28. Weak Tea.

In this question we try to generalise the idea of spherical means to distributions. Let $\psi \in C_0^{\infty}((0,\infty))$ and define

$$f_{x,\psi}(y) = \frac{1}{n\omega_n |y-x|^{n-1}} \psi(|y-x|)$$

as in the weak mean value property.

- (a) Describe the support of $f_{x,\psi}$ in terms of the support of ψ . (1 point)
- (b) Let λ_{ε} be a family of mollifiers on \mathbb{R} . State the properties of a family of mollifiers. (1 point)
- (c) Set $\psi_{r,\varepsilon}(t) = \lambda_{\varepsilon}(t-r)$ for some r > 0. Suppose that g is a continuous function. Show that

$$\lim_{\varepsilon \to 0} \int_{\mathbb{R}^n} g f_{x,\psi_{r,\varepsilon}} = \mathcal{S}(g,x,r),$$

the spherical mean of g.

(3 points)

(d) Because of this, we may try to define the spherical mean of a distribution F as

Hint. Write this as an integral over a ball, and then as an integral over integrals of spheres.

 $\lim_{\varepsilon \to 0} F(f_{x,\psi_{r,\varepsilon}}).$ However this does not always exist. Let G be the distribution in Exercise 19(d), integration on the unit circle. Show that $G(f_{0,\psi}) = \psi(1)$ for any appropriate ψ . Try to compute limit from the previous part with r = 1. (2 points)

(e) Show that the limit does exist for all harmonic distributions. (2 points)

29. Back in the saddle.

Suppose that $u \in C^2(\mathbb{R}^2)$ is a harmonic function with a critical point at x_0 . Assume that the Hessian of u has non-zero determinant. Show that x_0 is a saddle point. Explain the connection to the maximum principle. (2 points)

30. Subharmonic Functions

Let $\Omega \subset \mathbb{R}^n$ be an open and connected region. A continuous function $v : \overline{\Omega} \to \mathbb{R}$ is called subharmonic if for all $x \in \Omega$ and r > 0 with $B(x,r) \subset \Omega$ it lies below its spherical mean: $v(x) \leq S(v, x, r)$.

- (a) Prove that every subharmonic function obeys the maximum principle: If the maximum of v can be found inside Ω then v is constant. (2 points)
- (b) Suppose that v is twice continuous differentiable. Show that v is subharmonic if and only if $-\Delta v \leq 0$ in Ω . (3 points)
- (c) Let $u: \overline{\Omega} \to \mathbb{R}$ be a harmonic function. Show that $\|\nabla u\|^2$ is subharmonic. (2 points)
- (d) Show that $f \circ u$ is subharmonic for any smooth convex function $f : \mathbb{R} \to \mathbb{R}$. (2 points)

(e) Let v_1, v_2 be two subharmonic functions. Show that $v = \max(v_1, v_2)$ is subharmonic.

(1 point)

31. Never judge a book by its cover.

Let $\Omega \subset \mathbb{R}^n$ be an open, connected, and bounded subset, and let $f : \Omega \to \mathbb{R}$ and $g_1, g_2 : \partial \Omega \to \mathbb{R}$ be continuous functions. Consider then the two Dirichlet problems

$$-\Delta u = f \text{ on } \Omega, \qquad u|_{\partial\Omega} = g_k,$$

for k = 1, 2. Let u_1, u_2 be respective solutions such that they are twice continuously differentiable on Ω and continuous on $\overline{\Omega}$. Show that if $g_1 \leq g_2$ on $\partial\Omega$ then $u_1 \leq u_2$ on Ω . (4 points)