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Ross Ogilvie

Analysis III
13. Exercise: Orientation

77. Orientable hypersurfaces defined by an equation.

Let f : Rn → R a smooth map, q ∈ R a point in its range so X := f−1({q}) ̸= ∅, and

f is submersive at all points x ∈ X. Show that X is an (n − 1)-dimensional orientable

submanifold.

Hint. Let ω be the volume form on Rn and F the gradient field of f (i.e Tx(f)(v) =

F (x) · v). Investigate iFω|X, defined in Definition 3.11.

Solution. Because f is a submersion, we know that X is an (n − 1)-dimensional sub-

manifold. The gradient field F = ∇f is a vector field on Rn, so it makes sense to contract

the volume form with it. ιFω is a (n − 1)-form, so we should try show that this form is

non-vanishing on X, so that Theorem 3.17(iv) applies.

Choose any point x ∈ X and take a basis vi of TxX. Then {F (x), v1, . . . , vn−1} is a basis

of TxRn because F is perpendicular to the vectors vi and does not vanishing at x because

f is a submersion. Hence

⟨ιFω, v1 ⊗ · · · ⊗ vn−1⟩ = ⟨ω, F ⊗ v1 ⊗ · · · ⊗ vn−1⟩ ≠ 0

shows that ιFω|X is non-vanishing.

In Class Exercises

78. Orientable manifolds.

(a) Show that the n-dimensional sphere Sn is orientable by finding an oriented atlas.

Hint. For the sphere, consider the atlas that uses stereographic projection. An extra

trick is also needed.

(b) Show that the Möbius band is not orientable.

Hint. This is difficult. Good luck.

(c) Let X and Y be orientable manifolds. Show that the Cartesian product X × Y is

also orientable.

(d) Let X be a manifold. Show that every coordinate neighbourhood of X is orientable.

More precisely, let (U, ϕ) be a chart of X with ϕ = (ϕ1, . . . , ϕn) : U → Rn, and show

that dϕ1 ∧ . . . ∧ dϕn is a non-vanishing n-form on U .

(e) Prove that the tangent bundle of any manifold is orientable.
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Solution.

(a) As we have seen many times, we can cover the sphere with two charts using stereo-

graphic projection. The transistion function between these two charts was already

computed in Example 1.18(iii) as y 7→ z := ∥y∥−2y for y ∈ Rn \ {0}. We have that

∂zj
∂yi

=


∥y∥2−2y2i

∥y∥4 for i = j
−2yiyj
∥y∥4 for i ̸= j.

Thus we need to find the sign of the matrix ∥y∥2I − (2yiyj)i,j. Recall that the

determinant is the product of the eigenvalues of a matrix. The eigenvalues of the

matrix bI − A are related to those of A because

(bI − A)v = λv ⇔ Av = (b− λ)v.

Thus we need to calculate the eigenvalues of (2yiyj)i,j. But we recognise that this is

the product 2yyT for y a column vector (notice this is not the familiar order used to

write the dot product). We see immediately that y is itself an eigenvector, since

(2yyT )y = 2y(yTy) = 2∥y∥2y.

On the other hand, if v is perpendicular to y, then the same computation shows

that v is a null vector of A. This gives us a basis of eigenvectors of A and all of the

eigenvalues. Therefore the eigenvalues of ∥y∥2I−(2yiyj)i,j are ∥y∥2−2∥y∥2 = −∥y∥2

and n− 1 copies of ∥y∥2. This shows that transition matrix has everywhere negative

determinant and the atlas of the two stereographic projections is not an oriented

atlas.

However, we can easily make an oriented atlas now. Let ϕN , ϕS be stereographic

projection from the north and south pole respectively. Let A : Rn → Rn be map

A(x1, . . . , xn) = (−x1, x2, . . . , xn) which reflects in the first coordinate. Consider the

atlas {ϕN , A◦ϕS}. There is only one transition to consider here, and the determinant

of the derivative of the transition is, by the chain rule,

det(A ◦ ϕS ◦ ϕ−1
N )′ = detA′ det(ϕS ◦ ϕ−1

N ) = − det(ϕS ◦ ϕ−1
N ) > 0.

Thus this is an oriented atlas, and shows Sn is oriented.

There is also a more abstract way to make this argument that avoids the computation

of the determinant: Note that the Jacobian is everywhere full-rank because it has no

kernel (or that the transition function is diffeomorphism). Therefore its determinant

is non-zero and so must be a single sign on Rn \ {0} (this set is connected and the

determinant is continuous, so the image must be connected, hence it has a single

sign). If the sign is positive, we have an oriented atlas. If the sign is everywhere

negative, compose one of the charts with the reflection A of Rn. The result is an

oriented atlas. In either case, Sn must be orientable.
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(b) To prove something is non-orientable, we must show that there does not exist any

oriented atlas for the manifold; as we have seen in the previous part it is not enough

to say that the usual atlas is not oriented. For this reason, will be prove that the

Möbius band is non-orientable by contradiction.

But first, let us recall the accoutrements for the Möbius band M ⊂ R2 × R/Z.
Let the standard atlas for R/Z be {(Ux, ϕx)}x∈R. We have seen that this bundle

trivialises over a cover with two sets, for example U0 and U0.5. Using the function

ℓ(x) = (cos πx, sin πx) ∈ L(x), the trivialisations are Φx(t, [y]) = tℓ(ϕx([y])) = tℓ(y).

We understand how to use trivialisations to construct an adapted chart for the

bundle. This gives us an atlas for M , namely the two charts

ϕ̃0 : π
−1[U0] → R× (−0.5, 0.5) ϕ̃0.5 : π

−1[U0.5] → R× (0, 1)

ϕ̃0(tℓ(y)) = (t, y) ϕ̃0.5(tℓ(y)) = (t, y).

This is not an oriented atlas, as we can compute. For points with y ∈ (0, 0.5) we

have

ϕ̃0.5 ◦ ϕ̃−1
0 (t, y) = ϕ̃0.5(tℓ(y)) = (t, y).

The Jacobian of the change of coordinates is therefore the identity matrix and the

sign of the determinant is 1. Whereas for y ∈ (−0.5, 0) we have

ϕ̃0.5 ◦ ϕ̃−1
0 (t, y) = ϕ̃0.5(tℓ(y)) = ϕ̃0.5(−tℓ(y + 1)) = (−t, y + 1).

Now the sign of the determinant of the Jacobian of the change of coordinates is −1.

With this prepared, we can now give the argument. Suppose that there is an

oriented atlas {(Vi, ψi)} of the Möbius band M . Consider the function s0(m) :=

sign det Jϕ̃0(m)(ψi ◦ ϕ̃−1
0 ) from π−1[U0] to {1,−1}. This is independent of the chart

ψi because

sign det J(ψi ◦ ϕ̃−1
0 ) = sign

(
det J(ψi ◦ ψ−1

j ◦ ψj ◦ ϕ̃−1
0 )
)

= sign det J(ψi ◦ ψ−1
j ) sign det J(ψj ◦ ϕ̃−1

0 )

= sign det J(ψj ◦ ϕ̃−1
0 ).

Since the determinant is non-zero (these are coordinate charts), this is a continuous

function. Further, π−1[U0] is connected, so in fact it is a constant function. By

identical argument, the function s0.5(m) := sign det Jϕ̃−1
0.5(m)(ψi ◦ ϕ̃−1

0.5) from π−1[U0.5]

to {1,−1} is also constant.

But this leads to a contradiction. At m = (0, [0.25]):

s0(m) = sign det Jϕ̃0(m)(ψi ◦ ϕ̃−1
0 )

= sign det Jϕ̃0.5(m)(ψi ◦ ϕ̃−1
0.5) sign det Jϕ̃0.5(m)(ϕ̃0.5 ◦ ϕ̃−1

0 )

= s0.5(m)× 1.
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On the other hand, at m = (0, [0.75]):

s0(m) = sign det Jϕ̃0(m)(ψi ◦ ϕ̃−1
0 )

= sign det Jϕ̃0.5(m)(ψi ◦ ϕ̃−1
0.5) sign det Jϕ̃0.5(m)(ϕ̃0.5 ◦ ϕ̃−1

0 )

= s0.5(m)×−1.

This is impossible for constants s0, s0.5 ∈ {1,−1}.

(c) Choose oriented atlases {ϕi} forX and {ψj} for Y . Then the standard atlas {ϕi×ψj}
for X × Y is oriented because

sign det((ϕi × ψj) ◦ (ϕk × ψl)
−1)′ = sign

∣∣∣∣∣(ϕi ◦ ϕ−1
k )′ 0

0 (ψj ◦ ψ−1
l )′

∣∣∣∣∣ = 1 · 1 = 1.

(d) Let Ek be the coordinate vector fields on U . We have already seen that this n-form

is 1 at every point when applied to E1 ⊗ · · · ⊗ En. Therefore it is non-vanishing.

(e) Again, there is a standard atlas on the tangent bundle TX that arises from any atlas

{(Ui, ϕi)} on X given by the tangent map, namely

T (ϕi) : π
−1[Ui] → Rn × ϕ[Ui], (v, x) 7→ (Tx(ϕi)v, ϕi(x)).

We can compute the Jacobian of the transition function T (ϕi ◦ ϕ−1
j ) in block form,

for w ∈ Rn and y = ϕj(x):(
T (ϕi) ◦ T (ϕj)

)′
(w, y) =

(
Ty(ϕi ◦ ϕ−1

j )w ∂
∂yk
Ty(ϕi ◦ ϕ−1

j )(w, y)

0 (ϕi ◦ ϕ−1
j )′(w, y)

)
.

The first block is so because the derivative of a linear map is the same linear map.

The off diagonal block is difficult to compute, but not needed to find the determinant.

Observe finally that the two diagonal blocks are actually two different notations for

the same thing. Therefore the determinant is a square, and hence always positive.

79. Integration on R.

Consider the following integration by substitution with f(x) = x2:∫ 2

−1

2xe−x2

dx =

∫ 2

−1

ef(x) f ′(x)dx =

∫ f(2)

f(−1)

eu du =

∫ 4

1

eu du.

This seems very similar to Corollary 3.22, except that f is not a diffeomorphism! Also

consider the substitution with v = −x∫ 2

−1

e−x dx =

∫ −2

1

eu (−du) =
∫ 1

−2

eu du.

4



The aim of this exercise is to understand why this all works for R.

First, extend Corollary 3.22 for orientation-reversing diffeomorphisms.

Second, define ∫ b

a

g(x) dx = sign(b− a)

∫
R
χ[a,b](x)g(x) dx.

Show that it obeys the rule
∫ b

a
+
∫ c

b
=
∫ c

a
.

Third, let f : [a, b] → R be a continuously differentiable function. The set (f ′)−1[{0}] is
closed, and therefore the countable union of closed intervals Ji (single points are considered

as the interval [x, x]). Taking the endpoints of these intervals gives a partition {ti} of

[a, b] such that on each interval (ti, ti+1) the function f ′ is either non-zero or identically

zero. Prove ∫ b

a

g(f(x))f ′(x) dx =

∫ f(b)

f(a)

g(u) du.

Solution. First, if f : X → Y is orientation reversing, then it is orientation preserving

if Y is given the opposite orientation. This negates all integrals on Y . Therefore∫
f [A]

ω = −
∫
A

f ∗ω.

Second, there are several cases to consider. We will demonstrate one case: a ≤ c ≤ b.

Then ∫ b

a

g +

∫ c

b

g =

∫
R
(χ[a,b] − χ[c,b])g =

∫
R
χ[a,c)g =

∫ c

a

g,

since χ[a,c) and χ[a,c] are almost everywhere equal. The other cases are very similar.

Thirdly, decompose the integral over [a, b] according to the partition, discarding the end-

points as they are sets of measure zero∫ b

a

g(f(x))f ′(x) dx =
∑
i

∫
(ti,ti+1)

g(f(x))f ′(x) dx.

If f ′ is zero on (ti, ti+1) then f(ti) = f(ti+1) and the integral on this interval is zero.

Therefore ∫
(ti,ti+1)

g(f(x))f ′(x) dx = 0 =

∫
∅
g(u) du =

∫ f(ti+1)

f(ti)

g(u) du.

If f ′ > 0 on (ti, ti+1) then it is an orientation preserving C1-diffeomorphism and Corollary

3.22 applies: ∫
(ti,ti+1)

g(f(x))f ′(x) dx =

∫ f(ti+1)

f(ti)

g(u) du.

since f ∗du = f ′(x) dx. If f ′ < 0 then f is orientation reversing, f(ti+1) < f(ti), and∫
(ti,ti+1)

g(f(x))f ′(x) dx = −
∫
[f(ti),f(ti+1)]

g(u) du =

∫ f(ti+1)

f(ti)

g(u) du.
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Putting together all three cases, we get

∑
i

∫ ti+1

ti

g(f(x))f ′(x) dx =
∑
i

∫ f(ti+1)

f(ti)

g(u) du =

∫ f(b)

f(a)

g(u) du.

We might wonder whether this can be generalised. We can restrict to det Jf ̸= 0 without

changing the value of either integral by Sard’s theorem. But the next step for R was the

fact that f ′ > 0 implies that f is injective and therefore we can apply Corollary 3.22.

This inference is not true generally. Indeed it is not even true for the circle, which is

exactly the problem in Beispiel 3.23.
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