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39. Maximum Heat.

In this exercise we extend Theorem 3.13 to the heat equation. Suppose that u is a twice

continuously differentiable function with u̇−∆u ≤ 0 on a bounded domain Ω. By compactness,

u obtains a maximum on Ω. We will prove that the maximum is obtained on the parabolic

boundary.

Recall from following piece of linear algebra from Theorem 3.13: if the Hessian of v is negative

semidefinite then ∆v ≤ 0. This is similar to Exercise 29.

(a) Suppose first that u̇ − ∆u < 0 on Ω. Let (x0, t0) ∈ ΩT be a maximum of u. Why do we

know that u̇(x0, t0) = 0? Consider v(x) = u(x, t0) and argue that we have a contradiction

(apply the second derivative test to v). (2 points)

(b) Continue the supposition that u̇ −∆u < 0 on Ω. Suppose now that the maximum occurs

at (x0, T ). Argue that this also leads to a contradiction. (2 points)

(c) Therefore, if u̇ −∆u < 0 on Ω then the maximum is obtained on the parabolic boundary.

Suppose now that u̇−∆u ≤ 0. Set uε(x, t) = u(x, t)− εt. Use an argument similar to the

one in Theorem 3.13 to show that u takes its maximum on the parabolic boundary.

(2 points)

(d) A monotonicity property For j ∈ {1, 2} let fj : Ω × (0, T ) → R, hj : Ω → R, and gj :

∂Ω × [0, T ] → R be smooth functions, and likewise let uj : Ω × (0, T ) → R be smooth

functions with continuous extensions to the boundary that satisfy
u̇j −∆uj = fj on Ω× (0, T )

uj(x, 0) = hj(x) on Ω

uj = gj on ∂Ω× [0, T ].

Suppose further that f1 ≤ f2, g1 ≤ g2, and h1 ≤ h2. Show in this case that u1 ≤ u2 as well.

(2 points)

40. Heat death of the universe.

First a corollary to Theorem 4.3:

(a) Suppose that h ∈ Cb(Rn) ∩ L1(Rn) and u is defined as in Theorem 4.3. Show

sup
x∈Rn

|u(x, t)| ≤ 1

(4πt)n/2
∥h∥L1 .

(2 points)

The above corollary shows how solutions to the heat equation on Rn × R+ with such initial

conditions behave: they tend to zero as t → ∞. Physically this is because if h ∈ L1 then there

is a finite amount of total heat, which over time becomes evenly spread across the plane.
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On open and bounded domains Ω ⊂ Rn we can have different behaviour, due to the boundary

conditions holding the temperature steady. In this question we determine the long time behaviour

of solutions u to the heat equation on open and bounded sets Ω with u(x, t) = 0 on ∂Ω × R+

and u(x, 0) = h(x).We claim u → 0 as t → ∞.

(b) Let lm be the function from Theorem 4.3 that solves heat equation on Rn with lm(x, 0) =

mk(x) for m a constant and k : Rn → [0, 1] a smooth function of compact support such

that k|Ω ≡ 1. Why must k exist? Why does lm → 0 as t → ∞? What boundary conditions

on Ω does it obey? (3 points)

(c) Use the monotonicity property to show that u tends to zero. (2 points)

Hint. Consider a = supx∈Ω |u(x, 0)|.

41. The Fourier transform.

Recall that the Fourier transform of a function h(x) : Rn → R is defined in Section 4.6 to be a

function ĥ(k) : Rn → R given by

ĥ(k) =

∫
Rn

e−2πik·yh(y) dy.

Lemma 4.20 shows that it is well-defined for Schwartz functions.

(a) Give the definition of a Schwartz function. (1 point)

(b) Argue that f : R → R given by f(x) = exp(−x2) is a Schwartz function. (1 point)

(c) Show that the Fourier transform of exp(−A2x2) for a constant A > 0 is
√
πA−1 exp(−π2k2A−2). You may use that

∫
ai+R exp(−x2) dx =

√
π for any a.

(2 points)

(d) Show that ∂̂jf(k) = 2πikj f̂(k) for Schwartz functions f : Rn → R. (2 points)

(e) If u : R × R+ is a solution to the heat equation, we can apply a Fourier transform in the

space coordinate to get a function û(k, t). Show that this function obeys

∂û

∂t
+ 4π2k2û = 0.

Solve this ODE in the time variable. (2 points)

(f) Suppose that we have the initial condition u(x, 0) = h(x) for x ∈ R for a Schwartz function

h. Then û(k, 0) = ĥ(k). Apply the inverse Fourier transformation to rederive the solution

given in Theorem 4.3. (2 points)
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