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Introduction to Partial Differential Equations

Exercise sheet 14

42. Method of Descent

In this exercise we will apply the method of descent to solve the wave equation on R2 for

a particular set of initial conditions. The idea is to help you understand the key ideas and

notation of the method. It is a combination of results from Sections 5.1–5.

Consider the wave equation on R2 with initial conditions

∂2
t u−∆u = 0 on (x, t) ∈ R2 × (0,∞),

u(x, 0) = g(x) = χ[0,∞)(x1), ∂tu(x, 0) = h(x) = 0.

(a) Suppose u is a solution of the wave equation for n = 2. Why does (x1, x2, x3, t) 7→
u(x1, x2, t) solve the wave equation on R3? (note, the Laplacians are different in differ-

ent dimensions). (1 point)

(b) Conversely, prove that a solution ū to the 3-dimensional wave equation that does not depend

on x3 gives a solution to the 2-dimensional wave equation. (1 point)

(c) By (a) and (b), we now must solve a wave equation on R3. The key to solving the 3-

dimensional wave equation is to consider the (spatial-)spherical means

U(x, t, r) =
1

4πr2

∫
∂B(x,r)

ū(z, t) dσ(z),

and likewise let G and H be the spherical means of ḡ and h̄ respectively. Explain why

ḡ(x1, x2, x3) = χ[0,∞)(x1) and h̄ = 0 (or give the definition of bar). Show that

G(x, r) =


0 for x1 ≤ −r

1
2
x1+r
r for |x1| ≤ r

1 for r ≤ x1

and H(x, r) = 0.

You may use the following geometric fact: for −R < a < b < R, the surface area of the

part of the sphere ∂B(0, R) with a < x1 < b is 2πR(b− a). (4 points)

(d) We know by Lemma 5.2 that U obeys the Euler-Poisson-Darboux equation. Let Ũ(x, t, r) :=

rU(x, t, r). Show that Ũ obeys the following PDE

∂2
t Ũ − ∂2

r Ũ = 0 on (t, r) ∈ [0,∞)× [0,∞),

Ũ(x, 0, r) = rG(x, r), ∂tŨ(x, 0, r) = rH(x, r).

Note that there are no x-derivatives in this PDE, so we can think of it as a family of PDEs

in the variables r, t parametrised by x. (2 points)

(e) Thus we see that Ũ obeys the 1-dimensional wave equation on the half-line r ∈ [0,∞). This

is solved by a trick using reflection, and the formula is at the end of Section 5.2. We only

need the solution for small r, so it is enough to consider the case 0 ≤ r ≤ t. In this case,
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show

Ũ(x, t, r) =



0 for x1 ≤ −(t+ r)

1
4(x1 + t+ r) for − (t+ r) ≤ x1 ≤ −(t− r)

1
2r for |x1| ≤ t− r

1
4(x1 − t+ 3r) for t− r ≤ x1 ≤ t+ r

r for x1 ≥ t+ r.

(4 points)

(f) Recover ū from Ũ using a certain property of spherical means. (3 points)

Observe that ū does not depend on x3. So by part (b) we have a solution to the 2-dimensional

wave equation:

u(x1, x2, t) =



0 for x1 < −t

0.25 for x1 = −t

0.5 for − t < x1 < t

0.75 for x1 = t

1 for x1 > t.

This solution has jump discontinuities, but this is unsurprising since the initial conditions also

had them.

43. Wave energy modes

Let us work with n = 1 for simplicity. If we apply the Fourier transform to the wave equation,

we arrive at
∂2û

∂t2
+ 4π2k2û = 0.

This leads us to define the spectral energy density

2E(k, t) :=
∣∣∣∣∂û∂t

∣∣∣∣2 + 4π2k2 |û|2 .

(a) Through calculation, show that E is constant in t. Note that û is a complex valued function

and it is important to respect complex conjugation: |g|2 = gḡ. (1 point)

(b) Consider a complex valued function g and its conjugate h = ḡ. Prove that ĥ(k) = ĝ(−k).

(1 point)

(c) Using an equation on page 64 for the script, establish Plancherel’s theorem (1 point)∫
R
|h|2 dx =

∫
R
|ĥ|2 dk.

(d) Use this to show that the energy of a wave is constant. (2 points)
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