
Ross Ogilvie 18th September, 2023

Introduction to Partial Differential Equations

Exercise sheet 3

7. Royale with Cheese

Recall Burgers’ equation from Example 1.5 of the lecture script:

u̇+ u∂xu = 0,

for u : R × R → R. In this question we will apply the method of characteristics to solve this

equation for the initial condition g(x) = x.

(a) According to Theorem 1.4, there is a unique C1 solution to this initial value problem, at

least when t is small. For how long does the theorem guarantee that the solution exists

uniquely? (1 point)

(b) Suppose that u is a solution to this equation and suppose that (x(s), t(s)) is a path in the

domain of u. What is the s derivative of u along this path? What constraints should we

place on the derivatives of x and t? (2 points)

(c) On an (x, t)-plane, draw the characteristics and describe the behaviour of this solution.

(2 points)

(d) Finally, derive the following solution to the initial value problem: (2 points)

u(x, t) =
x

1 + t
.

(e) Is this solution well-defined? Check by substitution that actually solves the initial value

problem. (2 points)

(f) Why is the method of characteristics well-suited to solving first order PDEs that are linear

in the derivatives? (1 point)

Solution.

(a) The condition in the theorem depends on the bound f ′′(g(x))g′(x) ≥ −α. For this equation,

both f ′′(u) = 1 and g′(x) = 1, so the product is bound below easily by α = 0. Hence the

theorem says that the unique solution exists for all time.

(b) By the chain rule,

d

ds
u(x(s), t(s)) =

∂u

∂x

dx

ds
+

∂u

∂t

dt

ds
=

dt

ds
u̇+

dx

ds
∂xu.

If we compare this to the PDE, then we see that we should choose t′ = 1, i.e. t = s + t0,

and x′ = u. Because the initial condition is t = 0, we choose t0 = 0.

(c) With the choice made in the previous part, the function u is constant along the character-

istic. Therefore we have x′ = g(x0) = x0, which integrates to x(s) = x0s+ x0. We already

computed in the previous part t(s) = s. The characteristics are the rays x = x0t + x0 for

x0 ∈ R. The solution takes the value x0 on the corresponding ray. We can see that the

‘mass’ (the conserved quantity) is flowing away from the origin.
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(d) We have see that the characteristic has the equation

x = x0 + x0t = x0(1 + t),

and that u is constant along the characteristic. In other words, we know that for all x0 and

t

u(x(t), t) = u(x0(1 + t), t) = g(x0) = x0.

We have now found the solution in implicit form. To make it explicit, rearrange the relation

x = x0(1 + t). Then

u(x, t) = x0 =
x

1 + t
.

(e) The solution is clearly well defined for t > 0 and all x. We compute

u̇ = − x

(1 + t)2
, ∂xu =

1

1 + t
.

Thus we see that the partial differential equation is solved. As too is the initial value

u(x, 0) = x = g(x).

(f) Because such PDEs resemble the chain rule. Hence we can identity the derivatives x′i(s) of

the path with the coefficient functions in PDE and reduce it to a system of ODEs.

8. Solving PDEs Solve the initial value problems of the following PDEs using the method of

characteristics. You may assume that g is continuously differentiable on the corresponding

domain.

(a) x1∂2u− x2∂1u = u on the domain x1, x2 > 0, with initial condition u(x1, 0) = g(x1).

(3 points)

(b) x1∂1u + 2x2∂2u + ∂3u = 3u on x1, x2 ∈ R, x3 > 0, with initial condition u(x1, x2, 0) =

g(x1, x2).

(3 points)

(c) u∂1u+ ∂2u = 1 on the domain x1, x2 > 0, with initial condition u(x1, x1) =
1
2x1.

(4 points)

Solution. These PDEs are all quasi-linear (discussed in class), so we may use the simplified

form of the equations of the method of characteristics.

(a) This PDE is (−x2, x1) · p− z = 0. The system of ODEs therefore reads in part

ẋ1 = −x2, ẋ2 = x1,

which is the well know system solved by the sinusoidal functions. From the boundary

condition (x1, 0), we should choose x20 = 0. Therefore x2 = x10 sin s and x1 = x10 cos s
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are the characteristics. Given a point (x1, x2) we can determine the parameters of the

characteristics as

s = arctan(x2/x1), x10 =
√
x21 + x22 = |x|.

The ODE describing the values of u is ż = z, which has the solution z(s) = esz(0). From

the initial condition

z(0) = u(x(0)) = u(x10, 0) = g(x10).

Putting this together

u(x) = earctan(x2/x1)g(|x|).

(b) From F = (x1, 2x2, 1) · p− 3z it follows that

x(s) = (x10e
s, x20e

2s, x30 + s) = (x10e
s, x20e

2s, s),

where we choose our starting points for the characteristics to lie in the case of the initial

conditions, which requires us to set x30 = 0. Already we can determine the appropriate

parameter values for any point: s = x3, x10 = x1e
−x3 , and x20 = x2e

−2x3 . The the equation

for the values is z = z(0)e3s, so

u(x) = e3su(x10, x20, 0) = e3x3g
(
x1e

−x3 , x2e
−2x3

)
.

(c) This PDE, F = (z, 1) · p − 1 is a little different to the others, because of the z in the

coefficients of p. This creates a linkage in the system of ODEs:

ẋ1 = z, ẋ2 = 1, ż = 1.

Fortunately, we can solve for z first this time quite easily: z(s) = s + z(0). Then x(s) =

(12s
2 + sz(0) + x10, s+ x20). Choose x20 = x10. This choice means that x10 = x2 − s. The

initial conditions give z(0) = u(x(0)) = u(x10, x10) =
1
2x10. Together this allows us to solve

for s:

x1 =
1

2
s2 + s

1

2
(x2 − s) + x2 − s

x1 − x2 =
1

2
x2s− s

s =
2x1 − 2x2
x2 − 2

.

Finally, what we are interested in is the value of the solution u on these curves, and

u(x(s)) = z(s) = s+ z(0) = s+ 1
2(x2 − s), ie

u(x) =
1

2
x2 +

1

2

2x1 − 2x2
x2 − 2

.
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