Martin Schmidt Ross Ogilvie

45. 1D Waves.

(a) Show that the a smooth function $u = u(\zeta, \eta) : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is a solution to $\partial_{\zeta \eta} u = 0$ exactly when it is of the form $u(\zeta, \eta) = F(\zeta) + G(\eta)$, for smooth functions $F, G : \mathbb{R} \to \mathbb{R}$.

(b) Under the parameterisation $\zeta = x + t, \eta = x - t$, show that u obeys the one dimensional wave equation $(\partial_{tt} - \partial_{xx})u = 0$ exactly when it solves the PDE in (a). (3 points)

(c) From parts (a) and (b), derive D'Alembert's formula. (2 points)

46. Faster!

How should you modify D'Alembert's formula for this situation?

$$\begin{cases} \partial_{tt}u - a^2 \partial_{xx}u = 0\\ u(x,0) = g(x)\\ \partial_t u(x,0) = h(x), \end{cases}$$

Solve this for the initial data a = 2, $g(x) = \sin(x)$ and h(x) = 1. (5 points)

47. The energy of solutions of the wave equation.

Let $g, h : \mathbb{R} \to \mathbb{R}$ be smooth functions and $u : \mathbb{R} \times \mathbb{R}_{\geq 0} \to \mathbb{R}$ be a solution to the initial value problem

$$\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = 0, \quad u(\cdot,0) = g, \quad \text{and} \quad \frac{\partial u}{\partial t}(\cdot,0) = h.$$

We define k(t) and p(t), called respectively the *kinetic energy* and the *potential energy* of the solution at time t, by the formulae

$$k(t) := \frac{1}{2} \int_{-\infty}^{\infty} \left(\frac{\partial u}{\partial t}(x,t) \right)^2 dx \quad \text{and} \quad p(t) := \frac{1}{2} \int_{-\infty}^{\infty} \left(\frac{\partial u}{\partial x}(x,t) \right)^2 dx.$$

- (a) Consider the standing sinusoidal wave $u(x,t) = \sin t \sin x$. Compute its kinetic and potential energy on the interval $[0,\pi]$. (2 points)
- (b) (Conversation of energy.) Suppose the total energy E(t) = k(t) + p(t) is finite. Show that it is constant over time. (3 points)
- (c) Prove that solutions with finite energy to this initial value problem are unique (if they exist). (3 points)

We now suppose that the initial conditions g, h have compact support.

(c) Show that $u(\cdot, t)$ has compact support for every t > 0. Hence the total energy is finite.

(2 points)

(d) Show that for sufficiently large t, the functions k(t) and p(t) are each constant.

(3 points)