
Ross Ogilvie 4th September, 2023

Introduction to Partial Differential Equations

Exercise sheet 1

This exercise sheet is revision and does not count towards the exercise points. But please feel free to

attempt them (before or after the tutorial) and submit them for correction any way.

1. Chain rule in multiple variables Recall the chain rule for functions of multivariable variables

(Satz 10.4(iii) in Schmidt’s Analysis II script): Let f : U ⊂ X → Y be differentiable at x0 ∈ U

and g : V ⊂ Y → Z be differentiable at f(x0) ∈ f [U ] ⊂ V . Then g ◦ f is differentiable at x0 and

(g ◦ f)′(x0) = g′(f(x0)) ◦ f ′(x0).

(a) Why does this chain rule above use function composition, when the chain rule for functions

of a single variable uses multiplication? i.e.

d

dx
(x2 + 1)3 = 3(x2 + 1)2 · 2x. = 6x(x2 + 1)2.

(b) Suppose that u : Rn → R and x : R → Rn. Express the chain rule with partial derivatives

to show that
d

dt
u(x(t)) =

n∑
i=1

∂u

∂xi

dxi
dt

.

(c) Write the above formula in terms of gradients and dot products.

(d) Consider the function u(x, y) = x2 + 2y and the polar coordinates x = r cos θ, y = r sin θ.

Compute the radial and angular derivatives of u.

(e) Consider a scalar function F : Rn × R × Rn → R of 2n + 1 variables and a function

u : Rn → R. Write an expression for the derivative of F (∇u(x), u(x), x) with respect to x1.

Solution.

(a) In Analysis II we considered the derivative at each point as a linear map. When you

write a linear map as a matrix, then composition of linear maps corresponds to matrix

multiplication. In the case of single variable functions, the matrices have only a single

entry and so the matrix multiplication is just multiplying the two derivative expressions.

(b) Applying the chain rule, with the derivatives written as matrices:

(u ◦ x)′(t) = u′(x(t)) ◦ x′(t) =
[

∂u
∂x1

(x(t)) ∂u
∂x2

(x(t)) . . . ∂u
∂xn

(x(t))
]


dx1
dt (t)
dx2
dt (t)
...

dx2
dt (t)


=

n∑
i=1

∂u

∂xi
(x(t))

dxi
dt

(t)

(c) The function x is a single-variable vector-valued function. Therefore x′ : R → Rn is vector-

valued too. On the other hand, u is a function of multiple variables but gives a scalar. The

gradient of a scalar function has the same inputs, but is vector-valued:

∇u : Rn → Rn,
[

∂u
∂x1

(x) ∂u
∂x2

(x) . . . ∂u
∂xn

(x)
]
,

which is also vector valued. We seen then that du
dt = ∇u · x′.
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(d) We can use either of the formulas from (b) or (c). We get

∂ru = (2x)(cos θ) + (2)(sin θ) = 2r cos2 θ + 2 sin θ

∂θu = (2x)(−r sin θ) + (2)(r cos θ) = −2r2 sin θ cos θ + 2r cos θ.

(e) Let us write the variables of F as F (p, u, x), where p and x are vectors. We can see here

that u is both the name of an input of F and a function in its own right. This ambiguity is

standard, and usually avoids introducing many extra variables. We do introduce a separate

letter for the p variable however, rather than trying to write derivatives of F with respect

to components of ∇u. If we consider x2, . . . , xn as constants, which is the idea of a partial

derivative then we can write the composition as F ◦G for G(x1) = (∇u(x), u(x), x) ∈ R2n+1.

The advantage now is that this is the form in part (b) and (c) and we can use that version

of the chain rule instead of the full matrix form. We compute

dF

dx1
=

n∑
i=1

∂F

∂pi

∂(∇u)i
∂x1

+
∂F

∂u

∂u

∂x1
+

n∑
i=1

∂F

∂xi

∂xi
∂x1

=
n∑

i=1

∂F

∂pi

∂

∂x1

(
∂u

∂xi

)
+

∂F

∂u

∂u

∂x1
+

∂F

∂x1

=

n∑
i=1

∂F

∂pi

∂2u

∂x1∂xi
+

∂F

∂u

∂u

∂x1
+

∂F

∂x1
.

2. Contour Diagrams

Consider the function f : {(t, x) ∈ R2 | t ≥ 0} → R defined by f(t, x) = arctan (t− x2).

(a) Draw a contour diagram for this function. A contour is another word for a level set f−1[{c}].

(b) What is the maximum and minimum of this function?

(c) What is the behaviour of this function for large values of t?

Solution.

(a) The level set f−1[{c}] of this function is the curve t− x2 = tan c. This is a parabola.

(b) For a fixed value of t this function has a maximum at x = 0 of arctan t since arctan is an

increasing function. It has no minimum, but tends to −π/2 as x → ±∞.

(c) The limit of this function as t → ∞ is not so well-defined. For a fixed value of x, it tends

to π/2 (the pointwise limit). If we move along the level set as we take t → ∞ then clearly

the value of f is not changing. It does not converge in L1.
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3. Multiindices and the Generalised Leibniz rule In this question we introduce multiindex

notation. A multiindex of n variables is a vector γ ∈ Nn
0 .

(a) Let x = (x1, x2, x3) be coordinates on R3. Write out the full expression for the derivative

∂(0,2,1).

(b) Why do we need to assume that partial derivatives commute for multiindex notation to be

useful?

(c) Which multiindices satisfy |γ| ≤ 2 and which satisfy γ ≤ (0, 2, 1)?

Solution.

(a) ∂(0,2,1) = ∂0
1∂

2
2∂

1
3 = ∂2

2∂3 = ∂2

(∂x2)2
∂

∂x3
. The lower number is the coordinate and the upper

number is the order of the derivative. The zeroth order derivative is just the function itself.

(b) The multiindex notation applies the partial derivatives in a certain order. It does not have

the capacity to express the same derivatives applied in a different order, for example the

difference between ∂1∂2 and ∂2∂1. So, to be useful, this order must not make a difference,

i.e. the partial derivatives must commute.

(c) The multiindices with |γ| ≤ 2 are

order 0 : (0, 0, 0),

order 1 : (1, 0, 0), (0, 1, 0), (0, 0, 1),

order 2 : (2, 0, 0), (1, 1, 0), (1, 0, 1), (0, 2, 0), (0, 1, 1), (0, 0, 2).

As well has having a ‘level’ structure coming from the order of the multiindex, there is

an ordering between some multiindices: γ ≥ δ if and only if γ − δ ∈ N+
0 . For example

(0, 2, 1) ≥ (0, 1, 1) because (0− 0, 2− 1, 1− 1) ∈ N+
0 . On the other hand (1, 0, 1) ̸≥ (0, 1, 0)

because (1,−1, 1) ̸∈ N+
0 . Note also that (0, 1, 0) ̸≥ (1, 0, 1). We say in this case that the

two multiindices are incomparable. The multiindices with γ ≤ (0, 2, 1) are

order 0 : (0, 0, 0),

order 1 : (0, 1, 0), (0, 0, 1),

order 2 : (0, 2, 0), (0, 1, 1),

order 3 : (0, 2, 1).
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