1

for t < x < 1,

0 for 1 ≤ x.

At t = 1 the solutions of the characteristic equations starting at x ∈ [0, 1] all meet at x = 1.
For t > 1 there exists a unique solution satisfying the Rankine-Hugonoit condition, which
is 1 on some interval (∞, y(t)) and 0 on the interval (y(t),∞). The corresponding regions
have to be separated by a path with velocity 1

2
which starts at (x, t) = (1, 1). This gives

y(t) = 1 + t−1
2
. For t ≥ 1 this solution is equal to

u(x, t) =

{
1 for x < 1 + t−1

2
,

0 for 1 + t−1
2
< x.

The second initial value problem is not continuous but monotonic increasing. For contin-
uous monotonic increasing functions g the evaluation at t of the solutions of the charac-
teristic equation would be a homeomorphism for all t > 0. Therefore in such cases there
exists a unique continuous solution for all t > 0. But for non-continuous initial values
this is not the case.
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Example 1.11. We again consider Burgers equation u̇(x, t) + u(x, t)∂u
∂x
(x, t) = 0 for

(x, t) ∈ R× R+ with the following non-continuous initial values u(x, 0) = g(x) and

g(x) =

{
0 for x < 0,

1 for 0 < x.

Again there is a unique discontinuous solution which is 0 on some interval (−∞, y(t)) and
1 on the interval (y(t),∞). By the Rankine-Hugonoit condition both regions are separated
by a path with velocity 1

2
. This solution is equal to

u(x, t) =

{
0 for x < t

2
,

1 for 1
2
< x.

But there exists another continuous solution, which clearly also satisfies the Rankine-
Hugonoit condition:

u(x, t) =


0 for x ≤ 0,
x
t

for 0 < x < t,

1 for t ≤ x.

These solutions are constant along the lines x = ct for c ∈ [0, 1]. These lines all intersect
in the discontinuity at (x, t) = (0, 0). Besides these two extreme cases there exists infinitely
many other solutions with several regions of discontinuity, which all satisfy the Rankine-
Hugonoit condition.

These examples show that such weak solutions exists for all t ≥ 0 but are not unique.
We now restrict the space of weak solutions such that they have a unique solutions for all
t ≥ 0. Since we want to maximise the regularity we only accept discontinuities if there
are no continuous solutions. In the last example we prefer the continuous solution. So
for Burgers equation this means we only accept discontinuous solutions, which take larger
values for smaller x and smaller values for larger x.

Definition 1.12 (Lax Entropy condition). A discontinuity of a weak solution along a C1-
path t 7→ y(t) satisfies the Lax entropy condition, if along the path the following inequality
is fulfilled:

f ′(ul(y, t)) > ẏ(t) > f ′(ur(y, t)).

A weak solutions with discontinuities along C1-paths is called an admissible solution, if
along the path both the Rankine-Hugonoit condition and the Lax Entropy condition are
satisfied.

For continuous g there is a crossing of characteristics if f ′(g(x1)) > f ′(g(x2)) for x1 < x2.
So this condition ensures that discontinuities can only show up if we cannot avoid a
crossing of characteristics.
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Theorem 1.13. Let f ∈ C1(R,R) be convex and u and v two admissible solutions of

u̇(x, t) + f ′(u(x, t))
∂u

∂x
(x, t) = 0.

in L1(R). Then t 7→ ∥u(·, t)− v(·, t)∥L1(R) is monotonically decreasing.

Proof. We divide R into maximal intervals I = [a(t), b(t)] with the property that either
u(x, t) > v(x, t) or v(x, t) > u(x, t) for all x ∈ (a(t), b(t)). This means that either x 7→ u−v
vanishes at the boundary, or is discontinuous and changes sign at the boundary. We claim
that the boundaries a(t) and b(t) of these maximal intervals are differentiable. We prove
this only for a(t). For b(t) the proof is analogous. To simplify notation we write a and b
instead of a(t) and b(t). If either u(·, t) or v(·, t) is discontinuous at a, then by definition
of an admissible solution the locus of the discontinuity a is differentiable with respect to
t. If u and v are both continuously differentiable at (a, t) with u(a, t) = v(a, t), then by
the method of characteristic for sufficiently small ϵ > 0 all x ∈ (a − ϵ, a + ϵ) with u = v
preserve this property along characteristic lines x+ tf ′(u(x(t), t) = x+ tf ′(v((x(t), t). So
along these lines also the properties u ̸= v and u > v are preserved. This implies that a
is differentiable with ȧ(t) = f ′(u(a, t)) = f ′(v(a, t)). We only consider intervals on whose
interior u > v. On the other intervals these arguments apply with interchanged u and v.
Now we calculate

d

dt

∫ b(t)

a(t)

(u(x, t)− v(x, t))dx

=

∫ b(t)

a(t)

(u̇(x, t)− v̇(x, t))dx+ ḃ(u(b, t)− v(b, t))− ȧ(t)(u((a, t)− v(a, t))

=

∫ b(t)

a(t)

d

dx
(f(v(x, t)− f(u(x, t))dx+ ḃ(t)(u(b, t)− v(b, t))− ȧ(t)(u((a, t)− v(a, t))

= f(v(b, t)−f(u(b, t)+ ḃ(t)(u(b, t)−v(b, t))+f(u(a, t)−f(v(a, t)+ ȧ(t)(v(a, t)−u(a, t)).

If u and v are both differentiable at (a, t), then they take the same values at (a, t) and
the corresponding terms in the last line vanishes. The same holds, if u and v are both
differentiable at (b, t). For convex f the derivative f ′ is monotonically increasing and the
Lax-Entropy condition implies at all discontinuities y of u(·, t) and v(·, t)

ul(y, t) > ur(y, t), vl(y, t) > vr(y, t),

respectively. If one of the two solutions u and v is at the boundary of I continuous and the
other is non-continuous, then the value of the continuous solution belongs to the closed
interval between the limits of the non-continuous solution, because at the boundary either
u − v becomes zero or changes sign. For v being continuous and u being discontinuous
at a we would have ul(a, t) ≤ v(a, t) ≤ ur(a, t) by u > v on (a, b) in contradiction to
the former inequality. So either u(·, t) is continuous and differentiable at a and v(·, t) is
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discontinuous at a(t) and analogously u is discontinuous at b and v is continuous and
differentiable at b. The Rankine Hugonoit condition determines ȧ(t) and ḃ(t). At a(t) the
corresponding contribution to d

dt
∥u(·, t)− v(·, t)∥1 is

f(u(a, t))− f(vr(a, t)) + ȧ(t) (vr(a, t)− u(a, t)) =

= f(u(a, t))− f(vr(a, t)) +
f(vr(a, t))− f(vl(a, t))

vr(a, t)− vl(a, t)
(vr(a, t)− u(a, t))

= f(u(a, t))−
(
f(vr(a, t))

vl(a, t)− u(a, t)

vl(a, t)− vr(a, t)
+ f(vl(a, t))

u(a, t)− vr(a, t)

vl(a, t)− vr(a, t)

)
.

Since f is convex the secant lies above the graph of f . Since u(a, t) ∈ [vr(a, t), vl(a, t)]
this expression is non-positive. At b(t) this contribution is

f(v(b, t))− f(ul(b, t)) + ḃ(t)
(
ul(b, t)− v(b, t)

)
=

= f(v(b, t))− f(ul(b, t)) +
f(ur(b, t))− f(ul(b, t))

ur(b, t)− ul(b, t)

(
ul(b, t)− v(b, t)

)
= f(v(b, t))−

(
f(ur(b, t))

ul(b, t)− v(b, t)

ul(b, t)− ur(b, t)
+ f(ul(b, t))

v(b, t)− ur(b, t)

ul(b, t)− ur(b, t)

)
.

Again due to v(b, t) ∈ [ur(b, t), ul(b, t)] this expression is non-positive.

If finally both solutions are discontinuous at a(t) or b(t). Since u(·, t) − v(·, t) is posi-
tive on I, the Lax Entropy condition implies [ur(a, t), ul, (a, t)] ⊂ [vr(a, t), vl(a, t)] and
[vr(b, t), vl(b, t)] ⊂ [ur(b, t), ul(b, t)], respectively. The corresponding contributions to
d
dt
∥u(·, t)− v(·, t)∥1 are again non-positive:

f(ur(a, t))− f(vr(a, t)) + ȧ(t) (vr(a, t)− ur(a, t)) =

= f(ur(a, t))− f(vr(a, t)) +
f(vr(a, t))− f(vl(a, t))

vr(a, t)− vl(a, t)
(vr(a, t)− ur(a, t))

= f(ur(a, t))−
(
f(vr(a, t))

vl(a, t)− ur(a, t)

vl(a, t)− vr(a, t)
+ f(vl(a, t))

ur(a, t)− vr(a, t)

vl(a, t)− vr(a, t)

)
.

f(vl(b, t))− f(ul(b, t)) + ḃ(t)
(
ul(b, t)− vl(b, t)

)
=

= f(vl(b, t))− f(ul(b, t)) +
f(ur(b, t))− f(ul(b, t))

ur(b, t)− ul(b, t)

(
ul(b, t)− vl(b, t)

)
= f(vl(b, t))−

(
f(ur(b, t))

ul(b, t)− vl(b, t)

ul(b, t)− ur(b, t)
+ f(ul(b, t))

vl(b, t)− ur(b, t)

ul(b, t)− ur(b, t)

)
.

Hence the contributions to d
dt
∥u(·, t)− v(·, t)∥1 of all intervals are non-positive.

This implies that admissible solutions are unique, if they exist. By utilising an explicit
formula for admissible solutions one can also prove the existence of admissible solutions.
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The following theorem is Theorem 10.3 in the lecture notes “Hyperbolic Partial Differ-
ential Equations” by Peter Lax, Courant Lecture Notes in Mathematics 14, American
Mathematical Society (2006), which also supplies a proof.

Theorem 1.14. For f ∈ C2(R,R) is strictly convex and g ∈ L1(R) ∩ L∞(R) there exists
an unique admissible solution u(x, t) of

u̇(x, t) + f ′(u(x, t))
∂u

∂x
(x, t) = 0 and u(x, 0) = g(x) for all x ∈ R.



Chapter 2

General Concepts

2.1 Classification of Second order PDEs

For PDEs of order greater than one, there does not exists a general theory. We shall
present in Section 2.2 an example of a PDE with smooth coefficients, which has in a
neighbourhood of some point no solutions at all. Over the time there have been dis-
covered different methods to solve several PDEs, in particular those PDEs which show
up in physics. Afterwards these methods were extended to larger and larger classes of
PDEs. It turned out that the successful methods of solving PDEs differ from each other
substantially. As a result there does not exists one unified theory of PDEs, but there exist
several islands of well understood families of PDEs inside the large set of all PDEs. It
was Jacobi who formulated in his lectures on Dynamics in the years 1842-43 the following
general recipe:

“The main obstacle for the integration of a given differential equations lies in the defini-
tion of adapted variables, for which there is no general rule. For this reason we should
reverse the direction of our investigation and should endeavour to find, for a successful
substitution, other problems which might be solved by the same.”

The strategy is to determine for any successful method all PDEs which can be solved by
this method. We have seen that the method of characteristics is a more-or-less general
method to solve first order PDEs. Now we investigate the second order PDEs. In this
lecture we consider only second order linear PDEs. A general second order linear PDE
has the following form

Lu(x) =
n∑

i,j=1

aij(x)∂i∂ju+
n∑
i=1

bi(x)∂iu(x) + c(x)u(x) = 0.

By Schwarz’s Theorem for twice differentiable u this expression does not change if we
replace aij by

1
2
(aij + aji). So we may assume that aij is symmetric and diagonalizable.

19
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Elliptic PDEs. If the matrix aij is the unity matrix and b = 0 = c, then this is the

Laplace equation. △u :=
∂2u

∂x21
+ . . .+

∂2u

∂x2n
= 0.

Solutions of the Laplace equation are called harmonic functions. In Chapter 3 we present
several tools which establish many properties of these harmonic functions. It turns out
that many properties of the harmonic functions also apply to general solutions of Lu = 0,
if the matrix aij is positive (or negative) definite. These are the main examples of the so
called elliptic PDEs. There has been done a lot of work to extend these tools to larger
and larger classes of elliptic PDEs. One of the results is that the influence of the higher
order derivatives on the properties of solutions is much more important than the influence
of the lower order derivatives. An important tool are so called a priori estimates. Such
estimates show that the lower order derivatives can be estimated in terms of the second
order derivatives. We offer another lecture which presents many of these tools for such
elliptic second order PDEs.

Beside the linear elliptic PDEs there are also non-linear PDEs, to which these methods
of elliptic PDEs apply. An important example whose investigation played a major role in
the development of the elliptic theory is the

Minimal surface equation. ∇ · ∇u√
1 + |∇u|2

= 0, u : Ω → R, Ω ⊂ Rn open.

The graphs of solutions describe so called minimal surfaces. The area of such hypersur-
faces in Rn+1 does not change with respect to infinitesimal variations. Soap bubbles are
examples of such minimal surfaces. The boundary value problem of the minimal surface
equation is called Plateau’s problem. For the first proof of the existence of solutions of
this Plateau problem in the 1930s, Jesse Douglas received the first Field’s Medal. In this
non-linear second order PDE the coefficients of the second derivatives also depend on the
solution. A lot of work has been done to extend the tools of elliptic theory to elliptic
PDEs whose coefficients belong to larger and larger functions spaces. This development
induced the introduction of many new function spaces. In Section 2.6 we shall introduce
the so called space of distributions. Many of the more advanced functions spaces are build
on the base of these spaces.

Parabolic PDEs. For these linear PDEs the matrix aij considered as a symmetric
bilinear form is only semi-definite and they belong to the boundary of the class of elliptic
PDEs. Most of the methods of elliptic PDEs have an extension to this limiting case. So
these limiting cases together with the class of elliptic PDEs form some extended class of
elliptic PDEs. Of particular importance is the subclass of linear PDEs with semi-definite
matrices aij which have a one-dimensional kernel. Since symmetric matrices are always
diagonalizable this means that one eigenvalue of aij vanishes and all other eigenvalues
have the same sign. In spite of the deep relationship to the elliptic PDEs these equations
have their own label: parabolic PDEs. The simplest example is the
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Heat equation. u̇−△u = 0.

These parabolic PDEs describe diffusion processes. These are processes which level inho-
mogeneities of some quantity by some flow along the negative gradient of the quantity.
A typical example for this quantity is the temperature from which the name for the
heat equation originates. Many stochastic processes have this property. So the theory
of parabolic PDEs has a deep relationship to the theory of stochastic processes. In this
lecture we present in Chapter 4 this simplest example of linear parabolic PDE. We shall
see how the tools for the Laplace equation can be applied in modified form to this heat
equation. In case of the parabolic PDEs there too exists a non-linear example from the
geometric analysis, whose investigation played a major role for the development of the
elliptic theory (the tensor fields g and R are defined below):

Ricci Flow. ġij = −2Rij.

This PDE describes a diffusion-like process on Riemannian manifolds. It levels the inho-
mogeneities of the metric, namely the Riemannian metric g. In the long run the corre-
sponding Riemannian manifolds converge to metric spaces with large symmetry groups.
Richard Hamilton proposed (in the 1970s) a program that aims to prove the geometriza-
tion conjecture of Thurston with the help of these PDEs. It states that every three-
dimensional manifold can be split into parts, which can be endowed with an Riemannian
metric such that the isometry group acts transitively. This conjecture implies the Poincare
conjecture, which states that every simply connected compact manifold is the 3-sphere.
Hamilton tries to control the long time limit of the Ricci flow on a general 3-dimensional
Riemannian manifold. In 2003 the Russian mathematician Grisha Perelman published on
the internet three articles which overcome the last obstacle of this program. This lead to
the first proof of one of the Millennium Problems of the American Mathematical Society
and was a great success of geometric analysis.

Hyperbolic PDEs. Besides the elliptic PDEs (including the limiting cases) the second
important class of linear PDEs are called hyperbolic. In this case the matrix aij has one
eigenvalue of opposite sign than all other eigenvalues. The simplest example is the

Wave equation.
∂2u

∂t2
−△u = 0.

In Chapter 5 we present the methods how to solve this equation. We shall see that it
describes the propagation of waves with constant finite speed. The solutions of general
hyperbolic equations are similar to the solutions of this case, and many tools can be
generalised to all hyperbolic PDEs. The investigation of these PDEs depend on the
understanding of all trajectories, which propagate by the given speed. It was motivated
by the theory of the electrodynamic fields, whose main system of PDEs are the

Maxwell equations.
Ė −∇×B = −4πj Ḃ +∇× E = 0

∇ · E = 4πρ ∇ ·B = 0.

In this theory there is given a distribution of charges ρ and currents j on space time
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R×R3. The unknown functions are the electric magnetic fields E and B, which describe
the electrodynamic forces induced by the given distributions of charges and currents ρ and
j. The conservation of charge is formulated in the same way as in the scalar conservation
law. So the change of the total charge contained in a spatial domain is described by the
flux of the current through the boundary of the domain. By the divergence theorem this
means that distributions of charge ρ and currents j obey

ρ̇+∇ · j = 0.

Again there exists a non-linear version which stimulated the development of the theory:

Einsteins field equations of general relativity. Rij −
1

2
gijR = κTij.

Here for a given distribution of masses the energy stress tensor and the space time metric
gij are the unknown functions. This metric is a symmetric bilinear form with one positive
and three negative eigenvalues on the tangent space of space time. The corresponding
Ricci curvature is denoted by Rij and the scalar curvature by R:

Γkij :=
1

2

3∑
l=0

gkl
(
∂gjl
∂xi

+
∂gil
∂xj

− ∂gij
∂xl

)
,
(
gij
)
:= (gij)

−1 inverse metric

Rij :=
3∑

k=0

gkl

(
∂Γkij
∂xk

− ∂Γkik
∂xj

+
3∑
l=0

(
ΓklkΓ

l
ij − ΓkljΓ

l
ik

))
, R :=

3∑
i,j=0

gijRij.

Integrable Systems with Lax operators. Finally I want to mention a smaller class
of PDEs, which are the main objects of my research. They are non-linear PDEs which
describe an evolution with respect to time which is very stable. This means that the
solutions have in a specific sense a maximal number of conserved quantities. The theory
of integrable systems belongs to the field of Hamiltonian mechanics, which originated from
Newtons description of the motion of the planets. The Scottish Lord John Scott Russell
got very excited in 1934 about the observation of an solitary wave in a Scottish channel
and published a “Report on Waves”. This report was quite influential. The two Dutch
mathematicians Korteweg and De Vries translated his observation into a PDE describing
the profile of water waves travelling along the channel:

Korteweg-de-Vries equation. 4u̇− 6u
∂u

∂x
− ∂3u

∂x3
= 0.

First by numerical experiments in the 1950s with the first computers and latter in the
1970s by mathematical theory, the solutions of this PDE were shown to have exactly
the properties which made Lord Russell so exited: they describe waves which propagate
through each other without changing their shape. This lead to the discovery of an hidden
relation of the theory of integrable systems with the theory of Riemann surfaces, which
is another field with a long history. A major step towards the discovery of this relation
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was the observation of Peter Lax that this equation can be written as

L̇ = [A,L] with L :=
∂2

∂x2
+ u A :=

∂3

∂x3
+

3u

2

∂

∂x
+

3

4

∂u

∂x
.

2.2 Existence of Solutions

In order to demonstrate the difference between ODEs and PDEs we shall present an
example of a partial differential equation with smooth coefficients without solutions. This
example is a simplification by Nirenberg of an example of H. Lewy.

For a given complex-valued function f on a domain (x, y) ∈ R2 we look for a complex
valued solution u on the same domain of the following differential equations:

∂u

∂x
+ ıx

∂u

∂y
= f(x, y).

We impose the following two conditions on the smooth function f :

(i) f(−x, y) = f(x, y)

(ii) there exists a sequence of positive numbers ϱn ↓ 0 converging to zero, such that f
vanishes on a neighbourhood of the circles ∂B(0, ϱn) in contrast to non-vanishing
integrals

∫
B(0,ϱn)

f(x, y) dx dy ̸= 0.

If h : R → [0,∞) is a smooth periodic function vanishing on an interval but not on R,
then f(x) := exp(−1/|x|)h(1/|x|) for x ̸= 0 and f(0) = 0 has these two properties.

Now we shall prove by contradiction that there exists no continuously differentiable solu-
tion u in a neighbourhood of (0, 0) ∈ R2.

Step 1: If the function u(x, y) is a solution, then due to (i) −u(−x, y) is also a solution.
Hence we may replace u(x, y) by 1

2
(u(x, y)− u(−x, y)) and assume u(−x, y) = −u(x, y).

Step 2: We claim that every solution u vanishes on the circles ∂B(0, ϱn). In fact, we
transform small annuli A onto domains Ã in R2:

A→ Ã, (x, y) 7→

{
(x2/2, y) for x ≥ 0

(−x2/2, y) for x < 0.

These transformations are homeomorphisms from A onto Ã. On the subdomains Ã+ ={
(s, y) ∈ Ã | s > 0

}
the function ũ(s, y) = u(x2/2, y) is holomorphic:

2∂̄ũ =
∂ũ(s, y)

∂s
+ ı

ũ(s, y)

∂y
=
dx

ds

∂u(x, y)

∂x
+ ı

∂u(x, y)

∂y
=

1

x

(
∂u(x, y)

∂x
+ ıx

∂u(x, y)

∂y

)
= 0.
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Due to step 1. the function ũ vanishes on the line s = 0. This implies that ũ together
with the Taylor series vanishes identically on Ã+ and due to step 1 on Ã.

Step 3: The Divergence Theorem yields a contradiction to the assumption (ii):∫
B(0,ϱn)

f dx dy =

∫
B(0,ϱn)

(
∂u

∂x
+ ıx

∂u

∂y

)
dx dy =

∫
B(0,ϱn)

∇ ·
(
u
ıxu

)
dx dy

=

∫
∂B(0,ϱn)

(
u
ıxu

)
·N(x, y) dσ(x, y) = 0,

Therefore the given differential equation has no continuously differentiable solution.

This example also implies that the following partial differential equation with smooth real
coefficients has no four times differentiable real solution:(

∂

∂x
+ ıx

∂

∂y

)(
∂

∂x
− ıx

∂

∂y

)2(
∂

∂x
+ ıx

∂

∂y

)
ũ =

((
∂2

∂x2
+ x2

∂2

∂y2

)2

+
∂2

∂y2

)
ũ = f.

Here f is a real smooth function with the properties (i) and (ii). For any real solution ũ,
the following complex function would be a solution of the complex PDE:

u =

(
∂

∂x
− ıx

∂

∂y

)2(
∂

∂x
+ ıx

∂

∂y

)
ũ.

2.3 Regularity of Solutions

The regularity of a solution of a differential equation refers to the local properties of the
corresponding functions. The most general functions we shall consider are distributions,
which we say have the lowest regularity. They contain the measurable functions with the
next highest regularity. The elements of Lploc describe ever smaller families of functions,
whose regularity increase with p ∈ [1,∞]. The next smallest class are Sobolev functions
whose k-th order partial derivatives belong to Lploc. The regularity further increases for
the functions in Ck. Finally we end with the smooth functions and the analytic functions
with the highest regularity.

2.4 Boundary Value Problems

Our investigations of solutions of partial differential equations aims for a complete char-
acterisations of all solutions. In general partial differential equations have an infinite
dimensional space of solutions. A solution of an ordinary differential equations of m-th
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order is in many cases uniquely determined by fixing the values of the first m deriva-
tives at some initial value of the parameter. For partial differential equations we search
a similar characterisation. The solutions are functions on higher dimensional domains
Ω ⊂ Rn. A natural condition is the specification of the values of the solution and some of
its derivatives on the boundary of the domain. The search for solutions which obey this
further specification are called boundary value problems. So an important objective in
the investigation of partial differential equations is to find boundary value problems that
have unique solutions. If we determine in addition all possible boundary values that have
solutions, then the space of solutions is completely parameterised.

2.5 Divergence Theorem

In this section we present a generalisation of the fundamental theorem of calculus to
higher dimensions, namely the divergence theorem. This theorem has many important
consequences. In this section we present two: First we generalise partial integration
to higher dimensions. Second we explain in which sense the higher dimensional scalar
conservation law describes a conserved quantity.

The divergence theorem is a statement about the integral over a submanifold of Rn, so
naturally we should define submanifolds and their integrals. We begin by defining the
integral on a regularly parameterised subset.

Definition 2.1. A continuously differentiable homeomorphisms Φ : U ⊂ Rk → A ⊂ Rn

is called a (k-dimensional) parameterisation of A. It is called regular if the Jacobian Φ′

has full rank k at every point of U .

The Jacobian of Φ is an n×k matrix, whose rank cannot be greater than n, so 1 ≤ k ≤ n.
The idea is that we view A as a piece of the lower dimensional space Rk embedded into
Rn. For an example of a non-regular parameterisation, consider the parameterisation
(x, y) 7→ (x, 0, 0) of the x-axis in R3. We see that y is not really playing any role and the
parameterised set is only one-dimensional, not two-dimensional as we would expect. This
is the reason we should consider regular parameterisations.

Definition 2.2. Let A ⊂ Rn be a subset with a regular parameterisation Φ and f a
continuous function on A. We define∫

A

f dσ :=

∫
U

f ◦ Φ
√

det((Φ′)TΦ′) dµRk .

The symbol dσ can be given a formal meaning, but for us it is just a reminder that it
is a ‘surface integral’ and not an integral on a subset of Rn in the usual sense. The
k-dimensional parallelotope spanned by the k column vectors of a n × k-matrix A has
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the volume
√

det(ATA). The motivation for the
√
det factor in the definition of the

integral is that it measures the distortion of the parameterisation. This value turns
out to be independent of the choice of regular parameterisation of A. Suppose that
we have another regular parameterisation Ψ of A. Then we have a homeomorphism
Υ = Φ−1 ◦Ψ : Ψ−1[A] → Φ−1[A]. We claim that Υ is continuously differentiable. This is
not so clear, because Φ−1 is only defined on A and we can’t apply the chain rule directly.

The idea is roughly speaking to approximate A by a linear space so that we can apply the
chain rule. For any x ∈ A let V be the k-dimensional linear subspace that is x + imgΦ′

and let P be the orthogonal projection of Rn onto V . With these definitions the derivative
of composition P ◦Φ : U → V has full rank at Φ−1(x) and P ◦Φ(Φ−1(x)) = x. Therefore
for a neighbourhood V ′ of x in V and U ′ of Φ−1(x) in U there exists a continuously
differentiable inverse function (P ◦ Φ)−1 : V ′ → U ′, due to the inverse function theorem.
Let A′ = Φ[U ′]. Then

(P ◦ Φ)−1 ◦ (P ◦ Φ) = idU ′ ⇒ (P ◦ Φ)−1 ◦ P |A′ = Φ−1|A′ .

Thus we can write

Υ|Ψ−1[A′] = Φ−1 ◦Ψ|Ψ−1[A′] = (P ◦ Φ)−1 ◦ P ◦Ψ|Ψ−1[A′]

as the composition of three continuously differentiable functions. Because we can do this
at every point x ∈ A it follows that Υ is continuously differentiable at every point.

Now we can carry out an computation that connects the two integrals∫
Ψ−1[A]

f ◦Ψ
√

det((Ψ′)TΨ′) dµRk

=

∫
Ψ−1[A]

f ◦ Φ ◦Υ
√
det(((Φ ◦Υ)′)T (Φ ◦Υ)′ dµRk

=

∫
Ψ−1[A]

(
f ◦ Φ

√
det((Φ′)TΦ′)

)
◦Υ| detΥ′| dµRk

=

∫
Φ−1[A]

f ◦ Φ
√
det((Φ′)TΦ′) dµRk .

In the last step we applied the transformation formula of Jacobi.

This is a very practical definition in that it gives you a concrete integral to compute. How-
ever many subsets that we want to consider cannot be regularly parameterised. Usually
this is because they cannot be covered by a single parameterisation. The typical example
is the sphere: any open set U ⊂ Rk is not compact and the sphere is compact, so there
cannot exist a homeomorphism Φ between them. However if we use two parameterisa-
tions, then each can cover a part of the sphere and together they can cover the whole
sphere. This motivates the following definition of submanifold.
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Definition 2.3. A subset A ⊂ Rn is called a k-dimensional submanifold if there exists
subsets Ai such that each Ai has a regular k-dimensional parameterisation and A = ∪Ai.

The trouble is now these Ai can overlap, so if we just integrate in each parameterisation
then we will ‘double-count’ the points of A. The answer to this is an elegant theoretical
tool, but one that is not practically useful: a so called partitions of unity.

Definition 2.4. (Partition of Unity) Let Ω ⊂ Rn be covered by a countable family (Ui)i∈N
of open subsets of Rn, i.e.

⋃
i∈N Ui = Ω. A smooth partition of unity is a countable family

(hi)i∈N of smooth functions hi : Ω → [0, 1] with the following properties:

(i) Each x ∈ Ω has a neighbourhood on which all but finitely hi vanish identically.

(ii) For all x ∈ Ω we have
∑∞

i=1 hi(x) = 1.

(iii) Each hi vanishes outside of Ui.

For every family of open subsets of Rn there exists a smooth partition of unity. A proof
can be found in many textbooks and in Prof Schmidt’s script of the lecture Analysis II.

Definition 2.5. Let A ⊂ Rn be compact and a k-dimensional submanifold and let f be
a continuous function on A. Because A is compact, only finitely many parameterisations
are needed to cover it. For each parameterised set Ai let Oi be an open subset of Rn with
with A ∩Oi = Ai. Choose a partition of unity (hi)i∈N subordinate to Oi. We define∫

A

f dσ =
∑
i

∫
Ai

hif dσ.

The idea of this definition is that we can write f(x) = 1 × f(x) =
∑

i hi(x)f(x). Then
each function hif is zero outside of Ai so it is only necessary to integrate it on Ai, not
on all of A. We assumed that A was compact so that the sum is finite and we avoid any
issues of convergence.

Lemma 2.6. The integral
∫
A
f dσ neither depends on the choice of the partition of unity

not on the choice of the parametrizations.

Proof. Suppose that we have two covers of parameterising sets A = ∪iAi = ∪jBj and
correspondingly two partitions of unity hi and gj. Define a new cover Ci,j = Ai ∩ Bj.
It has a partition of unity higj. Each set Ci,j can be parameterised by restricting the
parameterisation Φ of Ai to Φ−1[Ai ∩Bj]. Observe

∑
i

∫
Ai

hif dσ =
∑
i

∫
Ai

(∑
j

gj

)
hif dσ =

∑
i,j

∫
Ai

gjhif dσ =
∑
i,j

∫
Ci,j

gjhif dσ.
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The same calculation holds for the integral
∑

j

∫
Bj
gjf dσ, showing that the two are equal.

We have already seen that if we use two different parameterisations for the same set that
the integral has the same value. Therefore we have shown that definition is independent
of parameterisation and partition of unity.

In the divergence theorem we consider open subsets Ω ⊂ Rn whose boundary are (n− 1)-
dimensional submanifolds. Below the Definition 2.2 we constructed a projection from
A′ onto a subset V ′ the hyperplane V that was a homeomorphism. If you look at the
argument, it also works for any linear subspace V such that P ◦ Φ has full rank. In
particular in the (n− 1) dimensional case it must hold for at least one of the coordinate
hyperplanes. Without loss of generality we can assume that V = Rn−1×{xn}. If we view
this projection in reverse, we understand that A′ is the graph of a function over V ′, it has
the form v ∈ V ′ ⊂ Rn−1 7→ (v, λ(v)) for a smooth function λ : V ′ → R with ∂nλ(0) ̸= 0.
Thus there is a neighbourhood of the origin where the n-th component of ∇λ is non-zero.
This allows us to locally write a formula for the normal vector

N = ± 1√
1 + |∇λ|2

(
−∇λ
1

)
.

We see that it a smooth vector field, well-defined up to a choice of sign. Moreover, the
graph itself actually defines a parameterisation of A′. With respect to this parameterisa-
tion Φ(v, λ(v)) we have

det(Φ′)TΦ′ = det(I|∇λ)T (I|∇λ) = 1 + |∇λ|2.

Theorem 2.7. (Divergence Theorem) Let Ω ⊆ Rn be bounded and open with ∂Ω being a
(n− 1)-dimensional submanifold of Rn. Let F : Ω̄ → Rn be continuous and differentiable
on Ω such that ∇F continuously extends to ∂Ω. Then we have∫

Ω

∇ · F dµ =

∫
∂Ω

F ·N dσ

where N is the outward-pointing normal.

Proof. First we consider the case that F and F ′ are zero on ∂Ω. The right hand side
of the divergence theorem is zero. By defining it to be zero outside of Ω we can extend
F to a continuously differentiable function on Rn. Choose a Cartesian product of finite
intervals which contains Ω. The continued function vanishes on the boundary of this box.
By Fubini we may integrate the i-th term of ∇ · F = ∂1F1 + . . . ,+∂nFn first over dxi.
Due to the fundamental theorem of calculus this integral is the difference of the values of
F at two boundary points and vanishes. This shows that the left side of the divergence
theorem also vanishes.

For the general case we cover Ω̄ by Ω and open subsets V ′ × (a, b) ⊂ Rn as described
above and choose a subordinate partition of unity. Due to the compactness of Ω̄ and due
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to condition (iii) this partition has only finitely many non-trivial hl and decomposes f
into a finite sum. By linearity it suffices to show the statement for any hlF individually.
The hlF corresponding to Ω has already been dealt with, so we only need to handle the
‘boundary terms’.

We relabel the coordinates so that ∂λ
∂xn

does not vanish. This does not change either of the

integrals in the divergence theorem. Now we consider a function F on Ω̄∩ (V ′ × (a, b)) =
{( xz ) | z ≤ λ(x)}. We may assume that F and F ′ are zero on ∂V ′ × (a, b) and V ′ × {a}.
Suppose 1 ≤ i < n and consider the function

x 7→
∫ λ(x)

a

Fi(x, z) dz.

It vanishes for x ∈ ∂V ′ as does its derivative

∂

∂xi

∫ λ(x)

a

Fi(x, z) dz =
∂λ(x)

∂xi
Fi(x, λ(x)) +

∫ λ(x)

a

∂Fi(x, z)

∂xi
dz.

Applying the same argument as in the first case, we see that the integral of ∂i-derivative
over V ′ vanishes. Therefore∫

Ω̄∩(V ′×(a,b))

∂Fi(x, z)

∂xi
dµ =

∫
V ′

∫ λ(x)

a

∂Fi(x, z)

∂xi
dz dn−1x = −

∫
V ′

∂λ(x)

∂xi
Fi(x, λ(x)) d

n−1x

=

∫
V ′
Fi(x, λ(x))Ni

√
1 + |∇λ|2 dn−1x =

∫
A′
FiNi dσ.

Note that the signs required us to use the outward-pointing normal, which in this case
means that the last component of the vector N is positive.

For the case i = n, we can just use the fundamental theorem of calculus on the inner
integral∫

Ω̄∩(V ′×(a,b))

∂Fn(x, z)

∂xn
dµ =

∫
V ′

∫ λ(x)

a

∂Fn(x, z)

∂xn
dz dn−1x =

∫
V ′
Fn(x, λ(x)) d

n−1x

=

∫
V ′
Fn(x, λ(x))Nn

√
1 + |∇λ|2 dn−1x =

∫
A′
FnNn dσ

Summing these terms together proves the theorem.

We consider now some special cases of the theorem that occur over and over in practice.
For a scalar valued function f the divergence theorem implies for all i = 1, . . . , n∫

Ω

∂if dµ =

∫
∂Ω

fNi dσ
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For two functions f and g whose product vanishes on the boundary ∂Ω and satisfies the
corresponding assumptions of the divergence theorem we obtain by the Leibniz rule∫

Ω

f∂ig dµ = −
∫
Ω

g∂if dµ for all i = 1, . . . , n.

This is called integration by parts. Inductively we get for any multi-index γ∫
Ω

f∂γg dµ = (−1)|γ|
∫
Ω

g∂γf dµ.

As a second application of the divergence theorem we can generalise the idea of the scalar
conservation law to vector-valued functions. For any continuously differentiable function
F : R → Rn we call

u̇(x, t) +∇ · F (u(x, t)) = u̇(x, t) + F ′(u(x, t)) · ∇u(x, t) = 0

a conservation law. For open and bounded Ω ⊂ Rn with n − 1-dimensional submanifold
∂Ω of Rn we obtain

d

dt

∫
Ω

u(x, t) dnx =

∫
Ω

u̇(x, t) dnx = −
∫
Ω

∇·F (u(x, t)) dnx = −
∫
∂Ω

F (u(x, t))·N(x) dσ(x).

This is the meaning of a conservation law: the change of the integral of u(·, t) over Ω ⊂ Rn

is equal to the integral of the flux −F (u(·, t)) ·N through the boundary ∂Ω.

This idea also gives the following cute trick to calculate the surface area of a ball in
relation to its volume. Let the volume of the n-dimensional unit ball be ωn. By scaling,
the volume of the ball B(0, r) is ωnr

n. Let σn(r) denote the area of ∂B(0, r) ⊂ Rn. The
divergence of x 7→ x is n, so by the divergence theorem we have

nωnr
n =

∫
B(0,r)

∇ · x dµ =

∫
∂B(0,r)

x ·N(x) dσ(x) =

∫
∂B(0,r)

x · x
|x| dσ(x) = rσn(r).

In summary σn(r) = nωnr
n−1.

2.6 Distributions

For the transport equation we developed a solution that also seems to make sense when
it is not differentiable. For the scalar conservation law we saw that there were in some
situations no solutions, except if we generalised the notion of solution to include discon-
tinuous functions. The lesson we draw from these examples is that the existence and
uniqueness of solutions depends on the notion of solution we use. In order to say that
these solutions solve the PDE, clearly all partial derivatives of a solution which occur in
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the partial differential equation have to exist. The trick is to come up with a new notion
of partial derivative and interpret the PDE to be about these new derivatives.

In this section we introduce generalised functions (called distributions) and a correspond-
ing notion of differentiation. This notion is ‘backwards compatible’: if a differentiable
function is considered as a distribution, the two types of derivatives are equal. Remarkably
distributions can always be differentiated and indeed they can be differentiated infinitely
many times. For this achievement we have to pay a price: these distributions cannot be
multiplied with each other in general. Linear partial differential equations extend to well
defined equations on such distributions. Distributions solving the linear partial differen-
tial equations are called weak solutions or solutions in the sense of distributions. There
exist other notions of weak solutions which also apply to non-linear partial differential
equations. The most prominent example is the notion of a Sobolev function, which are
introduced in the course “Partial Differential Equations”, the sequel to this course. But
Sobolev functions can be understood as a special type of distribution, so even if one is
interested in Sobolev functions it is helpful to start with distributions.

First we need to define a special class of very well behaved functions. The support supp f
of a function f is the closure of {x | f(x) ̸= 0}. On an open set Ω ⊆ Rn let C∞

0 (Ω) denote
the algebra of smooth functions whose support is a compact subset of Ω. We call these
test functions and say they have compact support in Ω, symbolically supp f ⋐ Ω. There
is a technical matter to discuss at this point. The set of test functions should be given a
different topology than the norm topology of C∞(Ω) with the supremum norm, but this
other topology is tricky and not directly important to this course. Instead, let us give the
criterion for when a sequence of test functions converges: fn → f if there is a compact
subset K ⊂ Ω such that the supports of every fn and f are contained in K and that ∂αfn
converges to ∂αf in the supremum norm on K for every multi-index α (including α = 0).
We also use the notation D(Ω) for the set of test functions equipped with this topology.

Within the set of test functions there are a special families that we will often use called a
mollifier or approximate identities. This is a family of non-negative test functions (λϵ)ϵ>0

with suppλϵ = B(0, ϵ) and
∫
λϵ dµ = 1. We construct a prototype: the function

λ(x) :=

{
C exp

(
1

|x|2−1

)
for |x| < 1

0 for |x| ≥ 1

is a smooth function on Rn, has support B(0, 1), and is non-negative. By the way, this
example shows that test functions actually exist. We can choose the constant C such that
its integral is 1. By rescaling x and λ we obtain

λϵ(x) = ϵ−nλ(x/ϵ),

which has the required properties. This particular example of a mollifier is call the
standard mollifier, but for our purposes it does not matter which mollifier we use. Any
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such family is called an approximate identity because of the following property. Take any
continuous function f on Ω and suppose 0 ∈ Ω. By continuity f is approximately equal
to f(0) on a sufficiently small ball B(0, ϵ). Therefore∫

Ω

fλϵ dµ ≈
∫
B(0,ϵ)

f(0)λϵ dµ = f(0).

In fact, as we will prove in the next lemma, this approximation becomes an equality in
the limit ϵ ↓ 0.

Lemma 2.8. Let f ∈ C(Ω) and (λϵ)ϵ>0 be a mollifier. The family of smooth functions

fϵ(x) :=

∫
Ω

f(y)λϵ(x− y) dny

converges uniformly on any compact subset of Ω to f as ϵ ↓ ϵ. For smooth functions the
same holds for all derivatives of f .

Proof. Choose a compact subset of Ω. There is an ϵ such that for any point x in the
compact set the ball B(x, ϵ) lies in Ω. For this ϵ or smaller we have

|fϵ(x)− f(x)| =
∣∣∣∣∫

Ω

λϵ(x− y)(f(y)− f(x)) dny

∣∣∣∣ ≤ sup
y∈B(x,ϵ)

|f(y)− f(x)|.

On compact sets continuous functions are uniformly continuous. This shows the uniform
convergence limϵ↓0 fϵ = f .

Observe that if f is smooth, then we can compute the derivatives of fϵ in the following
way. Choose any point x0 ∈ Ω and let ϵ be small enough that B(x0, 2ϵ) ⊂ Ω. Then for
all points x ∈ B(x0, ϵ)

fϵ(x) =

∫
B(x,ϵ)

f(y)λϵ(x− y) dny =

∫
B(0,ϵ)

f(x− z)λϵ(z) d
nz.

Therefore ∂αfϵ = (∂αf)ϵ and the same convergence argument carries over to all partial
derivatives of f .

The formula we see in the definition of fϵ turns out to be useful. We use it to define a
type of product operator on C∞

0 (Rn), the convolution

(g ∗ f)(x) :=
∫
Rn

g(x− y)f(y) dny =

∫
Rn

g(z)f(x− z) dnz.

This product is commutative and associative (Exercise). One advantage of the convolution
compared to pointwise multiplication is that it behaves nicely with differentiation. There
is no Leibniz rule, rather

∂α(g ∗ f) = (∂αg) ∗ f = g ∗ (∂αf).
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Furthermore convolution is well-behaved with respect to integral norms, which is useful
in more advanced theory. We can consider the simplest case, where integral of f ∗ g is
the product of the integrals of f and g. This follows by noticing that the coordinate
transformation z = y − x, y = y is volume preserving, thus∫

Rn

(f ∗ g)(x) dx =

∫
Rn

∫
Rn

f(x− y)g(y) dx dy =

∫
Rn

∫
Rn

f(z)g(y) dz dy

=

(∫
Rn

f(z) dz

)(∫
Rn

g(y) dy

)

Finally, we include a lemma that will be necessary later

Lemma 2.9. Suppose that f and g are rotationally symmetric about a and b respectively.
This means, for example for any orthogonal transformation O that f(a+x) = f(a+Ox).
Then the convolution of f and g is rotationally symmetric about a+ b.

Proof. The proof is just a sequence of coordinate transformations. We begin with the
definition and make the euclidean motion y = Oz + b

(f ∗ g)(a+ b+Ox) =

∫
Rn

f(a+ b+Ox− y)g(y) dy =

∫
Rn

f(a+O(x− z))g(b+Oz) dz.

It is important to see here that dy = dz since O is orthogonal. Now we use the orthogonal
properties of f and g to continue

=

∫
Rn

f(a+ x− z)g(b+ z) dz =

∫
Rn

f(a+ x− y′ + b)g(y′) dy′ = (f ∗ g)(a+ b+ x).

Now it is time to introduce distributions. We have seen in the previous lemma that the
operation of integrating a continuous function against a test function somehow retains
the information of the function. In this spirit each f ∈ L1loc(Ω) defines a linear map

Ff : D(Ω) → R, ϕ 7→
∫
Ω

fϕ dµ.

We will see that the information of f is also retained in this linear form. The idea of
distributions is consider not just functions integrated against test functions, but all linear
forms F acting on D(Ω). Again, there is some technical problems with convergence, and
for this reason we also need a type of continuity property on the linear maps. We make
the following definitions.

We define for any compact subsetK ⊂ Ω and every multi-index α the following seminorm:

∥ · ∥K,α : C∞
0 (Ω) → R, ϕ 7→ ∥ϕ∥K,α := sup

x∈K
|∂αϕ(x)| .
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Definition 2.10. On an open subset Ω ⊆ Rn the space of distributions D′(Ω) is defined as
the vector space space of all linear maps F : D(Ω) → R which are continuous with respect
to the seminorms ∥ · ∥K,α; i.e. for each compact K ⊂ Ω there exist finitely many multi
indices α1, . . . , αM and constants C1 > 0, . . . , CM > 0 such that the following inequality
holds for all test functions ϕ ∈ D(Ω) with compact support in K:

|F (ϕ)| ≤ C1∥ϕ∥K,α1 + . . .+ CM∥ϕ∥K,αM
.

The D′ for distributions indicates (for the correctly defined topology) that they are the
dual space of D. Concretely the continuity condition yields the following convergence
property for distributions: if ϕn → ϕ in D(Ω) then the values F (ϕn) converges to F (ϕ).
Similarly, a sequence of distribution Fn converges to F if Fn(ϕ) → F (ϕ) for all test
functions ϕ.

As previously mentioned, any f ∈ L1loc(Ω) defines in a canonical way a distribution Ff .
Let us verify now that it really meets the definition of distribution. For any compact
subset K ⊂ Ω and ϕ ∈ D(Ω) with support K we have

|Ff (ϕ)| ≤ sup
x∈K

|ϕ(x)|∥f∥L1(K).

Let us give another example of a distribution, one that does not correspond to an element
of L1loc(Rn):

δ : D(Rn) → R ϕ 7→ ϕ(0).

Intuitively (and we will prove rigorously soon) any corresponding f ∈ L1loc(Rn) would
vanish on Rn \{0} and would have a total integral one. Since {0} has measure zero such a
function does not exist. Distributions that come from L1loc(Ω) functions are called regular,
and those that don’t are non-regular. This distribution is called Dirac’s δ-function. We
can also show that it is the limit of the sequence of distributions corresponding to the
mollifier λϵ.

We now return to the question of whether the distribution Ff retains the information of
f . The answer is yes.

Lemma 2.11. (Fundamental Lemma of the Calculus of Variations) If f ∈ L1loc(Ω) obeys
Ff (ϕ) ≥ 0 for all non-negative test functions ϕ ∈ C∞

0 (Ω), then f is non-negative almost
everywhere. In particular the map L1loc(Ω) → D′(Ω), f 7→ Ff is injective.

Proof. It suffices to prove the local statement for f ∈ L1(Ω). We extend f to Rn by setting
f on Rn \ Ω equal to zero. The extended function is also denoted by f and belongs to
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f ∈ L1(Rn). For a mollifier (λϵ)ϵ>0 we have

∥λϵ ∗ f − f∥1 =
∫
Rn

∣∣∣∣∫
B(0,ϵ)

λϵ(y)f(x− y) dny − f(x)

∣∣∣∣ dnx

≤
∫
B(0,ϵ)

∫
Rn

λϵ(y)|f(x− y)− f(x)| dnx dny ≤ sup
y∈B(0,ϵ)

∥f(· − y)− f∥1.

If f is the characteristic functions of a rectangle, then the supremum on the right hand
side converges to zero for ϵ ↓ 0. Due to the triangle inequality the same holds for step
functions, i.e. finite linear combinations of such functions. Since step functions are dense
in L1(Rn) for each f ∈ L1(Rn) this supremum becomes arbitrary small for sufficiently
small ϵ. Hence the family of functions (λϵ ∗ f)ϵ>0 converges in L

1(Rn) in the limit ϵ ↓ 0 to
f .

Moreover, the functions λϵ ∗ f are non-negative. This is because the mollifiers are non-
negative and we can write the convolution as the action of Ff on a test function

(λϵ ∗ f)(x) =
∫
Rn

λϵ(x− y)f(y) dny = Ff (λϵ(x− ·)) ≥ 0

using the assumption on Ff .

So it remains to show that a limit in L1 of a sequence of non-negative functions is also
non-negative. In particular there exists a sequence (ϵn)n∈N which converges to zero, with
∥fn− f∥1 ≤ 2−n for all n ∈ N for fn = λϵn ∗ f . This ensures that the series

∑
n∈N |fn− f |

converges in L1(Rn). So for almost every point x the series
∑

n∈N |fn(x)−f(x)| is finite, and
in particular the tail of the series converges to zero. In other words limn→∞ fn(x) = f(x).
This indeed shows that f is a.e. non-negative.

In particular, if f belongs to the kernel of f 7→ Ff , then both f and −f are almost
everywhere non-negative. So f vanishes almost everywhere.

Two definitions for functions carry over naturally to distributions. If Ω′ ⊂ Ω then every
test function on Ω′ extends to a test function on Ω. In this way we can think of any
distribution on Ω as a distribution on Ω′, which we call the restriction. For regular
distributions, this is really the restriction of functions. Using restriction we can give a
definition of support. The complement of the support of a distribution is the union of all
sets on which the restriction vanishes. In symbols

(suppF )c =
⋃

{Ω′ ⊂ Ω | F (ϕ) = 0 ∀ϕ ∈ D(Ω′)}.

The support of the delta distribution is {0}, and the support of the distribution of a
continuous function is its support in the normal sense.

We want to define as many operations on distributions as possible, such that they extend
operations on functions. Restriction and support are two examples where this is clear.
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The general strategy for making such definitions is to compare Ff to FAf where A is the
operation. If we can write the relation in a way that only depends on the distribution and
not directly on the function, then it is suitable to make a generalised definitions. Let us
consider the case of multiplication by a smooth function g ∈ C∞(Ω). Then for a regular
distribution

Fgf (ϕ) =

∫
Ω

(gf)ϕ =

∫
Ω

f(gϕ) = Ff (gϕ).

The product of a distribution with a function g ∈ C∞(Ω) is defined as

gF : D(Ω) → R, ϕ 7→ F (gϕ).

This product makes the embedding C∞(Ω) ↪→ D′(Ω) to a homomorphism of modules
over the algebra C∞(Ω). However, even the product of a distribution with a continuous
non-smooth functions is not defined.

So we come to the most important operation on distributions. If f has a derivative, then
by integration by parts we obtain

F∂if =

∫
Ω

∂ifϕ d
nx = −

∫
Ω

f∂iϕ d
nx = −Ff (∂iϕ).

Consequently for any distribution F ∈ D′(Ω) we define the partial derivatives as

∂iF : D(Ω) → R, ϕ 7→ −F (∂iϕ).

Here we see the advantage of choosing smooth test functions: test functions are always
differentiable and so distributions have infinitely many derivatives. These two operations
we have just defined, multiplication with a smooth function and partial differentiation,
define new distributions. Clearly these new distributions are linear. We should check that
they also obey the continuity condition, but we will skip this formality.

We also want to extend convolution to distributions. In order to extend it to a product
between a smooth function and a distribution we calculate:

Fg∗f (ϕ) =

∫
Rn

(g ∗ f)ϕ dnx =

∫
Rn

∫
Rn

g(x− y)f(y)ϕ(x) dny dnx

=

∫
Rn

(∫
Rn

ϕ(x)g(x− y) dnx

)
f(y) dny = Ff (ϕ ∗ Pg),

where (Pg)(z) := g(−z) is the point-reflection operator. Therefore we define for g ∈
C∞

0 (Rn) and F ∈ D′(Rn)

g ∗ F : D(Rn) → R, ϕ 7→ F (ϕ ∗ Pg).

Not only is this a well-defined distribution, the result of convolution is in fact always a
regular distribution that corresponds to a smooth function!
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Lemma 2.12. The convolution g ∗ F of a test function g ∈ C∞
0 (Rn) with a distribution

F ∈ D′(Rn) belongs to C∞(Rn). It is the function

g ∗ F : Rn → R, x 7→ F (TxPg)

where (Txϕ)(y) := ϕ(y− x) is the translation operator. The support of g ∗ F is contained
in the pointwise sum supp(g) + supp(F ).

Proof. First we show that the function defined in the lemma exists and is smooth. The
support of TxPg is {y ∈ Rn | x−y ∈ supp(g)} = x− supp(g). Hence for every x the value
F (TxPg) is well defined for F ∈ D′(Ω). Since continuous functions are uniformly contin-
uous on compact sets, the map x 7→ TxPg is continuous with respect to the seminorms
∥·∥K,0. Furthermore, the same holds for the seminorms ∥·∥K,α since Tx+ϵh−Tx

ϵ
g = Tx

Tϵh−1l
ϵ
g

converges in the limit ϵ → 0 for all g ∈ C∞
0 (Rn) uniformly on Rn to Tx (

∑n
i=1−hi∂ig).

This shows x 7→ F (TxPg) ∈ C∞(Rn) for F ∈ D′(Rn).

Next we show this smooth function corresponds to the distribution g ∗ F we defined
immediately before the lemma. For any ϕ ∈ D(Rn) appropriate Riemann sums define a
sequence of finite linear combinations of functions in {TxPg ∈ C∞

0 (Rn) | x ∈ supp(ϕ)},
which converges with respect to ∥ · ∥K,α to

∫
Rn TxPgϕ(x) d

nx. Hence the linearity and
continuity of F gives∫

Rn

(g ∗ F )(x)ϕ(x) dnx =

∫
Rn

F (TxPg)ϕ(x) d
nx = F

(∫
Rn

TxPgϕ(x) d
nx

)
= F (Pg ∗ ϕ).

Finally, we consider the support. If F (TxPg) ̸= 0, then g(x − y) ̸= 0 for an element
y ∈ suppF . Hence x = y + (x − y) ⊂ suppF + supp g and supp(x 7→ F (TxPg)) ⊂
suppF + supp g.

This Lemma implies that even the convolution of a distribution F ∈ D′(Rn) with a
distribution G ∈ D′(Rn) with compact support suppG is a well defined distribution:

F ∗G : D(Ω) → R, ϕ 7→ F (ϕ ∗ PG) with PG(ϕ) := G(Pϕ).

In particular, we can convolve any distribution with the δ-distribution. Remarkably this
returns the same distribution, i.e. F ∗ δ = F (Exercise). We say that δ is the identity
element or neutral element of convolution.

Further details of the theory of distributions can be found in the short and lucid first
chapter of the book of Lars Hörmander: “Linear Partial Differential Operators”.
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Laplace Equation

One of the most important PDEs is the Laplace equation

△u =
∂2u

∂x21
+ . . .+

∂2u

∂x2n
= 0.

The corresponding inhomogeneous PDE is Poisson’s equation

−△u = f.

Both equations are linear PDEs of second order with the unknown function u : Rn → R.
A function that solves Laplace’s equation is called harmonic. As is typical with linear
inhomogeneous equations, the sum of a solution of Poisson’s equation and a harmonic
function is again a solution to Poisson’s equation. These equations show up in many
situations. In physics they describe for example the potential of an electric field in the
vacuum with some distribution of charges f .

3.1 Fundamental Solution

The Laplace equation is invariant with respect to all rotations and translations of the
Euclidean space Rn. Therefore we first look for solutions which are invariant with respect
to all rotations. These solutions depend only on the length r = |x| =

√
x · x of the

position vector x. For such functions u(x) = v(r) = v(
√
x · x) we calculate:

∇xu(x) = v′
(√

x · x
)
∇xr = v′

(√
x · x

) 2x
2r
.

Hence the Laplace equation simplifies to an ODE

△xu(x) = ∇x · ∇xu = v′′(r)
x2

r2
+ v′(r)

n

r
− v′(r)

x2

r2r
= v′′(r) +

n− 1

r
v′(r) = 0.

38
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Let us solve this ODE:

v′′(r)

v′(r)
=

1− n

r
⇒ ln(v′(r)) = (1− n) ln(r) + C ⇒ v(r) =

{
C ′ ln(r) + C ′′ for n = 2
C′

rn−2 + C ′′ for n ≥ 3.

We see two things here. The space of solutions is two dimensional, with one solution
being just the constant solution u = C ′′. The other solution is not a solution on all of Rn

because is has a singularity at the origin. Never-the-less these are important ‘solutions’
to consider!

Definition 3.1. Let Φ(x) be the following solutions of the Laplace equation:

Φ(x) =

{
− 1

2π
ln |x| for n = 2
1

n(n−2)ωn|x|n−2 for n ≥ 3.

Here ωn denotes the volume of the unit ball B(0, 1) in Euclidean space Rn. We call these
fundamental solutions of the Laplace equation.

This solution lies in the space of symmetric solutions. We have chosen C ′′ = 0, which
makes the solution tend to zero for large x. The constant C ′ is chosen in such a way that
the following theorem holds:

Theorem 3.2. For f ∈ C2
0(Rn) a solution of Poisson’s equations −△u = f is given by

u(x) = Φ ∗ f =

∫
Rn

Φ(y)f(x− y) dny.

Moreover, the distribution corresponding to the fundamental solution obeys −△FΦ = δ.

Proof. We see that the function u is twice continuously differentiable since f is twice
continuously differentiable and because it has compact support we can differentiate under
the integral sign. We calculate

∂2u

∂xi∂xj
(x) =

∫
Rn

Φ(y)
∂2f

∂xi∂xj
(x− y) dny.

In particular, △u(x) =
∫
Rn Φ(y)△xf(x− y) dy. We decompose this integral in the sum of

an integral nearby the singularity of Φ and an integral away from this singularity:

△u(x) =
∫
B(0,ϵ)

Φ(y)△xf(x− y) dy +

∫
Rn\B(0,ϵ)

Φ(y)△xf(x− y) dy

= Iϵ +Jϵ.

We use
∫
r ln rdr = r2

2
(ln r − 1

2
) and

∫
rdr = r2

2
and estimate the first integral for ϵ ↓ 0:

|Iϵ| ≤ ∥△xf∥L∞(Rn)

∫
B(0,ϵ)

|Φ(y)| dy ≤

{
Cϵ2(| ln ϵ|+ 1) (n = 2)

Cϵ2 (n ≥ 3).
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Integration by parts of the second integral yields

Jϵ =

∫
Rn\B(0,ϵ)

Φ(y)△yf(x− y) dy

= −
∫
Rn\B(0,ϵ)

∇yΦ(y) · ∇yf(x− y) dy +

∫
∂B(0,ϵ)

Φ(y)∇yf(x− y) ·N dσ(y)

= Kϵ +Lϵ.

Here N is the outer normal and dσ the measure on the boundary of Rn \ B(0, ϵ). The
second term converges in the limit ϵ ↓ 0 to zero:

|Lϵ| ≤ |∇f |L∞(Rn)

∫
∂B(0,ϵ)

|Φ(y)| dσ(y) ≤

{
Cϵ| ln ϵ| (n = 2)

Cϵ (n ≥ 3).

Another integration by parts of the first term yields

Kϵ =

∫
Rn\B(0,ϵ)

△yΦ(y)f(x− y) dy −
∫
∂B(0,ϵ)

∇yΦ(y)f(x− y) ·N dσ(y)

= −
∫
∂B(0,ϵ)

∇yΦ(y)f(x− y) ·N dσ(y).

Here we used that Φ is harmonic for y ̸= 0. The gradient of Φ is equal to ∇Φ(y) =
− 1
nωn

y
|y|n . The outer normal points towards the origin and is equal to − y

|y| . Now Kϵ is

the mean value of −f on ∂B(0, ϵ), since σn(ϵ) = nωnϵ
n−1 is the area of ∂B(0, ϵ). By

continuity of f this mean value converges for ϵ ↓ 0 to −f(x).

It remains to prove the claim about distributions. For any test function φ we have per
the definition of distribution derivative

(△FΦ)(φ) = FΦ(△φ) =
∫
Rn

Φ(y)△φ(y) dny.

But then we can see this as the calculation above with φ(y) = f(0− y). The conclusion
is that the value of the integral is −φ(0). Moving the minus sign around we arrive at
−△FΦ(φ) = φ(0). But this is the definition of the delta distribution.

In general, a fundamental solution of a constant coefficient linear PDE Lu = f has the
property that LΦ = δ in the sense of distribution. We make these assumptions on L so
that L is just the real-linear combination of partial derivatives, and so interacts well with
convolution. In particular, if we apply L to the convolution of f and the fundamental
solution

L(Φ ∗ f) = (LΦ) ∗ f = δ ∗ f = f.

This shows that the convolution Φ ∗ f solves the inhomogeneous PDE as long as it is well
defined and the derivative rule for convolutions holds.
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Fundamental solutions are not usually unique however. Consider the present case of the
Laplace equation. If we have any harmonic function v then △(Φ+ v) = △Φ+△v = δ+0
shows that Φ+v is also a fundamental solution. The difference between two fundamental
solutions solves the Laplace equation, so this is the only possibility for other fundamental
solutions. Different fundamental solutions can produce different solutions to the PDE,
though the example of f = 0 shows that this is not necessarily the case. We shall see that
the fundamental solution we have chosen is the only one that vanishes at infinity, which
makes it in some sense the best one.

The difference between the first and second claim of the theorem is the assumption of
regularity of f : twice continuously differentiable or smooth respectively. In fact it is
possible to generalise this theorem further: the convolution of f with Φ is defined for
continuous functions f ∈ L1(Rn) and belongs to L1(Rn). In this case the result of the
convolution may not be differentiable but it is a solution of Poisson’s equation in the sense
of distributions. However, if one assumes that f is Lipschitz continuous and belongs to
L1(Rn) then u is twice differentiable (in the usual sense) and solves the PDE. This situation
is typical of the delicate questions of regularity of the solution.

3.2 Mean Value Property

In the previous section we constructed a solution to the inhomogeneous equation. Any
other solution must differ from the constructed one by a harmonic function. We should
therefore understand harmonic functions in order to understand the space of solutions.
In this section we shall prove the following property of a harmonic function u on an open
domain Ω ⊂ Rn: the value u(x) of u at the center of any ball B(x, r) with compact closure
in Ω is equal to the mean of u on the boundary of the ball. Conversely, if this holds for all
balls with compact closure in Ω, then u is harmonic. This relation is called mean value
property and has many important consequences.

Let us introduce some notation. Given a function u let

S[u](x, r) := 1

nωnrn−1

∫
∂B(x,r)

u(y) dσ(y) =
1

nωn

∫
∂B(0,1)

u(x+ rz) dσ(z)

be its spherical mean. Here ωn denotes the volume of the unit ball in Euclidean space
Rn. We write S(r) when the function and center point are clear. The mean of u on the
ball B(x, r) is the mean over r′ ∈ [0, r] of the spherical means of u on ∂B(x, r′). Many
statements can therefore be made either in terms of globular means or spherical means.
The exact relation between them∫

B(x,r)

u dµ =

∫ r

0

(∫
∂B(x,s)

u dσ

)
ds.

will be proven in an exercise.
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The spherical mean, and means generally, have several nice properties. First note that
the normalisation constant in the definition ensures that S[1] = 1 and likewise for any
other constant. The mean is real-linear in the function: S[au+ bv] = aS[u]+ bS[v], which
just follows from linearity of the integral. Likewise it follows from the monotonicity of the
integral that if u ≤ v then S[u] ≤ S[v]. From these basic properties follows continuity at
the center:

Lemma 3.3. If u is a continuous function then limr↓0 S[u](x, r) = u(x).

Proof. By the definition of continuity for all ε > 0 there is a radius δ such that for all
points y ∈ B(x, δ) we know |u(y)− u(x)| < ε. For any r < δ it follows that

|S[u]− u(x)| = |S[u]− S[u(x)]| = |S[u− u(x)]| ≤ S[|u− u(x)|] < S[ε] = ε.

But this is the definition that limr↓0 S[u](x, r) = u(x).

Particularly important is the relationship between the spherical mean and the Laplacian of
u. Differentiating the spherical mean with respect to the radius and using the divergence
theorem gives

∂

∂r
S(r) = 1

nωn

∫
∂B(0,1)

d

dr
(u(x+ rz)) dσ(z) =

1

nωn

∫
∂B(0,1)

∇u(x+ rz) · z dσ(z)

=
1

nωnrn−1

∫
∂B(x,r)

∇u(y) ·N dσ(y) =
1

nωnrn−1

∫
B(x,r)

△u dµ. (3.4)

Therefore if u is harmonic then S(r) is constant. With these important properties of
means prepared, we are ready to fully prove our claim.

Theorem 3.5 (Mean Value Property). Let u ∈ C(Ω) on an open domain Ω ⊂ Rn. We
say that u has the mean value property if

u(x) = S[u](x, r) = 1

nωnrn−1

∫
∂B(x,r)

u(y) dσ(y)

for all balls with B(x, r) ⊂ Ω. A twice continuously differentiable function u ∈ C2(Ω) has
the mean value property if and only if it is harmonic. Additionally, the same result holds
if globular means are used in place of spherical means.

Proof. We have just calculated that if u is harmonic then S(r) is constant. From the
previous lemma we then conclude that S(r) = u(x) for all applicable r. Conversely, if
△u(x) ̸= 0, then by the continuity of △u there is a ball B(x, r) where △u is strictly
positive (or negative). For this ball and any ball contained in it the right hand side of
the above equation is strictly positive (or negative) and the spherical mean is strictly
monotonic. Therefore it is not constant.
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To show the statement about globular means we need to use that the integral over a ball
is an iterated integral over spheres

1

ωnrn

∫
B(x,r)

u dµ =
n

rn

∫ r

0

sn−1

nωnsn−1

∫
∂B(x,s)

u dσ ds =
n

rn

∫ r

0

sn−1S(s) ds.

Thus if S is constant and equal to u(x), so is the globular mean. If the globular mean is
constant and equal to u(x) then we differentiate both sides with respect to r

0 = − n2

rn+1

∫ r

0

sn−1S(s) ds+ n

rn
rn−1S(r) = −n

r
u(x) +

n

r
S(r).

Therefore S(r) = u(x) too.

Keeping with our theme of distributions, we might wonder how we can reinterpret the
mean value property for distributions. We saw in Section 2.6 that the value of a continuous
function can be determined by integrating against a mollifier and taking the limit. The
idea is that the support of the family decreases to a single point in the limit. In the
same way we will now define what might be called ‘sphere mollifiers’ in contrast to ‘point
mollifiers’:

Λr,ϵ(y) :=
λε(|y − x| − r)

nωn|y − x|n−1

for a mollifier λϵ. If one looks at the graph of this function, one will see that it is bump
concentrated near the sphere ∂B(x, r). Suppose that u is a continuous function.∫
Rn

uΛr,ϵ dµ =

∫ ∞

0

∫
∂B(x,s)

u(y)
λε(s− r)

nωnsn−1
dσ(y) ds =

∫ ∞

0

S[u](x, s)λε(s− r) ds→ S[u](x, r)

as ϵ ↓ 0, using the fact that the spherical mean is continuous in the radius and Lemma 2.8.

We might try to define the spherical mean of a distribution F to be the limit of F (Λr,ϵ).
Unfortunately this limit does not in general exist, just as one cannot define the pointwise
value of a distribution to be limit of it applied to a mollifier (we have seen that δ(λϵ) has
no limit, for example). If the distribution is harmonic however, the limit does turn out to
exist. But moreover, the spherical mean is constant, so it is not even necessary to take a
limit. Indeed if u ∈ C2(Ω) is harmonic, then for B(x, r) ⊂ Ω and ψ ∈ C∞

0 ((0, r)) we have∫
B(x,r)

u(y)
ψ(|y − x|)

nωn|y − x|n−1
dny =

∫ r

0

ψ(s)

nsn−1ωn

∫
∂B(x,s)

u(y) dσ(y) ds =

(∫ r

0

ψ(s) ds

)
u(x).

All that is necessary to make the integral on the left, which we are treating as a kind of
generalised spherical mean, equal to the value at the center u(x) is that

∫
ψ = 1. Notice

that the expression on the left is linear in ψ, so if we take two radial profiles ψ1 and ψ2

then they give the same value if their integrals are equal, i.e. if
∫
(ψ1 − ψ2) = 0. This

is the insight we use to generalise the mean value property to distributions. Note that
the two statements below are only partly converse to one another; this will be addressed
shortly.
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Theorem 3.6 (Weak Mean Value Property). Let U ∈ D′(Ω) be a distribution on an open
domain Ω ⊂ Rn. We say that U has the weak mean value property if for each ball B(x, r)
with B(x, r) ⊂ Ω and each ψ ∈ C∞

0 ((0, r)) with
∫
ψ dµ = 0 the distribution U vanishes

on the following test function:

ψ̃ ∈ C∞
0 (Ω), y 7→ ψ̃(y) =

ψ(|y − x|)
nωn|y − x|n−1

with supp ψ̃ ⊂ B(x, r) ⊂ Ω.

If U is a harmonic distribution, i.e. △U = 0 in the sense of distributions, then it has the
weak mean value property. If U = Fu for a continuous function u ∈ C(Ω) and it has the
weak mean value property then u has the mean value property.

Proof. For the first statement it suffices to show that there exists a test function g ∈
C∞

0 (Ω) with △g = ψ̃ because then U(ψ̃) = U(△g) = (△U)(g) = 0. By the assumption
on ψ that the total integral is zero we can define a test function Ψ ∈ C∞

0 ((0, r)) through
Ψ(s) =

∫ s
0
ψ with Ψ′ = ψ. Then we define

g(y) = v(|y − x|) with v(t) =

∫ t

r

Ψ(s)

nωnsn−1
ds.

This function g depends only on |y − x|. Because one end of the integral is set at r and
Ψ has compact support, g has compact support in B(x, r) ⊂ Ω. Similarly it is constant
on B(x, ϵ) for some ϵ > 0. For y near x therefore, △yg = 0 = ψ̃(y). And for y ̸= x
we can reuse the calculation of the Laplacian for radial function from the search for the
fundamental solution:

△yg(y) = v′′(|y − x|) + n− 1

|y − x|
v′(|y − x|)

This implies

△yg(y) =
ψ(|y − x|)

nωn|y − x|n−1
− (n− 1)Ψ(|y − x|)

nωn|y − x|n
+

n− 1

|y − x|
Ψ(|y − x|)

nωn|y − x|n−1
= ψ̃(y).

Now assume U = Fu for a continuous function u. For any B(x, r) with compact closure
in Ω, there exists R > r with B(x,R) ⊂ Ω. We use the spherical mollifiers Λr,ϵ defined
above. For all 0 < r1 < r2 < R and sufficiently small ϵ the mollifiers λϵ(t − r1) and
λϵ(t − r2) have compact support in (0, R) and total integral one. Therefore Λr1,ϵ − Λr2,ϵ
is a function to which the weak mean value property applies, and we conclude

Fu(Λr1,ϵ) = Fu(Λr2,ϵ).

Taking the limit as ϵ ↓ 0 tells us that S[u](x, r1) = S[u](x, r2). Therefore u has the mean
value property.
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The set of functions ψ̃ in the statement of the weak mean value property may seem a bit
contrived, but in fact it is a rather natural set. They are characterised by three properties:

1. they are a smooth function of the distance |y − x| of the variable y to some center
x ∈ Ω,

2. they have compact support in Rn \ {x} and

3. their integrals vanish.

It is clear that ψ̃ has the first two properties and conversely any function with property
1 and 2 can be as ψ̃(y) = ψ(|y−x|)

nωn|y−x|n−1 for some center x and function ψ ∈ C∞
0 ((0, r)).

Property 3 follows by recognising that u ≡ 1 is a harmonic function and reusing the
calculation before Theorem 3.6: the integral of ψ̃ is zero if and only if

∫ r
0
ψ is zero.

These functions also behave well under convolution, so long as its the convolution of a
‘big sphere’ with a ‘little sphere’. By this we mean the following. Let χ̃, ψ̃ be functions
that obey Properties 1 and 2, with centers a, b respectively. Further suppose that χ̃ is
identically zero on B(a,R) and the support of ψ̃ lies in B(b, r) for r < R. Then χ̃ ∗ ψ̃ also
obeys Property 1 and 2. Let us demonstrate this now. First, due to Lemma 2.9 we know
that χ̃ ∗ ψ̃ is rotationally symmetric around a + b. Second, the convolution has compact
support in Rn by the addition formula for supports. It remains to show that it vanishes in
a neighbourhood of a+ b. But this too follows from the addition formula for the support
of a convolution, since a+ b ̸∈ (Rn \B(a,R))+B(b, r). There is a final point to be made;
as we discussed when we introduced convolutions, the integral of χ̃ ∗ ψ̃ is the product of
the integral of each function. Thus the convolution has Property 3 if and only if at least
one of χ̃ and ψ̃ have it.

Now we ready to complete the reverse implication of the weak mean value property: a
distribution has the weak mean value property if and only if it is a harmonic distribution.
Something stronger comes out of this proof, a famous result that is known as Weyl’s
lemma. For this reason we state it in the following way. The strategy of the proof is
as follows: for any distribution that has the weak mean value property, we can define a
function through generalised spherical means. This function is smooth, harmonic, and
turns out to correspond to the distribution.

Weyl’s Lemma 3.7. On an open domain Ω ⊂ Rn for each harmonic distribution U ∈
D′(Ω) there exists a harmonic function u ∈ C∞(Ω) with U = Fu.

Proof. Let us first define u. For all x ∈ Ω choose a ball B(x, r) ⊂ Ω and a test function
ψ ∈ C∞

0 ((0, r)) with
∫ r
0
ψ(s) ds = 1. Then we define

u(x) := U(ψ̃x) with ψ̃x(y) :=
ψ(|y − x|)

nωn|y − x|n−1
.
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If U has the weak mean value property then this definition does not depend on the choice
of r and ψ. Hence we can use in the formula for u(x) the same ψ for all x in a small
neighbourhood of each x0. We recognise that u is the convolution of the test function ψ̃0

with the distribution U . Due to Lemma 2.12, u is smooth.

Next we prove that the distribution Fu has the weak mean value property. How does Fu
act on a test function φ? Again this is answered by Lemma 2.12, Fu(φ) = U(φ ∗ Pψ̃0).
This formula simplifies a little due to ψ̃0 = Pψ̃0 being a radial function. Let χ̃ be any
function from the definition of the weak mean value property. Then we must show that
U(χ̃ ∗ ψ̃0) = 0. The trick is to use the freedom definition of u to choose a suitable ψ̃0.
We know that there is an ϵ > 0 such that χ̃ vanishes on B(x, ϵ). We can choose ψ̃0 such
that its support lies inside the ball B(0, ϵ/2). Then by the discussion above we know
that χ̃ ∗ ψ̃0 is again a function of the form considered in the weak mean value property.
Therefore Fu(χ̃) = U(χ̃ ∗ ψ̃0) = 0. In other words Fu has the weak mean value property.
It follows immediately from the previous theorem and that u has the mean value property
and is a smooth harmonic function.

Finally we prove Fu = U . The functions κϵ(t) = λϵ/3(t − 2/3ϵ) have support [ϵ/3, ϵ] and
total integral 1. Thus the corresponding functions κ̃ϵ are a smooth mollifiers. We again
use the freedom in the choice of ψ̃ to see that Fu = κ̃ϵ ∗ U for every ϵ. Now Lemma 2.8
implies Fu = U .

Actually we have proven that any distribution U that has the weak mean value property
corresponds to a smooth harmonic function. Therefore the weak solutions of the Laplace
equations coincide with the strong solutions, and all solutions are smooth.

To conclude this section we show that the mean value property leads to a growth estimate.

Corollary 3.8. Let u be a harmonic function on an open domain Ω ⊂ Rn and B(x, r) a
ball with compact closure in Ω. For all multi-indices α we have the estimate

|∂αu(x)| ≤ C(n, |α|)r−|α|∥u∥L∞(B(x,r)) with C(n, |α|) = 2
|α|(1+|α|)

2 n|α|.

Proof. We have just seen in Weyl’s lemma that all harmonic functions are smooth and
thus all partial derivatives of a harmonic function are harmonic. The mean value property
and integration by parts (the divergence theorem version) yield for i = 1, . . . , n

|∂i∂αu(x)| =
∣∣∣∣ 2n

ωnrn

∫
B(x,r/2)

∂i∂
αu dµ

∣∣∣∣ = ∣∣∣∣ 2n

ωnrn

∫
∂B(x,r/2)

∂αuNi dσ

∣∣∣∣ ≤ 2n

r
∥∂αu∥L∞(∂B(x,r/2)).

The inductive application gives first C(n, 1) = 2n, and using the induction hypothesis

∥∂αu(y)∥ ≤ 2|α|C(n, |α|)r−|α|∥u∥L∞(B(x,r)) for all y ∈ ∂B(x, r/2)

the relation C(n, 1 + |α|) = 21+|α|nC(n, |α|). The given C(n, |α|) is the solution.
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Liouville’s Theorem 3.9. On Rn a bounded harmonic function is constant.

Proof. The foregoing corollary shows that |∂iu(x)| is bounded by 2n∥u∥L∞(Rn)r
−1 for each

i = 1, . . . , n and x ∈ Rn. In the limit r → ∞ the first partial derivatives vanish identically.
Therefore u is constant.

3.3 Maximum Principle

We have already mentioned the intuition that if a harmonic function is increasing in some
direction then it must decreasing in another. This would imply that a harmonic function
cannot have a local extremum, and this is indeed the case. Suppose a harmonic function
u has a maximum at a point x of an open connected domain Ω ⊂ Rn. The mean value
property implies on all balls B(x, r) ⊂ Ω

1

rnωn

∫
B(x,r)

|u(y)− u(x)| dy =
1

rnωn

∫
B(x,r)

u(x)− u(y) dy = 0.

By the fundamental lemma of the calculus of variations (or a standard argument from
continuity), we must conclude that u(y) = u(x) for all y ∈ B(x, r). Hence u takes the
maximum on all these balls B(x, r) ⊂ Ω. This shows that the set {y ∈ Ω | u(y) = u(x)} is
open. But it is also the preimage of a single value, and therefore closed. It is non-empty
since by assumption u does have a maximum. By the definition of connected, this set
must be all of Ω.

Strong Maximum Principle 3.10. If a harmonic function u has on a connected open
domain Ω ⊂ Rn a maximum, then u is constant.

There is a more geometric proof in the case that Ω is path connected. We again begin
with showing that u takes its maximum on every ball centered at x in the domain. Since
Ω is path-connected every other point y ∈ Ω is connected with x by a continuous path
γ : [0, 1] → Ω with γ(0) = x and γ(1) = y. The compact image γ[0, 1] is covered by
finitely many balls B(γ(t1), r1), . . . , B(γ(tN), rN) ⊂ Ω with 0 ≤ t1 < . . . tN ≤ 1 and
r1, . . . , rN > 0. Supplementing the balls if necessary, we can assume that the center of
each ball belongs to the previous ball. Then repeating the argument Inductively, u is
constantly u(x) on all these balls too and hence u ≡ u(x) along γ, and on Ω since this is
true for all y ∈ Ω.

A practical consequence is the following

Weak Maximum Principle 3.11. Let the harmonic function u on a bounded open
domain Ω ⊂ Rn extend continuously to the boundary ∂Ω. The maximum of u is taken on
the boundary ∂Ω.
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Proof. By Heine Borel the closure Ω̄ is compact and the continuous function u takes on
Ω̄ a maximum. If it does not belong to ∂Ω, then u is constant on the corresponding
connected component and the maximum is also taken on ∂Ω.

Since the negative of a harmonic function is harmonic the same conclusion holds for
minima.

The triumph of the Maximum Principle is that it generalises to many elliptic operators,
unlike the mean value property. It really goes to the heart of ellipticity.

Definition 3.12. On an open domain Ω ⊂ Rn an differential operator L

Lu =
n∑

i,j=1

aij(x)
∂2u(x)

∂xi∂xj
+

n∑
i=1

bi(x)
∂u(x)

∂xi

with symmetric coefficients aij = aji is called elliptic, if

n∑
i,j=1

aij(x)kikj > 0 for all x ∈ Ω and all k ∈ Rn \ {0}.

If we replace aij by 1
2
(aij + aji), then the assumption aij = aji is fulfilled. Due to the

commutativity of the second derivatives this replacement does not change L.

Theorem 3.13. Let L be an elliptic operator on a bounded open domain Ω ⊂ Rn whose
coefficients aij and bi extend continuously and elliptic to ∂Ω. Every twice differentiable
solution u of Lu ≥ 0 which extends continuously to ∂Ω takes its maximum on ∂Ω.

Proof. Let us first show that L is uniform elliptic, i.e. there exists λ > 0 with

n∑
i,j=1

aij(x)kikj ≥ λ

n∑
i=1

k2i for all x ∈ Ω and all k ∈ Rn.

The continuous function (x, k) 7→
∑n

i,j=1 aij(x)kikj attains on the compact set (x, k) ∈
Ω̄× Sn−1 ⊂ Ω̄× Rn a minimum λ > 0. Hence L is uniform elliptic.

Next we use a trick to move to the case where L of the function is strictly positive. For
v(x) = exp(αx1) with α > 0 we conclude

Lv = α(αa11(x) + b1(x))v ≥ α(αλ+ b1(x))v.

The continuous coefficients bi are bounded on the compact set Ω̄. Therefore there exists
α > 0 with Lv > 0. By linearity of L we obtain L(u+ ϵv) > 0 on Ω for all ϵ > 0.

Now we show that the continuous functions u+ ϵv cannot attain a maximum on Ω even
though they must attain a maximum on Ω̄. At any such interior maximum x0 ∈ Ω
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the first derivative of the function u + ϵv which is twice differentiable on Ω vanishes
and the Hessian is negative semi-definite. At this point we need a little bit of linear
algebra to explain the connection between the Hessian and the Laplacian. The Hessian
is a real symmetric matrix, so it is diagonalizable by an orthogonal matrix O, that is
H = OTDO. D is a diagonal matrix whose entries are the eigenvalues of H. Because H

is negative semidefinite, all the eigenvalues are negative or zero. In symbols ∂2(u+ϵv)(x0)
∂xi∂xj

=∑
k OkiλkOkj. The Laplacian is the trace of the Hessian. Therefore

△u(x0, t0) = trH = tr(OTDO) = tr(DOOT ) = tr(DI) = tr(D) =
∑

λi ≤ 0.

Similarly, for any elliptic operator

L(u+ ϵv)(x0) =
n∑

i,j=1

aij(x)
∂2(u+ ϵv)(x0)

∂xi∂xj
+

n∑
i=1

bi(x)0 =
n∑

i,j,k=1

aij(x)OkiλkOkj

Because the eigenvalues are non-positive, we define Bki = Oki

√
−λk. Continuing with the

calculation

L(u+ ϵv)(x0) = −
n∑
k=1

n∑
i,j=1

aij(x)BkiBkj ≤ −
n∑
k=1

λ
n∑
i=1

B2
ki ≤ 0,

and this contradicts L(u+ ϵv) > 0. Therefore for all ϵ > 0 the maximum ofu+ ϵv belongs
to the boundary. Finally, we use the following comparison between u and u+ ϵv to reach
the conclusion.

sup
x∈Ω

u(x) + ϵ inf
x∈Ω

v(x) ≤ sup
x∈Ω

(u(x) + ϵv(x)) = max
x∈∂Ω

(u(x) + ϵv(x)) ≤ max
x∈∂Ω

u(x) + ϵmax
x∈∂Ω

v(x).

Because this holds for all ϵ > 0 the boundedness of v on Ω̄ implies the theorem.

The negative of the functions u in the theorem obey Lu ≤ 0 and take a minimum on the
boundary. In particular, the solutions u of Lu = 0 take the maximum and the minimum
on the boundary.

Now let us see why maximum principles are so important. We consider the following very
natural boundary value problem:

Dirichlet Problem 3.14. For a given function f on an open domain Ω ⊂ Rn and g
on ∂Ω we look for a solution u of −△u = f on Ω which extends continuously to ∂Ω and
coincides there with g.

The condition that u extends continuously to the boundary is necessary for the boundary
value problem to be meaningful. Otherwise the values on the boundary could be complete
unrelated to the rest of the function. We say that a function u is m times continuously
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differentiable on the closure Ω̄ of an domain, if it is m times continuously differentiable
on Ω and all partial derivatives of order at most m extend continuously to ∂Ω.

Let Ω ⊂ Rn be an open and bounded domain and suppose that there are two solutions u1
and u2 to the Dirichlet problem for the Poisson equation with inhomogeneous term f and
boundary value g. The the difference v := u2−u1 solves the homogeneous problem, i.e. it
is harmonic, and v ≡ 0 on ∂Ω. Therefore by the weak maximum principle we know that
both the maximum and minimum of v on every connected component of Ω is 0. The only
possibility is that v ≡ 0 on all of Ω. This shows that solutions to the Dirichlet problem
are unique.

Putting this another way, we can uniquely determine a harmonic function if we know its
values on the boundary of its domain. This gives us a way to understand the space of
harmonic functions.

3.4 Green’s Function

We just saw that the solution to the Dirichlet problem is unique, if a solution exists. In
this section we try to find some conditions which ensure the existence.

First we prepare some well known formulas, which hopefully you have already proved as
an exercise. In first formula we apply the Divergence Theorem to x 7→ v(x)∇u(x):

Green’s First Formula 3.15. Let the Divergence Theorem hold on the open and bounded
domain Ω ⊂ Rn. Then for two functions u, v ∈ C2(Ω̄) we have∫

Ω

v(y)△u(y) dy +
∫
Ω

∇v(y) · ∇u(y) dy =

∫
∂Ω

v(z)∇u(z) ·N dσ(z).

If we subtract the formula for interchanged u and v, then we obtain:

Green’s Second Formula 3.16. Let the Divergence Theorem hold on the open and
bounded domain Ω ⊂ Rn. Then for two functions u, v ∈ C2(Ω̄) we have∫

Ω

(v(y)△u(y)− u(y)△v(y)) dy =

∫
∂Ω

(v(z)∇u(z)− u(z)∇v(z)) ·N dσ(z).

The significance of these formulas becomes apparent when we apply them to the funda-
mental solution v(y) = Φ(x − y). This function is harmonic for y ̸= x, so we need to
exclude a small ball B(x, ϵ). The left hand side of Green’s second formula becomes∫

Ω\B(x,ϵ)

Φ(x− y)△u(y) dy.
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As argued in Theorem 3.2 (the part with Iϵ) this integral is well defined in the limit ϵ ↓ 0.
Also in that theorem we showed

lim
ϵ→0

∫
∂(Rn\B(x,ϵ))

u(z)∇zΦ(x−z) ·N dσ(z) = lim
ϵ→0

∫
∂(Rn\B(0,ϵ))

u(x−z)∇Φ(z) ·N dσ(z) = u(x)

and that the integral of Φ(x− z)∇u(z) ·N dσ(z) over ∂(R2 \B(x, ϵ)) converges to zero in
the limit. When we apply Green’s second formula to the domain Ω \ B(x, ϵ) we will get
on the right hand side some terms for ∂Ω and additional terms for the inner boundary
∂B(x, ϵ) of the form above. Taking the limit as ϵ ↓ 0 gives

Green’s Representation Theorem 3.17. Let the Divergence Theorem hold on the open
and bounded domain Ω ⊂ Rn. Then for x ∈ Ω and a function u ∈ C2(Ω̄) we have

u(x) = −
∫
Ω

Φ(x− y)△u(y) dy +
∫
∂Ω

(Φ(x− z)∇u(z)− u(z)∇zΦ(x− z)) ·N dσ(z).

This representation formula allows us to reconstruct a function u from its Laplacian and
the values of u and the normal derivative∇u·N on ∂Ω. But the Weak Maximum Principle
implies the function is already uniquely determined by its Laplacian and boundary values,
the normal derivatives on the boundary are redundant information. The question is, how
can we calculate the normal derivatives from the other two pieces of information? If the
domain Ω admits a function of the following type, then there is a clean formula.

Green’s Function 3.18. A function GΩ : {(x, y) ∈ Ω×Ω | x ̸= y} → R is called Green’s
function for the open domain Ω ⊂ Rn, if it has the following two properties:

(i) For x ∈ Ω the function y 7→ GΩ(x, y) − Φ(x − y) extends to a harmonic function on
y ∈ Ω.

(ii) For x ∈ Ω the function y 7→ GΩ(x, y) extends continuously to ∂Ω and vanishes on
y ∈ ∂Ω.

It is worth considering how this definition applies to the special case Ω = Rn. Then the
second condition is trivial and the first condition says that GRn(x, y) = Φ(x− y) + ux(y)
is a Green’s function for any family of harmonic functions (ux)x∈Ω. In general, the first
condition can also be expressed as △yGΩ(x, y) = δx in the sense of distributions, where
δx is the delta distribution centered at x ∈ Ω. This is equivalent because all harmonic
distributions are harmonic functions.

Let put them to use. Green’s Second Formula yields for the function v(y) = GΩ(x, y) −
Φ(x− y):

−
∫
Ω

Φ(x− y)△u(y) dy +
∫
∂Ω

(Φ(x− z)∇u(z)− u(z)∇zΦ(x− z)) ·N dσ(z)

= −
∫
Ω

GΩ(x, y)△u(y) dy −
∫
∂Ω

u(z)∇zGΩ(x, z) ·N dσ(z).
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Now Green’s Representation Theorem implies

u(x) = −
∫
Ω

GΩ(x, y)△yu(y) dy −
∫
∂Ω

u(z)∇zGΩ(x, z) ·N dσ(z).

If, conversely, the functions f : Ω̄ → R and g : ∂Ω → R have sufficient regularity, then

u(x) =

∫
Ω

GΩ(x, y)f(y) d
ny −

∫
∂Ω

g(z)∇zGΩ(x, z) ·N dσ(z)

solves the Dirichlet Problem. In fact by Theorem 3.2 the first term solves the Dirichlet
Problem for g = 0. If g : ∂Ω → R is the boundary value of a function on Ω with sufficient
regularity, then the difference of g minus the corresponding first term is harmonic and
coincides with the second term. Therefore the Dirichlet Problem reduces to the search of
the Green’s Function.

For bounded domains Ω there is a little more we can say about a Green’s function. For
x ∈ Ω the difference y 7→ GΩ(x, y)−Φ(x− y) is harmonic on y ∈ Ω and on the boundary
∂Ω equal to −Φ(x− y). Hence the difference is the solution of the Dirichlet Problem for
f = 0 and g(x) = −Φ(x− y). This proves the Green’s function is unique if it exists. As
mentioned in the example above, there is no reason it needs to be unique on an unbounded
domain. Further

Theorem 3.19 (Symmetry of the Green’s Function). If there is a Green’s Function GΩ

for the bounded domain Ω, then GΩ(x, y) = GΩ(y, x) holds for all x ̸= y ∈ Ω.

Proof. For x ̸= y ∈ Ω let ϵ > 0 be sufficiently small, such that both balls B(x, ϵ) and
B(y, ϵ) are disjoint subsets of Ω. Green’s Second Formula implies for the domain Ω \
(B(x, ϵ) ∪B(y, ϵ)) and the functions u(z) = GΩ(x, z) and v(z) = GΩ(y, z)∫

∂B(x,ϵ)

(GΩ(y, z)∇zGΩ(x, z)−GΩ(x, z)∇zGΩ(y, z)) ·N dσ(z)

=

∫
∂B(y,ϵ)

(GΩ(x, z)∇zGΩ(y, z)−GΩ(y, z)∇zGΩ(x, z)) ·N dσ(z).

For ϵ→ 0 the estimate for Lϵ in the proof of Theorem 3.2 shows that both second terms
converge to zero. The calculation of Kϵ in the proof of Theorem 3.2 carries over and
shows that the first terms converge to GΩ(y, x) and GΩ(x, y), respectively.

Finding a Green’s function for an arbitrary domain can be difficult, and they do not
even exist for all domains. However it is feasible for highly symmetric domains, and the
advantage is that then the solution has a concrete formula. We shall calculate Green’s
function for all balls in Rn. Let us first restrict to the unit ball Ω = B(0, 1). The key is
to try and add a harmonic function to Φ(x− y) that equals it on the boundary. We may
use the inversion x 7→ x̃ = x

|x|2 in the unit sphere ∂B(0, 1). It maps the inside of the unit
ball to the outside and vice versa, fixing the boundary. Moreover, it is a transformation
that preserves harmonicity!
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Green’s Function of the unit ball 3.20. The Green’s Function of B(0, 1) is

GB(0,1)(x, y) = Φ(x− y)− Φ(|x|(x̃− y)) =

{
Φ(x− y)− |x|2−nΦ(x̃− y) for n > 2

Φ(x− y)− Φ(x̃− y)− Φ(x) for n = 2.

Proof. For |y| = 1 we have |x|2|x̃− y|2 = 1− 2y · x+ |x|2 = |x− y|2. Hence Φ(|x|(x̃−y))
and Φ(x− y) coincide on the boundary y ∈ ∂B(0, 1).

The affine map x 7→ x−z
r

is a homeomorphism from B(z, r) onto B(0, 1) and from ∂B(z, r)
onto ∂B(0, 1). The difference r2−nΦ(x−z

r
− y−z

r
) − Φ(x − y) vanishes for n > 2 and is

constant for n = 2. Therefore the unique Green’s function of B(z, r) is equal to

GB(z,r)(x, y) = r2−nGB(0,1)(
x−z
r
, y−z

r
).

Putting this into the modified Green’s representation formula gives

Poisson’s Representation Formula 3.21. For f ∈ C2(B(z, r)) and g ∈ C(∂B(z, r))
the unique solution of the Dirichlet Problem on Ω = B(z, r) is given by

u(x) =
1

rn−2

∫
B(z,r)

GB(0,1)(
x−z
r
, y−z

r
)f(y) dny +

1− |x−z|2
r2

nωn

∫
∂B(0,1)

g(z + ry)

|x−z
r

− y|n
dσ(y).

Proof. We know that if a solution exists, then it has this form. The content of the proof
is that for the given regularity of the functions f and g that the formulas do indeed give
a valid (strong) solution. It suffices to consider the two cases g = 0 and f = 0 separately.
The properties of the Green’s function together with Theorem 3.2 show, that for g = 0
the function u differs by a harmonic function from a solution of Poisson’s equation. By
the symmetry of the Green’s Function the map x 7→ GB(z,r)(y, x) extends continuously to

B(z, r) and vanishes on the boundary x ∈ ∂B(z, r). This finishes the proof for g = 0.

For |y| = 1 and n > 2 we observe (the reader should check this formula for n = 2):

K(x, y) = −∇yGB(0,1)(x, y) ·
y

|y|

=
−1

n(n− 2)ωn

y

|y|
· ∇y

(
1

|x− y|n−2
− 1

|x|n−2 |x̃−y|n−2

)
=

1

nωn

y

|y|
·
(

y − x

|x− y|n
− |x|2(y − x̃)

|x|n |x̃− y|n
)

(for |y| = 1) =
1− x · y − |x|2 + x · y

nωn|x− y|n
=

1− |x|2

nωn|x− y|n
.
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By the Symmetry of the Green’s Function the function x 7→ K(x, y) is harmonic. Hence
for f = 0 the given function u is harmonic. For finishing the proof we show that

u(z + rx) =

∫
∂B(0,1)

g(z + ry)K(x, y) dσ(y)

extends continuously to x ∈ ∂B(0, 1) and coincides there with g(z + rx). We observe

(i) the integral kernel K(x, y) is positive for (x, y) ∈ B(0, 1)× ∂B(0, 1).

(ii) For all x ∈ ∂B(0, 1) and ϵ > 0 the family of functions y 7→ K(λx, y) converge
uniformly to zero for λ ↑ 1 on y ∈ ∂B(0, 1) \B(x, ϵ), and

(iii) The formula which follows from Green’s Second Formula and Green’s Representation
Formula yields for the function u = 1 on the domain Ω = B(0, 1)∫

∂B(0,1)

K(x, y) dσ(y) = 1 for x ∈ B(0, 1).

For continuous g the properties (i)-(iii) ensure that in the limit λ ↑ 1 the family of
functions x 7→

∫
∂B(0,1)

g(y)K(λx, y) dσ(y) converge on ∂B(0, 1) uniformly to g.

A harmonic function u on B(z, r) which extends continuously to ∂B(z, r) obeys

u(x) =
1− |x−z|2

r2

nωn

∫
∂B(0,1)

u(z + ry)

|x−z
r

− y|n
dσ(y) =

r2 − |x− z|2

nrωn

∫
∂B(z,r)

u(y)

|x− y|n
dσ(y).

Like the Weak Maximum Principle, this shows that u is completely determined by the
values on ∂B(z, r), except here the result is constructive. One can also integrate this
formula in x over a ball, and after interchanging the integral and using some geometry,
arrive at the Mean Value property.

One new consequence of this formula is an additional regularity result for harmonic
functions. The dependence on x in the formula is well-behaved for x ∈ B(z, r′) with
r′ < r, because |x− y|−n is bounded away from its singularity. Therefore partial deriva-
tives of u with respect to x can be expressed with similar formulas depending only
on the values of u on a fixed ball B(z, r). For all y ∈ ∂B(z, r′) the Taylor series of
x 7→ |x − y|−n = (y2 − 2xy + x2)−

n
2 in x = z converges uniformly to |x − y|−n. This

implies:

Corollary 3.22. Harmonic functions on an open domain Ω ⊂ Rn are analytic.

Another regularity result, which speaks to the connection between harmonic functions and
holomorphic functions (if you know some complex analysis), is the so called ‘removable
singularities’ theorem:
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Lemma 3.23. Let Ω ⊂ Rn be an open neighbourhood of 0 and u a bounded harmonic
function on Ω \ {0}. Then u extends as a harmonic function to Ω.

Proof. On a ball B(0, r) with compact closure in Ω, Theorem 3.21 gives a harmonic
function ũ which coincides on ∂B(0, r) with u. The family of harmonic functions uϵ(x) =
ũ(x) − u(x) + ϵGB(0,r)(x, 0) on B(0, r) \ {0} vanish on ∂B(0, r). If for any ϵ > 0 the
function uϵ takes on B(0, r) \ {0} a negative value, then due to the boundedness of u
and ũ and the unboundedness of GB(0,r)(·, 0) the harmonic function uϵ has a negative
minimum on B(0, r) \ {0}. This contradicts the Strong Maximum Principle. Hence uϵ is
non-negative. Analogously uϵ us for negative ϵ non-positive. Otherwise uϵ would have a
positive maximum in B(0, r) \ {0}. In both limits ϵ ↓ 0 and ϵ ↑ 0 u0 = ũ − u vanishes
identically on B(0, r) \ {0} and ũ is a harmonic extension of u to Ω.

The proof shows a slightly stronger statement. Each harmonic function on Ω \ {0} whose
absolute value |u(x)| is for all ϵ > 0 bounded by ϵGB(0,r)(x, 0) on B(0, δ) \ {0} with
sufficiently small δ > 0 depending on ϵ has an harmonic extension to Ω.



Chapter 4

Heat Equation

In this chapter we investigate the heat equation

u̇−△u = 0

and the corresponding inhomogeneous variant

u̇−△u = f.

The unknown function u is defined on an open domain Ω × (0, T ) ⊂ Rn × R. We shall
extend some statements about harmonic functions to solutions of the heat equation, but
also try to understand the important differences. There is no widely agree upon name
for solutions to the homogeneous heat equation, similar to harmonic functions for the
Laplace equation, though some books use the term caloric. A previous class suggested to
call them flames, similar to how solutions of the wave equations are waves, which I find
cute.

There are two boundary value problems that we will examine in particular. The first is
the initial value problem on Rn × (0, T )

u̇−△u = f on Rn × (0, T ), u(x, 0) = h(x) on Rn.

This is sometimes called the Cauchy problem. It purports to model how the temperature
within an infinitely large body changes given the initial temperature h at every point.
The inhomogeneous term f represents the infusion or removal of heat at points within
the body. The second problem applies to a bounded spatial domain Ω

u̇−△u = f on Ω× (0, T ), u = g on ∂Ω× [0, T ], u(x, 0) = h(x) on Ω.

This problem is called the Dirichlet problem, in analogy to the corresponding problem
for the Laplace equation. This models the temperature within a finite body but where

56
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additionally the temperature of the boundary is also controlled (specified by g). In both
problems any solution should at least extend continuously to the boundary, so that the
boundary conditions are meaningful.

The heat equation describes a diffusion process. This means a time-like evolution of
space-like distributed quantities like heat or chemical concentration, or even probability.
Let us provide a short justification of the equation as a model of heat. We have seen for
the mean value property that the Laplacian measures the difference of a function from its
mean value: for small r from the proof of Theorem 3.5 we have S ′(r) ≈ n−1r△u(x) which
implies S(r) − u(x) ≈ 1

2n
r2△u(x). If the temperature u at x is cooler than the points

around it, then u̇ should be positive, and vice-versa if u is hotter. Moreover we have seen
from the general conservation law (with F = ∇u) that the quantity u is preserved by the
heat equation (under appropriate assumptions). The simplicity of the equation together
with these properties make it a useful model to study.

Before we begin the develop the theory that we will use, let’s study some monstrous
examples, to show us what to be wary of. The first shows the importance of the negative
sign in the heat equation. We give an illustration that the heat equation is not time
symmetric in the way that many models in physics are (at least conceptually) and that
the ‘reverse time’ problem is not well-posed. Consider n = 1 and for any integer m define
the function

um(x, t) = em
2(T−t) sinmx.

They have the property that u̇m = −m2um as well as ∂2xum = −m2u. Therefore they
all solve the homogeneous heat equation with ‘terminal’ condition um(T ) = sinmx. This
example can even be applied to a Dirichlet-type problem. Consider the spatial domain
Ω = (0, 2π) with the boundary values g ≡ 0. Because m is an integer, all these functions
satisfy it. Even though these boundary conditions are smooth and uniformly bounded by
1, the solutions at any time t < T can still be arbitrarily large

sup |um(·, t)| = em
2(T−t).

This is one reason to only study the forward time Dirichlet problem.

Similarly for the Cauchy problem introduced above, there is also the possibility of rapidly
growing solutions. Again for n = 1, we make the ansatz

u(x, t) =
∞∑
l=0

gl(t)x
l, u̇(x, t)−△u(x, t) =

∞∑
l=0

(ġl(t)− (l + 2)(l + 1)gl+2(t))x
l.

Thus if u solves the heat equation then we must have a recursion relation between gl and
gl+2. For a given function g0(t) = g(t) and setting g1(t) ≡ 0 we thus obtain the following
formal solution of the homogeneous heat equation:

u(x, t) =
∞∑
l=0

g(l)(t)

(2l)!
x2l.
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We now show that for g(t) = exp(−t−2) this power series indeed converges to a smooth
solution and further that on every compact subset of Rn the uniform limit of this solution
vanishes as t ↓ 0. We first calculate g(l)(t) for any l ∈ N0 by a real polynomial pl of degree
l solving the relation

g(l)(t) = t−lpl(t
−2) exp(−t−2) with pl+1(z) = 2zpl(z)− lpl(z)− 2zp′l(z).

This recursion relation for pl follows by differentiating by t. The first two polynomials are
p0(z) = 1 and p1(z) = 2z. We claim that the coefficient of pl(z) in front of zk is bounded

by l!7l

2kk!
. For l = 0, k = 0 this is clear. By induction we obtain with k ≤ l + 1

2
l!7l

2k−1(k − 1)!
+ l

l!7l

2kk!
+ 2k

l!7l

2kk!
=
l!7l(4k + l + 2k)

2kk!
≤ l!7l7(l + 1)

2kk!
≤ (l + 1)!7l+1

2kk!
.

This proves the claim. Using the inequalities l!
(2l)!

= 1
2l1·3···(2l−1)

≤ 1
2ll!

we conclude

|u(x, t)| ≤
∞∑
l=0

l!7lx2l

(2l)!tl

l∑
k=0

g(t)

2kk!t2k
≤

∞∑
l=0

1

l!

(
7x2

2t

)l ∞∑
k=0

g(t)

k!

(
1

2t2

)k
= exp

(
7x2

2t
− 1

2t2

)
.

Therefore the series converges absolutely and for t ↓ 0 uniformly on compact sets to 0.
This means that we can extend u smoothly to t ≤ 0 by giving it the value 0. This means
that the Cauchy problem with initial value h ≡ 0 has a non-zero solution: The space
is the same temperature everywhere and suddenly wild temperature fluctuations begin.
This shows that even though it seems as if the Cauchy problem should be well-posed,
additional constraints will be required.

4.1 Spectral Theory and the Fourier Transform

Let us give some motivation for introducing spectral theory: the theory of the eigenvalues
of the operator −△. Let us look for ‘separable’ solutions of the homogeneous heat equa-
tion, solutions that neatly factorise as u(x, t) = φ(t)h(x). These solve the heat equation
if

φ̇(t)h(x)− φ(t)△h(x) = 0 ⇔ φ̇(t)

φ(t)
=

△h(x)
h(x)

.

Clearly the only way that this is possible is if the two sides are equal to some constant
−λ. This means that h is an eigenfunction of the (negative) Laplace operator:

−△h = λh on Ω,

and φ̇ = −λφ. The factorisation is only determined up to a scaling, so we set φ(0) = 1.
Thus φ(t) = e−λt and u has the initial value u(x, 0) = h(x).
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Turning this around, if we are given an initial value problem where h is an eigenfunction
of the Laplacian, then this method gives a solution. More generally, if the initial condition
is a linear combination of eigenfunctions then a linear combination of separable solutions
solves the problem. The question now arises can every function be written as a linear
combination of eigenfunctions in some suitable sense?

What are the eigenfunctions of −△? The trigonometric functions provide many examples
for every λ > 0:

−△e2πik·x = 4π2|k|2e2πik·x.

The drawback of these functions are that they are not integrable on the plane because
they have modulus 1 at every point. But in a limiting sense they are all orthogonal to
one another in L2 inner product

⟨e2πik1·x, e2πik2·x⟩ =
∫
Rn

e2πik1·xe2πik2·x dnx =

∫
Rn

e2πi(k1−k2)·x dnx = 0

because the integrand is periodic and the integral over a single period is zero. This leads
us to define the Fourier transform as the coefficients of the orthogonal projection of a
function onto these functions, in the sense that for a finite dimensional inner product
space h =

∑
⟨h, ei⟩ei for an orthonormal basis {ei}.

Definition 4.1. The Fourier transform of a function h : Rn → R is defined to be

ĥ(k) = F [h](k) :=

∫
Rn

e−2πik·xh(x) dnx.

Be aware: there are several definitions of Fourier transform that differ by a constant
scaling and a scaling of k. Always check which is being used.

When one learns Fourier analysis in detail, a major theme is under what conditions this
definition makes sense, how it can be extended to other classes of functions, and which
of the important properties are retained for these extensions. For example, a basic result
that we will soon prove is that if the function h ∈ L1(Rn) then its Fourier transform is
continuous and bounded.

Let us compute the Fourier transform for an important example: the Gaussian curve
e−|πx|2 . We begin∫

Rn

e−2πik·xe−|πx|2 dnx =

∫
Rn

e−|k|2+|k|2−2ik·(πx)−|πx|2 dnx =

∫
Rn

e−|k|2−(ik+πx)·(ik+πx) dnx

= e−|k|2
∫
Rn

e−(ik+πx)·(ik+πx) dnx = π−ne−|k|2
∫
ik+Rn

e−y·y dny.

To finish we need to compute the value of the final integral. It is so famous that it has its
own name ‘the Gaussian integral’. It value is πn/2. Several methods to compute this will
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be explored in the tutorial. By rescaling we also have the Fourier transforms for other
Gaussians. In conclusion

F [e−a|x|
2

](k) =
(π
a

)n/2
e−

1
a
|πk|2 .

One obvious class of functions that can be Fourier transformed is the test functions because
they have compact support. But this turns out to be a little too restrictive. Instead we
consider functions that decay rapidly at infinity.

Definition 4.2. The Schwartz space S contains all smooth complex valued functions f
on Rn for which ρl,α(x) := |x|2l|∂αf(x)| are bounded for all l ∈ N and all α ∈ Nn

0 .

There are other equivalent definitions in the literature. A common alternative is to use
(1 + |x|2)l instead of |x|2l. One characterisation of S is that it is the largest subspace
of integrable functions that is closed under differentiation and multiplication with poly-
nomials. For following lemma however is perhaps the more important justification for
considering this space.

Lemma 4.3. The Fourier transformation maps S onto S . For any function h ∈ S
and ĥ = F [h] we have

F [∂jh](k) = 2πikjĥ(k), and F [2πixjh](k) = ∂jĥ(k).

Proof. If we simply take the absolute value of the definition of the Fourier transform.
This gives us |ĥ(k)| ≤

∫
Rn |h(y)| dny = ∥h∥L1(Rn). Any h ∈ C∞

0 (Rn,C) certainly has finite
L1-norm and by taking supremum we obtain

∥ĥ∥∞ ≤ ∥h∥L1(Rn).

This shows that F is a continuous linear operator from C∞
0 (Rn,C) with the L1-norm

to Cb(Rn,C) with the supremum norm. Since C∞
0 (Rn,C) is dense in L1(Rn), the Fourier

transform extends to a continuous linear map from L1(Rn) into the Banach space Cb(Rn,C),
as we claimed above.

But let us return to Schwarz functions and prove what is stated in the lemma. By
integration by parts

F [∂jh](k) = −
∫
Rn

∂

∂xj

(
e−2πik·x)h(x) dnx = −

∫
Rn

(−2πikj)e
−2πik·xh(x) dnx = 2πikjĥ(k).

To make this calculation rigorous, one should integrate by parts on a large cube [−R,R]n.
But the decay properties of h ensure that the boundary terms vanish in the limit. Applying
this formula with higher derivatives gives a polynomial in k on the right. Turning this
relation around proves that any polynomial times ĥ is the Fourier transform of a Schwartz
function and thus bounded.
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Similarly we can differentiate ĥ:

∂

∂kj
ĥ =

∫
Rn

∂

∂kj

(
e−2πik·x)h(x) dnx = −2πxjĥ(k)

This is justified by the estimate

|∂jĥ(k)| =
∣∣∣∣∫

Rn

−2πixje
−2πik·xh(x) dnx

∣∣∣∣ ≤ 2π∥|x|h(x)∥L1(Rn).

Because h decays faster than any power of |x| the right hand side is bounded. Repeated
applying this differentiation formula shows that ĥ is smooth. The combination of the
differentiation and polynomial rules for the Fourier transform therefore proves that ĥ is
Schwartz.

The property of transforming derivatives into polynomials is what makes the Fourier
transform a useful tool in solving ODEs and PDEs. Let’s see how it applies to the heat
equation. The Fourier transform of the Laplacian is F [△u] = (2πi)2|k|2ĥ, where we only
Fourier transform the space variables and leave t out from the integral. Under sufficient
regularity assumptions a solution to the heat equation obeys

F [∂tu] + 4π2|k|2û = ∂tû+ 4π2|k|2û = 0

by interchanging the ∂t and integration. For each value of k this is an ODE for û(k, t)
in the variable t. We even get initial conditions by applying the Fourier transform to the
initial condition of the PDE û(k, 0) = ĥ(k). It has the solution

û(k, t) = e−4π2|k|2tû(k, 0) = e−4π2|k|2tĥ(k).

So if we are able to find a function that has this as its Fourier transform, we have solved
the heat equation. For this we need to understand how the Fourier transform behaves
with respect to products and convolutions.

Lemma 4.4. Let u, v ∈ S . Then F [u ∗ v] = ûv̂ and F [uv] = û ∗ v̂.

Proof. This follows by direct calculation.

F [u ∗ v](k) =
∫
Rn

e−2πik·x
(∫

Rn

u(x− y)v(y) dny

)
dnx

=

∫
Rn

(∫
Rn

e−2πik·xu(x− y) dnx

)
v(y) dny

=

∫
Rn

e−2πik·y
(∫

Rn

e−2πik·zu(z) dnz

)
v(y) dny

=

∫
Rn

e−2πik·zu(z) dnz

∫
Rn

e−2πik·yv(y) dny = û(k) ˆv(k).
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The second half of the lemma is an easy consequence of the first half together with the
inverse Fourier transform, which is given after Theorem 4.7. We really only need the first
half of the lemma, but it much prettier to present the two results side-by-side.

Because of our earlier example, we know that

F

[
1

(4πt)n/2
e−

|x|2
4t

]
= e−4π2|k|2t.

Therefore we can conclude that

u(x, t) =
1

(4πt)n/2
e−

|x|2
4t ∗x h(x)

is a solution to the heat equation with initial condition u(x, 0) = h(x), where the convo-
lution is only taken over the spatial variables.

Our derivation of the solution has assumed that the functions in question have sufficient
regularity such that we were able to interchange the order of integration or differentiate
under the integral sign as needed. In the next section we will take the formula for the
solution that we have derived and prove directly, under weaker assumptions on h, that it
solves the Cauchy problem.

4.2 Fundamental Solution

Our method of the previous section to solve the homogeneous heat equation through a
Fourier transform uncovered a particular Gaussian function. It turns out to be a funda-
mental solution for the heat equation that is well-suited to the case t > 0, which holds
for both problems we are interested in.

Definition 4.5. The fundamental solution of the heat equation is defined as

Φ(x, t) =

{
1

(4πt)n/2 e
− |x|2

4t for x ∈ Rn, t > 0

0 for x ∈ Rn, t ≤ 0
.

For t ̸= 0 one can check that this solves the homogeneous heat equation be direct calcu-
lation (Exercise). For x ̸= 0 we also know that t 7→ Φ(x, t) is a smooth function, so in
fact Φ solves the heat equation in the strong sense everywhere except (0, 0). We will show
that (∂t −△)Φ = δ soon. Similar to the fundamental solution of the Laplace equation,
this fundamental solution has the scaling property Φ(ax, a2t) = a−1Φ(x, t). You may be
wondering if the odd scaling factor for Φ is meaningful. It is, as the following lemma
shows.
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Lemma 4.6. For all t > 0 the fundamental solution satisfies

∫
Rn

Φ(x, t) dnx = 1.

Proof.
1

(4πt)n/2

∫
Rn

e−
|x|2
4t dnx =

1

πn/2

∫
Rn

e−x
2

dnx =
1

πn/2

(∫
R
e−x

2

dx

)n
= 1.

We can therefore understand the fundamental solution as being similar to a mollifier on
Rn. As t ↓ 0 the function grows and concentrates near the origin. It is not a mollifier
because it does not have compact support, but it does lie in S and we should expect that
the convolution with Φ converges in the limit t ↓ 0 to the identity. This is the content of
the following theorem. This theorem also gives a solution to the Cauchy problem for the
homogeneous heat equation under the assumption that the initial condition is continuous
and bounded.

Theorem 4.7. For h ∈ Cb(Rn,R) the following function u has the properties (i)-(iii):

u(x, t) =

∫
Rn

Φ(x− y, t)h(y) dny

(i) u ∈ C∞(Rn × R+)

(ii) u̇−△u = 0 on Rn × R+

(iii) u extends continuously to Rn × [0,∞) with limt→0 u(x, t) = h(x).

Proof. For t > 0 by the smoothness of Φ and the boundedness of h, the function is
well-defined and we can pass derivatives into the integral. This should that u is smooth.
Likewise (ii) follows, since Φ solves the heat equation on Rn × R+.

The harder argument is (iii). For any ϵ > 0 and any x in a compact subset of Rn there
exists δ > 0, such that |h(x) − h(y)| < ϵ for all |x − y| < δ (continuity implies uniform
continuity on any compact subset). Furthermore there exists T > 0, such that∫

Rn\B(0,δ)

Φ(y, t) dny =

∫
Rn\B(0,δ/

√
t)

Φ(z, 1) dnz < ϵ for all 0 < t < T .

This implies

|u(x, t)− h(x)| =
∣∣∣∣∫

Rn

Φ(x− y, t)(h(y)− h(x)) dny

∣∣∣∣
≤
∫
B(x,δ)

Φ(x− y, t) | h(y)− h(x) | dny +

∫
Rn\B(x,δ)

Φ(x− y, t)|h(y)− h(x)| dny

≤ ϵ+ 2ϵ sup{|h(y)| | y ∈ Rn}

for all 0 < t < T . So u(x, t) converges in the limit t ↓ 0 uniformly on compact subsets of
Rn to h.
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Part (iii) of this theorem is also an important lemma in Fourier analysis, because it leads
to an explicit formula for the inverse of the Fourier transform. Suppose that u, v ∈ S .
We compute the following integral parameterised in x∫

Rn

û(k)v(k)e2πik·x dnk =

∫
Rn

(∫
Rn

u(y)e−2πik·(y−x) dny

)
v(k) dnk

=

∫
Rn

(∫
Rn

u(z + x)e−2πik·z dnz

)
v(k) dnk =

∫
Rn

u(z + x)

(∫
Rn

v(k)e−2πik·z dnk

)
dnz

=

∫
Rn

u(z + x)v̂(z) dnz.

The trick is to now choose v̂ to be the fundamental solution Φ(x, ϵ). This gives∫
Rn

û(k)e−4π2|k|2ϵe2πik·x dnk =

∫
Rn

u(z + x)Φ(z, ϵ) dnz =

∫
Rn

u(y)Φ(y − x, ϵ) dny.

Taking the limit as ϵ ↓ 0 and applying Theorem 4.7(iii) on the right hand side proves∫
Rn

û(k)e2πik·x dnk = u(x).

To summarise, the inverse Fourier transform is

F−1[u](x) =

∫
Rn

u(k)e2πik·x dnk = F [u](−x).

The fact that the Fourier transform and its inverse differ only by a sign in the expo-
nent of the exponential is the reason that it has so many ‘dual’ properties, such as for
multiplication and convolution, or for differentiation and multiplication by polynomials.

The equation above for u and v is also the important step to extend the Fourier transform
to (some) distributions. When x = 0 we have∫

Rn

û(k)v(k) dnk =

∫
Rn

u(z)v̂(z) dnz.

If this was written in the notation of distributions it would be Fû(v) = Fu(v̂). This seems
as if it would be a suitable definition of the Fourier transform of a distribution. However,
even if v is a test function, we can’t be sure that v̂ is a test function only that it is
Schwartz, and thus F (v̂) is not defined for all distributions.

Unfortunately there is no way to fix this. Instead we must restrict ourselves to consider
only distributions that can act on Schwartz functions. But what does this mean? First
we recognise that sup ρl,α from Definition 4.2 of S constitutes a family of seminorms for
Schwartz space. Further the inclusion of the space of test functions D into the Schwartz
space S is continuous and dense with respect to this topology. Therefore we can identify
the subspace of distributions that can be extended continuously to act on S .
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Definition 4.8. Let F ∈ D′ be a distribution. Suppose that ϕm is a sequence of test
functions that converges to zero in S , i.e. limm→∞ ρl,α(ϕm) = 0 for all l, α. We say
that F is a tempered distribution F ∈ S ′ if limm→∞ F (ϕm) = 0. If F is a tempered
distribution then it acts on a Schwartz function ϕ by

F (ϕ) = lim
m→∞

F (ϕm)

for any sequence of test functions ϕm that converges to ϕ in S . For tempered distributions,
we define the Fourier transform F̂ (ϕ) = F (ϕ̂).

Many of the properties of Fourier transforms on S carry over to S ′, in particular the
differentiation and polynomial multiplication rules. Defining the Fourier transform on
distributions is not just a convenient way to extend it to a large class of functions but
actually essential for understanding the Fourier transforms of many common functions.
For example, the Fourier transform of the constant function 1 is the delta distribution.

Fourier analysis can also solve the inhomogeneous heat equation on Rn×R+. Taking the
transform of the PDE results in the inhomogeneous ODE

∂tû+ 4π2|k|2û = f̂ .

This has the solution

û(k, t) = e−4π2|k|2tĥ(k) +

∫ t

0

e−4π2|k|2(t−s)f̂(k, s) ds.

We recognise the first term from the homogeneous case. The second term is new, but
it is the integral over time of the product of Φ̂(k, t − s) and f̂ . Performing the inverse
transform suggests the following solution

u(x, t) =

∫
Rn

Φ(x− y, t)h(y) dny +

∫ t

0

∫
Rn

Φ(x− y, t− s)f(y, s) dny ds.

It remains to consider the regularity of the second integral.

Theorem 4.9 (Solution of the inhomogeneous heat equation). If f is twice continuously
and bounded differentiable on Rn × [0,∞), then

u(x, t) =

∫ t

0

∫
Rn

Φ(x− y, t− s)f(y, s) dny ds

solves the inhomogeneous initial value problem

u̇−△u = f on Rn × R+ and lim
t→0

u(x, t) = 0.
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Proof. The integrand has a singularity when s = t. Therefore consider

uϵ(x, t) =

∫ t−ϵ

0

∫
Rn

Φ(x− y, t− s)f(y, s) dny ds

To this function we can apply the heat equation with impunity:

u̇ϵ(x, t)−△uϵ(x, t)

=

∫
Rn

Φ(x− y, t− (t− ϵ))f(y, t− ϵ) dny +

∫ t−ϵ

0

∫
Rn

(∂t −△)Φ(x− y, t− s)f(y, s) dny ds

=

∫
Rn

Φ(x− y, ϵ)f(y, t− ϵ) dny.

Theorem 4.7 (iii) implies limϵ→0 u̇ϵ−△uϵ = f on Rn×R+. Additionally uϵ(x, ϵ) = 0. The
assumptions on f are sufficient to conlcude that

f = lim
ϵ→0

(u̇ϵ(x, t)−△uϵ(x, t)) =
(
∂

∂t
−△

)
lim
ϵ→0

uϵ(x, t) =

(
∂

∂t
−△

)
u(x, t)

and 0 = limϵ→0 uϵ(x, ϵ) = u(x, 0). Properly one should bound the difference between u
and uϵ, which is the integral in time over the short interval [t− ϵ, t], in a similar manner
to Theorem 3.2.

We summarise our inquiries with the following statement.

Corollary 4.10. Suppose f is twice continuously and bounded differentiable on Rn×[0,∞)
and h is continuous and bounded on Rn. The inhomogeneous initial value problem has
the following solution:

u̇−△u = f u(x, 0) = h(x)

u(x, t) =

∫
Rn

Φ(x− y, t)h(y) dny +

∫ t

0

∫
Rn

Φ(x− y, t− s)f(y, s) dny ds.

To finish the section we make some qualitative remarks on the behaviour of these solu-
tions. The two integrals are a homogeneous solution that satisfies the initial condition 0
and an inhomogeneous solution that vanishes initially. One is reminded of the Green’s
representation formula, which was also two integrals dividing the task between themselves.
We can also see that as a physics model of heat it violates the principle of locality and
the speed of light. Consider f = 0, so there is no additional sources of heat, and suppose
the initial temperature h is non-negative and has compact support. Then for any point
and time (x, t) ∈ Rn×R+ the solution is positive, because Φ is everywhere positive. The
interpretation is that the heat that was present in the support of h has instantly spread
out to the whole space.
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4.3 Maximum Principle

Like elliptic PDEs, parabolic PDEs also have a maximum principle. In this section we
will prove a weak maximum principle for the heat equation and apply it to the question of
uniqueness of the Dirichlet and Cauchy problems. There is an approach to the maximum
principle based on so-called ‘heat balls’ that mimic the mean value property for the Laplace
equation (see Evans), but this is computationally messy. Instead we follow Han and give
a proof in the style of Theorem 3.13.

The domain of the heat equation distinguishes time and spatial directions. We therefore
make special definitions adapted to this distinction. For any open domain Ω ⊂ Rn we
define the parabolic cylinder as ΩT = Ω × (0, T ]. The parabolic boundary ∂ΩT of ΩT is
defined as Ω̄T \ ΩT . It is the union of (∂Ω× (0, T ]) ∪

(
Ω̄× 0

)
and does not contain at

time t = T points inside of Ω.

Theorem 4.11 (Weak maximum principle for the heat equation). Let Ω ⊂ Rn be open
and bounded and u a twice differentiable function on ΩT that extends continuously to Ω̄T .
Suppose that u is a subsolution to the heat equation:

u̇−△u ≤ 0

on ΩT . Then the maximum of u is taken on ∂ΩT .

Proof. Note because Ω is bounded that Ω̄T is compact, and thus u must have a maximum.
The theorem claim that the maximum occurs on the boundary, but does not forbid it
from also occurring on the interior. The constant function would be an example where
the maximum is taken both on the boundary and the interior.

We first prove the theorem under the stronger assumption that u̇−△u < 0. Suppose that
u has a maximum at (x0, t0) ∈ ΩT . If t0 < T then we can also say that ∂tu(x0, t0) = 0,
otherwise if t = T we can only say that ∂tu(x0, t0) ≥ 0. In either case we see that 0 >
u̇(x0, t0)−△u(x0, t0) ≥ −△u(x0, t0). Also because this point is a maximum ∇xu(x0, t0) =
0 and the Hessian H in the spatial coordinates is negative semidefinite. As argued in
Theorem 3.13 at such a point △u(x0, t0) ≤ 0. But now we have a contradiction. Therefore
the maximum cannot occur on ΩT .

Next we handle the general case with a trick similar to Theorem 3.13. For any ϵ > 0
define

uϵ(x, t) := u(x, t)− ϵt.

This forces
(∂t −△)uϵ = u̇−△u− ϵ ≤ −ϵ < 0.

Thus the special case applies to uϵ and we conclude that the maximum of uϵ occurs on
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the boundary. But we can now argue

max
Ω̄T

u = max
Ω̄T

(uϵ + ϵt) ≤ max
Ω̄T

uϵ + ϵT = max
∂ΩT

uϵ + ϵT ≤ max
∂ΩT

u+ ϵT.

Taking ϵ ↓ 0 yields the result.

The following is an easy consequence, similar to the uniqueness of the Dirichlet problem
for the Laplace equation.

Theorem 4.12. On an open and bounded domain Ω ⊂ Rn there exists at most one
solution u of the Dirichlet problem for the inhomogeneous heat equation.

Proof. Suppose that there were two solutions. Consider their difference u. This function
must solve the homogeneous heat equation and vanishes on both the initial boundary
Ω×{0} and the spatial boundary ∂Ω× (0, T ). In other words, it is zero on the parabolic
boundary. By the weak maximum principle applied to u and −u the maximum and
minimum of u is zero. Thus u ≡ 0 and the two solutions are equal.

We can also conclude the ‘comparison principle’ or ‘monotonicity property’ for the heat
equation: If one body starts hotter than another at every point h1 ≥ h2, stays hotter on
the boundary g1 ≥ g2 and receives more heat on the interior f1 ≥ f2, then at every point
and every time the first body is hotter than the second.

Remarkably we can also use the weak maximum principle to show a form of uniqueness
in the Cauchy problem, even though it is on a unbounded domain. We must be careful
however, as we have seen that the solution is not unique: we began the chapter with the
example of a function that is identically zero initially and then springs to life. Any such
example however must be a monster.

Theorem 4.13. Let u be a solution on Rn × (0, T ] of the Cauchy problem:

u̇−△u = 0 on Rn × (0, T ) u(x, 0) = 0 on Rn × {0},

which is bounded by |u(x, t)| ≤MeA|x|
2
on Rn× [0, T ] for some positive constants A,M >

0. Then u is identically zero.

Proof. Choose a > A. We will prove that u ≡ 0 on Rn× [0, 1
4a
]. The result then holds on

[0, T ] by induction on the decomposition [0, T ] = [0, 1
4a
] ∪ [ 1

4a
, 2
4a
] ∪ . . ..

For any R > 0, define the function

vR(x, t) =
Me−(a−A)R2

(1− 4at)
n
2

exp
(
a|x|2
1−4at

)
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on B(0, R) × (0, 1
4a
). It is an easy check that vR solves the homogeneous heat equation

and it is clearly positive. Moreover, on the sphere x ∈ ∂B(0, R) it is larger than u, since

vR =
Me−(a−A)R2

(1− 4at)
n
2

exp
(

aR2

1−4at

)
≥Me−(a−A)R2

exp
(
aR2

)
=MeAR

2 ≥ |u|

Hence by the maximum principle we know that vR ≥ |u| on all of B(0, R)× [0, 1
4a
].

Now choose any point (x, t) ∈ Rn×[0, 1
4a
]. For all R > |x| we know that |u(x, t)| < vR(x, t).

But

lim
R→∞

vR(x, t) =
M

(1− 4at)
n
2

exp
(
a|x|2
1−4at

)
lim
R→∞

e−(a−A)R2

= 0.

Thus u(x, t) = 0 too.

The obvious question is whether the solution given by Corollary 4.10 meets this growth
condition. If it does, then it is the unique solution that does. Suppose therefore that h
and f are bounded by |h(x)| ≤MeA|x|

2
and |f(x, t)| ≤MeA|x|

2
on (x, t) ∈ Rn × [0, T ] for

some A > 0, a > 0. Observe the following doubling relation for the fundamental solution

Φ(x, t) =
2n/2

(2π(2t))n/2
exp

(
−2

|x|2

4(2t)

)
= 2n/2Φ(x, 2t) exp

(
−|x|2

8t

)
.

For t ≤ 1
16A

=: T0 this implies Φ(x, t) ≤ 2n/2Φ(x, 2t) exp(−2A|x|2) We compute the first
integral from the formula for the solution:∣∣∣∣∫

Rn

Φ(x− y, t)h(y) dny

∣∣∣∣ ≤ ∫
Rn

2n/2Φ(x− y, 2t)e−2A|x−y|2MeA|x|
2

dny

= 2n/2M

∫
Rn

Φ(x− y, 2t)e2A|x|
2−A|2x−y|2 dny ≤ 2n/2Me2A|x|

2

dny.

The last step of the calculation was achieved by the estimate e−A|2x−y|
2 ≤ 1 and using the

fact that for any positive time the fundamental solution has integral 1, Lemma 4.6. For
the second integral of in the formula of the solution, the above estimate also applies, but
further we need to integrate. Again for t < T0 we have∣∣∣∣∫ t

0

∫
Rn

Φ(x− y, t− s)f(y, s) dny ds

∣∣∣∣ ≤ ∫ t

0

2n/2Me2A|x|
2

ds ≤ 2n/2Me2A|x|
2

T0.

Together this proves that |u(x, t)| ≤M ′eA
′|x|2 on Rn×[0, T0] for A

′ = 2A,M ′ = 2n/2M(1+
T0) and T0 = 1

16A
. Thus we have proven short time unique existence for the Cauchy

problem. The short time limitation is unavoidable. Consider the solution u(x, t) =

(T − t)−
n
2 exp

(
|x|2

4(T−t)

)
of the homogeneous heat equation. It has the initial condition

h(x) = T−n
2 exp |x|2

4T
but explodes for t→ T .
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4.4 Heat Kernels

In the last section we proved that we found the unique (non-monstrous) solution to
the Cauchy problem and proved uniqueness for Dirichlet problem. It remains to solve
the Dirichlet problem, at least in some special cases. That is the goal of this section.
In analogy to the Green’s function of the Laplace equation we define for open subsets
Ω ⊂ Rn the heat kernel HΩ.

Definition 4.14. For an open domain Ω ⊂ Rn the heat kernel HΩ : Ω× Ω×R+ → R of
Ω is characterised by the following two properties:

(i) For x ∈ Ω the function (y, t) 7→ HΩ(x, y, t)−Φ(x− y, t) solves the homogeneous heat
equation and extends continuously to Ω̄× R+

0 with value 0 on (y, t) ∈ Ω̄× {0}.

(ii) For (x, t) ∈ Ω× R+ y 7→ HΩ(x, y, t) extends continuously to Ω̄ with value 0 on ∂Ω.

We want to develop a formula for the solution similar to the Poisson representation for-
mula. Therefore we begin by giving a version of Green’s representation formula. Let u
and v are two functions on Ω×R+ with appropriate regularity. Integrating Green’s second
formula from 0 to T − ϵ gives∫ T−ϵ

0

∫
Ω

v(x, T − t)△xu(x, t)−△xv(x, T − t)u(x, t) dnx dt

=

∫ T−ϵ

0

∫
∂Ω

[v(y, T − t)∇yu(y, t)−∇yv(y, T − t)u(y, t)] ·N(y) dσ(y) dt.

We need a similar formula with ∂t in place of the Laplacian so that we can combine them
and get the heat operator. Therefore we take the expression we need and integrate by
parts ∫ T−ϵ

0

∫
Ω

v(x, T − t)∂tu(x, t) d
nx dt

=

∫
Ω

v(x, T − t)u(x, t) dnx
∣∣∣T−ϵ
0

+

∫ T−ϵ

0

∫
Ω

∂tv(x, T − t)u(x, t) dnx dt∫ T−ϵ

0

∫
Ω

v(x, T − t)∂tu(x, t)− ∂tv(x, T − t)u(x, t) dnx dt

=

∫
Ω

(u(x, T − ϵ)v(x, ϵ)− u(x, 0)v(x, T )) dnx.

Combined these formulas give a Green’s second formula for the heat equation. As for the
Laplace equation, the next step is to set v(y, t) = HΩ(x, y, t). Just like in that case, we
must take care of the singularity it has at t = 0, hence the reason we only integrated up
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to time T − ϵ. Now take ϵ ↓ 0 and use Theorem 4.7 to deduce the limit. We arrive at the
following representation formula:∫ T

0

∫
Ω

(u̇(y, t)−△u(y, t))HΩ(x, y, T − t) dny dt

=

∫ T

0

∫
∂Ω

u(z, t)∇zHΩ(x, z, T − t) ·N(z) dσ(z) dt+u(x, T )−
∫
Ω

u(y, 0)HΩ(x, y, T ) d
ny.

As with the Laplace equation, inserting the boundary conditions and inhomogeneities
into this formula defines a valid solution, furnishing us with a solution to the Dirichlet
problem.

Theorem 4.15 (Solution of the Dirichlet problem). Let f be a function on Ω × (0, T ),
g a function on ∂Ω × [0, T ] and h a function on Ω which together with the open domain
Ω ⊂ Rn have appropriate regularity such that all appearing integrals converge absolutely.
Then

u(x, T ) =

∫
Ω

h(y)HΩ(x, y, T ) d
ny +

∫ T

0

∫
Ω

f(y, t)HΩ(x, y, T − t) dny dt

−
∫ T

0

∫
∂Ω

g(z, t)∇zHΩ(x, z, T − t) ·N(z) dσ(z) dt

is the unique solution of the initial and boundary value problem

u̇−△u = f on Ω× (0, T ) u = g on ∂Ω× [0, T ] u(x, 0) = h(x) on Ω.

We do not give a proof of this statement; it is similar to the proof Poisson’s representation
formula 3.21. In that proof we tried to abstract out the properties that were required for
the proof, particularly those of the normal derivative ∇G ·N . The proof of this theorem
works along similar lines, except we must deduce the properties from the definition of the
heat kernel rather than having a concrete formula for the Green’s function. Moreover the
appropriate regularity conditions for f, g, h depend on the regularity of the heat kernel,
which in turn depends on the domain. Let us instead prove some general properties of
the heat kernel to give a taste of the task.

Lemma 4.16. For any bounded open domain Ω ⊂ Rn the heat kernel is unique, if it
exists.

Proof. For each x ∈ ∂Ω let u(y, t) = HΩ(x, y, t)−Φ(x−y, t). This solves the homogeneous
heat equation with initial condition h ≡ 0 and boundary condition u(y, t) = −Φ(x− y, t)
for y ∈ ∂Ω, since HΩ(x, y, t) = 0 on the boundary. This defines a Dirichlet problem and
we know that there is at most one solution, due to Theorem 4.12.

The next property is also familiar from the Green’s functions situation.
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Lemma 4.17. For all T > 0 and x, y ∈ Ω̄ we have HΩ(x, y, T ) = HΩ(y, x, T ).

Proof. We insert u(z, t) = HΩ(x, z, t) into the above representation formula. By Theo-
rem 4.7 (iii) and the property (ii) of the heat kernel the following integral vanishes:∫

Ω

(HΩ(x, z, T )HΩ(y, z, 0)−HΩ(x, z, 0)HΩ(y, z, T )) d
nz=HΩ(x, y, T )−HΩ(y, x, T ).

This result is more important than it looks to the proof of Theorem 4.15 because we only
know that the heat kernel is (for positive time) a solution to the heat equation in y. Soon
we will have a regularity result about solutions to the heat equation. Symmetry then lets
us transfer that regularity to x, which is the variable we need to differentiate to prove u
solves the heat equation.

Lemma 4.18. For any bounded connected open domain Ω ⊂ Rn the corresponding heat
kernel is positive on the corresponding parabolic cylinder, if it exists.

Proof. The fundamental solution Φ(x, t) is positive on (x, t) ∈ Rn × R+. For bounded
open domains Ω ⊂ Rn and given x ∈ Ω the difference Φ(x − y, t) − HΩ(x, y, t) of the
fundamental solution minus the heat kernel is the unique solution of the heat equation
on Ω× [0, T ] which vanishes on Ω×{t = 0} and coincides on ∂Ω× [0, T ] with Φ(x− y, t).
This solution is for all ϵ > 0 on Ω×{t = ϵ} and on ∂Ω× [0, T ] not larger than Φ(x− y, t).
By the Maximum Principle it is not larger than Φ(x−y, t) and HΩ(x, y, t) is positive.

4.5 Heat Kernel of (0, 1)

Despite our hard work, we still haven’t actually solved the Dirichlet problem for even a
single domain Ω. It is long past time to rectify that. We begin with the simplest case
n = 1 where every open bounded domain is the union of intervals. Up to scaling and
translation then, we need only consider the unit interval (0, 1).

There are several ideas that lead to the heat kernel. The method of images will be explored
in the exercises. Here we give an argument based on the eigenfunctions. If you recall from
the beginning of the chapter, the special class of separable solutions is connected to the
eigenfunctions of the Laplacian −△. In dimension one the eigenfunctions e±2πi|k|x have
eigenvalues 4π2|k|2. If we look for eigenfunctions that vanish on the boundary, then this
is only possible if k ∈ 1

2
Z and then

hk(x) =
√
2 sin 2πkx
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is the unique solution up to scaling. This particular scaling has been chosen because it
makes these functions orthonormal with respect to the inner product on L2([0, 1]). Due
to the Stone-Weierstrass theorem, these functions are also dense in the space of functions
that vanish at x = 0, 1. But by Property (ii) of heat kernels, H(0,1) is such a function.
Therefore we expect

H(0,1)(x, y, t) =
∑
k∈ 1

2
N+

ak(x, t)hk(y).

This is essentially the Fourier series of the heat kernel. The unique solution to the homo-
geneous heat equation with hk as initial condition and vanishing for x = 0, 1 is

uk(x, t) = e−4π2k2t
√
2 sin 2πkx.

If H(0,1) is the heat kernel of (0, 1) then it must fulfil the representation for these functions.
Hence

ul(x, t) =

∫
Rn

H(0,1)(x, y, t)hl(y) d
ny + 0 + 0 =

∑
k∈ 1

2
N+

ak(x, t)

∫
Rn

hk(y)hl(y) d
ny = al(x, t).

This brings us to a formula for the heat kernel

H(0,1)(x, y, t) =
∑
k∈ 1

2
N+

ul(x, t)hk(y) =
∞∑
n=1

2e−π
2n2t sin(πnx) sin(πny).

The method of images leads to the formula

H(0,1)(x, y, t) =
1

2
Θ(x−y

2
, πit)− 1

2
Θ(x+y

2
, πit)

where Θ(x, τ) is Jacobi’s Theta function, a well-studied ‘special’ function defined by the
series

Θ(x, τ) =
∑
k∈Z

e2πikx+πiτk
2

.

This sum converges on the domain (x, τ) ∈ C × {τ ∈ C | ℑ(τ) > 0} very rapidly since
eπiτk

2
decays exponentially with respect to k2, making it useful for computation. The sine

formula for the heat kernel also has this property, but none-the-less it is useful to be able
to call on standard functions when using a program such as Mathematica or Matlab. The
Theta function is theoretically important because of its quasiperiodicity:

Θ(x+ 1, τ) = Θ(x, τ), Θ(x+ τ, τ) = Θ(x, τ)e−πiτ−2πix.

From the heat kernel on (0, 1) we can construct the heat kernel on any interval. The
fundamental solution scales according to Φ(x− y, t) = 1

rn
Φ(x

r
− y

r
, t
r2
). It is also invariant

if we translate x and y by the same amount. Since the heat kernel is unique, it must be

H(a,b)(x, y, t) = H(0,1)

(
x− a

b− a
,
y − a

b− a
,

t

(b− a)2

)
.
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This even gives us a heat kernel on cubes in Rn, since the heat kernel of the Cartesian
product of two domains can be easily calculated in terms of the heat kernels of both
domains:

Lemma 4.19. If Ω ⊂ Rm and Ω′ ⊂ Rn are two open, bounded and connected domains
with given heat kernels HΩ and HΩ′, then the heat kernel of Ω× Ω′ is given by

HΩ×Ω′((x, x′), (y, y′), t) = HΩ(x, y, t)HΩ′(x′, y′, t) (x, x′), (y, y′) ∈ Ω̄× Ω̄′ t ∈ R+.

Proof. For any (x, x′, t) ∈ Ω × Ω′ × R+ the function (y, y′) 7→ HΩ(x, y, t)HΩ′(x′, y′, t)
extends by the value zero continuously to ∂(Ω×Ω′) = (∂Ω×Ω′)∪ (Ω×∂Ω′). The Laplace
operator of the Cartesian product is the sum of the corresponding Laplace operators. We
calculate

∂t(HΩHΩ′)− (△y +△y′)HΩHΩ′ = (∂tHΩ)HΩ′ +HΩ(∂tHΩ′)− (△yHΩ)HΩ′ −HΩ(△y′HΩ′)

= (∂tHΩ −△yHΩ)HΩ′ +HΩ(∂tHΩ′ −△y′HΩ′) = 0.

Hence for all (x, x′) ∈ Ω×Ω′ the function (y, y′, t) 7→ HΩ(x, y, t)HΩ′(x′, y′, t) solves the ho-
mogeneous heat equation. The product of both fundamental solutions is the fundamental
solution on Rm+n. Hence for all (x, x′) ∈ Ω× Ω′ the function

(y, y′, t) 7→HΩ(x, y, t)HΩ′(x′, y′t)− Φ(x− y, t)Φ(x′ − y′, t)

= [HΩ − Φ(x− y, t)][HΩ′ − Φ(x′ − y′, t)]

+ Φ(x− y, t)[HΩ′ − Φ(x′ − y′, t)] + [HΩ − Φ(x− y, t)]Φ(x′ − y′, t)

extends continuously to Ω̄× Ω̄′ × R+
0 by setting it zero on (y, y′, t) ∈ Ω̄× Ω̄′ × {0}.

The minor technicality is that the boundaries of the Cartesian products (0, 1)n ⊂ Rn

are not continuously differentiable submanifolds of Rn and our proof of the divergence
theorem does not apply to these Cartesian products. However, the divergence theorem
does hold for these Cartesian products, so this is indeed only a technicality.

We close this chapter with a final result on regularity. Due to the existence of monster
solutions, we cannot hope for analyticity in the time coordinate, but we at least have
smoothness.

Corollary 4.20. Any solution u of the homogeneous heat equation on an open domain
Ω ⊂ Rn × R is smooth and for fixed t analytic with respect to x.

Proof. For any point in the domain, we can find a small cube in space and time that
contains the point. By translation, assume that the cube is [0, r]n × [0, T ] and the point
is time T . Then using the heat kernel on this domain, we obtain from the representation
formula

u(x, T ) = −
∫ T

0

∫
∂[0,r]n
u(z, t)∇zH[0,r]n(x, z, T − t) ·N(z) dσ(z) dt+

∫
[0,r]n
u(y, 0)H[0,r]n(x, y, T ) d

ny.
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It remains to show that the regularity of the heat kernel it transferred to u. This can be
calculated using the explicit formula, but we give a more conceptual argument. In the
proof of Theorem 4.7 we show that Φ(x−y, t) converges on the complement of y ∈ B(x, δ)
uniformly to zero in the limit t ↓ 0. The same is true for all partial derivatives and due
to condition (ii) in Definition 4.14 also for H(0,1)n(x, y, t). By Lemma 4.17 the integral
for u(x, T ) is smooth at all x ∈ (0, r)n. For (z, t) ∈ ∂(0, r)n × [0, T ] the Taylor series
of x 7→ H[0,r]n(x, z, T − t) converges uniformly on compact subsets of x ∈ (0, r)n to
H[0,r]n(x, z, T − t).



Chapter 5

Wave Equation

The wave equation describes phenomena which propagate with finite speed through space
time. The example of sound and electrodynamic (light) waves motivated the investigation
of this equation in n = 3, though it is also a useful model of vibrating strings and drums
in n = 1 and n = 2 respectively. Later these methods were generalised to non-linear
hyperbolic equations in order to describe gravitational waves.

In this final chapter we consider the homogeneous and inhomogeneous wave equation on
open subsets of Rn × R for n ≤ 3. In particular we study the Cauchy problem for t > 0

∂2u

∂t2
−△u = f on (x, t) ∈ Rn × R+ with

u(x, 0) = g(x) and
∂u

∂t
(x, 0) = h(x).

The wave equation is a linear second order PDE. The coefficient matrix for the second
derivatives has one positive and n negative eigenvalues and is neither definite nor semi-
definite. In the second chapter we introduced this differential equation as the simplest
hyperbolic differential equation. The general theory of hyperbolic equations is distinctly
different to that of elliptic and parabolic equations.

We see for the Cauchy problem that we have given not only the value of u on the initial
boundary but also its normal derivative. The intuition is that if you choose a point (x0, 0)
then △u(x0, 0) = △g(x0). Thus ∂2t u(x0, 0) can be determined from the PDE but not
∂tu(x0, 0). The simple example of the linear functions u(x, t) = at + b show that these
two values are indeed independent. Conversely, for smooth functions f, g, h these initial
conditions are sufficient to determine all derivatives on u at (x0, 0). For example

∂3t u(x, 0) = △∂tu(x, 0) + ∂3t f(x, 0) = △h(x) + ∂kt f(x, 0),

∂4t u(x, 0) = △∂2t u(x, 0) + ∂4t f(x, 0) = △2g(x) +△f(x, 0) + ∂4t f(x, 0).

76
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This discussion may remind you of Definition 1.6 of characteristic and non-characteristic
curves. Let’s make a brief detour to see how the method of characteristics can be gener-
alised to the wave equation for n = 1. Consider a path (x(s), t(s)) in the domain. Let us
consider how the three functions u, v = ∂tu, w = ∂xu behave along such a curve. We use
a dot for derivative with respect to s. By the chain rule u̇ = vṫ+ wẋ. The derivative for
v and w are similar to one another.

v̇ = ∂tvṫ+ ∂xvẋ, ẇ = ∂twṫ+ ∂xwẋ.

We need to relate these in such a way that we remove the direct dependence on x and
t. The equality of partial derivatives implies ∂xv = ∂tw and from the wave equation we
have ∂tv − ∂xw = 0. Substitution shows us that

v̇ = ∂tvṫ+ ∂xvẋ, ẇ = ∂xvṫ+ ∂tvẋ.

So we can equate these two expressions if ẋ = ṫ = 1 or ẋ = −ṫ = −1. Thus there are
two characteristics through every point. Unlike for crossing characteristics in first order
systems, this is not necessarily a problem. On the characteristic x − t = c we have the
system of ODEs

u̇ = v + w, v̇ − ẇ = 0.

And on the characteristic x+ t = c we have

˙̃u = ṽ − w̃, ˙̃v + ˙̃w = 0.

The tildes indicate that these functions are on different curves We see that both systems
are underdetermined (three unknowns, two equations) so there is the possibility that they
can be made to agree everywhere. The method of characteristics for higher order PDEs
leads to the celebrated theorem of Cauchy and Kowalevski (also spelt Kovalevskaya) on the
existence of PDEs with analytic coefficients. We do not pursue this line of inquiry further,
nor shall we use Fourier analysis to solve the wave equation, though both methods work
well. Instead we will use a classical method that links back to the first chapter. Hopefully
the above digression has provided some deeper insight as to why the classical method
works.

5.1 D’Alembert’s Formula

First we solve the Cauchy problem in one dimension (of space). We may factorise the
wave operator (also called D’Alembert’s operator)

∂2

∂t2
− ∂2

∂x2
=

(
∂

∂t
+

∂

∂x

)(
∂

∂t
− ∂

∂x

)
=

(
∂

∂t
− ∂

∂x

)(
∂

∂t
+

∂

∂x

)
.
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If u solves the homogeneous wave equation, then v(x, t) =
(
∂
∂t
− ∂

∂x

)
u(x, t) solves ∂v

∂t
+ ∂v
∂x

=
0. This is the transport equation with constant coefficient with the unique solution

v(x, t) = a(x− t) with a(x) = v(x, 0).

So the solution u(x, t) of the wave equation solves the first order linear PDE

∂u

∂t
− ∂u

∂x
= a(x− t).

This is an inhomogeneous transport equation with constant coefficients with the solution

u(x, t) = b(x+ t) +

∫ t

0

a(x+ (t− s)− s) ds = b(x+ t) +
1

2

∫ x+t

x−t
a(y)dy

with b(x) = u(x, 0). The initial values u(x, 0) = g(x) and ∂u
∂t
(x, 0) = h(x) yields

b(x) = g(x) and a(x) = v(x, 0) =
∂u

∂t
(x, 0)− ∂u

∂x
(x, 0) = h(x)− g′(x).

If we insert this in our solutions, then we obtain

u(x, t) = g(x+ t) +
1

2

∫ x+t

x−t
(h(y)− g′(y)) dy

Hence the solution of the initial value problem of the wave equation is given by

u(x, t) =
1

2
(g(x+ t) + g(x− t)) +

1

2

∫ x+t

x−t
h(y)dy.

Moreover, this must be the unique solution, since the transport equation has a unique
solution. In summary

Theorem 5.1 (D’Alembert’s Formula). If g : R → R is twice continuously differentiable
and h : R → R continuously differentiable, then

u(x, t) =
1

2
(g(x+ t) + g(x− t)) +

1

2

∫ x+t

x−t
h(y)dy

is a twice continuously differentiable function on R×R+
0 that is the unique solution of the

Cauchy problem of the homogeneous wave equation.

First an observation on the regularity. If solution is k-times differentiable, if g and H are
k times differentiable, or equivalently if g is k times differentiable and h is (k − 1) times
differentiable. So the regularity of the solution does not improve with time, as it does for
solutions of the heat equation.
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We interpret the fact that the value of the solution at (x, t) depends only on the values
of g at x± t and the values of h at points in the interval [x− t, x+ t] as a bound of 1 on
the speed of propagation, since the trajectories from these points to (x, t) propagate with
speed not larger than 1. A stronger statement is possible. Using an antiderivative of h
then we can write

u(x, t) = F (x+ t) +G(x− t).

Conversely, every function of this form is a solution of the wave equation if F and G are
twice differentiable (Exercise). Hence the value u(x, t) of the solution at (x, t) depends
only on the values of F and G at x ± t and the propagation speed is exactly 1. We call
this the decomposition into forward and backward travelling waves.

5.2 Solution on the half-line

While we are mainly interested in the Cauchy problem on Rn, in one dimension it is
straightforward to reflect and derive the solution on the half-line. We will need this
solution later in the chapter. Stated precisely, we solve the following problem.

∂2u

∂t2
− ∂2u

∂x2
= 0 for (x, t) ∈ R+ × R+, u(0, t) = 0 for t ∈ R+

0 ,

u(x, 0) = g(x) and
∂u

∂t
(x, 0) = h(x) for x ∈ R+.

The trick is to extend the functions g and h to odd functions on the whole space R×R+
0

by a reflection:

g̃(x) =

{
g(x) for x ≥ 0,

−g(−x) for x ≤ 0,
h̃(x) =

{
h(x) for x ≥ 0,

−h(−x) for x ≤ 0.

For any solution ũ of the initial value problem

∂2ũ

∂t2
− ∂2ũ

∂x2
= 0 for (x, t) ∈ R× R+,

ũ(x, 0) = g̃(x) and
∂ũ

∂t
(x, 0) = h̃(x) for x ∈ R,

the function (x, t) 7→ −ũ(−x, t) is also solution. Due to the uniqueness of the solution
both solutions coincide: ũ(−x, t) = −ũ(x, t). By this argument we conclude that ũ is
an odd function and ũ(0, t) = 0. Hence this solution restricts to give a solution of the
half-line problem.

Conversely, if we take a solution to the half line problem, one can check that its reflected
extension solves the Cauchy problem on Rn. The important point is the check the first
and second derivatives of the reflection exist at x = 0, but this is guaranteed by the fact
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that u vanishes there. Therefore there is a bijection between solutions of the two problems
and in particular the solution on the half-line is unique.

Explicitly the solution on the half-line is given by

u(x, t) =


1
2

(
g(x+ t) + g(x− t) +

∫ x+t
x−t h(y)dy

)
for 0 ≤ t ≤ x

1
2

(
g(t+ x)− g(t− x) +

∫ t+x
t−x h(y)dy

)
for 0 ≤ x ≤ t.

Note that the waves propagating towards the boundary at x = 0 are reflected at the
boundary and propagate back.

5.3 Spherical Means of the Wave Equation

When we studied the Laplace equation, we saw that the spherical means of its solutions
(harmonic functions) did not depend on the radius of the sphere. The spherical means of
solutions of the wave equation do depend on the radius of the sphere, but in a controlled
way. In fact they obey a PDE! This PDE is similar to the one-dimensional wave equation.
This opens an avenue to solve the initial value problem of the wave equation in any odd
dimension, though for this course we will stick to n = 3. We define for all x ∈ Rn, t ≥
0, r > 0 the spatial-spherical mean

S[u](x, r, t) := 1

nωnrn−1

∫
∂B(x,r)

u(y, t) dσ(y).

Here t is treated as an additional parameter and not integrated. With this understanding
we reuse the same notation for the spherical means. For brevity we define U(x, r, t) =
S[u](x, r, t), G(x, r) = S[g](x, r), and H(x, r) = S[h](x, r).

Lemma 5.2. If u ∈ Cm(Rn×R+
0 ) is a m-times continuously differentiable solution of the

initial value problem (with continuous partial derivatives of order ≤ m on Rn × R+
0 ) of

the Cauchy problem of the homogeneous wave equation. The spherical mean U(x, r, t) for
fixed x ∈ Rn is an m-times differentiable function on (r, t) ∈ R+ × R+, which solves the
following initial value problem of the Euler-Poisson-Darboux Equation (with continuous
partial derivatives of order ≤ m):

∂2U

∂t2
(x, r, t)− ∂2U

∂r2
(x, r, t)− n− 1

r

∂U

∂r
(x, r, t) = 0 on (r, t) ∈ R+ × R+

U(x, r, 0) = G(x, r) and
∂U

∂t
(x, r, 0) = H(x, r)

Proof. By a substitution the domain of the integral becomes independent of t and r:

U(x, r, t) =
1

nωn

∫
∂B(0,1)

u(ry + x, t) dσ(y).



CHAPTER 5. WAVE EQUATION 81

Hence we may calculate the derivative

∂U

∂r
(x, r, t) =

1

nωn

∫
∂B(0,1)

∇u(x+ ry, t) · y dσ(y)

=
r

nωn

∫
B(0,1)

△u(x+ ry, t) dny =
r

nωnrn

∫
B(x,r)

△u(y, t) dny.

In the limit at r ↓ 0, we can recognise the last expression as r
n

multiplied with the
globular mean of △u. The mean has a limit △u(x, r), which implies limr→0

∂U
∂r
(x, r, t) = 0.

Differentiating further we get

∂2U

∂r2
(x, r, t) =

∂

∂r

(
1

nωnrn−1

∫ r

0

∫
∂B(x,s)

△u(y, t) dny ds

)
=

1− n

nωnrn

∫
B(x,r)

△u(y, t) dny +
1

nωnrn−1

∫
∂B(x,r)

△u(y, t) dσ(y)

=
1− n

r

∂U

∂r
(x, r, t) + S[△u](x, r, t).

Finally, we use the wave equation to change this last term.

S[△u](x, r, t) = S[∂2t u](x, r, t) = ∂2t S[u](x, r, t) =
∂2U

∂t2
(x, r, t).

5.4 Solution in Dimension 3

We shall see that for odd dimensions the spherical means of solutions of the wave equation
can be transformed into solutions of the one-dimensional wave equation, but not for even
dimensions. For this reason we shall next solve the initial value problem of the wave
equation in three dimensions. In this section we consider for any x ∈ R3 the following
initial value problem for the spherical means of a solution of the wave equation:

∂2U

∂t2
− ∂2U

∂r2
− 2

r

∂U

∂r
= 0 on (x, r, t) ∈ {x} × R+ × R+

U = G and
∂U

∂t
= H on (x, r, t) ∈ {x} × R+ × {0}.

The substitution Ũ = rU transforms the above into the following:

∂2Ũ

∂t2
− ∂2Ũ

∂r2
= 0 on (x, r, t) ∈ {x} × R+ × R+, Ũ(x, 0, t) = 0 for t ∈ R+

0 ,

Ũ(x, r, 0) = G̃(x, r) = rG(x, r) and
∂Ũ

∂t
(x, r, 0) = H̃(x, r) = rH(x, r) for r ∈ R+.
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We solved this initial value problem in the Section 5.2. The solution is

Ũ(x, r, t) =
1

2

(
G̃(x, r + t)− G̃(x, t− r)

)
+

1

2

∫ r+t

−r+t
H̃(x, s) ds for 0 ≤ r ≤ t.

But this isn’t what we wanted. We wanted the solve the wave equation. Thus we must
undo all the transforms and recover u. The continuity of u(x, t) implies

u(x, t) = lim
r↓0

U(x, r, t) = lim
r↓0

Ũ(x, r, t)

r
.

We compute this limit for each part of the formula of Ũ .

lim
r↓0

1

2r

(
G̃(x, r + t)− G̃(x, t− r)

)
= lim

r↓0
1
2

(
G̃(x,t+r)−G̃(x,t)

r
+ G̃(x,t−r)−G̃(x,t)

−r

)
=
∂G̃(x, t)

∂t
=

∂

∂t
(tS[g](x, t)) = S[g](x, t) + t

4πt2

∫
∂B(x,t)

∇u(y) ·N dσ(y)

using Equation (3.4), and

lim
r↓0

1

2r

∫ r+t

−r+t
H̃(x, s) ds = H̃(x, t) = tS[h](x, t)

Therefore we obtain for all x ∈ R3, t > 0

u(x, t) =
1

4πt2

∫
∂B(x,t)

(
th(y) + g(y)

)
dσ(y) +

1

4πt2

∫
∂B(x,t)

∇yg(y) · (y − x) dσ(y)

using the fact that tN(y) = y− x for points y ∈ ∂B(x, t). The is Kirchhoff’s Formula for
the solution of the initial value problem of the three dimensional wave equation. We see,
like the one dimensional wave equation, that for the the three dimensional wave equation
the value at (x, t) only depends on the values (y, 0) for y ∈ ∂B(x, t). We again stylise this
fact to mean that all waves travel at speed 1.

5.5 Solution in Dimension 2

In two dimensions the Euler-Poisson-Darboux equations cannot be transformed into the
one-dimensional wave equation. We present another method, the method of descent, and
transform the initial value problem of the two-dimensional wave equation into a special
type of initial value problem of the three-dimensional wave equation: We choose initial
values which depend only on the coordinates x1 and x2 and not on the coordinate x3. If
g, h are the initial values of the 2-dimensional problem, let

ḡ(x1, x2, x3) = g(x1, x2), h̄(x1, x2, x3) = h(x1, x2).
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By the previous section, we know how to calculate the solution ū(x, t) on (x, t) ∈ R3×R+

of the initial value problem

∂2ū(x, t)

∂t2
−△ū(x, t) = 0 for (x, t) ∈ R3 × R+

ū(x, 0) = ḡ(x) and
∂ū

∂t
(x, 0) = h̄(x) for x ∈ R3.

We observe that if a function f does not depend x3 then the mean of that function over
∂B(x, r) also does not depend on x3:

∂

∂x3
S[f ](x, r) = ∂

∂x3

1

nωnrn−1

∫
∂B(0,r)

f(x+ y) dσ(y) =
1

nωnrn−1

∫
∂B(0,r)

0 dσ(y) = 0.

The solution ū is given by Kirchhoff’s formula. The second expression in that formula is
not quite a spherical mean, because the integrand also depends on x. We need to check
it directly

∂

∂x3

∫
∂B(x,t)

∇yg(y) · (y − x) dσ(y) =
∂

∂x3

∫
∂B(0,t)

∇yg(x+ y) · y dσ(y) = 0.

Together this shows that ū does not depend on x3. If we define u(x1, x2, t) = ū(x1, x2, 0, t)
then

(∂2t −△R2)u = (∂2t −△R2)ū− ∂2ū

∂x23
= (∂2t −△R3)ū = 0.

Hence we have found a solution to the two dimensional wave equation. The initial con-
ditions are clear. The choice of x3 = 0 is not important; ū is constant in x3 so any other
choice gives the same function.

Let’s try to use Kirchhoff’s formula but remove any mention of x3. We use the notation
x̄ = (x1, x2) when x = (x1, x2, x3) ∈ R3. We need to integrate over spheres. The height
function γ(z) =

√
r2 − |z − x̄|2 on the two-dimensional ball z ∈ B(x̄, r) yields by the

formula Ψ(z) = (z,±γ(z)) a parametrisations of both hemispheres of the boundary of the
three-dimensional ball B ((x̄, 0), r) by the two-dimensional ball B(x̄, r). The two hemi-
spheres do not cover ∂B((x̄, 0), r) completely, but the missing equator is one-dimensional
and has measure zero with respect to dσ(y). We have already made some calculations for
parametrisations that are graphs after Lemma 2.6, and using those formulas here gives√

det(Ψ′(z))TΨ(z) =
√

1 + (∇γ(z))2 = r√
r2 − |z − x̄|2

.

By the definition of integration over a submanifold:∫
∂B((x̄,0),r)

ḡ(y) dσ(y) = 2

∫
B(x̄,r)

g(z)
√

1 + (∇γ(z))2 d2z = 2r

∫
B(x̄,r)

g(z)√
r2 − |z − x̄|2

d2z.
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This gives finally the following formula for u(x̄, t) on (x̄, t) ∈ R2 × R+:

u(x̄, t) =
1

4πt2

∫
∂B((x̄,0),r)

(
th̄(y) + ḡ(y) +∇yḡ(y) · (y − x)

)
dσ(y)

=
1

2πt

∫
B(x̄,t)

th(z) + g(z) +∇g(z) · (z − x̄)√
t2 − |z − x̄|2

d2z.

This formula also carries the name Poisson’s formula. It shows that in two dimensions
the propagation speed is bounded by 1.

This method of deriving the solution of the initial value problem in a lower dimension
by transforming the initial value problem into an initial value problem in the higher
dimensional space, is called the method of descent. Here the initial values do not depend
on some of the coordinates of the higher dimensional space. Ponder this: can we obtain the
solution of the one-dimensional wave equation by this method of descent from Poisson’s
formula?

5.6 Inhomogeneous Wave Equation

We have seen in exercises how Duhamel’s principle can use the solution of the initial value
problem of a homogeneous time-evolution equation to solve the inhomogeneous equation.
It also applies to the wave equation, after we put it into the appropriate form: a first
order linear ODE on the function space consisting of pairs of functions on x ∈ Rn:

d

dt

(
u(·, t)
∂u
∂t
(·, t)

)
=

(
0 1
△ 0

)(
u(·, t)
∂u
∂t
(·, t)

)
+

(
0

f(·, t)

)
.

In accordance with the principle we try calculate the special solution of the inhomogeneous
wave equation

∂2u

∂t2
−△u = f for (x, t) ∈ Rn × R+

u(x, 0) = 0 and
∂u

∂t
(x, 0) = 0 for x ∈ Rn

via the family of solutions of the homogeneous wave equation whose initial values is given
by the inhomogeneity. Suppose u(x, t, s) solves

∂2u

∂t2
−△u = 0 for (x, t) ∈ Rn × (s,∞)

u(x, s, s) = 0 and
∂u

∂t
(x, s, s) = f(x, s) for x ∈ Rn,
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for any s ∈ R+, then u(x, t) =
∫ t
0
u(x, t, s) ds solves the former inhomogeneous wave

equation since

∂2u

∂t2
(x, t) =

∂

∂t

(
u(x, t, t) +

∫ t

0

∂u

∂t
(x, t, s) ds

)
=

∂

∂t

∫ t

0

∂u

∂t
(x, t, s) ds =

=
∂u

∂t
(x, t, t) +

∫ t

0

∂2u

∂t2
(x, t, s) ds = f(x, t) +

∫ t

0

△u(x, t, s) ds = f(x, t) +△u(x, t).

Consequently the initial value problem of the inhomogeneous wave equation

∂2u

∂t2
−△u = f for (x, t) ∈ Rn × R+

u(x, 0) = g(x) and
∂u

∂t
(x, 0) = h(x) for x ∈ Rn

is the sum of the former special solution with trivial initial value and the solution of the
corresponding homogeneous initial value problem.

Finally we investigate how the presence determines the past. The wave equations is invari-
ant with respect to time translation and reversal t 7→ T − t. However, this transformation
replaces ∂u

∂t
by −∂u

∂t
. Therefore the values u(x, t) of the solution of the final value problem

∂2u

∂t2
−△u = f for (x, t) ∈ Rn × R−

u(x, T ) = g(x) and
∂u

∂t
(x, T ) = h(x) for x ∈ Rn

are given by the values u(x, T − t) of the solution of the initial value problem with initial
values g and −h and inhomogeneity (x, t) 7→ f(x, T − t). This means that we can derive
both the future and the past from the presence. Both solutions fit together and form a
solution u(x, t) of the wave equation on (x, t) ∈ Rn × R which is completely determined
by its values u(x, 0) and ∂u

∂t
(x, 0) on x ∈ Rn.

5.7 Energy Methods

Unlike elliptic and parabolic PDES, hyperbolic PDEs do not satisfy a maximum principle.
The key idea of the maximum principle was the connection between the differential oper-
ator and the Hessian, to control where extrema can occur. The case that the Hessian is
never definite is exactly the elliptic PDEs and their limiting cases as the parabolic PDEs
(Theorems 3.13 and 4.11). Our calculations above however suggest that solutions of the
Cauchy problem are unique, and indeed they are. Thus we must seek a new method to
prove this. The class of techniques we are about to see go by the name “energy methods”
due to their inspiration from physics.
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Theorem 5.3 (Uniqueness of the solutions of the wave equation). Let Ω ⊂ Rn be a
bounded domain. Then the following initial values problem of the wave equation

∂2u

∂t2
−△u = f on Ω× (0, T )

u(x, t) = g(x, t) on Ω× {t = 0} and on ∂Ω× (0, T )

∂u

∂t
(x, 0) = h(x) on Ω× {t = 0}

has a unique solution in C2(Ω × (0, T )) with continuous extensions of ∂αu to Ω̄ × [0, T ]
for |α| ≤ 2.

Proof. The difference of two solutions solves the analogous homogeneous initial value
problem with f = g = h = 0. For such a solution we define the energy as

e(t) =
1

2

∫
Ω

((
∂u

∂t
(x, t)

)2

+ |∇u(x, t)|2
)
dnx.

Then we calculate

de

dt
(t) =

∫
Ω

(
∂2u

∂t2
(x, t)

∂u

∂t
(x, t) +

∂∇u
∂t

u(x, t)∇u(x, t)
)
dnx

=

∫
Ω

∂u

∂t
(x, t)

(
∂2u

∂t2
(x, t)−△u(x, t)

)
dnx = 0.

Here we applied once the divergence theorem to the vector field ∂u
∂t
∇u which vanishes at

∂Ω× [0, T ] together with u and ∂u
∂t
. Initially the energy is zero e(0) = 0. Since the energy

is non negative it stays zero for all positive times t > 0. This shows that u is constant
and vanishes on Ω× [0, T ) since it vanishes initially.

The proof gives the same conclusion if we assume that the normal derivative ∇u(x, t) ·
N(x, t) is given on ∂Ω× [0, T ] instead of the values of u(x, t).

Finally we give a simple proof that the length of the speed of propagation is bounded by
1.

Theorem 5.4. If u is any solution of the homogeneous wave equation obeying u = ∂u
∂t

= 0
on B(x0, t0) for t = 0, then u vanishes on the cone {(x, t) | |x− x0| ≤ t0 − t, t > 0}.
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Proof. Again we calculate the time derivative of the energy

e(t) =
1

2

∫
B(x0,t0−t)

((
∂u

∂t
(x, t)

)2

+ (∇u(x, t))2
)
dnx as

de

dt
(t) =

1

2

d

dt

∫ t0−t

0

∫
∂B(x0,s)

((
∂u

∂t
(x, t)

)2

+ (∇u(x, t))2
)
dσ(x) ds

=

∫
B(x0,t0−t)

(
∂2u

∂t2
(x, t)

∂u

∂t
(x, t) +

∂∇u
∂t

(x, t)∇u(x, t)
)
dnx

− 1

2

∫
∂B(x0,t0−t)

((
∂u

∂t
(x, t)

)2

+ (∇u(x, t))2
)
dσ(x)

=

∫
B(x0,t0−t)

∂u

∂t
(x, t)

(
∂2u

∂t2
(x, t)−△u(x, t)

)
dnx

+

∫
∂B(x0,t0−t)

(
∂u

∂t
(x, t)∇u(x, t) ·N(x, t)− 1

2

(
∂u

∂t
(x, t)

)2

− 1

2
(∇u(x, t))2

)
dσ(x)

=

∫
∂B(x0,t0−t)

(
∂u

∂t
(x, t)∇u(x, t) ·N(x, t)− 1

2

(
∂u

∂t
(x, t)

)2

− 1

2
(∇u(x, t))2

)
dσ(x).

Since the outer normal has length one we derive

∂u

∂t
(x, t)∇u(x, t) ·N(x, t) ≤ 1

2

(
∂u

∂t
(x, t)

)2

+
1

2
(∇u(x, t))2

with a = ∇u(x, t) and b = ∂u
∂t
(x, t)N(x, t) from the following inequality:

a · b ≤ a · b+ 1

2
(a− b) · (a− b) =

1

2
a2 +

1

2
b2.

So by ė(t) ≤ 0 the energy is monotonically decreasing. Because the energy is non-negative
and vanishes initially it stays zero for all positive times in t ∈ [0, t0]. This implies u = 0
on {(x, t) | |x− x0| ≤ t0 − t, t > 0}.

By the invariance with respect to time reversal we can also deduce the vanishing of u
on the cone {(x, t) | |x − x0| < t0 + t, t < 0} from the vanishing of u and ∂u

∂t
= 0 on

(x, t) ∈ B(x0, t0)× {0}.

Finally, let us briefly tour the energy method for the Laplace and heat equations. Suppose
that we have a solution u to the equation −△u = 0. Consider what happens if we multiply
this by u and integrate:

0 =

∫
Ω

−△uu dnx =

∫
Ω

|∇u|2 dnx.
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By the fundamental lemma of the calculus of variations, we know that the integrand is
zero, i.e. u is constant. If we further know that u is zero on the boundary, then we have
that u ≡ 0. This idea is strong enough to show the uniqueness of the solution of the
Dirichlet problem. In fact, Dirichlet’s insight was that the unique solution of Dirichlet’s
Problem solves the following variational problem:

Dirichlet’s Principle 5.5. Let Ω ⊂ Rn be bounded and open and obey the assumptions of
the Divergence Theorem. For continuous real functions f on Ω̄ and g on ∂Ω the solution
u of the Dirichlet Problem 3.14 is the minimizer of the following functional:

I : {w ∈ C2(Ω̄) | w|∂Ω = g} → R, w 7→ I(w) =

∫
Ω

(
1

2
∇w · ∇w − wf

)
dnx.

Proof. Let u be a solution of the Dirichlet Problem and w another function in the domain
{w ∈ C2(Ω̄) | w|∂Ω = g} of I. An integration by parts yields

0 =

∫
Ω

(−△u− f)(u− w) dnx =

∫
Ω

(∇u · ∇(u− w)− f(u− w)) dnx.

∫
Ω

(∇u · ∇u− fu) dnx =

∫
Ω

(∇u · ∇w − fw) dnx ≤

≤
∫
Ω

1

2
∇u · ∇u dnx+

∫
Ω

(
1

2
∇w · ∇w − fw

)
dnx

Here we used the Cauchy-Schwarz inequality:∫
Ω

∇u · ∇w dnx ≤
∫
Ω

∇u · ∇w dnx+
1

2

∫
Ω

(∇u−∇w) · (∇u−∇w) dnx =∫
Ω

1

2
∇u · ∇u dnx+

∫
Ω

1

2
∇w · ∇w dnx.

This shows I(u) ≤ I(w).

If, conversely, u is a minimum, then all v ∈ C2(Ω̄) which vanish on ∂Ω obey

0=
d

dt
I(u+ tv)

∣∣∣∣
t=0

=
d

dt

(
I(u) + t

∫
Ω

(∇u · ∇v − fv) dnx+
t2

2

∫
Ω

∇v · ∇v dnx

)∣∣∣∣
t=0

=

∫
Ω

(∇u · ∇v − fv) dnx =

∫
Ω

(−△u− f)v dnx.

The final integration by parts shows −△u = f on Ω.

This result naturally suggests a way of showing the existence of a solution to the Dirichlet
problem for the Poisson equation, namely to show that there is a function that achieves
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this minimum, and indeed this is the proof that was offered by Dirichlet. There are some
subtleties however, and one must choose a larger class of functions than C2(Ω̄) (typically a
Sobolev space). It also goes by the name “the direct method of the calculus of variations”.

In analogy to the Laplace equation one can show the uniqueness for the heat equation.
From intuition, the energy of a solution to the heat equation should be proportional to
the total temperature, which we know is conserved. However we have seen that it is
important to have positive functions, so that we can conclude that the function is zero if
the integral is. Therefore we look at a simple positive quantity and define

e(t) =

∫
Ω

u2(x, t) dnx.

If u solves the homogeneous heat equation and vanishes at the boundary of Ω, then this
functional is monotonically decreasing with respect to time:

ė(t) = 2

∫
Ω

u(x, t)u̇(x, t) dnx = 2

∫
Ω

u(x, t)△u(x, t) dnx = −2

∫
Ω

|∇u(x, t)|2 dnx ≤ 0.

If u(x, t) vanishes at t = 0, and if u(·, t) and ∇u(·, t) are square integrable for t > 0, then
u vanishes identically since ∇u(·, t) vanishes and u(·, t) is constant for t > 0.



Chapter 6

Literature

This script derives from the script of Prof Martin Schmidt and I am very thankful to have
had such a strong base from which to work.

In PDEs there are two gospels: Evans’ “Partial Differential Equations” and Gilbarg-
Trudinger’s “Elliptic Partial Differential Equations of Second Order”. The later is focused
on general elliptic theory, which is not the focus in this course. So for the student who
want to dig deeper I would recommend Evans.

Overall, our course is most similar to Han’s “A Basic Course in Partial Differential Equa-
tions”. There are also a number of other sources that might be a useful supplement for
particular sections of the script. We have mentioned Lars Hörmander’s “Linear Partial
Differential Operators” with respect to distributions. I also drew from Eskin’s “Lectures
on Linear Partial Differential Equations” for the material on Fourier analysis. As you
might have deduced, there are a great many textbooks that cover the material and many
of them are good; find one that speaks to you.
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