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13. The Music of the Spheres.

In this exercise we show the connection between integration over a ball and integration on spheres

in Rn+1. More precisely∫
B(0,R)

f(x) dx =

∫ R

0

(∫
∂B(0,r)

f(x) dσ(x)

)
dr

You may answer this question in full generality for Rn+1 or just for R2, your choice.

(a) Suppose that you have an (n + 1) × n matrix A and a unit vector b ∈ Rn such that b is

perpendicular to every column of A. That is bTA = 0. Let Ã = (b | A) be the square

matrix with b as the first column. Argue that (2 bonus points)

(det Ã)2 = det ÃT Ã = detATA.

(b) Let Φ : U → ∂B(0, 1) be a parameterisation of the unit sphere. Observe then that Ψ :

[0, R]×U → B(0, R) with Ψ(r, θ) = rΦ(θ) is a parameterisation of the ball. Show that the

change of variables matrix for Ψ in the integral on the left hand side above has the form of

Ã. (2 points)

(c) Hence prove the integration formula. (2 points)

14. In Colour.

Let Ω be a region in Rn and N the outer unit normal vector field on ∂Ω. Let u, v be two C2

real-valued functions on Ω.

(a) Prove the first Green formula∫
Ω
v△u dx = −

∫
Ω
∇u · ∇v dx+

∫
∂Ω

v∇u ·N dσ.

(3 points)

(b) Using the first Green formula, prove the second Green formula∫
Ω
(v△u− u△v) dx =

∫
∂Ω

(v∇u− u∇v) ·N dσ.

(1 point)

(c) Suppose further that v has compact support in Ω. Prove that∫
Ω
v△u dx =

∫
Ω
u△v dx

(1 point)
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15. The Black Spot.

Consider the plane R2, a disc Br = {x2 + y2 ≤ r2} and the function g(x, y) = ln(x2 + y2).

(a) Show that the value of the integral ∫
∂Br

∇g ·N dσ

does not depend on the radius r, where N is the outward pointing normal. (2 points)

(b) What property of g explains this fact? In your proof, be careful to note that g is singular

at (0, 0). (3 points)

(c) Prove for any compact region Ω ⊂ R2 whose boundary is a manifold, that

∫
∂Ω

∇g ·N dσ =

4π if (0, 0) lies in the interior of Ω

0 if (0, 0) lies in the exterior of Ω

(2 points)

16. Convoluted.

The convolution of two functions f, g : Rn → R is defined by

(f ∗ g)(x) :=
∫
Rn

f(y)g(x− y) dy.

(a) Let fn(x) = 0.5n for x ∈ [−n−1, n−1] and 0 otherwise. Show that the following bounds

hold

inf
|y|≤n−1

g(y) ≤ (g ∗ fn)(0) ≤ sup
|y|≤n−1

g(y).

(3 points)

(b) Suppose now that g is continuous. Show that (g ∗ fn)(0) → g(0) as n → ∞. (3 points)

(c) (Optional) Show that the convolution of C∞
0 -functions on Rn is a bilinear, commutative,

and associative operation.

17. Is this an applied math course?

In economics, the Black-Scholes equation is a PDE that describes the price V of a (European-

style) option which under some assumptions about the risk and expected return, as a function

of time t and current stock price S. The equation is

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
= rV − rS

∂V

∂S
,

where r and σ are constants representing the interest rate and the stock volatility respectively.

Describe the order of this equation, and whether it is elliptic, parabolic, and/or hyperbolic.

(3 points)
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18. Go with the flow.

(Optional extra question)

In this question we generalise the conservation law to the form usually encountered in physics.

Let ρ(x, t) : Rn × R → R be the density of a substance. We have seen in an earlier question

that the flux density is simply the density multiplied by the velocity ρv, for a velocity field

v(x, t) : R3 × R → R3. The flux across a (n− 1)-dimensional submanifold S is the integral∫
S
ρv ·N dσ,

where N is the normal of S.

(a) Argue that the conservation of substance is equivalent to

∂ρ

∂t
+∇ · (ρv) = 0.

This is the usual form of the conservation law in physics.

(b) How does this relate to the form of the conservation law derived in the lectures?

(c) For liquids a common property is incompressibility. For example, water is well-modelled

as an incompressible liquid (at the bottom of the ocean, it is compressed by just 2%).

Normally this would imply that ρ is constant. However, slightly more general model says

that ρ is not globally constant, but if we follow a point x(t) along the velocity field v then

ρ(x(t), t) is constant.

Use this description of incompressible flow to show that ∇ · v = 0.
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