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Introduction to Partial Differential Equations

Exercise sheet 9

27. It’s not easy being green

Suppose that Ω is a bounded domain. Prove that there is at most one Green’s function on Ω.

(3 points)

On the other hand, suppose that Ω has a Green’s function GΩ and that there exists a non-trivial

solution to the Dirichlet problem

∆u = 0, u|∂Ω = 0.

Construct a second Green’s function for Ω. (2 points)

Solution. Suppose that we have two Green’s functions G and G′. Fix x ∈ Ω. Then

y 7→ G(x, y)−G′(x, y) = [G(x, y)− Φ(x− y)]− [G′(x, y)− Φ(x− y)]

is harmonic and vanishes on the boundary ∂Ω. By the maximum principle, this must be zero.

Hence G = G′.

If u is the non-trivial solution, then GΩ(x, y) + u(y) is another Green’s function.

28. Do nothing by halves

Let H+
1 = {x = (x1, . . . , xn) ∈ Rn | x1 > 0} be the upper half-space and H0

1 = {x =

(x1, . . . , xn) ∈ Rn | x1 = 0} the dividing hyperplane. We call R1(x) = (−x1, x2, . . . , xn) re-

flection in the plane H0.

(a) A reflection principle for harmonic functions Let u ∈ C2(H+
1 ) be a harmonic function

that vanishes on H0
1 . Show that the function v : Rn → R defined through reflection

v(x) =

u(x) for x1 ≥ 0

−u(R1(x)) for x1 < 0

is harmonic. (4 points)

(b) Green’s function for the half-space Show that Green’s function for H+
1 is

G(x, y) = Φ(x− y)− Φ(R1(x)− y).

(3 points)

(c) Green’s function for the half-ball Compute the Green’s function for B+. (3 points)

Hint. Make use of both the Green’s function for the ball 3.20 and part (b).

Solution.

(a) One could try to show directly that v is harmonic. Clearly it is when x1 ̸= 0, and it

is possible to compute the necessary derivatives when x1 = 0. However, there is a more

general method using the uniqueness of the solution to the Dirichlet problem on the ball.

Fix any radius r > 0 and consider the ball Br. Let g = v|∂Br be the restriction of this

function to the sphere. This is continuous, in particular when x1 = 0. There is a unique
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solution ṽ to the Laplace equation ∆ṽ = 0 with ṽ|∂Br = g. We see that −ṽ ◦ R1 is also a

solution to this equation, thus ṽ = −ṽ ◦R. This implies that ṽ vanishes on Br ∩H0
1 .

Now consider ṽ − u. This is also a harmonic function on Br ∩ H+
1 , and moreover it is

identically zero on ∂(Br ∩ H+
1 ). The maximum principle says it has to be zero on all of

Br ∩H+
1 . Thus ṽ = u on Br ∩H+

1 and by reflection ṽ = v on Br. By taking r larger and

larger, we see that equality holds for all points of the plane.

(b) Let Φ be the fundamental solution to the Laplace equation. Let G(x, y) be the Green’s

function for H+
1 . The required properties are (1) that for any x ∈ H+

1 the function G(x, y)−
Φ(x−y) is a harmonic function of y and (2) that for any x ∈ H+

1 we have limy→H0
1
G(x, y) =

0. We saw for the unit ball that the Greens function was a difference of the fundamental

solution and its reflection across the boundary of the ball. That way, the two cancelled on

the boundary and gave the second property. So let use try

G(x, y) = Φ(x− y)− Φ(R1(x)− y).

The first property is satisfied because Φ(R1(x) − y) is only not harmonic when y = R(x),

and for x ∈ H+
1 this only occurs when y ∈ H−

1 . To show the second property, note that

Φ(z) is radially symmetric. Since ∥R(x)− y∥ = ∥x−R1(y)∥, for any y ∈ H0 we have

G(x, y) = Φ(x− y)− Φ(x−R1(y)) = Φ(x− y)− Φ(x− y) = 0.

Thus we have shown that G is the Greens function.

(c) To discuss the Greens function for the half-ball, we should introduce a symbol for inversion

in the sphere, ι(x) := |x|−2x. We know from lectures then

GB(x, y) = Φ(x− y)− Φ(|x|(ι(x)− y)).

Following the ideas of the previous question, we guess that the Greens function for the

half-ball is the reflection of this one

G(x, y) = Φ(x− y)− Φ(|x|(ι(x)− y))− Φ(R(x)− y) + Φ(|x|(ι(R(x))− y)).

If both x, y ∈ B+ then ι(x)− y, R(x)− y, and |x|(ι(R(x))− y) are never zero, so G(x, y)−
Φ(x, y) is harmonic. The boundary of B+ has two parts B0 and ∂B+∩H+. If y ∈ B0 then

G(x, y) = Φ(x− y)− Φ(|x|(ι(x)− y))− Φ(x−R(y)) + Φ(|x|(R(ι(x))− y))

= Φ(x− y)− Φ(|x|(ι(x)− y))− Φ(x− y) + Φ(|x|(ι(x)− y)) = 0.

On the other hand, if y ∈ ∂B+ ∩H+ is in the hemispherical part, then ∥|x|(ι(x) − y)∥ =

∥x− y∥ as in the lecture notes, but also ∥|x|(ι(R(x))− y)∥ = ∥R(x)− y∥, so

G(x, y) = [Φ(x− y)− Φ(|x|(ι(x)− y))]− [Φ(R(x)− y)− Φ(|x|(ι(R(x))− y))] = 0.
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29. Teach a man to fish

(a) Using the Green’s function of H+
1 from the previous question, derive the following formal

integral representation for a solution of the Dirichlet problem ∆u = 0 in H+
1 , u|H0

1
= g

u(x) =
2x1
nωn

∫
H0

1

g(z)

|x− z|n
dσ(z)

Here, ‘formal’ means that you do not need to prove that the integrals are finite/well-defined.

(3 points)

(b) Show that if g is periodic (that is, there is some vector L ∈ Rn−1 with g(x+ L) = g(x) for

all x ∈ Rn−1) then so is the solution. (2 points)

(c) Now consider the plane n = 2 with g function with compact support. Approximate the

value of u(x) for large |x|. Feel free to modify this question as you see fit, what interesting

things can you say about the growth of u? (Bonus Points as deserved)

Solution.

(a) Begin with Greens Representation formula

u(x) = −
∫
H+

GH+(x, y)∆yu(y) dy −
∫
H0

u(z)∇zGH+(x, z) ·N dσ(z).

The function u is harmonic, so the first integral vanishes. For the second term,

∇zGH+(x, z) = −∇zΦ(x − z) + ∇zΦ(R(x) − z) and we already computed the gradient

of the fundamental solution in Theorem 3.2: ∇Φ(y) = − 1
nωn

y
|y|n . The normal is also easy

to describe, it points in the negative x1 direction: N = (−1, 0, . . . , 0). Therefore

u(x) = −
∫
H0

g(z)
1

nωn

[
x− z

|x− z|n
− R(x)− z

|R(x)− z|n

]
· (−1, 0, . . . , 0) dσ(z)

=
1

nωn

∫
H0

g(z)

[
x1 − z1
|x− z|n

− −x1 − z1
|x− z|n

]
dσ(z)

=
2x1
nωn

∫
H0

g(z)

|x− z|n
dσ(z).

(b) Consider u(x+ L) and use the change of coordinates y = z − L

u(x+ L) =
2x1
nωn

∫
H0

g(z)

|x+ L− z|n
dσ(z) =

2x1
nωn

∫
H0

g(y + L)

|x− y|n
dσ(y) = u(x).

(c) We will suppose that g is positive. In general you can decompose g into two positive

functions g = g+ − g− consider two boundary value problems v = g+ and w = g− on H0.

Then u = v − w solves the original boundary value problem.

One possible upper bound is

u(x) =
x1
π

∫
R

g(z)

x21 + (x2 − z)2
dz ≤ x1

π

∫
R

g(z)

x21
dz =

1

πx1

∫
R
g(z) dz.
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Here is a way to get a lower bound too. Since g has compact support, it is supported in an

interval [−R,R]. For |x| > R and z ∈ [−R,R] we have that |x| − R ≤ |x − z| ≤ |x| + R.

This leads to the bounds

x1
π(|x|+R)2

∫
R
g(z) dz ≤ u(x) ≤ x1

π(|x| −R)2

∫
R
g(z) dz.

In particular, we see that for x1 small and x2 > R large that u grows approximately linearly

in x1, with gradient dependent on the total mass of g. On the other hand, for fixed x1 we

see that it falls off with the inverse square of x2.
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