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23. Twirling towards freedom.

Let u ∈ C2(Rn) be a harmonic function. Show that the following functions are also harmonic.

(a) v(x) = u(x+ b) for b ∈ Rn.

(b) v(x) = u(ax) for a ∈ R.

(c) v(x) = u(Rx) for R(x1, . . . , xn) = (−x1, x2, . . . , xn) the reflection operator.

(d) v(x) = u(Ax) for any orthogonal matrix A ∈ O(Rn).

Together these show that the Laplacian is invariant under all Euclidean motions and harmonic

functions can be rescaled. (6 points)

24. Harmonic Polynomials in Two Variables.

(a) Let u ∈ C∞(Rn) be a smooth harmonic function. Prove that any derivative of u is also

harmonic. (1 point)

(b) Choose any positive degree n. Consider the complex valued function fn : R2 → C given by

fn(x, y) = (x+ιy)n and let un(x, y) and vn(x, y) be its real and imaginary parts respectively.

Show that un and vn are harmonic. (2 points)

(c) A homogeneous polynomial of degree n in two variables is a polynomial of the form p =∑
akx

kyn−k. Show that ∂xp and ∂yp are homogeneous of degree n− 1. (1 point)

(d) Show that such a homogeneous polynomial of degree n is harmonic if and only if it is a

linear combination of un and vn. (3 bonus points)

25. Means and Ends

In the lecture script we often encounter the spherical mean of a function f : Ω → R:

S(f, x, r) := 1

nωnrn−1

∫
∂B(x,r)

f(y) dσ(y).

If x is in the interior of Ω, then there exists a ball B(x,R) ⊂ Ω. The spherical mean is then

defined for all 0 < r < R.

Suppose that f is continuous. Prove limr→0+ S(f, x, r) = f(x). (4 points)

Let f ∈ C2(Ω) be any twice continuously differentiable function. Carefully justify the formula

∂

∂r
S(f, x, r) = 1

nωn

∫
B(0,1)

∆f(x+ rz) dz.

This formula is used in the proof of the Mean Value property. It shows why spherical means

and harmonic functions are related. (5 points)
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26. Liouville’s Theorem.

Let u ∈ C2(R2) be a harmonic function. Liouville’s theorem (3.5 in the script) says that if u

is bounded, then u is constant. In this question we give a geometric proof using ball means.

Similar to a spherical mean, the ball mean of a function v ∈ C(Ω) is defined when B(x, r) ⊂ Ω:

M(v, x, r) =
1

ωnrn

∫
B(x,r)

v(y) dy

This proof comes from the following article Nelson, 1961.

(a) Show that u obeys the mean value property on balls, u(x) = M(u, x, r).

(Hint. use a previous exercise to write the integral on the ball as an integral over the radius

and the spheres.) (2 points)

(b) Consider two points a, b in the plane which are distance 2d apart. Now consider two balls,

both with radius r > d, centred on the two points respectively. Show that the area of the

intersection is (2 bonus points)

areaB(a, r) ∩B(b, r) = 2r2acos(dr−1)− 2d
√

r2 − d2

(c) Suppose that u is bounded on the plane: −C ≤ u(x) ≤ C for all x and some constant C.

Show that (2 points)

∣∣M(u, a, r)−M(u, b, r)
∣∣ ≤ 2C

ω2

(
π − 2acos(dr−1)− 2d

r

√
1− d2r−2

)
(d) Complete the proof that u is constant. (2 points)
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